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ABSTRACT

The value of investments in renewable energy (RE) technologies has increased rapidly over the last decade as a
result of political pressures to reduce carbon dioxide emissions and the policy incentives to increase the share of
RE in the energy mix. As the number of RE investments increases, so does the need to measure the associated
risks throughout planning, constructing and operating these technologies. This paper provides a state-of-the-art
literature review of the quantitative and semi-quantitative methods that have been used to model risks and
uncertainties in sustainable energy system planning and feasibility studies, including the derivation of optimal
energy technology portfolios. The review finds that in quantitative methods, risks are mainly measured by
means of the variance or probability density distributions of technical and economical parameters; while semi-
quantitative methods such as scenario analysis and multi-criteria decision analysis (MCDA) can also address
non-statistical parameters such as socio-economic factors (e.g. macro-economic trends, lack of public
acceptance). Finally, untapped issues recognised in recent research approaches are discussed along with
suggestions for future research.

1. Introduction

Global investment in renewable energy (RE) in 2015 increased by
5% to $285.9 billion in relation to 2014, surpassing the last record of
$278.5 billion in 2011 [1]. The annual increase in power capacity has
also reached its highest level across all regions in 2015. Wind and solar
photovoltaics (PV) account for an approximately 77% of new capacity,
with hydropower accounting for most of the rest [2].

As the number of RE investments increases, so does the need to
measure the associated risk and uncertainty from the perspective of
different stakeholders throughout planning, construction and opera-
tional phases [3]. Energy developers, investors and policy makers face a
future that implicitly involves technological, financial and political risks
and uncertainties. Although, RE technologies potentially have a lower
risk profile than conventional energy sources because they are dis-
connected from fossil fuel prices, they still entail considerable techno-
logical, financial and regulatory risk exposure, depending on the
technology, country and regulatory regime. Fluctuation of cost compo-
nents of power generation units, volatile crude oil prices,' electricity
price and carbon costing in the context of the global climate change
mitigation strategy, are examples of uncertainty components encoun-
tered by energy developers, investors and policy makers investors in
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the energy sector [4]. Often these risks are mitigated by governments in
the form of price protection, but this can have a large budgetary
burden, which often passes on to consumers through taxes and
electricity bills [5].

Another stream of studies has focused on the identification and
assessment of risks and uncertainty, as well as risk management
solutions for sustainable energy projects [3,7,8,17-19]. In general,
risk in the power generation investment sector is considered to be
multi-dimensional and depends on the perspective of different stake-
holders [9]. An array of analytical methods has been used to analyse
various aspects of risk from the perspectives of different stakeholders.
This results in a bewildering mix of studies that look at different sides
of the same problem. However, there has been no systematic review of
which techniques are most appropriate for reviewing individual, or
groups of risks and how useful the outputs are to various stakeholders.

The aim of this paper is to provide an extensive, systematic
literature review (SLR) of how risk and uncertainty has been analysed
with respect to sustainable energy system planning. This will focus on
identifying the attributes of risks (or modelled uncertainties) that each
analytical method is most suited to address, as well as a critical
comparison of the main outputs of such studies. The outputs of this
review will map appropriate analytical techniques to specific risks, as

1 For example, international crude oil prices demonstrated dramatic changes from 2008 to 2009 (decreased by over 46%) as well as from 2009 to 2010 (increased by 25.6%, namely

$60.4/barrel in 2009, $78.1/barrel in 2010) [161].
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well as comment on their application from the perspective of different
stakeholders. The outputs are intended to provide a guide to research-
ers as to common practice in the assessment of risk and uncertainty for
sustainable energy developments as well as indicating any possible
gaps or new avenues for research.

The rest of this paper is set out as follows: Section 2 presents an
overview of risk/uncertainty factors affecting investment decision-
making in sustainable power generation planning and feasibility
studies, along with an overview of the different perspectives among
stakeholders. The risk-based evaluation methods are introduced in
Section 3, and the cross-method comparison is conducted in Section 4.
Finally, Section 5 summarises the findings of this work and suggests
some focal points for future research.

2. Overview of risks and stakeholders’ perspectives in
sustainable energy generation systems

Risk in the power generation investment sector is generally
considered to be multi-dimensional and depends on the perspective
of different stakeholders. The “Comprehensive Actuarial Risk
Evaluation — CARE” paper produced by the International Actuarial
Association (IAA) provides a comprehensive taxonomy of risks faced by
enterprises [9]. Among other classification schemes, the paper suggests
a new perspective for risk categorisation into statistical and non-
statistical risks. The former are the risks that can be measured or
modelled with mathematical or statistical methods, such as stochastic
modelling, while the latter are those that are difficult to model with
existing knowledge.?

Risks associated with sustainable energy projects depend largely on
a number of factors that are technology-, country- and regulatory-
specific, while they also vary according to different stakeholders’
perspectives. Authors working on risk identification, analysis and
management in the sustainable energy investment sector have devel-
oped different risk categorisation schemes according to their intended
focus. Table 1 summarises the most cited risks by employing a political,
economic, social, technology, legal and environmental (PESTLE)
approach.

Stakeholders involved in the field of RE investments comprise:
project developers, project investors, insurers, manufacturers, consu-
mers, affected local communities and policy makers. Each stakeholder
tends to have different concerns and objectives from renewable energy
investments. This means that risks will vary in importance across these
different groups.

From a project developer's perspective, the objective is to make a
sufficient return on investment (capital and other resources) through
the sale of an RE project to an investor [12]. Investors are mostly
interested in minimising risks of technical reliability, costs and risks of
revenue disruption [14], while policy makers are concerned with
designing efficient and effective policy schemes, which would provide
the appropriate level of incentives to potential investors of RE projects
that allow government targets to be met [15]. As such, risk analysis in
RE projects has been performed in a generalised style covering
numerous RES technologies and stakeholders’ perceptions by some
authors [6,16—-19], while others distinguish risks through the related
stakeholders’ perspective (e.g. from the investor's and developer's view)
[20] or by technology-specific risk factors [3,21].

