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Abstract

Self-optimizing control is a strategy for selecting controlled variables. It is distinguished by
the fact that an economic objective function is adopted as a selection criterion. The aim is to
systematically select the controlled variables such that by controlling them at constant setpoints,
the impact of uncertain and varying disturbances on the economic optimality is minimized. If
such a selection leads to an acceptable economic loss compared to perfectly optimal operation
then the chosen control structure is referred to as “self-optimizing”. In this comprehensive survey
on methods for finding self-optimizing controlled variables, we summarize the progress made
during the last one and a half decades. In particular, we present brute-force methods, local
methods based on linearization, data and regression based methods, and methods for finding
nonlinear controlled variables for polynomial systems. We also discuss important related topics
such as handling active constraints. Finally, we point out open problems and directions for future
research.
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1. Introduction

1.1. What is self-optimizing control?

The purpose of a process plant is to generate profit. Beside plant design choices like size and
type of equipment, plant operation has a major influence on the overall economic performance.
The profitability of plant operation is strongly influenced by the design of the control struc-
ture. In the control structure design phase engineers make fundamental decisions about which
variables to manipulate, to measure and to control (Skogestad, 2004a). Especially when the
operating conditions vary, a judicious selection of controlled variables (CVs) can lead to large
operational savings and increased competitiveness. In the context of control structure design,
Skogestad (2000) was the first to formulate the concept of a self-optimizing control structure. It
is is characterized by the choice of self-optimizing CVs:
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A set of controlled variables is called self-optimizing if, when it is kept at constant
setpoints, the process is operated with an acceptable loss with respect to the chosen
objective function (also when disturbances occur).

It is important to note that “self-optimizing” is not a property of the controller itself, as it is
in e.g. adaptive control (Åström and Wittenmark, 2008). Rather, the term self-optimizing control

has been used for describing a strategy for desinging the control structure, where the aim is to
achieve close to optimal operation by (constant) setpoint control (Skogestad, 2000, 2004a; Alstad
et al., 2009). In this paper will also use the term self-optimizing control in this sense.

The successful application of self-optimizing control requires tools and methods for selecting
good CVs, and this is the topic of this review paper. The main difference between self-optimizing
control and other methods for designing control structures, that typically consider controllability
and control performance as a selection criterion, e.g. van de Wal and de Jager (2001), is that in
self-optimizing control the selection is done to systematically minimize the loss of optimality
with respect to a given economic cost function. Typically, this cost function is directly linked
to the economic cost of plant operation, but also other objectives, such as energy efficiency, or
also indirect control type objectives are possible (Skogestad and Postlethwaite, 2005). Thus, the
selection procedure is driven by a clearly defined cost function, which is minimized during plant
operation by simply controlling the self-optimizing CVs at their setpoints.

Unlike in real-time optimization approaches (Marlin and Hrymak, 1997; Grötschel et al.,
2001), where a cost function is repeatedly optimized online to update the setpoints of the CVs,
in self-optimizing control a model is used off-line to study the structure of the optimal solu-
tion. This insight is then translated into the design of a simple control structure, that keeps the
process close to the optimum despite varying disturbances. Of course, this may lead to a loss
due to simplification, but in many cases the benefits of a simple scheme outweigh the increased
“optimality” of complex schemes, because of the high costs of implementing and maintaining
these.

Self-optimizing CVs have been used in industry for a long time. Well-known examples,
where self-optimizing control is inherently realized, include ratio control with a constant ratio
setpoint, or controlling constrained variables at their constrained values, e.g. keeping a pressure
variable at the maximal allowable value. The aim of the research field of self-optimizing control
is, however, to provide a mathematical framework and systematic methods for finding CVs that
give good economic performance.

1.2. The purpose of this review

After more than one and a half decades with ongoing research on self-optimizing control
methods, we feel that it is time to summarize the main results and give a self-contained overview
of the state-of-the-art and open issues in the development of methods for finding self-optimizing
CVs. In large part, this survey paper is written as a tutorial, where the basic concepts are pre-
sented with examples. We hope that both experienced researchers and newcomers to the field
will find it a useful resource that stimulates further applications and research.

1.3. Defining optimal operation

The goal for designing a control structure is nicely captured in the statement by Morari et al.
(1980), who mentioned that “our main objective is to translate the economic objective into pro-
cess control objectives”. Thus, process control is not an end in itself, but is always in the context
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of achieving best performance in terms of economics for a given set of operating conditions and
constraints. Mathematically, this can be stated as an optimization problem.

Most continuous processes are operated at a steady-state (or close to it) for most of the time,
which means that the disturbances stay constant long enough to make the economic effect of
the transients negligible1. Therefore, we formulate the problem of optimal operation as a steady
state optimization problem:

min
ū

J̄(ū, x, d)

s.t.

f (ū, x, d) = 0

g(ū, x, d) ≤ 0.

(1)

Here x ∈ Rnx denotes the state variables, d ∈ Rn denotes the disturbances, and ū ∈ Rnū the steady
state degrees of freedom2 that affect the steady state operational cost J̄ : Rnū × R

nx × Rnd 7→ R.
Further, the function f : Rnū ×Rnx ×Rnd 7→ R

n f denotes the model equations, and g : Rnū ×Rnx ×
R

nd 7→ R
ng the operational constraints. We denote the optimal objective value of Problem (1) as

J̄∗(d). In this paper we assume that the optimization problems are sufficiently smooth, and have
a unique (local) minimum. This assumption generally excludes problems with logic and integer
decision variables, such as the schedule for shutting a pump on and off at given times.

Under operation, the cost J̄(ū, x, d) should be minimized while satisfying the plant con-
straints. If all the states x, disturbances d, were perfectly known, one could attempt to solve
Problem (1) and apply the optimal inputs ū∗ to the plant. Under ideal conditions this would re-
sult in optimal operation with the associated cost J̄∗(d). However, in practice such a strategy is
not implementable because the plant is never truly at steady state, and because perfect knowledge
of the model states and disturbances is not available. Instead, the knowledge about the plant con-
ditions is typically available from measurements, and we assume to have a model for the plant
measurements

y0 = m(ū, x, d), (2)

where the function m : Rnū × R
nx × Rnd → R

ny describes the relationship between the variables
ū, x, d and the model outputs y0 ∈ Rny . However, the signals y that are measured in the real plant
are corrupted by measurement noise ny ∈ Rny , such that

y = y0 + ny. (3)

1.4. Implementation of optimal operation

Using the measurements y, the task of the control structure and the controllers is to implement
the optimal solution of Problem (1) into the real plant. A good control structure will ensure that
the plant runs close to the economically optimal point, also when the operating conditions and
disturbances change.

The control system of a chemical plant is typically decomposed and organized in a hierar-
chical manner, where different control layers operate on different time-scales (Skogestad, 2000).
An example for such a hierarchical control structure is given in Figure 1. On top of the hierarchy

1In the case where transient behavior significantly contributes to the operating cost, optimal operation is formulated
as a dynamic optimization problem, see Section 8.

2For example, degrees of freedom that do not affect the steady-state are the levels in the condenser and reboiler of a
distillation column.
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Figure 1: Hierarchical control structure. The setpoint cs is calculated in the RTO, and passed down to a controller. The
controller adjusts the inputs ū such that the CV c = h(y) tracks the value of the setpoint cs closely.

is the real-time optimizer (RTO), which usually operates on a time scale of several hours and
computes the setpoints cs for the controller below which operates on a time scale of seconds and
minutes. In many cases, the real-time “optimization” is done by plant operators, who adjust the
setpoints of the controllers according to their experience and best practices. However, with avail-
ability of cheap computing power, the optimization of the setpoints is increasingly performed by
a computer.

The controller then adapts the inputs dynamically to keep the CVs, which are functions of
the measurements,

c = h(y), (4)

at the setpoints cs that are given from the RTO. The choice of the control structure is manifested
in the choice of the variable c. Generally c = h(y) may be any function of measurements, but it is
often chosen to be linear, such that c = Hy where H is a constant matrix of suitable dimensions.

Skogestad and Postlethwaite (2005) state some requirements for a good CVs:

1. The CV should be easy to control, that is, the inputs u should have a significant effect
(gain) on c.

2. The optimal value of c should be insensitive to disturbances.
3. The CV should be insensitive to noise.
4. In case of several CVs, the variables should not be closely correlated.

A good choice of c that satisfies the requirements above will not require the RTO to update
the setpoints every time the operating conditions and disturbances change. Simply controlling
c = h(y) at its setpoint will indirectly lead to the corresponding optimal (or near optimal) inputs
u, and the control structure is referred to as a self-optimizing control structure.
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Instead of focusing on finding the optimal inputs to the plant when disturbances vary, as
done in open-loop and controller design inspired approaches such as economic model predictive
control, in self-optimizing control we find or design the optimal outputs c = h(y) of the plant.
The controllers will then generate the corresponding (near-optimal) plant inputs u. Although
setpoint changes may still be necessary for some major disturbances, a good control structure
will require much fewer setpoint changes, and often result in good performance without an RTO
layer.

To quantify performance, we define the loss Lc associated with a particular control structure
as the difference between the cost resulting from that control structure (represented by the chosen
c = h(y)) and the cost resulting from truly optimal operation (Halvorsen et al., 2003),

Lc = J̄(ū, x, d) − J̄∗(d). (5)

The loss will be used to compare control structures, and to evaluate if a certain control structure is
self-optimizing, which accomplished when “. . . we can achieve an acceptable loss with constant
setpoint values for the controlled variables (without the need to reoptimize when disturbances
occur)” (Skogestad, 2000).

2. Historical notes

With growing complexity of process plants many authors have found it increasingly neces-
sary to find systematic ways for designing control structures that optimize process performance.
Foss (1973) pointed out that one of the most prevalent problems in chemical engineering is: “
Which variables should be measured, which inputs should be manipulated, and what links should
be made between these two sets?”. This important problem encountered by many engineers is
still a research topic, and is addressed in the field of control structure selection.

A systematic approach to this question was enabled by the framework of hierarchical control
systems, for which much of the theoretical foundations were laid by Mesarović et al. (1970),
and which gained more recognition in the process control community by the work of Findeisen
et al. (1980). The concept of a hierarchical decomposition of the control structure provided the
ground for the idea of self-optimizing control. Morari et al. (1980) formulated the core idea when
writing about finding good CVs, that “we want to find a function c of the process variables which
when held constant, leads automatically to the optimal adjustments of the manipulated variables,
and with it, the operating conditions”. They also introduced the idea of the loss as a criterion to
select the best feedback structure.

Closely related to the ideas presented by Morari et al. (1980) is the paper by Shinnar (1981),
with the main difference being that in the latter, the main objective is tracking some variables
while, Morari et al. (1980) consider a more general cost function to minimize. However, the idea
is the same: To reach the objective indirectly by controlling certain measured process variables.
Arbel et al. (1996) follow the ideas and introduce the concept of “dominant variables”. These are
variables which dominate the process behavior and are considered good CV candidates, which
when kept constant, give good overall process performance. Although some examples for se-
lecting dominant variables are given in the paper, a clear definition of the dominant variables is
missing

Luyben (1988) introduces the “eigenstructure” of a process to define a control structure
with self-regulating/optimizing properties. In other publications, Luyben (1975); Yi and Luy-
ben (1995) studied the selection of CVs, which are similar to self-optimizing variables, with the
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difference being that they propose to use CVs which make ∂u/∂d small, while the criterion in
self-optimizing control is to find variables for which the loss is insensitive to the disturbance, i.e.
∂L/∂d small (or zero).

Rijnsdorp (1991) included a procedure for plantwide control structure selection, and proposes
to use on-line algorithms to adjust the degrees of freedom optimally for the plant. Narraway et al.
(1991) and Narraway and Perkins (1993) explicitly include the economics into the control struc-
ture selection, and discuss the effect of disturbances, but they do not present a general procedure
for selecting CVs. The paper by Zheng et al. (1999) approaches the problem in a very similar
fashion to self-optimizing control, and apply it to a reactor with separator. The work uses an eco-
nomic objective function as a criterion, but does not include the effect of implementation error
and measurement noise.

More recently, Engell and coworkers, (Engell et al., 2005; Engell, 2007; Pham and Engell,
2009) developed an approach for control structure selection that is based on the economic cost.
Beside the effect of disturbances, they also consider measurement noise. However, instead of
considering the loss during operation, they consider the effect of the control on the cost directly,
and the setpoint for CVs is found by optimizing over a set of discrete representative disturbances.
Heath et al. (2000) present an economics-driven approach, where a mixed integer linear problem
is solved to obtain the CVs.In their case, they assume that all degrees of freedom are used to
satisfy constraints.

Enagandula and Riggs (2006) propose a method for selecting the control structure by predict-
ing the variability of the products. Rangaiah and coworkers developed an approach integrating
heuristics and simulations for designing the control structure of chemical plants (Vasudevan and
Rangaiah, 2011). A good review of current approaches for designing a control structure was
compiled by Rangaiah and Kariwala (2012).

Bonvin and coworkers (Srinivasan et al., 2003a,b; François et al., 2005) propose to use the
necessary conditions for optimality (NCO) as CV, and the goal is to make the system track the
NCO. The NCO are the ideal self-optimizing CVs, except that they are generally expressed in
terms of unmeasured variables, and are thus difficult to implement. In order to track the NCO,
their current values must be re-constructed, either using a model, or by plant experiments.

There is also a large body of literature that considers the problem of selecting the control
structure without considering economics at all. That is, only control properties like stability and
interaction measures are taken into account. Examples for these approaches include Banerjee and
Arkun (1995), who consider the problem from a purely control/stability perspective, as well as
e.g. Samuelsson et al. (2005); Salgado and Conley (2004); Shaker and Komareji (2012). How-
ever, these approaches are out of the scope of this paper and will not discussed further at this
point.

An approach that has recently gained popularity is to include the economic optimization
directly into the controllers, such that the controller uses estimates of the disturbances d and states
x and solves a dynamic optimization problem to calculate the optimal inputs ū for the plant. This
approach is commonly referred to as Economic Model Predictive Control (MPC) (Diehl et al.,
2011; Ellis et al., 2014; Jäschke et al., 2014). Here typically a dynamic optimization problem is
discretized on a finite time horizon, and repeatedly solved at given sampling times to compute
the economically optimal inputs to the plant. The input for the first sampling time is injected into
the plant, and the procedure is repeated at the next sampling time when new measurements are
available.

Although conceptually simple, this approach is currently not used very much in practice
because it requires a model that is accurate on several time-scales, from long-term economics to
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short-term regulatory control and plant stabilization. Moreover, in many cases it is also difficult
to obtain accurate estimates of the states (Kolås et al., 2008). For an overview over the current
state of the art, we refer the reader to a recently published special issue of the Journal of Process
Control that focuses on Economic Model Predictive Control edited by Christofides and El-Farra
(2014). This issue also contains a review article by Ellis et al. (2014).

