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Abstract

Highly constrained trajectory optimization for Space Manoeuvre Vehicles (S-

MV) is a challenging problem. In practice, this problem becomes more difficult

when multiple mission requirements are taken into account. Because of the

nonlinearity in the dynamic model and even the objectives, it is usually hard

for designers to generate a compromised trajectory without violating strict path

and box constraints. In this paper, a new multi-objective SMV optimal control

model is formulated and parameterized using combined shooting-pseudospectral

technique. A modified game theory approach, coupled with an adaptive differ-

ential evolution algorithm, is designed in order to generate the pareto front of

the multi-objective trajectory optimization problem. In addition, to improve

the quality of obtained solutions, a control logic is embedded in the frame-

work of the proposed approach. Several existing multi-objective evolutionary

algorithms are studied and compared with the proposed method. Simulation

results indicate that without driving the solution out of the feasible region,

the proposed method can perform better in terms of convergence ability and

convergence speed than its counterparts. Moreover, the quality of the pareto

set generated using the proposed method is higher than other multi-objective

evolutionary algorithms, which means the newly proposed algorithm is more

attractive for solving multi-criteria SMV trajectory planning problem.
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1. Introduction

In the future, it is very likely that Space Manoeuvre Vehicles (SMV) are

going to play an increasingly important role in space exploration. Therefore, a

well-planned trajectory, particularly in skip entry phase, is key to stable flight

and improved guidance control of the vehicle [1–6]. Unlike studies investigated in5

most of literatures [1, 7], where the re-entry problem was addressed, the mission

scenario studied in this paper focuses on the atmospheric skip hopping, targeting

the entry into the atmosphere down to a predetermined position (predetermined

altitude was set at the start of this project to specifically address this type of

mission) and the required controls involved in returning back to low Earth orbit.10

Commonly, these types of trajectory planning problem can be described as an

optimal control problem and numerical methods are usually applied to calculate

the near-optimal solution [8].

Numerical methods for solving trajectory optimization problems are divid-

ed into two major classes: indirect methods and direct methods [8–13]. However,15

it is difficult to solve the trajectory design problem using indirect methods, since

the maximum principle is required to be derived. Therefore, direct optimiza-

tion method has been widely used for trajectory optimization. Among direct

methods, one traditional technique which has been used in practical problems

is direct multiple shooting method [1, 4, 14]. The main process of the direct20

multiple shooting method is to parameterize only the control variables using

interpolation at discretized time nodes. In recent years, collocation methods

for discretizing optimal control problems have increased in popularity. Unlike

shooting methods, collocation techniques parameterize both the state and con-

trol variables. There are two kinds of collocation methods, local collocation25

method (e.g. the direct collocation) and global collocation method (e.g. the

pseudospectral method [15]). Two well-known pseudospectral methods for solv-

ing trajectory optimization problems are the Legendre pseudospectral method

[11, 12, 16, 17] and the Chebyshev pseudospectral method [18, 19]. Compared

with multiple shooting method, collocation methods tend to result in large scale30

optimization parameters and it has not been used in real application to date. A
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main reason is that current onboard computational devices may fail to satisfy

the requirement of the large computational time needed for these algorithms.

Therefore, a hybrid multiple shooting scheme is proposed in this paper. This

method can keep the advantages of using collocation scheme but not result a35

large scale nonlinear programming problem so that the computational burden

of the optimizer can be reduced.

In most of existing studies, the trajectory planning problem usually aim-

s at one single objective, for example, minimizing the aerodynamic heating,

maximizing the final velocity, etc. However, most of the real-world design prob-40

lems encountered by aerospace engineers involve simultaneous optimization of

several competitive objective functions [20–22]. For the mission considered in

this paper, the expectations for enhancing performance and saving cost are of

significant importance. Therefore, it is desired to have a multi-objective SMV

model with multiple criteria so as to capture more of the real-world require-45

ments. There are many multi-objective methods, which are suitable for these

kind of problems. Since the solution of multi-objective programming problem

is not unique (known as nondominated solution), multi-objective evolutionary

algorithms are commonly implemented to generate all the potential solutions

(also known as pareto set)[23–28]. Deb et al.[23] developed the Nondominated50

Sorting Genetic Algorithm (NSGA2) using a nondominated sorting procedure

and the crowding distance metric, and in [29], NSGA2 method was applied to

generate the pareto front of a multi-objective re-entry trajectory optimization

problem. Li et al.[21] applied a Multi-objective Evolutionary Algorithm Based

on Decomposition (MOEA/D) method to solve general multi-objective problem-55

s. However, from the previous works, it was analyzed that the computational

burden of iterative optimization is heavy and the quality of obtained solution

still needs to be improved. Hence, in this paper, an adaptive differential evo-

lution based on modified game theory algorithm is designed. By applying the

control logic, the quality of the generated solution can be improved. More-60

over, in order to enhance the convergence ability, a modified game theory is

introduced and coupled in the algorithm framework.