3. Results of the literature review

Studies in this area tend to focus on the analysis of specific risk(s)
from the perspective of a stakeholder or stakeholders. Therefore, the

2 Statistical risks include: market, credit, insurance, asset liability and liquidity risks,
while examples of non-statistical risks are: reputational, opportunity, strategic, paradigm
shift and black swan risks.
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results section will map this research area in terms of which risks have
been analysed by which methods and which stakeholders have been
included.

3.1. Overview of the methods

The literature review was conducted on the basis of a SLR
approach, which provides the synthesis of the research in a systematic,
transparent, and reproducible manner, while also restricting the
researcher's bias [22]. A description of the main steps followed to
conduct the SLR approach is summarised in Appendix A. Analysis of
the SLR results finds several methods used in the analysis of risk
involved with sustainable energy generation systems. Table 2 provides
a tally of how many times a paper using a particular method was
identified by the systematic review process. This paper takes these
methods forward for further analysis. As indicated in Appendix A, the
total number of references considered for the review was 161 out of
which, 113 originated from the SLR process, while the rest 48
references were identified through additional checks (e.g. via citation
tracking or journal websites searching) in order to complement
information on a particular topic which was not fully covered by the
systematic review.

The review focuses on critically assessing which risks have been
analysed by which methods, what are the common outputs of these
methods and which stakeholders have been included in a number of
widely cited representative risk-based methodologies applied in sus-
tainable power generation planning and feasibility studies. These
methods have been classified, for reasons of simplicity, into quantita-
tive and semi-quantitative methodologies (see Fig. 1).

Quantitative risk-based evaluation methods deal with (statistical)
risk factors that can be described by probability distributions. Widely
cited methods falling into this category are: Mean-variance portfolio
(MVP) theory, Real options analysis (ROA), stochastic optimisation
methods, and Monte Carlo simulation (MCS). Semi-quantitative meth-
ods have the flexibility to take into consideration statistical and non-
statistical risks. Semi-quantitative methods that were identified
through the SLR are: MCDA and scenario analysis.

Table 3 matches the risk-based methods with risks/uncertainties as
identified by the systematic review. The table can potentially provide
guidance as to what methods are most suitable to address/model the
specific risk and uncertainty factors listed.

3.2. Quantitative methods

3.2.1. Mean-variance portfolio analysis (MVP)

MVP is an established method of economic theory, based on the
pioneering work of Harry Markowitz, who focused on the diversifica-
tion of securities towards the construction of efficient portfolios, which
would correspond to high expected return and low variance [97,98].
Later, Awerbuch [51] applied MVP for deriving optimal (or efficient)
energy generation portfolios yielding maximum expected return in
combination with minimised risk.

An energy generation portfolio constitutes a mix of generating
assets put together to reduce total investment risks; as such, an efficient
portfolio of energy generation technologies (with higher RE shares)
reduces the threat of abrupt supply disruptions, hence reinforcing
energy security through the mitigation of volatile fossil fuel price
dependence.

Diversifying the power generation portfolio has been highlighted by
a number of authors [18,20,99-102] as an effective strategy of risk
hedging due to the creation of portfolio effects resulting in efficient
power generating portfolios (i.e. optimum shares of different energy
technologies in the portfolio resulting in a minimum level of risk
towards attaining a given generating-cost objective). Diversification
dimensions may be geographical, technological or value chain related.
Numerous reports by international agencies, organisations, as well as
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Table 1
Risks in renewable energy investment sector.
(Sources:[3,10-13]).
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Risk category Sub-category

Risk factors/Events

Political Country

Changes in the national economy

Political stability

Regulatory

Changes in policy support schemes (for example changes in levels of tax credit or RPS targets)

Liability to third parties
Contracting risk

Bureaucracy

Economic Market

Complex approval processes/Delay of permits
Variability of revenue due to electricity price

Demand fluctuations

Financial/Fiscal

Generating costs (CAPEX, fixed and variable OPEX, pre-development costs)

Interest rate swings

Financing risks (insufficient access to investment and operating capital)
Taxation regime

Transaction costs

Strategic/business

Lack of public acceptance
Health risks

Project development

Social

Technological

Damage to reputation

Delays in the licence acquisition

Accidents, acute diseases

Revenue loss due to project delay for the commercial operation date (COD)

Failure to obtain all required licences
Failure to obtain grid access

Construction

Damage during transport or construction

Damages due to natural hazards
Unreliability of components (e.g. damage to turbines)
Unavailability of skilled labour

Operation/maintenance

Damages due to natural hazards

Technological/innovation risk

Higher OPEX (due to critical failures of components)

Unscheduled plant closure due to the lack of resources

Risk of components generating less electricity over time than expected
Sabotage, terrorism and theft risk

Resource risk

Infrastructure

Decommission
Legal Energy and climate change policy

Environmental

Revenue loss due to intermittency

Variability of revenue due to grid availability
Decommission costs

Changes in the national energy and climate change policy
Risk of environmental damage

Carbon footprint and life cycle assessment

Table 2
Frequency of each method appearing in the SLR (representing the number of studies that
were assessed as more relevant).

Methods Frequency of papers reviewed

using a particular method

Mean variance portfolio 16%
Optimisation methods 31%
Real options analysis 13%
Monte Carlo simulation 9%

Scenario analysis 11%
Multi-criteria decision analysis 21%

proaches do not capture the contribution of renewable and non-fossil
fuel technologies to the electricity portfolio, in terms of reducing the
variability of electricity costs and hence their impact on economic
activity. At any point, some assets in the energy generation mix may
have higher costs than others; yet, in another instance, the combination
of alternatives serves to minimise overall expected generating cost
relative to the expected risk.

Portfolio risk is usually measured as the standard deviation of historic
annual outlays for fuel, operation and maintenance (O & M) and con-
struction period costs examined on the basis of historical data [50].
Numerous papers have attempted to generate models that consider risks
as the cost variance of a technology portfolio [23,49-52,103,105-107].