The class of extremum seeking methods (Ariyur and Krstic, 2003) is in this respect similar
to economic MPC. In extremum seeking methods, a controller is designed that maximizes the
value of a specified measurement. Although extremum seeking methods do not rely on a process
model, the objective is similar to the Economic MPC approach, where control and optimization
is performed simultaneously.

Finally, the concept of self-optimizing control was introduced in the end of the 1990s (Sko-
gestad et al., 1998), as a strategy to achieve near-optimal operation by selecting CVs that are
simply kept at their constant setpoint values. It gained wide recognition through the seminal
paper by Skogestad (2000). This review paper covers the developments from 2000 onwards.

3. Brute force methods for self-optimizing CV selection

The earliest methods for finding self-optimizing CVs use a brute-force approach (Skogestad,
2000; Larsson et al., 2001; Govatsmark, 2003). The idea is to simply evaluate the performance
of all possible candidate CV sets for all possible values of disturbances and measurement noise.

For example, consider a plant with ny = 3 measurements, and nū = 2 degrees of freedom.
For all possible disturbance and noise values, we calculate the loss resulting from keeping the
CV candidates c(1) = [y1 y2]T , c(2) = [y1 y3]T , and c(3) = [y2 y3]T at constant setpoints. Then we
select the CV candidate that gives the lowest loss. If the loss is acceptable, then self-optimizing
control is achieved.

The evaluation may be based on either the worst-case loss, or the average loss associated
with a particular choice of CVs. The worst-case loss is calculated as

Lc,wc = max
d∈D, ny∈N

Lc, (6)

and the average loss is defined as

Lc,av = E
d∈D,ny∈N

[Lc] . (7)

Here E[·] denotes the expectation operator and the setsD ⊂ R
nd and N ⊂ R

ny contain all allow-
able disturbance and noise values. The variable Lc denotes the loss associated with controlling
the variable c at a constant setpoint for a given value of disturbance and measurement noise.

Since the sets of all possible disturbances and noise realizations, D and N , generally have
an infinite number of points, we evaluate different samples (scenarios) i = 1 . . .M, which may
be, for example, uniformly distributed in D and N . The values of d and ny for the i-th scenario
are denoted by d(i), ny(i), respectively, and the corresponding optimal cost J̄∗(d(i)) is obtained by
solving (1) parametrized by d(i).

Given a candidate CV set c( j) and its setpoint cs( j), for each scenario i = 1 . . .M the cost J̄
(i)
c( j)
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obtained by controlling c( j) to its setpoint is found as the solution of the following problem:

min
ū

J̄(ū(i), x(i), d(i))

s.t.

f (ū(i), x(i), d(i)) = 0

g(ū(i), x(i), d(i)) ≤ 0

c( j)(ū(i), x(i), d(i), ny(i)) − cs( j) = 0

(8)

Typically, the setpoint cs,( j) is chosen as the nominally optimal value that is obtained when opti-
mizing the system with d = dnom and ny = 0. In the cases where this choice may be infeasible,
Govatsmark (2003) presents an approach to obtain a robust and feasible setpoint. All candidate
sets c( j), j = 1 . . .n j are then ranked using one of the loss expressions (6) or (7). For example,
the average loss

Lc( j),av = E
i=1..M

[

J̄(i)
c( j)
− J̄∗(di)

]

. (9)

A similar approach may also be applied for finding combinations of measurements as CVs,
c = Hy (Umar et al., 2012). This, however, leads to large-scale nonlinear bilevel optimization
problems that can be very difficult to solve.

The brute force approaches requires the solution of many optimization problems. Problem
(8) needs to be solved for each CV candidate j = 1 . . .n j for all i = 1 . . .M scenarios. When
selecting nū single measurements out of a total ny measurements as CVs, there are

Cnū
ny
=

(

ny

nū

)

=
ny!

(ny − nū)!nū!
(10)

different control structures that may be chosen. Thus, the number of possible control structures
grows rapidly with the number of measurements ny. For real plants where the number of candi-
date CVs can become very large, this approach becomes intractable.

To reduce the number of optimization problems, the noise may be neglected by setting ny = 0.
However, if there are many disturbances and CV candidates, the approach will still be intractable.
Moreover neglecting measurement noise may render a CV candidate infeasible when noise is
present in the real plant (Govatsmark, 2003).

Generally the optimization problems (1) and (8) solved at each scenario i = 1 . . .M are large-
dimensional and non-convex. Thus, the very large number of difficult optimization problems
may render the approach practically infeasible, unless some heuristics are devised to reduce the
number of CV candidates.

4. Local methods for steady-state self-optimizing CVs

To limit the number of CVs that are considered, and to exclude poor CV choices early in the
control structure design, local methods have been developed. The motivation for local methods
is that a candidate CV must perform well locally around the nominal operating point where the
process is expected to operate most of the time, otherwise it may be excluded immediately. Only
CVs that are found to perform well close to the nominal conditions are then further examined
and tested over the whole operating region.
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4.1. Local approximation of the cost function

Starting from the steady-state problem (1), the model equations f (ū, x, d) = 0 are used to
formally eliminate the states x from the optimization problem. This yields a simplified reduced
problem

min
ū

J̄r(ū, d)

s.t.

g(ū, d) ≤ 0.

(11)

Assuming further that the set of active constraints does not change under operation3, the first
step is to control the active constraints at their optimal values. Then the active constraints may
be formally eliminated from (11) together with their corresponding degrees of freedom. This
results in the unconstrained problem

min
u

J(u, d), (12)

where J(u, d) denotes the cost function of the unconstrained problem, and u denotes the remain-
ing unconstrained degrees of freedom that are left after satisfying all the active constraints. These
unconstrained degrees of freedom u will be used to control self-optimizing CVs. We denote the
optimal cost function value of (12) as J∗(d), and we note that as long as the disturbance d does
not cause the set of active constraints to change, we have J∗(d) = J̄∗(d).

To find good self-optimizing CV candidates, the nonlinear optimization problem (12) is ap-
proximated locally by a quadratic function around the nominally optimal operating point. Intro-
ducing deviation variables ∆u = u − unom and ∆d = d − dnom and where unom is the nominally
optimal input corresponding to the nominal disturbance dnom, a Taylor expansion around the
nominally optimal point gives

J(∆u,∆d) ≈ Jnom +
[

Ju Jd

]
[

∆u

∆d

]

+
1
2

[

∆uT ∆dT
]
[

Juu Jud

Jdu Jdd

] [

∆u

∆d

] (13)

Here Ju =
∂J
∂u

and Jd =
∂J
∂d

denote the derivatives of the cost function with respect to u and d,

respectively, and Juu =
∂2 J
∂u2 , Jud = JT

du
= ∂2 J
∂u∂d

and Jdd =
∂2 J
∂d2 denote the second derivatives of the

cost function (12), evaluated at u = unom and d = dnom.
Since we are approximating the cost around the nominally optimal point, we have that Ju = 0.

Differentiating (13) with respect to ∆u and equating the expression to zero yields the optimality
condition that must hold in order to remain locally optimal.

dJ

du
≈ Ju

︸︷︷︸

= 0

+Juu∆u + Jud∆d =
[

Juu Jud

]
[

∆u

∆d

]

= 0 (14)

Note that Ju, Juu, Jud are evaluated at the nominal optimal point, while dJ
du

is the gradient value at
a point nearby given by ∆u and ∆d. Solving for the optimal input ∆u∗(d), yields

∆u∗(d) = −J−1
uu Jud∆d. (15)

3This assumption can be relaxed by using the methods described in Section 5.
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Using the quadratic cost function (13) and the optimal input (15), it can be shown that the loss
from optimality can be expressed as (Alstad, 2005)

L = J(u, d) − J∗(d) =
1
2

(∆u − ∆u∗(d)) Juu (∆u − ∆u∗(d)) , (16)

or alternatively

L =
1
2
||z||22 (17)

where ||·||2 denotes the two-norm, and with z defined as

z = J1/2
uu (∆u − ∆u∗(d)). (18)

This loss expression is the basis for all local methods presented in this section.
Moreover, by inserting (15) into (18), we obtain

z = J−1/2
uu

[

Juu Jud

]
[

∆u

∆d

]

. (19)

Comparing (19) with the gradient expression in (14) we observe that the local loss from (17) can
be written as the squared weighted 2-norm of the gradient value:

L =
1
2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
J−1/2

uu

[

Juu Jud

]
[

∆u

∆d

]∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

2

=
1
2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

J−1/2
uu

) dJ

du

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

2
.

(20)

Here the gradient expression dJ
du

is the actual plant gradient under operation (not at the nominal
point). We see that when the gradient is zero (a necessary condition for optimality), then also the
local loss becomes zero.

4.2. Local approximation of the plant and linear measurement combination

The measurement model (3) is linearized around the nominal point,

∆y = Gy∆u +G
y

d
∆d + ny, (21)

where ∆y = y − ynom, and Gy =
∂y

∂u
, and G

y

d
=
∂y

∂d
are Jacobian matrices of appropriate sizes, that

are evaluated around the nominally optimal point, and which represent the gain from the inputs
and disturbances, respectively, to the outputs. Choosing the CVs to be a linear combination of
measurements y gives

∆c = H∆y, (22)

where we call H ∈ Rnu×ny the measurement selection or combination matrix. Inserting (21) into
(22) yields

∆c = HGy∆u + HG
y

d
∆d + Hny. (23)

Generally the elements of H may take arbitrary values, as long as rank(HGy) = nu. This is
required to obtain a linearly independent set of CVs that fully specify the system. If a set of
single measurements is selected as CVs, then each row of H will contain exactly one “1”, and
have zero-entries otherwise. In this case H has the property

HHT = Inu
, (24)

where Inu
denotes the Identity matrix of dimension nu × nu.

11



4.3. Loss for a given control structure (Exact Local Method)

To evaluate the loss corresponding to a given control structure we substitute the input that
is generated by controlling ∆c = H∆y to zero, together with the expression for the optimal
input (15) into the loss expression (16). For a given disturbance ∆d and given control structure
represented by H, the input ∆u generated by the controllers can be found by solving (23) for ∆u,

∆u = (HGy)−1 ( ∆c
︸︷︷︸

=0

−HG
y

d
∆d − Hny)

= − (HGy)−1
H

(

G
y

d
∆d + ny

)

.

(25)

Inserting the input ∆u derived in (25) and the optimal input from (15) into the loss expressions
(16) and (17), the loss variable z for a given disturbance and measurement combination matrix
H becomes (Halvorsen et al., 2003)

z = −J1/2
uu (HGy)−1 H

[(

G
y

d
−GyJ−1

uu Jud

)

∆d + ny
]

. (26)

This may be simplified to
z = −J1/2

uu (HGy)−1
H

[

F∆d + ny] , (27)

where we used the optimal sensitivity matrix

F = G
y

d
−GyJ−1

uu Jud. (28)

Given a measurement combination matrix H, a disturbance ∆d and a current noise value ny, the
loss is calculated as L = ||z||22.

The matrix F represents the sensitivities of the optimal measurement values with respect to
disturbances

F =
∂y∗

∂d
. (29)

To see this, we insert the optimal input ∆u∗ from (15) into the measurement equation (21) to
yield the optimal measurement variation ∆y∗ for a change ∆d,

∆y∗ = y∗ − ynom = −GyJ−1
uu Jud∆d +G

y

d
∆d + ny

=
(

−GyJ−1
uu Jud +G

y

d

)

∆d + ny

= F∆d + ny.

(30)

Noting that ∆d = d − dnom, by differentiating (30) with respect to d, we obtain F =
∂y∗

∂d
.

The optimal sensitivity matrix F can be calculated using either (28), re-optimization and
finite differences, or nonlinear programming sensitivity (Fiacco, 1983; Pirnay et al., 2012) based
on the inverse function theorem.

To evaluate the performance of a given set of CVs ∆c = H∆y for a range of disturbances, we
define diagonal scaling matrices of appropriate sizes for the disturbances and noise, Wd and Wn,
respectively, such that

∆d = Wdd′; ny = Wnn′. (31)

Here d′ and n′ denote the scaled disturbance and measurement noise, respectively. This scaling
of the variables allows us to make statements about the loss for a given set of disturbances and
noise with magnitudes defined in Wd and Wn.
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Using the scaling matrices, the loss Eq. (17) for a specific value of d′ and n′ is

L =
1
2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
J1/2

uu (HGy)−1HY

[

d′

n′

]∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

2

(32)

where
Y = [FWd Wn]. (33)

To simplify notation, we introduce the loss matrix M as

M = J1/2
uu (HGy)−1HY, (34)

so (32) can be written compactly as

L =
1
2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
M

[

d′

n′

]∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

2

(35)

Remark 1 (Important observation). The loss matrix M = J
1/2
uu (HGy)−1HY, has an interesting

property that will be used later for finding combinations of measurements that minimize the loss:

The value of M does not change when H is pre-multiplied by any invertible matrix Q. To see this,

consider the matrix M and assume that the CV is ∆c = Ĥ∆y, where Ĥ = QH. Then we have

M = J1/2
uu (ĤGy)−1ĤY

= J1/2
uu (QHGy)−1QHY

= J1/2
uu (HGy)−1Q−1QHY

= J1/2
uu (HGy)−1HY.

(36)

This reflects the fact that scaling a CV will generally not affect the loss at steady state.

Depending on how the disturbances and errors are assumed to be distributed, we have differ-
ent cases for the worst-case and the average errors.

• Two-norm bounded disturbance and noise (Halvorsen et al., 2003). When assuming
that the disturbances and noise are independent and uniformly distributed over the set

DN2 =
{

(d′, n′)
∣
∣
∣

∣
∣
∣

∣
∣
∣[d′ n′]T

∣
∣
∣

∣
∣
∣
2
≤ 1,

}

(37)

the worst-case loss is derived based on (35):

Lworst = max
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣





d′

n′





∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
2

≤1

1
2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
M

[

d′

n′

]∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

2

=
1
2
||M||22 =

1
2
σ̄2 (M) ,

(38)

where σ̄(·) denotes the largest singular value.

• Infinity-norm bounded disturbance and noise (Kariwala et al., 2008). If the noise and
the disturbance variables n′ and d′ are assumed independent and uniformly distributed in
the set

DN∞ =
{

(d′, n′)
∣
∣
∣

∣
∣
∣

∣
∣
∣[d′ n′]T

∣
∣
∣

∣
∣
∣∞ ≤ 1,

}

, (39)
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the average (expected value of the loss) is

Lav = E
n′ ,d′∈DN∞





1
2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
M

[

d′

n′

]∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

2



 =
1
6
||M||2F . (40)

where E[·] again denotes the expectation operator.