Risk-based

methods

Quantitative

Semi-
quantitative

N

Monte Carlo
simulation

Mean-variance
portfolio theory

Real options
analysis

(Stochastic) Multi-criteria Sz
Optimisation decision analysis
techniques analysis Y

Fig. 1. Classification of the risk-based methodological approaches implemented in the field of sustainable energy planning and feasibility.

scientific papers [23,24,49,51,55,103—105] have stressed the impor-
tance of de-emphasising stand-alone energy generating costs and
levelized cost assessments in generation planning, since these ap-

Huang and Wu [52] introduced portfolio risk by means of volatile fuel
prices and uncertainty of technological change and capital cost reduction,
while another MVP paper deemed market electricity prices and wind
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resource availability as uncertain inputs represented by probability
distributions with approximately normally distributed probability func-
tions to compare the relative attractiveness of investing in a wind park
under two RE policy support instruments, namely, feed-in tariffs (FiT)
and feed-in premiums (FiP) [25].

Adopting a private investor's perspective, some authors have used
cash flow models to calculate risk in terms of earnings, costs of O & M,
credits, depreciation of facilities, and benefits [49,62,108]. Mufoz et al.
[62] used the Internal Rate of Return (IRR) to represent the returns on
investments, while the associated portfolio risk was reflected by the
standard deviation of IRR. IRR proved to be a useful measure of the
return from the real project, capable also of considering the uncertainty
in electricity prices and future subsidies (introduced as stochastic
inputs in the cash flow model). Roques et al. [109] concluded that in
the absence of long-term power purchase agreements, optimal portfo-
lios for a private investor are significantly different from socially
optimal portfolios; since, from a private investor's viewpoint, there is
little diversification value in a portfolio of mixed technologies, due to
the high empirical correlation between electricity, gas and carbon
prices. Bearing the above in mind, MVP theory is a method well suited
to the problem of electricity generation portfolio planning and evalua-
tion at a national and regional level (hence from a policy maker's
viewpoint), since it can be used to derive efficient power generating
portfolios, which reduce generating costs and enhance energy security,
while the method has also been used to assess the maximum losses (or
returns) of a private investor's (portfolio) investment within a specified
confidence level.

3.2.2. Real-options analysis (ROA)

ROA is particularly applied to the analysis of the impact of
uncertainty on investment decisions when management actions can
be timed flexibly. This enables the investor to evaluate available options
and take capital budgeting decisions (such as deferring, abandoning,
expanding, staging, or contracting) as new information arises and
uncertainty about market conditions and future cash flows is reduced
[110]. ROA supplements the information provided by static discounted
cash flow analysis and is based on the concept that it may be preferable
to postpone irreversible decisions (e.g. in capital intensive investments)
and wait to make a better informed decision at a future point in time
[109]; hence, adding the ability of an investor to respond dynamically
to changing market conditions. Common applications of ROA in low
carbon energy projects include investigating the impact of climate
policy uncertainty on private investors’ decision-making in the power
sector [33-36,111], such as the diffusion of various emerging RE
technologies [73] or the investment timing and capacity choice for RE
projects [33].

In more detail, [33] adopts ROA to analyse the flexibility of the
investment timing (based on the investor's right to postpone invest-
ment once the licence is granted if the economic environment is not as
favourable as desired) and capacity selection for RE projects under two
different subsidy schemes (feed-in tariffs and RE certificate trading), by
examining investment behaviour under these conditions. The option of
investment timing and capacity choice is assessed taking into account
the special characteristics of RE sources (wind power, solar power, and
run-of-river hydropower), namely the intermittency of these power
sources, as well as the uncertainties in capital costs, subsidy payments
and electricity prices. Kumbaroglou et al. [73] presented a policy
planning model based on the ROA method featured through a dynamic
programming process for recursively evaluating a set of investment
alternatives on a year-by-year basis under uncertainty. They used the
operational and cost data for existing power plants, electricity price
data and capacity expansion structure, in order to derive annually
added capacities and technologies from 2006 up to 2025 under
different scenarios. The dynamic programming model allowed them
to check the impact of uncertainty and technical change on the
diffusion of various emerging RE technologies, concluding that market
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actors need, in the short-term, financial incentives to achieve a more
widespread adoption of RES technologies in the longer run.

Other applications of the method focus on the impact of market
uncertainty on investment electricity industry decision-making. Market
uncertainty is expressed into stochastic CO, prices and policy uncer-
tainty [36,55,111]. Authors in [36,111] emphasise the distinction
between uncertainty coming from fluctuations in CO, prices around a
known trend, which would arise in a market with emissions permits,
and uncertainty emanating from the absence of clear policy signals. It
has been shown that some market uncertainty may induce earlier
investments in carbon capture and storage (CCS) equipment than in
the case of perfect information. However, policy uncertainty may also
lead to prolonged accumulation of CO, emissions in the atmosphere,
since investors prefer to wait for the final decision of government
before investing in climate change mitigation technologies. Hence, a
clearer, long-term policy plan would leverage emission abatement
actions. In both [34] and [35] the uncertainty is represented by carbon
price uncertainty, which is modelled through stochastic variations in
the carbon price. Results from Blyth et al.’s work [34] demonstrated
that such uncertainty creates a risk premium for electricity investments
which needs to be offset with extra incentives in order to overcome the
effects of uncertainty on the timing of the investment decision. An
important conclusion of their work suggests: the shorter the time
before a future climate policy event, the higher the impact of climate
change policy risks on the investment decision (a conclusion also
reported in [35]). It is thus concluded that the method can derive useful
outputs for both investors and policy makers. On the one hand,
investors can evaluate available options and take capital budgeting
decisions on the best timing; on the other hand, policy makers could be
assisted to better understand the impact of market uncertainty (e.g.
costs induced by an environmental policy) on the investment decisions
of investors.

3.2.3. Stochastic optimisation techniques

Stochastic optimisation has been extensively used in a number of
energy planning and feasibility problems, such as the determination of
optimal energy mix planning at a national level (i.e. Indonesia [26],
China [112], Korea [29], and Croatia [113]), expansion planning of
sustainable energy systems [65,69,82,114-119], design of hybrid
systems [120,121], and numerous others energy systems-related
problems like unit commitment, energy storage management, bidding
energy resources, pricing electricity contracts [122], introducing un-
certainty in one or more of the input parameters subject to stochas-
ticity. In this review, we focused on problems that are associated
principally with the deployment of stochastic optimisation methods in
investment planning decisions. Usually, the constraints considered in
these problems depend on the perspective of the stakeholder. As such,
studies looking at the problem from a policy maker's perspective, seek
to develop least-cost optimisation models to allocate energy sources for
sustainable development, under constraints such as energy security
(demand), renewable penetration, satisfaction of greenhouse gas
(GHG) emission reduction targets, budget constraints and maximum
technology capacity [26,30,112]. An investor would aim at minimising
both the cost (or alternatively maximising the revenues) and invest-
ment risk (e.g. by minimising CVaR measure), while the potential
constraints would further include risk-aversion constraints
[70,83,123,124]. Uncertainties that are usually represented include
market electricity prices, fuel prices, production costs of existing and
future power plants, CO, emission policy, energy demand, technologi-
cal efficiency, and utilisation factors [26,30,112]. Stochastic optimisa-
tion problems are characterised by an array of fragmented modelling
approaches, such as fuzzy, (dynamic) stochastic and interval mathe-
matical programming [125], often leading to inconsistent and inaccu-
rate results [122].
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3.2.4. Monte Carlo Simulation (MCS)

MCS involves the random sampling of probability distributions of
the model input parameters with the purpose of producing numerous
scenarios. The sampling from each parameter's probability distribution
is realised in a way that reproduces the shape of the output distribu-
tion; hence, the distribution of the values deriving from the application
of the method reflect the joint probability distribution of the outcomes
[126]. MCS offers many advantages but it also requires a considerable
range of data as input variables, such as the probability density
functions of uncertain or fuzzy values or forecasted variables. There
are numerous studies performing risk analysis of sustainable energy
systems with MCS in the literature [56,57,59,63,89,92,127,128].
Existing works disclose a number of advantages of the method, such
as the ability to obtain fast results when modifying the variables of the
problem, the ability to calculate the risk undertaken because of
uncertain or stochastic input variables, as well as the ability to model
the correlations and other interdependencies of the system. Input
variables need to be statistically independent; otherwise the simula-
tions will lead to inaccuracies and shortcomings in the interpretation of
the results. In studies employing MCS, the best fitting probability
density function (PDF) assigned to the input variables is determined
either by using historical data of the variable (statistical or experi-
mental methods) [5], or by using subjective judgements (e.g. perform-
ing interviews with experts) on the empirical worst, base and best case
estimates (confidence intervals) usually interpreted as quantiles of a
probability density function [57]; most often, both methods are used in
order to derive the PDF of numerous variable inputs [56,89,128].

Studies performing stochastic financial risk analyses of sustainable
energy systems by means of the MCS method tend to derive joint
probability distributions of annual energy production and investment
profitability metrics (i.e. net present value (NPV), IRR) at a plant level
[92]. For the selection of input variables, a sensitivity analysis method
can initially be carried out for checking the effect of a number of
potential input variables on the NPV. Risks/Uncertainty factors that
have been taken into consideration include fluctuations in wind
resource potential, wind curtailment, access to the grid and macro-
economic parameters [89]. MCS integrated in a typical financial model
can assist investors to perform a first exploratory analysis to decide
whether and where to invest and policy makers to assess policy
parameters and explore possible scenarios of investing in an RE
technology. For example, Pereira et al. [57] evaluated the risk in
project implementation, under stochastic equipment costs, market
financial conditions, O & M costs, and policy implications. They con-
sidered as independent variables the total initial costs, the interest rate
and the value of energy produced and sold to the grid or utility;
matching them with exponential, triangular and Bradford probability
distribution functions, respectively, while NPV and the produced
energy cost have been defined as the dependent variables.

3.3. Semi-quantitative methods

Along with the quantitative risk-based methods dealing with
statistical risk and uncertainty in decisions associated with sustainable
energy planning and feasibility problems, scenario analysis and MCDA
have been identified by the SLR as methods that can consider non-
statistical risks.

3.3.1. Scenario analysis

The potential impact of risks on the profitability of RE investments
can be evaluated by the discounted cash flows under various scenarios,
reflecting different potential future developments. A scenario incorpo-
rates the dynamics and the drivers resulting in a specific conceptual
future [129]. Usually, these scenarios represent either the most
probable situations (situations that are most likely to occur) or extreme
cases (worst-case, and best-case scenarios). Each scenario usually
assumes values of elements, such as the future price of electricity,
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CO- costs, and produced electricity among others. The elements used
for the construction of the scenario depend on the area on which the
researcher seeks to focus [129].

Scenario analysis can potentially assist the planning of robust
energy technology portfolios that will achieve set objectives under a
range of future scenarios [42,76,130]. For example, [42] considered
three scenarios, reflecting strong, mediocre and poor technological
breakthrough and policy support for the development of the RE
industry. This allowed the encompassing of uncertainties with regard
to the relationships among the technology alternatives and the decision
values of elements. The latter were divided into two dimensions: the
importance of each technology (assessed through the market value, and
the compound market growth) and the technology risk (indicators
considered were the position of the technology and the manufacture
capability). Conclusively, technology portfolio planning implications
were derived for each of the three scenarios generated. On the other
hand, Kannan [130] investigated the uncertainties in the future UK
power generation mix via a range of power sector-specific parametric
sensitivities under a ‘what if?” scenario analysis framework, to provide a
systematic exploration of least-cost energy system configurations, while
[76] investigated the impact of energy price uncertainties on the supply
structures of four EU countries using a stochastic risk function
incorporated into a partial equilibrium energy systems model.
Scenario analysis has also been used for the quantification of policy
risks in the wind power industry [131].