• Normally distributed disturbance and noise (Kariwala et al., 2008). Assuming that d′

and n′ are normally distributed with zero mean and unit variance,

DNN =
{

d′ ∼ N(0, I), n′ ∼ N(0, I)
}

, (41)

the worst-case loss becomes unbounded Lwc = ∞, as n′ and d′ may become arbitrarily
large. The average loss, however is

Lav,N = E
n′ ,d′∈DNN

[

1
2

M

[

d′

n′

]]

=
1
2
||M||2F . (42)

We observe that the assumptions on the disturbance and noise distribution affect the worst-
case and average loss in form of a scaling factor only. Thus, any of the loss expressions given
above may be used to rank the candidate CVs.

Remark 2. Note that other loss expressions were derived, too, such as the average loss expres-

sion for the case with 2-norm bounded, uniform distributed noise and disturbances (Kariwala

et al., 2008). However, those results do not make practical sense, as the problem was formulated

in such a way that the loss value is scaled with the number of measurements ny. This gives mis-

leading results, because the loss value may be changed arbitrarily, e.g. by adding measurements

(increasing ny), while adding corresponding columns of zeros in H.

Example 1. Consider the following process (Halvorsen et al., 2003), with ny = 4, nu = 1, nd = 1.

The measurement gains from the input u and the disturbance d are

Gy =





0.1
20
10
1





, G
y

d
=





−0.1
0
−5
0





, (43)

and the cost to minimize is

J = (u − d)2, (44)

For this process, we have that Juu = 2, Jud = −2, and the optimal sensitivity matrix becomes

F =
∂y∗

∂d
= G

y

d
−GyJ−1

uu Jud =





0
20
5
1





. (45)

Assuming further that the noise and disturbance magnitudes are given as Wd = 1 and Wn =

I4, and that
∣
∣
∣

∣
∣
∣[d′ n′]T

∣
∣
∣

∣
∣
∣
2
≤ 1, we evaluate the worst-case loss obtained from controlling single
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measurements:

∆c1 = H1∆y =
[

1 0 0 0
]

∆y = ∆y1

∆c2 = H2∆y =
[

0 1 0 0
]

∆y = ∆y2

∆c3 = H3∆y =
[

0 0 1 0
]

∆y = ∆y3

∆c4 = H4∆y =
[

0 0 0 1
]

∆y = ∆y4

(46)

The worst-case loss obtained with a constant setpoint policy (∆c = 0) is evaluated using (38) as

Lwc(c1) = 100, Lwc(c2) = 1.0025, Lwc(c3) = 0.26, Lwc(c4) = 2. Therefore, controlling c3 is the

best choice, as it yields the smallest worst-case loss for the given set of noise and disturbances.

We further observe that the loss varies by orders of magnitude, depending on the selected

control structure. This shows that significant economic benefits can be achieved by simply de-

signing a good control structure for a process.

Remark 3. Alstad (2005) showed that the loss for a given control structure is locally indepen-

dent of the chosen setpoint. In particular, as long as the quadratic approximation of the cost and

the linearized model do not change, the best control structure remains the best, even when the

setpoint is not optimal.

Remark 4 (Maximum scaled gain rule). Before the exact local results presented above were

found, Skogestad and Postlethwaite (1996) described an approximative method, called the “Max-

imum Scaled Gain Rule” (also known as “minimum singular value rule”) for ranking CV can-

didates. Since the exact methods presented in this section are just as easy to apply, we do not

present the Maximum Scaled Gain rule here. However, for completeness sake we describe it in

Appendix A.

4.4. Finding optimal measurement combinations

Using the results above, it is easily possible to evaluate the average and worst-case loss
corresponding to a given control structure represented by H. This gives rise to the question of
how to find a control structure which results in a minimal loss. Loosely speaking this can be
formulated as an optimization problem to minimize the loss for a set of implementable control
structures. For example, for finding a measurement combination ∆c = H∆y that minimizes the
average loss for normal distributed disturbances and noise we could write

min
H

L =
1
2

∣
∣
∣

∣
∣
∣J1/2

uu (HGy)−1HY
∣
∣
∣

∣
∣
∣
2

F

s.t. HGy invertible .
(47)

In principle, any of the local loss expressions (38), (40), (42) given in the previous section may be
used in the cost function of (47) to find combination matrices. In general, these loss expressions
lead to non-convex optimization problems, which may have multiple optima, and are difficult to
solve. However, in the case where H may take arbitrary values, or when the structure of H is
preserved upon left-multiplication with any non-singular matrix, the non-convex problem (47)
may be simplified to a convex problem, such that the optimal measurement combination H is
easy to find. These cases will be discussed later in this section.
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4.4.1. Null-space method

In the Null-space method (Alstad and Skogestad, 2007) for finding the optimal measurement
combination H, we assume that the measurement noise can be neglected (Wn = 0), so we only
need to compensate for disturbances d. Moreover, we assume that we have ny ≥ nu + nd inde-
pendent measurements. Under these assumptions, it is possible to find a matrix H that gives zero
loss Lwc = Lav = 0, by simply selecting H in the left null-space of F, such that

HF = 0. (48)

To show this, consider the worst-case loss Lwc =
1
2 σ̄

(

J
1/2
uu (HGy)−1HY

)2
. Without noise Wn = 0,

such that Y = [FWd 0], and the resulting worst-case loss is simplified to Lwc =
1
2 σ̄

(

J
1/2
uu (HGy)−1HFWd

)2
.

Selecting H such that HF = 0 will then result in zero worst-case and average loss Lwc = Lav = 0
(as long as HGy is non-singular).

Remark 5. Alternatively we may arrive at this result by requiring the optimal setpoint change

to be zero. From (22), (29) and (31) the optimal change in the CVs can be expressed as

∆copt = H∆yopt = HFWdd′ = 0. (49)

Selecting H in the left null-space of F will make the optimal variation ∆copt = 0. This means

that keeping the setpoint constant ∆c = 0 will result in the optimal change in the measurements,

which in turn implies that the inputs assume their optimal values.

Remark 6. There exists an interesting relationship between the null-space method and the gra-

dient (Jäschke and Skogestad, 2011a). Using Ju = [Juu Jud]

[

∆u

∆d

]

from (14), Setting ny = 0

and defining G̃y = [Gy G
y

d
], we can write (21) as

∆y = Gy∆u +G
y

d
∆d = G̃y

[

∆u

∆d

]

. (50)

Since we have ny ≥ nu + nd, we can invert the measurement relationship (50) and inserting in the

gradient (14) gives

∆c = ∆Ju = [Juu Jud]
[

G̃y
]†
∆y. (51)

Therefore, controlling ∆c to zero forces the gradient to become zero, Ju = 0. It can be verified

that

H = [Juu Jud]
[

G̃y
]†

(52)

is in the left null-space of F, which from (28) can be written as

F = G̃y

[

−J−1
uu Jud

I

]

, (53)

where I denotes the identity matrix.

Considering the optimal sensitivity matrix F in (53) more closely, we can see that the null-

space of F can be decomposed into two parts. The first component is given by H =
[

Juu Jud

] [

G̃y
]†

and the second component is given by the left null-space of G̃y. The directions corresponding to
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this second part with H̃G̃y = 0 correspond to invariant output directions, that cannot be controlled
and that are always zero.4 When applying the null-space method, it must therefore be verified
that the selected measurement combination is not in the null-space of G̃y.

The null-space method is not optimal in a realistic setting, because it does not take measure-
ment noise into account. Furthermore, the requirement of at least as many measurements as the
sum of number of inputs and disturbances leads to complex control structures involving many
variables. However, the derivation of the null-space method in Remark 6 can be used as a start-
ing point for approaching a more difficult problem, where measurement polynomials are used as
CVs, see Section 6.1.

Example 2 (Null-space method). Consider F =
[

0 20 5 1
]T

from (45) in Example 1. A

measurement selection matrix in the left null-space of F is H1 =
[

1 0 0 0
]

, correspond-

ing to selecting the CV c1 = y1. However the left null-space of F is spanned by three basis

vectors, so we may also chose different measurement combinations, such as given by H2 =[

0 1 −4 0
]

, and H3 =
[

0 1 0 −20
]

.

Without measurement noise (Wn = 0) controlling c1 and c2 gives Lwc(c1) = Lwc(c2) = 0,

yielding optimal operation in spite of disturbances. However, the measurement combination

c3 lies in the left null-space of F, but also in the left null-space of G̃y, and hence Gy. This

“controlled variable” is therefore not controllable because the gain HGy from inputs to CVs is

zero. Consequently, the loss Lwc =
1
2 σ̄(J

1/2
uu (HGy)−1HY) may assume arbitrarily large values.

Next we show that if measurement noise is present (Wn , 0) the loss can depend significantly

on the choice of the basis vectors from the left null-space. Given measurement noise and dis-

turbances of magnitude Wn = I4 and Wd = 1, we evaluate the worst-case loss for the different

alternatives to be

Lwc(c1) = 100

Lwc(c2) = 0.04250

Lwc(c3) = ∞.
(54)

4.4.2. Extended Null-space method

As shown in the example above, the choice of vectors in the left null-space of F does have a
significant influence on the performance in presence of noise. If nu + nd > ny, the H-matrix can
be chosen such that beside perfectly rejecting disturbances, the effect of noise is minimized. That
is, after all disturbance effects are rejected, the remaining measurements are used to minimize
the effect of noise. Next, we give a new derivation of the results in Alstad et al. (2009). First use
the scaling matrix Wn to define scaled measurements y′, such that

y′ = W−1
n ∆y. (55)

In presence of measurement noise ny, the expression for the scaled measurement is calculated
using (21) and G̃y = [Gy Gu

d
] as

y′ = W−1
n ∆y = W−1

n G̃y

[

∆u

∆d

]

+W−1
n ny. (56)

4When H̃ is selected such that H̃G̃y = 0, then also H̃Gy = 0, and we have selected a measurement combination that
is uncontrollable.
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Rearranging gives

W−1
n ny = −W−1

n ∆y +W−1
n G̃y

[

∆u

∆d

]

(57)

The least squares solution [∆u∆d]T for (57), which minimizes the sum of squares of the weighted
noise nyT W−1

n W−1
n ny is given by

[

∆u

∆d

]

= (W−1
n G̃y)†W−1

n ∆y. (58)

Inserting this least squares solution into the expression for the gradient (14) we obtain

c =
[

Juu Jud

]

(W−1
n G̃y)†W−1

n ∆y, (59)

and the corresponding H-matrix is

H =
[

Juu Jud

]

(W−1
n G̃y)†W−1

n . (60)

Except for a constant scaling factor that does not affect the loss, this is the same expression as
originally derived in Alstad et al. (2009).

Note that the matrix H from (60) is in the left null-space of F. To see this, we write F as in
(53), and obtain

HF =
[

Juu Jud

]

(W−1
n G̃y)†W−1

n G̃y

[

−J−1
uu Jud

I

]

= −Jud + Jud = 0.
(61)

By selecting H as in (60), the basis vectors in the left null-space of F are chosen to minimizes
the effect of noise.

Example 3 (Extended Null-space method). Inserting the values for Example 1 into (60) yields

H4 =
[

0.0085 −0.0997 0.3998 −0.0050
]

, (62)

and controlling c4 = H4y at a constant value leads to a loss of Lwc(c4) = 0.04247. This loss is

significantly lower than Lwc(c1) = 100 that is obtained by selecting H1 =
[

1 0 0 0
]

. Note

that both, H1 and H4 are in the left null-space of F.

4.4.3. Minimum Loss method (Explicit solution)

In practice the assumption of exact measurements is not valid, and the optimal measurement
combination matrix H must take the measurement noise ny into account. Although this is done
in the Extended Null-Space Method described above, there are two drawbacks in this approach.
(1) it only works when we have more measurements than the sum of number of inputs and dis-
turbances, so the number of required measurements can become very large, and (2) the Extended
Null-Space Method will generally not give an optimal trade-off between noise and disturbance
rejection. For example, in some cases it may be beneficial to not reject a disturbance completely
in order to compensate for the even more detrimental effect of noise.

In the literature there are several derivations to the solution of finding a locally optimal mea-
surement combination matrix H, that finds the optimal trade-off between rejecting the distur-
bances and measurement noise. Kariwala (2007) and Kariwala et al. (2008) present methods
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which are based on determining eigenvalues of a matrix, while Heldt (2010) gives a related
method based on a generalized singular value decomposition. Alstad et al. (2009) reformulate
the problem of minimizing the nonlinear loss expression to obtain a convex quadratic optimiza-
tion program. All these approaches lead to the same solution, so for brevity we only present the
last approach by Alstad et al.

We start by recalling that pre-multiplying H by any invertible matrix Q will not affect the
value of the loss matrix M = J

1/2
uu (HGy)−1HY, see (36). Thus, we may select Q to make HGy =

J
1/2
uu . This cancels the nonlinearity in M, and a matrix H that minimizes the average loss can be

found by solving the convex optimization problem (Alstad et al., 2009)

min
H
||HY ||F

s.t.HGy = J1/2
uu .

(63)

An explicit solution to this problem was found by Alstad et al. (2009), and later simplified by
Yelchuru and Skogestad (2012) to

H = (Gy)T
(

YYT
)−1
. (64)

Equation (64) provides the locally best measurement combination for a given set of measure-
ments, provided YYT is invertible, which always is the case when all measurements are affected
by noise. It was found by Kariwala et al. (2008) that the H-matrix that minimizes the average
loss, also minimizes the worst-case loss. Note that the full loss expressions for the worst-case loss
(38) or the average loss (40), (42) must be used for evaluating the value of loss that is obtained
with H from (64).

Example 4 (Exact local method). Using (64) for calculating the measurement combination ma-

trix for the system in Example 1 with the noise and disturbances magnitudes Wn = I4 and Wd = 1,

gives

H5 =
[

0.1000 −1.1241 4.7190 −0.0562
]

, (65)

and the corresponding loss is Lwc(c5) = 0.0405.

This is the measurement combination which gives the best performance locally. We observe

that the loss is slightly lower than in the case of the Extended Null-space method. This is because

an optimal trade-off between disturbance rejection and noise rejection is found. Here again, we

see that the measurements with the largest weights are y2 and y3.

4.5. Incorporating measured disturbances

To improve the self-optimizing properties of the control structure in presence of known (mea-
sured) disturbances, e.g. prices or feed quality, a straightforward approach proposed by Jäschke
and Skogestad (2011) is to include the measured disturbances into the measurement vector, and
use e.g. (64) to calculate the optimal measurement combination. The augmented measurement
vector yaug becomes

yaug =

[

y

dm

]

, (66)

where dm denotes the measured disturbances. The corresponding optimal CV can then be found
by any of the methods described above, and written as

∆caug = Haug∆yaug =
[

H Hd
]
[

∆y

∆dm,

]

= H∆y + Hd∆dm.