3.3.2. Multi-criteria decision analysis (MCDA)

MCDA is a family of decision support methods which has been
widely used in the energy sector and specifically in the evaluation of
alternative energy sources as well as the consideration of risk percep-
tions, due to their ability to incorporate multiple actors’ opinions,
bringing along multiple different criteria, stemming from the political,
economic, social, technological and environmental context [13,132—
135]. MCDA methods rely on relationships such as priority, outranking
and distance among the alternatives and factors (i.e. criteria) that
influence the decision. These methods are categorised as semi-quanti-
tative since they can also accommodate criteria or attributes whose
numerical values are hard to obtain or even cannot be quantified
(intangible criteria) through the deployment of qualitative scales (i.e. a
Likert scale) [136]. An example of a work using both quantitative and
qualitative attributes can be found in [137]. Several authors have
carried out reviews on MCDA methods with applications in the field of
sustainable energy systems [132,138,139].

A few common outputs of these applications associated with
sustainable energy generation technologies when risk and uncertainty
is embedded in the investment decision, include: evaluation/ranking of
the different RE technologies according to a number of risks/criteria
[90,136,140,141], prioritisation of feasible projects through a risk
analysis process [46] and risk prioritisation of RE technologies [13].

Types of uncertainty encountered in such problems stem from
either the inherent valuation uncertainties (i.e. problem-specific tech-
nical parameters determined by the decision maker) or from the
technical empirical uncertainties related to the data (such as the
carbon emissions and technology costs) which are outside the decision
maker's control [86].

Apart from the basic MCDA methods which are usually set to assess
the strengths and weaknesses of the pre-determined energy options
without re-defining them, another group is the continuous MCDA
models seeking to identify the optimal design of the option. These
methods are usually employed to deal with problems comprising
multiple (usually conflicting) objectives, where decision variables are
infinite variables, subject to constraints and are known as multi-
objective optimisation methods. These methods have also received
considerable attention in sustainable energy applications
[14,47,85,86,93,142]. Goal programming is a category of multi-objec-
tive optimisation methods assimilating LP to handle problems with
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multiple, potentially conflicting objectives. For example, goal program-
ming can be used to address the compromise between the cost per kWh
of an electricity generation portfolio and the total risk for an investor-
owned utility [14]. A common application of the method in the field of
sustainable energy system planning is to forecast optimum RE supply
percentages under different conditions of portfolio risk and cost
[14,83,143]. For example, in [14] the authors presented a multi-
objective model for determining the share of different energy genera-
tion assets in an investor-owned utility portfolio that reduces risk while
providing the lowest cost per kWh of electricity generation possible.
The failure mode and effects analysis (FMEA) was employed to assign
risk priority numbers (RPNs) to each risk. Subsequently, the share of
each type of energy (i.e. solar, coal, and natural gas) in the mix was
determined through a multi-objective model for the minimisation of
levelized cost of electricity (LCOE) and minimisation of the aggregated
RPN of each technology.

It is often encountered that the numerical values of the criteria or
attributes are not easy to obtain and there is therefore a need to express
them in linguistic terms. In this case, fuzzy logic is employed to address
the uncertainty in human judgement by applying membership func-
tions to vague information. There are numerous studies in the
literature using fuzzy analysis in energy planning [61,144—149].

As mentioned above, we recognise that there are also other methods
dealing with risks and uncertainties in investment decision making; for
example, parametric sensitivity analysis can be employed to identify
sensitive input parameters (focusing on uncertainty in technical
empirical parameters) by analysing their effects on the model output
[86]. However, here we focus our review on methods — exported
through an SLR — widely implemented to solve planning and feasibility
problems seeking to investigate: the risks/uncertainties each method is
best suited to cover, the stakeholder perspective each method ad-
dresses; while also critically assess their most common outputs and
reveal advantages/disadvantages regarding content and methodology.

3.4. Combinations of quantitative and semi-quantitative methods

Methods described above are frequently combined with each other
or with other methods in order to produce different kinds of results,
e.g. in ways that the output of the one method works as the input for
the other method. Subsequently, we present indicative papers combin-
ing different risk-based methods in the field of energy system planning
and feasibility.

A number of studies have combined ROA with portfolio theory in
order to derive optimal portfolio strategies towards meeting specific
climate change stabilization targets under different socio-economic
scenarios [37,38]. Fuss et al. [37] employed the real options model, in
order to analyse the impact of uncertainty on investment decisions at
the plant level. The Greenhouse Gas Initiative (GGI) Scenario Database
was considered as a starting point for obtaining optimal technology
portfolios which are robust across a number of socio-economic
scenarios and across climate change targets. In [38], a multidimen-
sional table indicating the best option (regarding the retrofit of a fossil
fuel-fired plant and a biomass plant with CCS units) for each time
period, possible state and possible carbon price realised during that
period was produced. The implementation of the ROA resulted in the
distribution of coal, gas, and biomass technology costs (for given
parameters on fuel and CO, prices), which subsequently entered a
portfolio optimisation model to provide the optimal strategy across all
possible scenarios.

Methods employing portfolio theory are usually combined with
optimisation methods, such as linear programming (LP) to determine
optimum RE technology percentages under different conditions of
portfolio risk and cost. Bhattacharya and Kojima [5] used the method
of MVP risk analysis to create experimental electricity supply portfolios
with high diversity (more fuel choices) and conducted a special type of
optimisation method, namely simulation optimisation, in order to
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incorporate the various stochastic variables in their model so as to
minimise the risk of the supply portfolio. The major sources of risk that
were identified during the development and operation of power
projects in Japan were the variation in capital costs, fuel costs, O &M
costs, along with the price of CO traded in the world market. Kumar
et al. [105] determined optimum portfolios through the minimisation
of portfolio fuel cost, portfolio fuel risk and CO, emission by employing
a multi-objective genetic algorithm. They concluded that the limitation
of the MVP theory from the perspective of a developing nation such as
India lies in the fact that the method only considers risks associated
with cost components while neglecting barriers associated with the
implementation of projects; thus, a comprehensive risk barrier index is
needed to indicate the combined impact of risks and implementation
barriers associated with each portfolio.

A number of studies have combined scenario analysis with other
methods as a way to incorporate uncertain situations emerging from
political, economic, environmental, technological and environmental
futures. Such methods include: portfolio theory [23,24,43,52,103],
ROA [33,37,38,73], energy system modelling [76,130] and MCDA
[148,150]. The latter study concerns the application of multiple criteria
decision analysis to prioritise investment portfolios (with the overall
objective of the generation mix corresponding to the anticipated
electricity demand while fulfilling specified constraints), while at the
same time testing the robustness of the prioritisation against several
scenarios. Each portfolio reflects the distribution of the alternatives’
power generation capacity denoted as X;=[p,,,..., p,;] where p,, is the
proportion of each energy asset capacity of portfolio X; to be gained by
alternative «¢; belonging to a set A=[qg,..., a,] of n technologies.
Performance criteria alternatives are assessed against economic, tech-
nical (e.g. availability and energy security risks) and environmental
dimensions, with the goal to rank technologies and portfolios and then
apply scenarios to validate the sensitivity of the results.® Emerging
conditions considered for the construction of scenarios (elements)
concern, among others, different projections on electricity consump-
tion annual growth and high price volatility for natural gas and oil, as
well as combinations of these. A similar approach is followed by
Heinrich et al. [86] ranking power expansion alternatives for given
multiple objectives and uncertainties, using a value function multi-
criteria approach, across different scenarios yielding information
regarding the power expansion alternatives’ relative performance and
credibility. Energy system models are also often used in combination
with scenario analysis in relevant studies [76].

4. A cross-method comparison
4.1. Risk measures and common outputs of the methods

Having laid out widely cited and applied risk-based evaluation
approaches from the literature (Section 3), this section discusses and
summarises the key findings of the literature review by providing a
comparative overview of the most significant outputs of each method as
well as by highlighting the weaknesses and strengths of each approach
as identified by authors that employed them in sustainable energy
technology planning and feasibility problems. Fig. 2 illustrates the
main outputs of the bulk of the studies that have employed these
methods.

MVP method measures risk in several ways [151]. Usually, the
standard deviation of historic periodic returns calculated through the
Sharpe ratio, which is defined as the ratio of expected excess return to
standard deviation of the return [152], is used; this definition assumes
that financial returns follow a normal distribution, hence the prob-

3 Alternatives (power generation portfolios) are assessed against the performance
criteria by means of a Likert scale rating measuring the degree the alternative meets each
criterion (1-High, 0.5-Low, 0-Blank).
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Fig. 2. Common outputs of risk-based methodologies in energy planning and feasibility studies.

ability dimension of the portfolio risk cannot be accurately reflected
through this measure. However, Value-at-risk (VaR) is another tradi-
tional risk measure utilised by MVP theory approximating the prob-
ability that the value of an asset or portfolio will drop below a particular
value over a specified confidence level and in the context of a planning
horizon. The method can be applied to a power generation asset
portfolio with available periodic market parameter values not necessa-
rily following a normal distribution. Given the probability distributions
of all portfolio assets, VaR values can be used to approximate the
maximum loss for the whole portfolio. Being a widely used risk
measure embraced not only by risk managers and actuaries but also
by researchers and in investment banking, VaR (also known as
percentile risk measure) is always specified with a given confidence
level a (usually with values 90%, 95% or 99%) and can be used for
portfolio optimisation when the cost/return distributions of the
different technologies are not necessarily normal (in contrast to the
Sharpe ratio metric). In the majority of MVP studies, risk is approached
by the variability of the generation cost components originating from
the market (deviations in demand for power, electricity price, fuel
price), economic and financial (CAPEX, OPEX, project delay, capacity
factor, energy generation) and political (such as retroactive/prospective
regulatory changes, uncertain CO, prices) contexts. The method's
applicability is subject to the availability of historic data of cost
components and other statistical parameters of the RE project, as well
as the availability of correlation values of risks among assets [109].

ROA supplements the information provided by static evaluation
approaches, by recognising that in an uncertain future one needs to
have the flexibility to adjust the timing of the investment decision
[109,153]. Real options methods help to evaluate the value of waiting
as part of the decision-making problem. The method commonly uses
dynamic programming which allows the sequence of investment
decisions to break down into options and systematically derive and
compare the expected NPVs from immediate investment, waiting and
all subsequent remaining decisions. In most studies in the domain of
energy technology evaluation, uncertainty is introduced by means of
forecasted input fuel prices, average wholesale price of electricity,
uncertainties in policy support schemes (e.g. subsidy payments) and
capital costs. The output of ROA can subsequently inform portfolio
optimisation, while the importance of different energy technology
options under specific political, technological and socio-economic
circumstances can be captured by scenario analysis, providing valuable
insight for policymakers about the incentive mechanisms needed to
promote robust long-term climate risk mitigation.

Optimisation methods with stochastic inputs have been widely
implemented to the problem of allocating optimal power generation
assets. This may apply to long-term optimal energy mix planning in a
national level, minimising total discounted (annualized) cost against a
number of constraints ensuring the energy security, attainment of
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environmental targets, maximum capacity of different technologies,
etc. This is thus a method that can be potentially derive policy
recommendations for more efficient energy technology roadmaps
[26]. The method can, however, be useful from an investor's (energy
producer) viewpoint, e.g. for the determination of the optimal expan-
sion planning of the power generation capacity over a long term
horizon [65].

Scenario analysis recognises that altering individual variables
whilst holding the remainder constant is not realistic. Depending on
whether scenario analysis is embedded in a qualitative or quantitative
methodological framework, risks considered may vary. Empirical
scenario analysis techniques can provide a first-step in understanding
inherent risks and uncertainties of future energy systems under
different socio-political scenarios [154]. Outcomes of scenario analysis
in empirical studies could also be the rating of electricity generation
technologies and their mixes across different scenarios. Scenarios
simulate the development trajectory of RES technologies between a
status quo (current projection) and alternative scenarios which deviate
from the status quo because of considering a different development in a
number of driving forces, e.g. technology progress, climate change
policy and situation of global warming. Although scenario analysis,
when used on its own (potentially in an empirical framework) lacks the
scientific rigour for assessing the frequency and quantified impact of
risk and uncertainty on the RE technology value; when combined with
other methods, such as portfolio theory and ROA, it can be a valuable
tool to simulate various interconnected conditions. In this case,
scenarios can derive optimal technology portfolios across different
socio-economic scenarios resulting in different stabilization targets
[37].