(67)
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Instead of keeping this CV at a constant setpoint, ∆caug = H∆y + Hd∆dm = 0, one may use the
measured disturbance to change the setpoints of the CVs, and instead control

∆c = H∆y, (68)

to the setpoint
∆cs = −Hd∆dm. (69)

The concept is illustrated in the block diagram in Figure 2, and has also been applied in Umar
et al. (2014).

Controller Plant
∆u

−Hd∆d

H∆y

Disturbance
measurement ∆d∆dm

∆y

−

∆c

∆cs

Figure 2: Optimal setpoint adaption to measured disturbances

4.6. Selecting subsets of measurements

In most practical cases, using a combination of all available measurements in the H matrix
is neither desired nor required. Usually, controlling a combination of a subset of the available
measurements results in a performance which is similar to when using all available measurements
(Kariwala, 2007; Kariwala et al., 2008). The result is a simpler control structure at a usually
insignificant increase in loss.

Selecting the best subset of n variables from ny variables leads to a combinatorial optimiza-
tion problem, where the loss L has to be evaluated individually for each CV. The number of
possible combinations can become very large, and selecting n variable combinations as CVs

from a set of ny measurements leads to Cn
ny
=

(

ny

n

)

=
ny!

(ny−n)!n! possible structures. In the litera-

ture, the problem of selecting the best subset of measurements has been approached in two ways:
The first one is to develop tailor-made branch and bound algorithms (Cao and Kariwala, 2008;
Kariwala and Cao, 2009, 2010) , and the second approach formulates the selection problem as a
mixed integer quadratic optimization problem (MIQP), and uses standard MIQP solvers to obtain
the best measurement set (Yelchuru and Skogestad, 2012).

4.6.1. Tailor-made branch and bound methods

These methods exploit monotonicity of the optimal loss value as a function of the number
of variables. This means that when removing one measurement from the CV, the optimal loss
cannot decrease. Here we present the general idea for minimizing the average loss for normally
distributed disturbances and noise. For a more detailed description and treatment of the worst-
case, we refer to Cao and Kariwala (2008), and Kariwala and Cao (2009, 2010).
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Denote by X the index set describing the selected measurements, and by |X| its cardinality.
Further, let G

y

X
denote the gain matrix corresponding to the selected measurements, i.e. the rows

of Gy corresponding to the indices in X. Analogously YX denotes the matrix consisting of the
rows in Y corresponding to the index set X, and Ho

X
∈ R

nu×|X | denote the optimal H-matrix
corresponding to the chosen subset of measurements. The matrix Ho

X
corresponds to the optimal

solution of problem (63), when using G
y

X
and YX

Then, for given noise and disturbances that are normally distributed, the optimal average loss
is a function of the index set X:

Lav(X) =
1
2

∣
∣
∣
∣

∣
∣
∣
∣J

1/2
uu

(

(Ho
XG

y

X
)
)−1

Ho
XYX

∣
∣
∣
∣

∣
∣
∣
∣

2

2
(70)

This optimal average loss is monotonously decreasing with increasing number of measurements,
because adding a measurement to the combination can only improve the optimal performance.

Using the monotonicity properties, an efficient algorithm can be developed for selecting the
best subset of measurements. Now denote by Xall the index set for all available measurements,
and let Xn be any set corresponding to a selection of n measurements. The optimal index set for
the best CV containing n variables is

X∗n = arg min
Xn⊂Xall

Lav(Xn) (71)

The monotonicity property implies that if one index set Xn is contained in another index set Xm

(Xn ⊂ Xm) then the optimal loss of the superset must be less or equal to the optimal loss of the
subset:

L(Xm) ≤ L(Xn). (72)

Assuming that B is a known upper bound to the minimum loss for the case when n variables are
selected, such that

B ≥ L(Xn), (73)

then this upper bound can be used to exclude (prune) sets of measurements. In the case where
Xn ⊂ Xm, whenever we find

L(Xm) > B (74)

such that
L(Xm) > L(Xn), (75)

all n-index subsets included in Xm can be excluded from evaluation, because they will not lead
to a lower optimal loss. Equation (74) is called “pruning condition”. This pruning condition can
be used in an algorithm for systematically eliminating suboptimal measurement subsets from
consideration.

We briefly describe such an algorithm for the case where we select 2 out of 6 measurements,
for a more general description, we refer to Cao and Kariwala (2008). If we were to evaluate
all possibilities for selecting 2 out of 6 measurements, we would need to evaluate C2

6 = 15
combinations of measurements. Using the pruning condition (74), we can organize the search for
the best combination in a tree structure, see Figure 3. Each node corresponds to a measurement
that is eliminated from further consideration, because including it will not reduce the loss along
a path.

At the (initial) root node in Figure 3, the indices corresponding to all six measurements are
included, and the loss is evaluated. This gives the best current upper bound. Next, a branch
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Figure 3: Branch and Bound solution tree for selecting 2 out of 6 measurements (Adapted from Cao and Kariwala
(2008)). The number beside each node denotes the measurement which is discarded for that particular node and all nodes
below.

is selected, and we move down the branch to the next node on that branch and exclude the
corresponding measurement. If the loss of this node is higher than the loss of any other node
on the same level, this node and all its sub-nodes may be pruned, because the loss on the lower
nodes (where more measurements are excluded) must be higher or equal to the loss of the current
node. Then one may proceed along the same branch, or alternatively select another branch either
to obtain a new lower bound, or to prune the branch. This procedure is repeated until the optimal
measurement set is identified at the leaf of the final remaining branch.

Example 5 (Branch and Bound). Consider the case in Figure 3, where we want to select the 2

best measurements out of 6 candidates. On the first level, we evaluate the losses for the cases

where we exclude measurement 1, 2, and 3. Assume that the loss corresponding to the node

where y1 is excluded is L(X = {2, 3, 4, 5, 6}) = 100$, and the loss with y2 excluded L(X =
{1, 3, 4, 5, 6}) = 59$, and y3 excluded L(X = {1, 2, 4, 5, 6}) = 25$. In this case we can immediately

disregard (prune) the branches corresponding to the two left nodes (where y1 and y2, respectively,

are excluded). Considering the remaining branch, it is seen that only two measurements remain

at its leaf, X = {1, 2}. So selecting a combination of y1 and y2 will give the best performance.

Thus we have efficiently found the optimal solution while evaluating only 3 of all 15 possible

combinations.

More sophisticated bidirectional branch and bound methods have been developed, which prune
both from the top and the bottom of the tree, thus becoming even more efficient (Kariwala and
Cao, 2009, 2010). Free software implementations for these branch and bound methods can be
downloaded from the internet5.

4.6.2. MIQP formulation

Alternatively, Yelchuru and Skogestad (2012) propose to find the best measurement subset
by modifying the quadratic problem (63) to a mixed integer quadratic problem (MIQP), which

5http://www.mathworks.com/matlabcentral/fileexchange/?term=authorid:22524
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can be solved by standard MIQP solvers. The MIQP may be formulated by rewriting

H =





h1,1 · · · h1,ny

...
. . .

...

hnu,1 · · · hnu,ny





(76)

as a vector by stacking the rows of H in a column vector

hδ =
[

h1,1 · · · h1,ny
, h2,1 · · · h2,ny

, · · · hnu,1 · · · hnu,ny

]T
(77)

with dimension R
nuny×1. By restructuring the other matrices in a similar fashion, an equivalent

vectorized version of problem (63) can be stated as:

min
hδ

hT
δ Yδhδ

s.t. G
y

δ

T
hδ = jδ

(78)

where G
y

δ
, jδ, and Yδ are the corresponding re-structured versions of Gy, Juu and Y, respectively.

To modify problem (78) for selecting the best subset of measurements, we use the property
that controlling a subset of measurements is equivalent to setting all columns associated with
excluded measurements to zero. Therefore the problem of selecting only a subset of all available
measurements can be formulated as a mixed integer quadratic program, where a constraint is
included that enforces the usage of a given number of measurements, while letting the optimizer
choose which ones to include in the set. In Yelchuru and Skogestad (2012) these are implemented
as “big-M” constraints. Here, a vector of binary variables is defined as

σ = [σ1 σ2 · · · σny
], σ j = {0, 1} , (79)

where σ j = 1 corresponds to a measurement that is included in the measurement combination
(nonzero weight in the corresponding elements in H), while σ j = 0 corresponds to variables that
are not included in the measurement combination, and have a zero element in H. The constraints
on the binary variables can be written as

Pσ = s, (80)

where P = 1T
1×ny

is a ny dimensional vector of ones, and s is the number of measurements that
we want to include in the measurement combination. Then the problem of selecting the optimal
measurement subset can be written as

min
hδ ,σ

hT
δ Yδhδ

s.t. G
y

δ

T
hδ = jδ

Pσ = s

−Mσ j ≤ hi, j ≤ Mσ j j = 1 . . .ny, i = 1 . . .nu

σ ∈ {0, 1} .

(81)

Here, M ∈ R
nu

+ is a vector of positive constants which are used in the big-M constraints for
ensuring that whenever σ j is zero, the corresponding elements in the H matrix are zero, too.
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The values in the M vector are upper bounds on the elements in H. Selecting appropriate values
for the elements in M is not straightforward, because a too large value causes the computational
load to become very high, while a too small value may result in a falsely active constraint, and a
suboptimal solution.

Solving (81), results in a H matrix, which minimizes the average and worst-case local loss,
(38) and (42), respectively. This is guaranteed by the constraint G

y

δ
hδ = jδ, which ensures that

J
1/2
uu (HGy)−1 = I. The main advantage of casting the problem as MIQP is that it allows for

usage of standard MIQP solvers, such as e.g. CPLEX (International Business Machines, 2014)
or Gurobi (Gurobi Optimization, 2015).

Remark 7. From a mathematical point of view it is not required to write the MIQP (81) in terms

of vectors, as shown above. It may as well have been stated in terms of matrices. However,

for numerical software it is often convenient to have the optimization problem in the form given

above.

Remark 8. The best subset of measurements may not be the same for worst-case and average

loss minimization. While the tailor-made branch and bound approaches can find the best mea-

surement subset for worst-case and average loss minimization, the MIQP method will only find

the measurement set that minimizes the average loss. However, for most cases it is recommended

to minimize the average loss, as the worst-case may not occur very often in practice.

Example 6 (Selecting subset of measurements). We consider the problem from Example 1 with

Wd = 1 and Wn = I4, and find the best measurement combinations for the case where we include

1,2,3,4 measurements in H. Figure 4 shows the value of the optimal loss that can be achieved

when including the different numbers of measurements into the CV. We observe that the loss is re-

duced significantly when increasing the number of measurements from 1 to 2, while adding more

than 2 measurements does not have a significant impact on the loss. In this case controlling a

measurement combination of more than 2 measurements would basically only add capital cost

without improving operation.

This behavior, that the loss decreases very much initially and then flattens out, is found fre-

quently in chemical processes, where there are typically many measurements that could poten-

tially be included in H.

4.7. Structured H

The problem described in the previous section, where we search for the best measurement
subsets to include in H can be considered a special case of a more general problem, where we
impose a certain structure on the measurement combination matrix H. For example, it may be
undesirable to combine measurements that are located far away from each other, in order to
avoid combining variables with very different dynamics and long time-delay. Also, combining
e.g. similar measurements (e.g. 3 pressure measurements) may give CVs that have an intuitive
physical meaning, and thus increased acceptance among operators.

In such cases a structure is imposed on H. For example, when looking for the best single
measurements to control, we require that there is only one non-zero element in each row of
H, similarly, if we want to find a subset containing 5 measurements, this corresponds to the
requirement of having 5 non-zero columns in H.

The special type of structural constraints for picking optimal subsets of measurements (Sec-
tion 4.6) have in common that the solution (when the optimal measurements to be included are
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Figure 4: Optimal average loss value that is obtained for the best subsets of measurements

known) can be re-formulated in terms of (63). Equivalently, the optimal H (with the imposed
structure) does not change structure when pre-multiplied by any invertible matrix Q. In par-
ticular, any zero column in H will remain zero upon multiplication with Q. Therefore solving
the MIQP with convex cost, (81) gives the H that also minimizes the exact non-convex loss ex-

pression L = 1
2

∣
∣
∣

∣
∣
∣J

1/2
uu (HGy)−1HY

∣
∣
∣

∣
∣
∣
2

F
. Similarly, the monotonicity property which states that the

optimal loss cannot decrease when adding more measurements is preserved in that case.
However, when more general structural constraints are required, such that H has e.g. a

block-diagonal structure, the problem becomes more complicated. In this case, pre-multiplying
H with any non-singular matrix Q does not preserve the structure of H, so minimizing the
convex re-formulation will not result in a solution that minimizes the loss expression L =
1
2

∣
∣
∣

∣
∣
∣J

1/2
uu (HGy)−1HY

∣
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∣

∣
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2

F
. Also note that for such general constraints the monotonicity property

that is used in the branch and bound algorithm, may not hold any longer. For a collection of
structural constraints that can be handled with currently available methods, we refer to Heldt
(2010), and Yelchuru and Skogestad (2012).

Currently there are no simple and tractable methods for handling cases with structural con-
straints that are not preserved upon pre-multiplication with a non-singular matrix, and that do
not satisfy the monotonicity property required for the branch and bound algorithm. These cases
result in mixed integer optimization problems with non-convex subproblems for every possible
variable combination.
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4.8. Conclusion

The local methods presented in this section are all based on a linearization around the nomi-
nally optimal operating point. They are subject to the following main limitations:

1. The results are only guaranteed to be valid in a vicinity of the nominal point
2. The disturbances must not change the set of active constrains
3. Only structures that are preserved upon pre-multiplication by any non-singular matrix can

be imposed on H.

The methods only give candidate sets of CVs, which have to be evaluated and tested over the
whole region using the nonlinear model. However, the advantage of these local methods is
that they can be used for efficient screening of candidate sets of CVs, because CVs that give
a large loss close to the expected (nominal) operating point can be excluded immediately from
further consideration. Moreover the local methods can handle measurement noise in a systematic
manner.

The problem of selecting a subset of measurements to include in the CVs, leads to a difficult
combinatorial optimization problem. Simple structural constraints (e.g. selecting the optimal
subset of measurements), can be addressed using off-the shelf MIQP solvers and tailor-made
branch and bound methods. However, more complicated structures that are not preserved upon
pre-multiplication with a non-singular matrix remain an open problem.