Monte Carlo is a method that allows accounting for numerous
stochastic or uncertain input parameters and can be employed to
produce probabilistic valuation models which incorporate risk assess-
ment in the evaluation of RE technologies. Thus, it is a method that can
capture statistical fluctuations of input variables and derive probability
density distributions of cash flows.

MCDA establishes preferences between project options in accor-
dance with a set of criteria and objectives, normally stemming from
policy/project objectives as well as other financial, social, technological,
and environmental factor considerations. MCDA is often applied as an
alternative risk assessment technique because it is able to accommo-
date multiple criteria and is not constrained to use only monetary
values; rather, subjective scales can be employed to rate each option
(such as Likert scales). For example, when considering the problem of
deciding on whether to invest in a power plant project and determine
the order of priority of the projects in the company's portfolio, an
investor has to consider a number of risk factors, such as the country
risk (the political and economic instability as well as the level of
corruption), risk of change in energy policy which may undermine the
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reliability of the project's economic feasibility, risk of changes in policy
premiums, etc. [46], which may be hard to monetise and therefore the
application of appropriate multi-criteria methods can prioritise the
alternatives through pairwise comparisons in terms of each risk factor
(e.g. Analytic Hierarchy Process).

4.2. Strengths and weaknesses

This section outlines briefly some of the strengths and weaknesses
of the risk-based evaluation methods, which were not explicitly
examined in the previous sections.

As such, the Sharpe ratio has been widely used as a metric for risk-
adjusted return in power generation and feasibility studies employing
MVP methods [25]. However, the metric has received much criticism
since it assumes that financial returns follow a normal distribution, as
well as the assumption that investors only focus on the mean and
variance of costs of an investment. Nevertheless, several studies have
shown that financial returns of assets very often have non-normal
characteristics, such as (negative) skewness. This shortcoming of the
method can be potentially overcome by using alternative risk measures
such as the VaR reflecting the amount that losses will not exceed a
specified confidence level over a predetermined time schedule, while
another measure often used is the Conditional value-at-Risk (CVaR)
(also known as Tail-VaR, mean excess loss and mean shortfall) which is
considered a more consistent measure of risk than VaR [155]. From an
applicability perspective, the method lacks managerial flexibility since
the investors are not able to assess the dynamics of the investment
environment and take decisions on the portfolio rebalancing — within
the specified investment timeframe — accordingly. Additionally, con-
ventional MVP theory disregards costs of moving from inefficient to
efficient energy asset portfolios. Nevertheless, these costs are essential
for electricity generation portfolios since there are usually significant
salvage and decommissioning costs for existing technologies. The
decommissioning cost might be included in the cost of energy, but
the costs of shifting from one set of technologies to another are not
explicitly addressed.

On the one hand, probabilistic approaches (such as MCS) provide
the flexibility to assign probability density functions to input variables
using historical data to foresee future developments of parameters; on
the other hand, they cannot capture the extremities which might have a
critical impact on the power generation system [108]. Each point on
the output distribution represents the outcome of the joint probability
function of the uncertain input variables. It should be noted that
accuracy in the result depends on the appropriate statistical modelling
of the stochastic input variables as well as the proper selection of the
quantile value for the joint probability distribution function.

Investment planning decision making problems involving determi-
nistic mathematical programming have been developed in standardised
modelling frameworks, facilitating the validation and reproducibility of
results. Nevertheless, the introduction of uncertainty in one or more of
uncertain input parameters has generated a fragmented number of
works following different approaches to modelling uncertainty leading
to significant lack of precision and conflicting results [122].

Finally, scenario analysis does not provide the flexibility of prob-
abilistic analyses while the uncertainties are not specifically integrated
into the solutions explored [86]. Nevertheless, when combined with
other risk-based methods, it can be a valuable tool to simulate various
interconnected conditions. Further, the strengths and weaknesses of
the methods cited above are outlined in Table 4.

5. Conclusions

The analysis of different risk factors (technological, political, social,
environmental, etc.) assists stakeholders (developers, investors, utili-
ties) in the RE sector to speak the same language in reference to what
risks are associated with a sustainable power generation project and
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which of these can be transferred, mitigated, avoided or accepted.

The present paper brings together an array of methods that has
been widely employed to address/model/incorporate risk and uncer-
tainty attributes (related to energy security, generating costs, market
risks, climate change risks, etc.) in sustainable power generation
planning and feasibility studies. It was observed that MVP, ROA,
MCS and (stochastic) optimisation methods are usually employed to
address/model statistical risk factors, while semi-quantitative methods
such as scenario analysis and MCDA may also be employed to address
non-statistical parameters such as social factors and the emergence of
competitive technologies.

Financial risks (e.g. variations in the investment return [62] or
energy sale prices) have been widely accounted for in MVP and MCS
methods; while the emergence of competing energy technologies (i.e.
nuclear power) has been principally captured through scenario analysis
[26]. Technology/innovation risk parameters are usually encountered
in studies employing ROA, MCS, optimisation and scenario analysis by
means of variation in future technology costs (learning curve effects).
Stochastic optimisation models are frequently applied to assist policy
makers in the definition of optimum energy mixes, taking into
consideration uncertainties in the energy demand (i.e. macroeconomic
factors), variation in electricity prices, generating costs, fuel risks,
technological risks and carbon emission reduction targets. Finally,
technical risks, such as reliability of components and access to the grid
have been found to be frequently modelled by goal programming
methods (i.e. MCDA methods) and optimisation methods.