5. Constraint handling

The methods described so far assume that the disturbances do not change active constraints.
However, in general the disturbances can cause the active set to change, and the plant may be
operated in different regions that are defined by the active constraints. Recently some approaches
have been proposed in the literature for overcoming this problem. In this section we present the
multi-parametric programming approach (Manum and Skogestad, 2012), the integrated approach
(Hu et al., 2012b), and the cascade control approach (Cao, 2004).

5.1. Parametric programming approach

In this method, every active constraint region has its separate control structure. The main
idea is that controlling self-optimizing CVs is equivalent or similar to controlling the optimality
conditions in the regions. On the boundary between two regions the optimality conditions of
both adjacent regions are satisfied, and the CVs and constraints of both regions assume their
optimal values. Thus, whenever a constraint or self-optimizing variable of a neighbouring region
assumes its optimal value, we switch the control structure to the corresponding region.

This idea was used in Jäschke and Skogestad (2012a), and was further refined to require only
monitoring certain carefully designed scalar descriptor functions in each region (Manum and
Skogestad, 2012) Below, we give a brief outline of the ideas, and for a more detailed presentation,
we refer to the paper by Manum and Skogestad (2012).

In this method it is assumed that there is no measurement noise ny = 0. Starting from the
reduced problem (11), the cost function J̄r is approximated by a quadratic cost function, as in
(13), and the constraints g(ū, d) ≤ 0 are linearized:

min
ū

[

Jr
ū Jr

d

]
[

∆ū

∆d

]

+
1
2

[∆ūT ∆dT ]
[

Jr
ūū Jr

ūd

Jr
dū

Jr
dd

] [

∆ū

∆d

]

s.t. ∆g = A

[

∆ū

∆d

]

≤ 0.
(82)
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Here ∆g = g − gnom is the deviation of constraint from the nominal (linearization) point, and
A =

[
∂g

∂ū

∂g

∂d
.
]

denotes the constraint Jacobian. It is assumed that the constraints ∆g, can be
measured and controlled using the available degrees of freedom.

For each set i of active constraints, one can find (by eliminating the active constraints for this
region and using the null-space method) a CV ∆c(i) = H(i)∆y, such that the optimality conditions
can be written as6

∆c(i) = H(i)∆y = 0 (83)

∆g(i) = A(i)

[

∆u

∆d

]

= 0. (84)

Here A(i) denotes the rows of A that correspond to the active set in region i. Combining the
vectors ∆y and ∆g into an augmented measurement vector

∆yaug = [∆y, ∆g]T , (85)

we can write the optimality conditions as

∆c(i),aug = H(i),aug∆yaug = 0, (86)

where

H(i),aug =

[

H(i) 0
0 α(i)

]

. (87)

Here α(i) is a diagonal matrix with the α(i)
j, j
= 1 if ∆g j is an active constraint, and zero otherwise.

In every region, optimal operation can be achieved by controlling ∆c(i),aug = H(i),aug∆yaug to zero,
that is, by controlling the corresponding CVs and constraints at their optimal values.

Starting by controlling ∆c(i),aug = 0 in region i, a naive approach for detecting active set
changes is to simply monitor ∆c(k),aug in all the neighboring regions k , i. When a disturbance
moves the process from region i to region k, we have ∆c(i),aug = ∆c(k),aug = 0 at the boundary (i.e.
the optimality conditions of region i and k are both satisfied), and the control structure must be
changed to region k. This requires to monitor nū(nneighbours,i) scalar variable values in each region
i, where nū is the total number of degrees of freedom including active constraints, and nneighbours,i

is the number of regions neighbouring region i. This number may become quite large for real
systems.

To reduce the number of variables to be monitored Manum and Skogestad (2012) proposed
to construct a scalar descriptor function (Baotić et al., 2008) in each region. This function is
monitored in each neighboring region, and active set changes are identified by comparing its
value in the current region with the values of the descriptor functions of the neighbouring regions.
This reduces the number of variables to be monitored from nū(nneighbors) to nneighbors + 1, which
can be a significant reduction.

The scalar valued descriptor function fi(y) for each region i is constructed by pre-multiplying
the CVs by a non-zero constant vector w(i) ∈ Rnu , such that

fi(y) = w(i)T
H(i),aug∆yaug. (88)

6Note that controlling ∆c to zero corresponds to controlling the reduced gradient for that region to zero.
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Baotić et al. (2008) show that any vector w(i) may be used for constructing a scalar piecewise
affine descriptor function, as long as it is not in the left null-space of (H(i),aug − H( j),aug), where
i and j denote two neighboring regions. However, from a numerical point of view, one would
desire vectors w which are robust to small errors, and an algorithm for systematically constructing
such a vector is presented in Manum and Skogestad (2012); Baotić et al. (2008).

Whenever the difference between the value of the descriptor function of the current region
and a neighbouring region changes sign, an active set change occurs, and the control structure is
switched to the corresponding neighbouring region. An example for such a descriptor function is
given in Fig. 5. Assume that the process is initially operated in Region 3, where f3(y) takes values

f1(y)

f2(y)
f3(y)

f4(y)

0

0

1

1

2

2

3

3 4

4

5

5

6 7
y

y

fi(y)

Region 1 Region 2 Region 3 Region 4

Figure 5: Illustration for changing regions (Figure adapted from Baotić et al. (2008) )

within the interval [2, 3]. It can be seen that the function values of the neighbouring functions
f2(y) = 2 and f4(y) = 2y−9 evaluated in Region 3 are below the function value of f3(y). Thus we
have sign( f3 − f4) = 1, and sign( f3 − f2) = 1. When moving to Region 2, the sign of f3(y)− f2(y)
changes to −1, while the sign of f4(y) − f2(y) remains unchanged at 1. Thus, by monitoring the
sign of the differences in the descriptor functions, the new region to switch to can be detected.

5.2. Integrated approach

The parametric programming approach described above can result in complicated control
systems with many different CVs (one for each region) and corresponding switching laws. Es-
pecially when the number of regions is large, the complexity of this approach can render it prac-
tically infeasible. In contrast, the integrated approach aims at finding a single control structure,
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which makes sure that all variables remain in the pre-specified bounds, regardless of the value of
the disturbance or the noise. Although there will be a loss due to not satisfying active constraints,
the idea is that the simplicity of the control structure outweighs this disadvantage.

In the local integrated approach proposed by Hu et al. (2012b) it is assumed that at the
nominal (linearization) point no constraints are active, or that the disturbances do not cause any
nominally active constraint to become inactive. A new constraint variable z ∈ Rng is introduced
that corresponds to the value of the inequality constraint in (1), so that

z = gz(z, d) ≤ 0, (89)

where z may also contain inputs u and states x. Linearizing gz(z, d) around the nominal operating
point yields

∆z = Gz∆u +Gz
d
∆d ≤ 0. (90)

From equations (21)-(23), keeping ∆c = H∆y at a constant setpoint (∆c = 0) we obtain upon
solving for u

∆u = −(HGy)−1H[Gy

d
Wd Wn]

[

d′

n′

]

. (91)

Inserting (91) into (90) yields

∆z =
(

−Gz(HGy)−1H
[

G
y

d
Wd Wn

]

+Gz
d

[Wd 0]
)
[

d′

n′

]

≤ 0. (92)

We observe that here again, the term (HGy)−1H appears in (92). Thus, following the argument
in Section 4.3, pre-multiplying H with any invertible matrix Q will not change the value of ∆z.
Using this information, Q may be selected to make (HGy)−1 = I. Then we define

B = −GzH
[

G
y

d
Wd Wn

]

+Gz
d

[Wd 0] . (93)

Under the assumption of a uniform distribution of [d′ n′] the elements of z assume their largest
values when the elements of [d′ n′] are at their bounds, i.e. either +1 or -1. Thus, the constraints
(92) can be rewritten as

||Bi||1 ≤ 0 i = 1 . . . ng (94)

where Bi and bi denote the i-th row of B and b, respectively.

The problem of finding H that minimizes the average loss Lav =
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≤ 0, i = 1..ng

(95)

This is a convex problem which is either infeasible, (then there is no variable combination that
satisfies the constraint over the whole region), or has a unique solution, and the CV that mini-
mizes the loss without violating the constraints is ∆c = H∆y.
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Figure 6: Cascade structure for handling active set changes (Adapted from Cao (2004))

Remark 9. The problem (95) does not minimize the loss exactly when constraints that are nom-

inally active become inactive. This is because Juu depends on the active set of the linearization

point, and the curvature will change when constraints become active or inactive. However, when

there are no active constraints at the linearization point (or they do not become inactive), this

approach can be expected to represent the true local loss well.

Remark 10. Note that in (95) we have a slightly different cost function as previously in the

convex formulation (63). That is, because in (63) the additional degree of freedom was used to

make HGy = J
1/2
uu . In the case presented in this section, we use the additional degree of freedom

for setting HGy = I. Therefore the Juu term does not cancel, and Juu remains in the objective of

the optimization problem for finding H.

5.3. Cascade control approach

The cascade control approach by Cao (2004, 2005) is an option when only few constraints
can become active. It is based on the assumption that the process is operated in an unconstrained
region most of the time, and that the number of constraints that can become active, is lower or
equal to the number of CVs. The control structure is implemented in a cascade fashion, Fig. 6.
The setpoint cs of the inner loop acts as manipulated variable for the outer loop. As long as the
constraint does not become active the outer loop with controller K1 will manipulate the setpoint
of the inner loop such that a self-optimizing CV is kept at its setpoint. However, when a new
constraint becomes active, the saturation block will limit the setpoint of the inner loop such that
the constraint is not violated.

Since the self-optimizing control variables are selected for the unconstrained nominal case,
this approach will lead to losses when the constraints become active. If the process is operated in
the nominal region most of the time, then the loss may be negligible. However, when the set of
active constraints is likely to change frequently, other approaches, like the integrated approach
or the parametric programming approach are better suited.

5.4. Constraint matching

Approximating nonlinear plant constraints linearly, as done in (82) and (90) can lead to fea-
sibility problems, because the nonlinearity of the plant is not taken into account for the control
structure selection (Manum and Skogestad, 2012). One way of addressing this problem is to
measure the real constraint values, and to treat the distance to the constraints as a measured
disturbance. In effect, this adapts the constraints in the model to match the real bounds.
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5.5. Conclusion

Handling changing sets of active constraints is still one of the difficult issues when using self-
optimizing control. The cascade and the multiparametric programming approaches are limited
in applicability when the number of constraint regions is large. The number of potential regions
grows exponentially with the number of constraints, and although the regions may be tracked by
scalar functions, it can easily become infeasible in practice. The cascade approach, although very
simple and pragmatic, is limited because the number of constraints, which can become active,
has to be less than the number of CVs.

The integrated approach, because of its simplicity, is very much in the spirit of self-optimizing
control. However, it may be impossible to find a single control structure, which is feasible for all
disturbances. If a feasible H matrix can be found, the corresponding loss can be used to judge if
it is indeed self-optimizing. If this is not the case, then one may divide the disturbance space, and
design two separate control structures. This can be done until the loss is acceptable. A similar
procedure can be used when the overall H is infeasible.

6. Self-optimizing CVs for larger operating windows

Most approaches reviewed so far are based on linearization around a nominally optimal op-
erating point, and result in locally optimal control structures. If disturbances cause the plant to
operate far away from the nominal point, the resulting loss of a local self-optimizing control
scheme may become very large. CVs that perform well only locally may not be desirable in this
case. Below we summarize some of the approaches that address this issue.

6.1. Polynomial zero loss-method

Using CVs that are linear combinations of measurements may result in an unacceptable loss
because of strong curvature at the optimum. To handle these cases, the null-space method has
been generalized by Jäschke and Skogestad (2012a) to systems described by polynomial equa-
tions. This method gives optimal CVs which are independent of a linearization point, and gives
zero loss under the assumption of no measurement noise and no active constraint changes. As
the method does not rely on a selected linearization point, this may be considered a “global”
approach.

The point of origin is the steady-state optimization problem (1). Assuming that the active set
does not change, the problem can be written as an equality constrained optimization problem

min J̄(ū, x, d)

s.t. g(ū, x, d) = 0,
(96)

together with the corresponding measurement relations (assuming zero noise)

y = m(ū, x, d). (97)

Furthermore, we assume that J̄(ū, x, d) and g(ū, x, d) are polynomials in the polynomial ring
R[x, d]. Loosely speaking this can be considered as polynomials in the variables x and d with
coefficients in R. Moreover, it is assumed that Problem (96) has an optimal solution in the
region, and the linear independence constraint qualifications (LICQ) and sufficient secondary
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conditions for optimality (Nocedal and Wright, 2006) are satisfied in the region. Then the first
order necessary optimality conditions are

∇J̄(ū, x, d) + ∇g(ū, x, d)Tλ = 0 (98)

g(ū, x, d) = 0, (99)

where the variables λ ∈ Rng denote the Lagrangian multipliers, and ∇ = ∂

∂[ u
x ] .

For obtaining the CVs, the Lagrange multipliers λ may be eliminated analytically by pre-
multiplying (98) by a matrix N(ū, x, d) ∈ R

nū×(nū−ng) which is in the null-space of ∇g(ū, x, d),
such that N(ū, x, d)T∇g(ū, x, d)T = 0. Then (98) becomes

rred = N(ū, x, d)T∇J̄(ū, x, d) = 0. (100)

rred is called the reduced gradient. Unlike in the null-space method, the matrix N(ū, x, d) is not
constant, it is a function of the operating point ū, x, d, and has to be calculated analytically.

Having eliminated λ, it remains to eliminate the unknown states x and disturbances d. It is
shown in Jäschke and Skogestad (2012a) that if

g(ū, x, d) = 0

y − m(ū, x, d) = 0
(101)

has a finite number of solutions when considered as equations in the variables x and d, and di , 0
and x j , 0, then it is possible to find functions Rk(ū, y) ∈ R, such that for k = 1..nu we have

Rk(ū, y) = 0⇔






[N(ū, x, d)T∇J(ū, x, d)]k = 0
g(ū, x, d) = 0

y − m(ū, x, d) = 0.
(102)

Here, the notation [·]k denotes the k-th element of a vector. In words, it is possible to eliminate the
disturbances d and internal states x from the reduced gradient without explicitly solving (101) for
x and d. The function Rk(ū, y) is called sparse resultant or toric resultant (Cox et al., 2005) of the
system (102). It can be calculated using computer algebra software. A freely available software
package for Maple (Waterloo Maple Inc., 2014) is described in Busé and Mourrain (2003).

The polynomial zero loss method gives a CV, which is zero if and only if the reduced gradient
is zero. Since all computations are analytical, the resulting CV expressions can become very
complex, rendering them useless in practice. However, in some practical cases they have a very
simple structure (Jäschke and Skogestad, 2012b; Jäschke and Skogestad, 2014).

Example 7. We consider again the cost function J = 1
2 (u−d)2, but this time we assume nonlinear

measurements:

y1 =
d2 + u

d

y2 = ud,

(103)

For this case, the gradient is Ju = u − d, and we can write the measurements as polynomials

y1d − d2 − u = 0 and y2 − ud = 0. Applying the above method to eliminate u and d we obtain the

CV

c = y2 + 2y1 − y2
1 − 1. (104)

The reader may verify that for a given d , 0, controlling c = 0 leads to u = d, which makes the

gradient zero, Ju = 0.
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6.2. Regression approach

Another approach for finding self-optimizing CVs was proposed by Ye et al. (2013a). This
approach can be considered a surrogate model approach, where first a model is used to gener-
ate “gradient measurements” for a wide range of disturbances, and then a linear or polynomial
function is fitted to this data. If a good fit is obtained, this fitted function will approximate the
gradient well over all the operating envelope, and may be used as a self-optimizing CV.

In Section 4 it was shown that under the assumption that the correct active set is known
and does not change, the local loss can be expressed as the weighted norm of the gradient (20),
where the weighting factor is the inverse square root of the reduced Hessian, J

−1/2
uu . By using a

controller with integral action, the CV will be controlled to its setpoint h(y) = cs, or equivalently
h(y)−cs = 0. The loss for a given operation point is then given by (Jäschke and Skogestad, 2011)

L =
1
2

∣
∣
∣

∣
∣
∣J−1/2

uu (Ju − (h(y) − cs))
∣
∣
∣

∣
∣
∣
2

2
. (105)

This expression is used in the regression method proposed by Ye et al. (2013a), which consists
of the following steps:

1. The process is simulated for N different values of inputs u, disturbances d, and noise
ny over the whole operating range. The sample points should be chosen such that they
are representative of the noise and disturbance distribution. At each of these i = 1, . . . ,N
sample points, the gradient J

(i)
u and the corresponding measurement values y(i) are recorded

together with the reduced Hessians J
(i)
uu.

2. The sampled gradient values are used to fit a regression model of form Ĵu = h(y), which
describes the relationship between the measurements and the gradient. In its simplest
form h(y) is linear, i.e. h(y) = Hy, and the regression procedure calculates the elements
in the H-matrix and the optimal setpoint cs. (Alternatively a nonlinear function such as
a polynomial function may be used to capture nonlinear effects.) The objective to be
minimized by the regression is based on (105):

φ =
1

2N

N∑

i=1

∣
∣
∣
∣

∣
∣
∣
∣J

(i)
uu

−1/2
(J(i)

u − (Hy(i) − cs))
∣
∣
∣
∣

∣
∣
∣
∣

2

2
. (106)

The regression gives the matrix H and the setpoints cs, such that the average loss is mini-
mized.

3. The resulting CV is then an approximation of the gradient, c = Hy = Ĵu ≈ Ju, which is to
be controlled at a constant setpoint cs.

In order to obtain the model of the gradient in terms of the measurements, Ye et al. (2013a)
use least squares regression and a neural network. However, any other regression that gives a
good fit may be used as well.

The evaluation of the gradient at the different samples in the operating space can be done an-
alytically, if the model is very simple. In more complicated cases, the gradient must be evaluated
using finite differences, or possibly automatic differentiation procedures. Large-scale systems
with many inputs and disturbances will require a lot of sampling points. To reduce the amount
of data that has to be generated and saved, one may replace Juu in (106) by the identity matrix I.
This approximation was found to give good results, while simplifying the procedure (Ye et al.,
2013a). However, the challenge with this approach is still that the number of sampling points
grows exponentially with number of disturbances and noisy measurements.
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In principle, all measurements y could be used in the regression model. However, as it is
typically desired not to include more measurements than necessary into the CV, the regression
based approach can also be combined with a branch and bound method (Kariwala et al., 2013)
for finding best subsets of measurements. The idea of fitting a measurement function to the
optimality conditions has also been applied for finding CVs for a dynamic optimization problem
(Ye et al., 2013b).

6.3. Controlled variable adaptation

In the regression based approach from Section 6.2, a simple regression function is gener-
ally preferable in order to avoid over-fitting. Therefore, a certain level of regression errors is
inevitable, which may make the operational range with an acceptable economic loss relatively
narrow even though the approach is “global”. To address this issue, a CV adaptation scheme
was proposed by Ye et al. (2014), where the CVs are adjusted depending on where the process is
operated.

In this scheme, a plant model is simulated off-line on sample points distributed over the entire
operating region. The resulting measurements, manipulated variables and gradient variables are
collected and stored in a database. Based on the collected data set, a non-optimality monitoring
model is built up using statistical process monitoring approaches, where the non-optimality status
is treated as a special process “fault”. When applying this scheme online, the new measurements
are first checked by the monitoring model to determine whether current operation is optimal.
If a non-optimal status is identified, the current measurements are then used to find a subset of
neighbourhood sampling points in the database to apply the so called “just-in-time” regression.
The resulting CVs together with their setpoints determined as coefficients of regression functions
are then applied to the control system for CV adaptation. Numerical case studies show this
scheme can significantly reduce economic loss in a wide operational range even with simple
linear CVs of a few measurements. However, the controllers may have to be re-tuned in order to
obtain a good performance over the whole operating region.

6.4. Global approximation of controlled variables

Recently, another approach for solving the self-optimizing control problem over the whole
operation range was proposed by Ye et al. (2015a). The idea is to separate the loss contribution
due to disturbances Ld, and the contribution due to noise Ln, such that the total loss is L =

Ld+Ln. As in the regression approach, the disturbance space is sampled, and for each disturbance
realization d(i), the values of y∗(i), J(i)

uu and Gy(i) are stored.
Then an optimization problem is formulated to minimize the average loss over all disturbance

realizations i = 1 . . . ,N,

min
H

1
N

N∑

i=1

(L(i)
d
+ L(i)

n )

s.t. HG
y
nom = Juu,nom,

(107)

where L
(i)
d
= 1

2 y∗(i)T HT J
(i)
cc Hy∗(i) denotes the loss due to disturbance and L

(i)
n =

1
2 trace(W2HT J

(i)
cc H)

the loss resulting from measurement noise. For independent noise W = E(nnT ) is a diagonal ma-
trix, and J

(i)
cc is defined as (Halvorsen et al., 2003)

J(i)
cc = (HGy,(i))−1J(i)

uu(HGy,(i))−1. (108)
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Further, G
y
nom and Juu,nom are the gain and the Reduced Hessian corresponding to a chosen nomi-

nal operating point.
However, even with the simplified loss evaluation derived above, to solve (107) the optimal

CV as linear combinations of measurements is still not easy. The optimization problem is non-
convex due to the dependence of Jcc on the combination matrix, H as shown in (108). In addition
to a direct optimization approach, Ye et al. proposed a short-cut approach by fixing Jcc at a
nominal point. It is interesting to note that the short-cut approach leads to an analytic solution of
H similar to the local approaches, although matrices involved in the global solution have to be
constructed based optimization data obtained from the whole operation space. For further details
of this derivation, readers are referred to the original paper by Ye et al. (2015a).

6.5. Conclusion

There have been a number of attempts to find CVs that give good operation over a wide oper-
ating range. The polynomial zero loss method is a generalization of the null-space method, that
is capable of handling higher order curvature in the system. However, it is only suitable for small
problems, as the complexity of the measurement combination tends to grow with variable num-
ber and degree of the polynomials. The complexity of the invariant is difficult to know a-priori.
Depending on the problem structure, it may be very simple, or very complicated. Especially
when high order terms are present in the resultant, the CV may become very sensitive to model
error and measurement noise.

The regression based approach makes it possible to design CVs that are obtained from model
data from the whole operating range, as long as the active constraints do not change. Moreover,
it allows for finding polynomial measurement combinations, that are simpler than the exact ones
found by the polynomial method described in Section 6.1. Since the data is obtained from of-
fline simulations, it is possible to run it with a large number of sample points, such that a good
approximation of the gradient can be found in terms of measurements.

The CV adaptation scheme adopts a just-in-time regression approach on-line in order to en-
large the operational range with acceptable economic loss particularly associated with relatively
simple CV functions. It is worth pointing out that in a traditional hierarchical process automation
scheme, an optimization layer only updates set-points of feedback control loops in the low layer
to achieve real-time optimization. In such a scheme, without adapting the CVs, such updating has
to be executed very regularly in order to achieve optimal operation. The CV adaptation scheme,
however, may require less frequent updates, because the CVs are designed such that they are
self-optimizing around the current operating point, and they are only updated when necessary.

Finally, for finding global self-optimizing CVs it simplifies the calculations significantly to
separate the loss contributions due to noise (Ln) and due to disturbances (Ld). Thus only the dis-
turbance space must be sampled, while the noise contribution can be calculated without sampling
all noise realizations. This derivation may facilitate further development in this field. Moreover,
the similarity of the results obtained by the ‘global’ approach and the local methods may be
worth further investigation.

7. Model-free approaches for self-optimizing control

The previously described methods all rely on an accurate model for finding self-optimizing
CVs. This may be considered a drawback, because the cost of modelling can be very high. To
address this issue, model-free approaches have been developed. These methods rely on plant
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measurement data instead of a-priori model information. Often historical data are readily avail-
able, and can be analyzed to study the behavior of the plant. Both approaches described below
are local methods that rely on the same assumptions as the developments in Section 4.

7.1. Historical data approach (using non-optimal data)

This approach was proposed by Jäschke and Skogestad (2013), and the idea is to use histor-
ical measurement data to find a quadratic model of the operating cost. In particular, historical
data of the plant measurements is used to fit parameters Jnom, Jy and Jyy to obtain the following
model of the operating cost

J = Jnom + Jy∆y +
1
2
∆yT Jyy∆y. (109)

Then, considering the previously derived quadratic approximation of the cost (13),

J ≈ Jnom +
[

Ju Jd

]
[

∆u

∆d

]

+
1
2

[

∆uT ∆dT
]
[

Juu Jud

Jdu Jdd

] [

∆u

∆d

]

, (110)

and assuming that the measurement equations (50) are invertible, such that
[

∆u

∆d

]

=
[

G̃y
]†
∆y, (111)

we can eliminate ∆u and ∆d from (110) and obtain

J ≈ Jnom +
[

Ju Jd

] [

G̃y
]†

︸               ︷︷               ︸

= Jy

∆y +
1
2
∆yT

[

G̃y
]†T

[

Juu Jud

Jdu Jdd

]
[

G̃y
]†

︸                             ︷︷                             ︸

=Jyy

∆y. (112)

Considering the term Jyy more closely it can be seen that

Jyy =
[

G̃y
]†T

[

Juu Jud

Jdu Jdd

]
[

G̃y
]†

(113)

=
[

G̃y
]†T
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Juu Jud

]

G̃y†
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Jdu Jdd

]
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 (114)

=
[

G̃y
]†T





H
[

Jdu Jdd

]

G̃y†



 , (115)

where the matrix H =
[

Juu Jud

] [

G̃y
]†

is the same as in the expression for the null-space
method (52). Therefore, if the matrix Jyy is known, the H-matrix from the null-space method can
be recovered by multiplication from the left with GyT ,

H = GyT Jyy. (116)

The above results can be used for finding CVs from historical data by the following steps:

1. Run plant experiments to obtain Gy.
2. Analyze historical plant data and the plant experiment data to determine Jnom, Jy, and Jyy.
3. Compute the optimal measurement combination as H = GyT Jyy.
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In general Step 1 will require plant test experiments where the inputs u are changed, and Gy

is approximated using finite differences. Step 2 requires to measure and record historical the
operation cost J together with all available measurements at different sample times, and to fit
the parameters Jnom, Jy, and Jyy to the measured cost. Also closed loop operation data should
be included in the data set for finding Jyy, because the relationship between the cost and the
measurements will not change when a feedback-loop is closed. However, in order to obtain a
good estimate of Jyy, it is necessary to also include open-loop test data (for example the data that
is used to find Gy) as this also includes directions in y that may not occur when using only closed-
loop data. In contrast to the method described in Section 7.2, it is not required that the data is
obtained from optimal operation. It is rather desirable that the data comes from many suboptimal
points that are not very far from the optimal point. Since only disturbances that are present in
the measurement data will be accounted for in the fitted model, it is beneficial to collect the data
over a long operation period.

The measurements y are not independent data, therefore a simple least squares regression
will give poor results. However, by using partial least squares (PLS) regression which can handle
dependent and collinear data, better results can be achieved and the cost function parameters in
(109) can be estimated quite well.

Remark 11. Note the similarity between the expressions H = GyT

(YYT )−1 from (64) and H =

GyT

Jyy from (116). From this, the matrix YYT may be interpreted as an approximation to the

inverse of Jyy.

7.2. Optimal data approach

In contrast to the more general approach described in the previous section, the optimal data
approach (Jäschke and Skogestad, 2011b) requires measurements from optimal data points. One
way to obtain these data points is to apply an extremum seeking method (Krstic and Wang, 2000).
All the measurements that has been collected from periods of optimal operation at sample times
t1, t2, . . . , tN is collected into a large data matrix

Y =
[

∆y(t1) ∆y(t2) . . . ∆y(tN)
]

. (117)

The exact cost function or its value need not be known, as long as it is known that the data is
optimal. We further assume a linear relationship from the inputs ∆u and disturbances ∆d to the
data as in (21), and that the measurement noise ny is negligible. Moreover, as in the null-space
method, it is assumed that ny ≥ nu + nd. We then have

Y =
[
∂yopt

∂d
∆d(t1) ∂yopt

∂d
∆d(t2) · · · ∂yopt

∂d
∆d(tN)

]

= F
[

∆d(t1) ∆d(t2) . . . ∆d(tN)
]

,
(118)

where ∆d(t1), . . . ,∆d(tN) are the disturbances, which where acting on the process when the sam-
ples where taken. Since ny ≥ nu + nd, and we assume optimal data with no measurement noise,
we may simply select H in the left null-space of F, which happens to be the null-space of Y.

Because in practice the data will contain some degree of noise, the left null-space of Y will
be empty. However, we may find measurement combinations that are only minimally changing
under optimal operation, by performing a singular value decomposition Y = UΣVT , and select-
ing H as the nu columns corresponding to the smallest singular values. If the optimal data is
consistent in the sense that disturbances have been rejected optimally, then the method can give
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quite good measurement combinations, which can be used for a feedback implementation. Of
course, this approach will only reject disturbances which also are present in the “learning data”
Y, other disturbances will not be handled optimally.

7.3. Conclusions

The data methods have the advantage that they do not rely on a model. The optimal data

approach is relative restrictive, since it requires that the process has been brought to optimality
before recording the data. This may be done by plant perturbations and a gradient descent method
(Experimental optimization (Box and Draper, 1998; Jäschke and Skogestad, 2011a)), or other
model-free optimization approaches such extremum seeking (Krstic and Wang, 2000).