A general conclusion of the review process is that no modelling
approach can combine every element of the problem. Each approach
requires different assumptions and views from different perspectives of
the socio-techno-economic systems depending on what it attempts to
investigate. As an example, microeconomic analysis models (such as
ROA) cannot replace models with a wider view of national or regional
markets (such as energy system models), rather these methods should
complement each other [159]. Untapped issues recognised in the
recent methodological approaches reviewed dealing with risk and
uncertainty in sustainable power generation planning are summarised
below:

® MVP theory is one of the key methods advocated to support that
diversification of energy technologies can ensure long-term electri-
city generation under a balanced risk-return relationship [160]. Yet,
an important issue neglected to date in the technique is the
consideration of the load structure of the technology combination
so that technologies can cover demand during peak hours [37];
hence results derived by the method may ultimately not be insightful
for policy makers and practitioners. For providing recommendations
on the optimal energy mix, the load structure of the technology mix
needs to be incorporated in the model, for example by introducing
minimum constraints on peak-load technologies.

Scenario analysis is particularly useful for explicitly modelling trend
uncertainties and plausible future technology developments, espe-
cially when conducted according to industry's perceptions, since
their actions are grounded on their perceptions, while scenarios
constructed by policy makers should be used to derive the expected
behaviour of the agents that participate in the market.

Long-term uncertainties (those that cannot be hedged in forward
markets) are usually represented by stochastic input parameters
(such as energy demand, electricity price, CO» costs) and modelled
through probabilistic methods (such as MCS), assuming that they
follow a probability distribution. However, the development of their
values critically depends on future policies and/or macroeconomic
developments, so one has to be sceptical regarding the stochastic
process assumption.

Diversification of technologies has been widely cited as an effective
risk mitigation technique also for investor-owned utilities which
usually distribute their investments among different power genera-



A. Ioannou et al.

Table 4
Strengths and weaknesses of risk-based methods.
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Methods Strengths Weaknesses
MVP theory 1. VaR and CVaR are widely recognised risk metrics allowing for 1. Focuses on monetary risk attributes [105]
assessing the maximum losses of the portfolio within a specified 2. Static approaches can understate, if not ignore, managerial flexibility
confidence level [38,156] [109]
3. The Sharpe ratio assumes that financial returns follow a normal
distribution [25]
ROA 1. Investment timing consideration [110] 1. Complicated numerical calculations
2. Tt can evaluate in depth risk factors likely to occur in the future [157] 2. Reliance on quantitative data [158]
Stochastic 1. More suitable than deterministic optimisation approaches for a 1. Lack of a standardised way to model uncertainties often leading to
optimisation number of decision making problems in energy systems in presence significant lack of precision in the results [122]
of uncertain inputs [125]
MCDA 1. Incorporates important non-statistical risk attributes [136] 1. Criteria, weights and values are difficult to accurately estimate and
greatly depend on subjective judgements
Scenario analysis 1. Provides information on the impact of potential risks which contribute 1. Cannot account for the probability of occurrence of a scenario [86]
most to the overall risk.
Monte Carlo 1. Allows accounting for numerous varying stochastic or uncertain input 1. Requires considerable data volume (definition of probability
simulation parameters simultaneously distribution functions) for random input variables or uncertain and
2. Allows calculating probabilities of a parameter (such as NPV) being predicted input parameters [57]
below or above a certain target value or within a desired confidence 2. Difficult to capture extremities

interval [126]

simulation

. Commercial software available to automate the tasks involved in the

tion technologies. Methods employed to address risk/uncertainty in
investor-owned power generation utilities mostly emphasise the
statistical risks. However, it is increasingly accepted that non-
statistical risks are frequently the drivers of failures (such as policy
instability, economic instability, lack of public acceptance, restric-
tions in terms of land availability) [105]. Translating non-statistical
risks (e.g. aggregated through a risk priority number) into a cost per
kWh for a number of sustainable energy technologies could con-
tribute towards deriving more cost-effective solutions [14]. The
quantification of such risks could be achieved with the support of
expert opinions.

In the absence of data, risk factors identified in reference to a
sustainable power generation project could be used to create specific
scenarios (or else failure modes) that experts could possibly rate in
terms of their probability of occurrence and impact [131]. Accordingly,

Scoping study
derivation pf research
questions and search

strings

quantitative risk impact evaluation methods could be employed to take
advantage of the obtained values. The development of a structured risk-
based evaluation framework, focusing on determining the risk-cost
profile of sustainable energy generation technologies and mixes of
technologies could, thus, constitute a focal point that future research in
modelling risk and uncertainty in energy planning and feasibility
studies should take into consideration.
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Appindx A. Description of systematic review approach

The literature review was conducted on the basis of a systematic literature review (SLR) approach, which provides the synthesis of the research
in a systematic, transparent, and reproducible manner, while also restricting the researcher's bias [22]. To this end, a literature review protocol was
produced to frame the research methodology. The literature review protocol outlines the aim and questions underlying the review, the search
strategy, the inclusion and exclusion criteria and the plan for data extraction.

Important criterion when selecting the keywords of the research was to be as inclusive as possible in order to avoid missing important studies.
Key words selected, were clustered into four (4) different thematic categories: 1. energy & power & electricity & renewable* & fuel (5 keywords),
2. Risk* & uncertain* & stochastic* & fuzzy (4 keywords), 3. Method* & model*(2 keywords) and 4. Feasibility & planning & portfolio & mix &
expansion®*(5 keywords). Terms belonging to the same category were inserted with a Boolean operator ‘OR’ in the search box, while accordingly
terms of Categories 1,2,3 and 4 were combined via a Boolean operator ‘AND’, resulting in 5%4*2*5=200 search strings.

After the search strategy was defined, a number of inclusion/exclusion criteria as regards the papers retrieved was determined to eliminate
papers that fall outside the scope of the research topic. The search was limited to scientific peer-reviewed papers to ensure a collection of robust and
validated works. Papers were retrieved from Scopus, while the final inclusion of papers considered for full-text analysis was determined following a
quality assessment process (Fig. 3).

The initial literature was supplemented with additional works through a bespoke process, when further information to cover a particular topic
was needed, or a key text in the literature had been missed by the systematic review.
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