The general historical data approach does not require optimal data. Its main advantage is that
it requires limited plant testing, and that readily available historical data can be used to obtain
more information about the optimal behavior of the plant. As with all data-based methods, the
quality of the results will be very dependent on the quality of the data.

8. Towards self-optimizing control for dynamic problems

Considering the progress of self-optimizing control approaches in the context of steady-state
optimization, it is a natural question to ask if the concepts can be extended towards dynamic
optimization problems such as e.g. batch processes or product grade transitions. This problem
is found to be much more complicated than finding self-optimizing variables for steady-state
optimization, because of several complicating issues:

• The system is constantly changing, and finding variables (or variable combinations) that
remain constant under optimal operation, even without disturbances affecting the system,
can be very difficult.

• The time scale separation between optimization of the economic cost and control is not
as clear as for steady-state optimization. That is, optimization and control cannot be con-
sidered separately as in steady-state optimization, where transients are assumed to have
negligible impact on the operating cost.

• The CVs need to be controllable, during the overall operation period. For instance, in
batch processes, the gain from inputs to outputs can change orders of magnitude over the
batch, making it difficult to control these variables.

• Active set changes in dynamic optimization are more difficult to handle than in steady-
state optimization. For instance, endpoint constraints require action ahead of time, and
also switching between different active path constraint sets must be done at the right point
in time.

• The active set is dependent on both, initial conditions and disturbances that may happen at
any time during the process. In contrast to the steady-state case, where only the disturbance
magnitude has an effect on the active set, also the timing of the disturbance will affect
active set changes.
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Nevertheless there has been work reported in the literature to find simple implementation strate-
gies for optimal operation in batch processes. However, as the main focus of this paper is on
steady-state optimal operation, we only give a brief overview of the main approaches. Generally,
the self-optimizing control methods for dynamic systems are very close to the concept of neces-
sary conditions of optimality (NCO) tracking (Srinivasan et al., 2003b,a; Srinivasan and Bonvin,
2004, 2007; Srinivasan et al., 2008), where the necessary optimality conditions of the process
are either measured directly or approximated by a “solution model”. Because handling active set
changes in dynamic optimization is more challenging than in steady-state optimization, previous
work on self-optimizing control for dynamic optimization problems has focused on cases where
the active set does not change. However, this is not as restrictive as may seem at first sight,
because the optimal trajectories are typically composed of continuous arcs (Srinivasan et al.,
2003b), during which the active set remains constant. Therefore, the self-optimizing variables
can be controlled within each arc, if a suitable switching strategy can be found.

One of the first to consider self-optimizing control for dynamic optimization problems was
Dahl-Olsen et al. (2008). An approach by Ye et al. (2013b) uses the regression method described
in Section 6.2 to find an approximation to the optimality conditions in terms of measurements:
First the model is simulated and optimized over the entire expected disturbance space, and the
data samples are saved. Then a measurement function that approximates the optimality condi-
tions is fitted to this data. This kind of approach was applied by Grema and Cao (2016) to the
case of waterflooding in oil reservoirs.

Another paper by Jäschke et al. (2011) uses the polynomial method described in Section
6.1. The method is applicable to simple input-affine dynamic systems that are described by
polynomials. First the optimality conditions are formulated analytically, and then all unknown
state and disturbance variables are eliminated using measurement relations.

A third method has been reported by Hu et al. (2012a), where candidate CVs were evaluated
by the solution of a bi-objective optimization problem. In this approach, also a controller is
designed, and the bi-objective optimization program attempts to simultaneously find the best
CVs and minimize the tracking error of the controller.

Self-optimizing control concepts for dynamic optimization problems are still an immature
research field, the time-varying nature of the optimal solution, and the difficulties in handling
active set changes remain the biggest challenges. Although strictly speaking it is not possible
to separate control and optimization, in practical cases this can often be done with a negligible
loss. For example, a batch temperature can be controlled in a time scale of minutes, while the
complete batch runs for hours. This has been successfully exploited also in the NCO tracking
framework (Srinivasan et al., 2008) , where a “solution model” is developed, and a simplified
near-optimal solution is implemented using simple controllers.

9. Applications of self-optimizing control

9.1. Overview of self-optimizing control applications reported in literature

Methods and concepts from self-optimizing control have been successfully applied to many
processes reported in the literature. In Table 1 we have compiled an overview of processes for
which a self-optimizing control structure has been used.
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Table 1: Overview over applications of self-optimizing control in the literature
Process References Comments

Tennessee Eastman process Larsson et al. (2001) Large-scale case study, heuristics
Heat exchanger networks Jäschke and Skogestad (2012c); Jäschke and Skogestad (2014);

Jäschke and Skogestad (2014); Girei et al. (2014)
Linear, polynomial method and regres-
sion methods

Heat integrated distillation Engelien et al. (2003); Engelien and Skogestad (2004) With and without a pre-fractionator
Lee & Neville Evaporator Cao (2005); Kariwala et al. (2008); Heldt (2010); Umar et al. (2012);

Hu et al. (2012b)
Frequently studied test case

Reactor/separator with recycle Larsson et al. (2001, 2003); Skogestad (2004a); Baldea et al. (2008);
Seki and Naka (2008)

Exothermic reactor Kariwala (2007); Jäschke and Skogestad (2011a); Ye et al. (2013a) Small case study
Gas lift allocation Alstad and Skogestad (2003)
Gasoline blending Skogestad (2004b)
HDA process de Araújo et al. (2007b,a); Cao and Kariwala (2008)
Distillation columns Hori and Skogestad (2008); Kariwala and Cao (2010); Yelchuru and

Skogestad (2013); Graciano et al. (2015)
Also regulatory layer selection

Petlyuk column (3 products) Alstad and Skogestad (2007); Khanam et al. (2014)
Kaibel column (4 products) Ghadrdan et al. (2012)
Refrigeration cycles Jensen and Skogestad (2007a,b); Verheyleweghen and Jäschke

(2016)
HVAC system Yin et al. (2015) Cooling system, lab experiments
Ammonia Process Araújo and Skogestad (2008); Manum and Skogestad (2012); Gra-

ciano et al. (2015)
Constraint handling Manum and Skoges-
tad (2012)

Waste water treatment de Araujo et al. (2013); Francisco et al. (2015)
Catalytic Naphta reformer Lid and Skogestad (2008)
Waste incineration plant Jäschke et al. (2009)
Off-gas system de Araujo and Shang (2009)
CO2-capturing process Panahi and Skogestad (2011); Zaman et al. (2012); Schach et al.

(2011, 2013)
Advanced flash stripper Walters et al. (2016)
LNG process Michelsen et al. (2010); Husnil et al. (2014)
Stryrene Monomer plant Vasudevan et al. (2009)
Natural Gas to liquids process Panahi and Skogestad (2012)
IRCC HMR unit Michelsen et al. (2012)
IRCC acid gas removal unit Jones et al. (2014)
IRCC air separation unit Roh and Lee (2014)
Diesel hydrosulfurization plant Sayalero et al. (2012)
Cumene process Gera et al. (2011, 2013)
Sewer system Mauricio-Iglesias et al. (2015) Combined with Stochastic programming
Batch-reactor-optimization Ye et al. (2015b); de Oliveira et al. (2016) Batch-to-batch optimization, regression

method
Solid oxide fuel cell Chatrattanawet et al. (2015)
Oxy-fuel circulating fluidized bed com-
bustion

Niva et al. (2015)

Water flooding of oil reservoirs Grema and Cao (2016) Regression method
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9.2. Related applications

The idea of keeping a certain variable constant in order to achieve a superior goal is also
found elsewhere. For example, in indirect control (Skogestad and Postlethwaite, 2005) the ob-
jective is to operate the process such that some unmeasured primary variables y are at given
setpoints. Here, only the secondary measured variable is controlled, while the primary variable
is not controlled directly. In a self-optimizing control framework, one may consider the sec-
ondary variables in indirect control as self-optimizing CVs. These should be kept at their optimal
setpoints such that the primary variables assume their optimal values. Using self-optimizing con-
trol concepts, Ghadrdan et al. (2013) designed a static estimator that minimizes the closed-loop
prediction error for such a case.

The self-optimizing control ideas have also been applied for designing regulatory control
structures (Yelchuru and Skogestad, 2013). However, in contrast to the approaches described
above, the objective for the regulatory layer is not to minimize the economic loss, but rather to
minimize state drift under the effect of uncertainties. That is, the control structure is designed in
such a way that the process states are affected as little as possible when disturbances enter the
plant, and the control layer above is affected minimally.

10. Discussion on the relationship of self-optimizing control to other approaches

To achieve self-optimizing control, one needs a methodology for designing the control struc-

ture, i.e. selecting which variables to control with the available degrees of freedom. Once a
control structure has been decided on (for example using the approaches and tools presented
previously in this paper), we may control the CVs to their setpoints by any suitable controller.
Thus, the problem of designing the controller and optimizing the plant can be considered sepa-
rately. Indeed, the idea of self-optimizing control may be considered as an approach to separate
the time-scales of the economic optimization and the controller design, such that the tasks of
optimization and controller design can be decoupled as much as possible. This paradigm dis-
tinguishes self-optimizing control from other methods for achieving optimal operation, such as
neighboring extremal control (Jazwinski, 1964; Bryson and Ho, 1975), extremum seeking con-
trol (Ariyur and Krstic, 2003), or economic model predictive control (Diehl et al., 2011; Ellis
et al., 2014), where control and optimization are done simultaneously.

Neighboring extremal control (see e.g. Jazwinski (1964); Bryson and Ho (1975)) was intro-
duced to obtain an optimal feedback law to compute the input trajectories for perturbed optimal
control problems. Neighboring extremal control shares with the local self-optimizing control
methods from Section 4 that it is based on a linearization of the nonlinear model and a quadratic
approximation of the cost function. However, in neighboring extremal control this information
is used to determine a state feedback law (or output feedback law (Gros et al., 2009)), while
the local methods for self-optimizing control in Section 4 find an optimal approximation of the
optimality conditions in terms of the measurements y. The controller design is then considered
at a later stage.

We note that the term “neighboring extremal control” has also been used to describe the way
of calculating an approximation of the gradient (François et al., 2012). However, going back to
the original references on neighboring extremal control (Breakwell et al., 1963; Jazwinski, 1964;
Bryson and Ho, 1975), it seems that the goal is to compute a feedback law, which happens to be
based on a linearization of the optimality conditions.

Extremum seeking control (Krstic and Wang, 2000) was also introduced as a controller

design methodology. The goal is to design a controller which generates an input that maximizes
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the value of a given measurement. A small sinusoidal perturbation is continuously added to the
input signal in order to obtain gradient information which is used by the controller to generate an
input that drives the measurement to its maximum value. The large body of literature that studies
the stability of extremum seeking control schemes (Krstic and Wang, 2000; Ariyur and Krstic,
2003; Guay and Zhang, 2003; Guay and Dochain, 2017) reflects the fact that extremum seeking
control is a controller design methodology, and not a control structure design methodology.

Moreover, to design an extremum seeking controller the cost must be measured online, while
this is not necessary for most of the self-optimizing control approaches. Note also that the mea-
surement to be maximized would be a very poor choice of a self-optimizing variable, because it
has zero gain at the optimum. Moreover, if the setpoint is chosen below the optimum, there are
multiple solutions, while if the setpoint is chosen too high, it is infeasible.

NCO-tracking (Necessary conditions of optimality tracking) (Srinivasan and Bonvin,
2004, 2007; Srinivasan et al., 2008) is similar in spirit to self-optimizing control. The idea is
simply to select the optimality conditions as controlled variables, and to make sure they are
tracked under plant operation. Here, too this approach was developed initially for dynamic op-
timization problems, where the controller design and the optimality cannot be strictly separated,
but was later also applied for optimizing steady state processes (François et al., 2005). While
the optimality conditions are the ideal self-optimizing controlled variables, they are typically not
measured, such that it is necessary to express them in terms of measurements. This is indeed
the approach used in the method for systems described by polynomials (Jäschke and Skogestad,
2012b). However, it is not always possible to express the optimality conditions exactly in terms
of measurements, and in this case the loss L used in Section 4 is a natural criterion for assessing
the quality of the approximation. The local self-optimizing control methods (Halvorsen et al.,
2003; Alstad and Skogestad, 2007; Alstad et al., 2009) were developed directly based on the loss
L. The connection to the optimality conditions was established later by Jäschke et al. (2011).

Economic MPC (Diehl et al., 2011; Ellis et al., 2014) has been proposed to integrate the
layers of a control structure into a single monolithic controller. The economic MPC controller is
not designed to track setpoints of CVs, but rather to manipulate the inputs in such a way that the
economic cost is optimized directly. This has the advantage that also transients can be optimized,
which is important for e.g. batch systems or expensive product grade transitions. However, unlike
controlling self-optimizing CVs, which can often be done by simple PID controllers, economic
MPC comes with much more complexity. It requires accurate models that reflect the true plant
behavior over several time-scales. For large plants, these models are expensive to develop and
maintain. Moreover, the optimal solution may be difficult for the operators to interpret, and if
parts of the plant are operated manually, this may require to change the whole MPC controller,
or take it offline. On the other hand, the nature of a self-optimizing control structure, lends itself
easily to a decentralized control structure, such that parts of the plant can be operated manually,
without requiring to re-engineer the whole control system.

11. Current status and future work

11.1. Summary of the status of self-optimizing control

In recent years, the problem of finding self-optimizing controlled variables has been ap-
proached rigorously, and mathematical formulations for local methods have been developed.
These methods are based on an approximation of the nonlinear problem around a nominal oper-
ating point, such that they are essentially local results. Nevertheless, they are useful for finding
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good candidate control structures, that then can be evaluated on a larger operation region. Based
on the local methods, tailor-made branch and bound methods were proposed to efficiently search
all possible combinations of variables for the best subset of measurements (Kariwala and Cao,
2009).

The local methods were extended towards model-free, data-based approaches, where the op-
timal self-optimizing CVs are found by analyzing measurement data. Moreover, there have been
significant efforts to obtain variables that are near-optimal in a larger operating region. These
include possibilities for handling active set changes, but also smooth nonlinearities. Connections
to related methods such as NCO tracking were established (Jäschke and Skogestad, 2011a), and
were used to develop approaches for finding CVs that are not based on linearization around a
nominal operating point. In particular the polynomial approach (Jäschke and Skogestad, 2012a)
and data driven approaches (Ye et al., 2013a) may be used for finding CVs that can be used within
a larger operational envelope. A different approach to cover larger operation regions is described
by Manum and Skogestad (2012), where the authors propose switching the control structure for
each active set region.

Self-optimizing control ideas were also applied to dynamic optimization problems. However,
they apply to very specific cases, and more general results are currently not available.

11.2. Future work – open issues

Despite the significant progress in the field of designing self-optimizing control structures,
there remain challenges and open questions that need to be addressed in future research:

Industrial applications. Considering that self-optimizing control has been applied in many
simulation studies, it seems surprising that there has been little application in experiments and
industry. The only experimental work that we are aware of was was performed by Yin et al.
(2015). While many industrial processes are controlled by self-optimizing CVs, it seems that the
predominant way to design a control structure is still based on engineering insight. A successful
industrial application and verification of the approaches presented in this paper could pave the
way for more wide-spread industrial acceptance, and operational savings. In addition this may
lead to interesting practical and theoretical challenges, as well as new insights.

Integration of self-optimizing control ideas into the process design phase. Many deci-
sions that affect the operation of the plant are made during the plant design phase. In order to
reach the maximum potential it is necessary to study how the design will affect later performance
during operation. Although there has been work on integrating process control and design, see
e.g. Sharifzadeh (2013), there has been no work on systematically integrating self-optimizing
control concepts into the plant design phase. Results in this area could have a large impact,
because modern plant design is generally based on process models, and including operational
aspects into the plant design can lead to significant savings later during operation of the plant.

Structural constraints on the H-matrix. Beside not using all available measurements in a
CV, see Section 4.7, it is often desirable to design the control structure such that measurements
of a certain part of the plant are controlled by inputs that belong to the same part. This imposes
a structure on the measurement selection matrix. Although some special structures (the ones
that are preserved upon premultiplying H by a non-singular invertible matrix) can be handled
with the present approaches, finding control structures with general structural constraints still is
a difficult problem that requires finding a H matrix of the desired structure that minimizes the
Frobenius or 2-norm of M = J

1/2
uu (HGy)−1HY. This results in non-convex optimization problems

that are difficult to solve.

43



Robust self-optimizing control. Most current methods for selecting self-optimizing CVs
are based on availability of a model that reflects the true plant behavior. In particular, all un-
certainty of the plant is assumed to be modelled as parametric uncertainty. In reality there will
be uncertainty in the model and its structure, as well as unmodelled parametric disturbances. If
the models are poor, this may lead to an unacceptable economic loss. Currently there are no
systematic methods for addressing uncertainty in the model structure within the self-optimizing
control framework. Future research may address this for example by probing the system to han-
dle unmodelled disturbances. Similar to the ideas in Jäschke and Skogestad (2011a), one may
combine self-optimizing control ideas with extremum seeking methods (Krstic and Wang, 2000)
or dual control approaches (Heirung et al., 2015).

Self-optimizing CVs from operating data. Although there has been preliminary work on
finding self-optimizing controlled variables based on plant data (Section 7) there are still open
questions. One issue is how to systematically handle noise in the data. Other topics of interest
are methods for analyzing the data, and for extracting information that is relevant for finding
self-optimizing CVs. Finally, it would be desirable to develop methods for combining model
information with measurement data in order to obtain improved performance. Potential research
directions may include combining model based methods with data, using e.g. modifier adaptation
techniques (Marchetti et al., 2010).

Active Set changes. An issue that often makes it difficult to apply self-optimizing control
ideas to real systems is that the optimal solution may become very complex with many active set
regions and complicated measurement combinations involving many variables. Possible future
research may therefore consider ways for further simplifying the results that have been outlined
in this paper. For example, if we allow only p number of partitions of the operating range (i.e. p

control structures), what are the p optimal measurement combinations?
Short-cut methods. At present, finding a self-optimizing control structure requires mod-

elling the plant and optimizing the model to find the nominal operating point. This can be very
cumbersome, and it would be useful to be able to suggest “standard” solutions that can be shown
to be near-optimal in most practically relevant cases. This could take the shape of a “control
structure library” which contains building blocks for a self-optimizing control structure. These
building blocks could then be put together to yield an overall self-optimizing control structure.

Self-optimizing variables for dynamic optimization problems. For dynamic optimization
problems, the time-dependency of the optimal operation strategy may result in extremely many
possible scenarios and active constraint regions, and finding ways to deal with this complexity is
an open question. Moreover, within a region, finding variables or variable combinations that give
near-optimal operation when kept at their constant setpoints is not straightforward for dynamic
optimization problems. Also, handling measurement noise has not been considered systemati-
cally for such cases.

Including controllability considerations in the CV selection. Typically, only the steady
state economics are taken into account in the present methods for CV selection. However, in
practice the dynamic behavior of the CVs and controllability are important selection criteria, too.
A potential research direction is to include these dynamic controllability considerations into the
self-optimizing framework in a systematic manner.

Self-optimizing control with continuous and integer variables. In practice there often
occur situations, where units are turned on or shut down. This gives rise to optimization problems
with both integer and continuous variables. There are currently no methods to address such kind
of problem systematically.

General nonlinear combinations of measurements as CVs Although there has been work
44



on finding polynomial measurement combinations as CVs for polynomial systems, there are no
systematic ways for finding CVs that consist of more general nonlinear measurement combina-
tions. Moreover, it would be desirable to have tools to help the engineer decide if a nonlinear
measurement combination is required or not.

Applications in other disciplines. Self-optimizing control has been developed in the pro-
cess control community. However, the idea of keeping certain key variables constant at a given
setpoint when disturbances occur, is applied in other fields as well (Skogestad, 2004b). For ex-
ample in portfolio management, where a constant percentage of the value is invested in stocks,
and the remaining part is invested in government bonds. Another example is the central bank,
which aims to maximize welfare by adjusting the interest rate such that the inflation rate remains
at a constant value. It would be interesting to apply the self-optimizing control approaches de-
scribed in this paper to rigorous studies in other disciplines, such as economy or social sciences.
This could open up new research fields, and at the same time provide support for decision and
policy makers.
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Appendix A. Approximated loss expression & Minimum Singular Value Rule (Maximum

gain rule)

The minimum singular value rule was described by Skogestad and Postlethwaite (1996) and
may be used as an approximation to evaluating the local loss described in Section 4. It gives a
good intuition about what variables are good CV candidates. The loss L associated with a given
control strategy is caused by two factors: The first factor is referred to as the setpoint error,

ν(d) = cs − c∗(d), (A.1)

where cs is the actual setpoint, and c∗(d) denotes the optimal setpoint. The setpoint error can
be directly related to Requirement 2) listed in Section 1.4, because a CV whose optimal value is
very sensitive to disturbances will have a large setpoint error.

The second factor causing suboptimal operation is referred to as implementation error e. It
accounts for the fact that it is not possible to keep the CVs at their optimal values because of
measurement noise ny or the use of a controller without integral action,

e = c − cs. (A.2)

Here c denotes the actual value of the CV, and cs denotes the setpoint. Note that if controllers
with integral action are used, we have that

e = ny. (A.3)

The implementation error e is related to Requirements 1) and 3) in Section 1.4. Requirement 1)
states that the inputs should have a sufficiently strong effect, so that c can be kept close to its
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optimal value. Requirement 3) states that the CV should be easy to keep at its setpoint. This in
turn requires a small implementation error.

The total error ec which causes the loss L during operation, is thus

ec = c − c∗(d)

= ν(d) + e.
(A.4)

A self-optimizing structure will aim to reduce the control error ec such that the loss is acceptable.
Now, for every disturbance direction, we may calculate the setpoint error ν(d j) by

ν(d j) = HF∆d j (A.5)

where ∆d j is a vector with the maximum value of the disturbance component d j on the j-th
position, and zeros otherwise. Using (23) and (A.4), and assuming integral action (i.e. e = ny)
we have that the total error for a given control structure given by the matrix H is

ec = ∆c − ∆c∗(d)

= HGy∆u + HG
y

d
∆d + Hny

− HGy∆u∗ − HG
y

d
∆d − Hny

= HGy(∆u − ∆u∗).

(A.6)

Assuming that HGy is invertible, we can solve for (∆u − ∆u∗), and inserting into (18) yields the
following expression for the loss variable:

z = J1/2
uu (HGy)−1ec. (A.7)

To obtain an approximation of the loss, it is assumed that a scaling matrix S c exists, such that

ec = S ce′c, (A.8)

where
∣
∣
∣

∣
∣
∣e′c

∣
∣
∣

∣
∣
∣
2

2
= 1. Note that the diagonal elements of S c satisfy

S c,ii = diag





nd∑

j=1

|ν(d j)| + |ny

i
|



. (A.9)

Using the scaling matrix S c, the loss variable z from (A.7) can be written as

z = J1/2
uu (HGy)−1S ce′c. (A.10)

Defining the “scaled gain” G′ as
G′ = S −1

c HGyJ−1/2
uu , (A.11)

we have
z = G′−1

e′c. (A.12)

Now the worst-case loss corresponding to a given set of CVs represented by H can be estimated
by

Lwc = max
||ec ||≤1

1
2
||z||22 =

1
2
σ̄2(G′−1) =

1
2

1
σ2(G′)

. (A.13)

Based on (A.13) the maximum gain rule states that good CVs should be selected such as to
maximize the scaled gain matrix G′, or more precisely to maximize the minimum singular value
of the scaled gain.
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Remark 12. The minimum singular value rule combines nicely the requirements for a good CV.

Selecting CVs corresponding to a large scaled gain will be easy to control (large gain from the

inputs to CV), and will have a low optimal variation (since we are scaling by the small optimal

variation).

Remark 13. In the original work (Skogestad and Postlethwaite, 1996; Halvorsen et al., 2003),

the scaled gain is defined as Ĝ′ = S −1
c HGy, and it is assumed that Juu can be expressed as

αU, where α is scalar and U is an orthogonal matrix. Then the worst-case loss can be written as

Lwc =
α
2

1
σ2(Ĝ′)

. However, the assumption that Juu can be written as a constant times an orthogonal

matrix is not valid in general, and may lead to an additional loss (Hori and Skogestad, 2008).

Example 8 (Minimum Singular Value Rule). We continue considering the process from Ex-

ample 1. Here we have ν(d) = FWdd given for a disturbance with maximum value (d = 1)

as

ν(d = 1) =
[

0 20 5 1
]T
, (A.14)

and the scaling matrix S c = diag(FWd) +Wn = diag
([

1 21 6 2
])

Thus, the scaled gains

for the four measurements become

G′1 = 0.1/(1 ·
√

2) = 0.071 (A.15)

G′2 = 20/(21 ·
√

2) = 0.673 (A.16)

G′3 = 10/(6 ·
√

2) = 1.179 (A.17)

G′4 = 1/(2 ·
√

2) = 0.354. (A.18)

The scaled gain is largest for y3, so according to the minimum singular value rule, this is the best

single measurement that should be selected as a CV. This is in correspondence with the results

from Example 1, where y3 was shown to give the smallest loss.

A key limitation for the maximum gain rule is the assumption of the existence of S c, with
the property that

∣
∣
∣

∣
∣
∣e′c

∣
∣
∣

∣
∣
∣ = 1. The basis for this assumption is that the errors for each element in

ec = v(d)+ ny are independent of each other. However, this assumption is generally not satisfied,
because the setpoint errors for different CVs are not independent. Therefore the maximum gain
rule may lead to misleading results (Hori and Skogestad, 2008).
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Sébastien Gros, Bala Srinivasan, and Dominique Bonvin. Optimizing control based on output feedback. Computers &

Chemical Engineering, 33(1):191 – 198, 2009.
Martin Grötschel, Sven O. Krumke, and Jörg Rambau, editors. Online Optimization of Large Scale Systems. Springer,

September 2001.
Martin Guay and Denis Dochain. A proportional-integral extremum-seeking controller design technique. Auto-

matica, 77:61 – 67, 2017. ISSN 0005-1098. doi: http://dx.doi.org/10.1016/j.automatica.2016.11.018. URL
//www.sciencedirect.com/science/article/pii/S0005109816304538.

Martin Guay and Tao Zhang. Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncer-
tainties. Automatica, 39(7):1283 – 1293, 2003.

Inc Gurobi Optimization. Gurobi optimizer reference manual, 2015. URL http://www.gurobi.com.
Ivar J. Halvorsen, Sigurd Skogestad, John C. Morud, and Vidar Alstad. Optimal selection of controlled variables. Indus-

trial & Engineering Chemistry Research, 42(14):3273–3284, 2003.
Jonathan A. Heath, Ioannis K. Kookos, and John D. Perkins. Process control structure selection based on eco-

nomics. AIChE Journal, 46(10):1998–2016, 2000. ISSN 1547-5905. doi: 10.1002/aic.690461012. URL
http://dx.doi.org/10.1002/aic.690461012.

Tor Aksel N. Heirung, Bjarne Foss, and B. Erik Ydstie. Mpc-based dual control with online experiment design. Journal

of Process Control, 32:64 – 76, 2015. ISSN 0959-1524. doi: http://dx.doi.org/10.1016/j.jprocont.2015.04.012.
Steffen Heldt. Dealing with structural constraints in self-optimizing control engineering. Journal of Process Control, 20

(9):1049 – 1058, 2010.
Eduardo Shigueo Hori and Sigurd Skogestad. Selection of controlled variables: Maximum gain rule and combination

of measurements. Industrial & Engineering Chemistry Research, 47(23):9465–9471, 2008. doi: 10.1021/ie0711978.
URL http://dx.doi.org/10.1021/ie0711978.

Wuhua Hu, Jianfeng Mao, Gaoxi Xiao, and Vinay Kariwala. Selection of self-optimizing controlled variables for dynamic
processes. In Proc IFAC Symposium on Advanced Control of Chemical Processes (AdChem 2012), Singapore, July

10-13, pages 774–779, 2012a.
Wuhua Hu, Lia Maisarah Umar, Gaoxi Xiao, and Vinay Kariwala. Local self-optimizing control of constrained processes.

Journal of Process Control, 22(2):488 – 493, 2012b.
Yuli Amalia Husnil, GyeongCheol Yeo, and Moonyong Lee. Plant-wide control for the economic operation of

modified single mixed refrigerant process for an offshore natural gas liquefaction plant. Chemical Engineering

Research and Design, 92(4):679–691, April 2014. ISSN 02638762. doi: 10.1016/j.cherd.2013.11.009. URL
http://www.sciencedirect.com/science/article/pii/S026387621300498X.

International Business Machines. Ibm ilog cplex optimization studio documentation, 2014. URL
http://www.ibm.com.
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Johannes Jäschke, Helge Smedsrud, Sigurd Skogestad, and Henrik Manum. Optimal operation of a waste incineration
plant for district heating. In Proc. American Control Conference, ACC, St. Louis, pages 665–670, June 2009.
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