It is worth noting that one practical use of the obtained theoretic results is

that it can be applied to design the online guidance law or used as the reference

command for the online tracking algorithm [5, 7]. The main advantage for65

tracking these reference trajectories is that all the reference results can satisfy
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the constraints and multiple mission-dependent objectives can be optimized.

Since the pareto front information can be calculated by applying the proposed

Multi-objective trajectory optimization method, the decision makers can have

more flexibility to do the decision-making based on the presented relationships70

between different conflicting objective functions.

Hereafter, the paper is organised as follows. In Section 2, a new 3-DOF

continuous-time optimal control model including different types of constraints

and objective functions is established and parameterized using the hybrid mul-

tiple shooting method. Following that, Section 3 presents the framework of75

proposed adaptive differential evolution and modified game theory algorithm.

Compromised solutions generated by employing the proposed method and dif-

ferent evolutionary multi-objective approaches are given in Section 4. The paper

ends with Section 5, the conclusions.

2. Problem formulation80

The skip entry can be divided into five phases: initial roll, down control, up

control, Kepler and final entry. Considering the mission of the SMV is to overfly

the ground target with specific altitude, the most challenging down control and

up control will be considered in this paper. The overall mission is illustrated in

Fig.1.

Figure 1: General mission profile

85
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2.1. Dynamic model

Taking the rotation of the Earth into account, the 3-DOF equations of

motion of the space manoeuvre vehicle are constructed by the following set of

Ordinary Differential Equations (ODEs):

�̇� = 𝑉 sin 𝛾

𝜃 = 𝑉 cos 𝛾 sin𝜓
𝑟 cos𝜑

�̇� = 𝑉 cos 𝛾 cos𝜓
𝑟

�̇� = 𝑇 cos𝛼−𝐷
𝑚 − 𝑔 sin 𝛾 + Ω2𝑟 cos𝜑(sin 𝛾 cos𝜑− cos 𝛾 sin𝜑 cos𝜓)

�̇� = 𝐿 cos𝜎+𝑇 sin𝛼
𝑚𝑉 + (𝑉

2−𝑔𝑟
𝑟𝑉 ) cos 𝛾 + 2Ω cos𝜑 sin𝜓

+Ω2𝑟 cos𝜑(cos 𝛾 cos𝜑+ sin 𝛾 cos𝜓 sin𝜑)𝑉 −1

�̇� = 𝐿 sin𝜎
𝑚𝑉 cos 𝛾 + 𝑉

𝑟 cos 𝛾 sin𝜓 tan𝜑+ Ω2𝑟 sin𝜓 cos𝜑 sin𝜑
𝑉 cos 𝛾

−2Ω(tan 𝛾 cos𝜓 cos𝜑− sin𝜑)

�̇� = − 𝑇
𝐼𝑠𝑝𝑔

(1)

where 𝑟 is the distance from the center of the earth, 𝜃 and 𝜑 are the longitude90

and latitude, respectively. 𝑉 is the relative velocity, 𝛾 is the flight path angle.

𝜓 is the relative velocity heading angle measured clockwise from the north, 𝑚

is the mass of vehicle. The control variables are angle of attack 𝛼, bank angle 𝜎

and thrust 𝑇 , respectively. The earth’s rotation rate is Ω = 7.2921151𝑒−5rad/s.

The atmosphere and aerodynamic model can be summarised as:95

𝑔 = 𝜇
𝑟2 𝜌 = 𝜌0 exp 𝑟−𝑟𝑒0

ℎ𝑠

𝐿 = 1
2𝜌𝑉

2𝐶𝐿𝑆 𝐷 = 1
2𝜌𝑉

2𝐶𝐷𝑆

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷1𝛼+ 𝐶𝐷2𝛼
2 𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿1𝛼

(2)

where 𝑆 = 249.91𝑚2 is reference area, 𝜌 is the density of the atmosphere

and 𝜌0 = 1.2250𝑘𝑔/𝑚3 is the density of the atmosphere at sea-level. 𝑟𝑒0 =

6378.135𝑘𝑚 is earth radius, 𝐿 and 𝐷 are the lift and drag whereas 𝐶𝐿 and 𝐶𝐷

are the corresponding lift and drag coefficients. 𝑔 is the gravitational accel-

eration. Although 𝑔 can be treated as a constant, to make the problem more100

realistic, it is assumed that the gravitational acceleration is varying with respect

to the altitude.

A detailed description in terms of the entry reference frames and aerody-

namic forces can be found in Fig.2.

In the model given by Eq.(1), three autopilot equations are introduced by105

using the technique of first order lag [30] to describe the rate constraint of the
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Figure 2: Entry vehicle and aerodynamic forces

controls,

�̇� = 𝐾𝛼(𝛼𝑐 − 𝛼)

�̇� = 𝐾𝜎(𝜎𝑐 − 𝜎)

�̇� = 𝐾𝑇 (𝑇𝑐 − 𝑇 )

(3)

where 𝛼𝑐, 𝜎𝑐 and 𝑇𝑐 are the demanded angle of attack, bank angle and thrust,

respectively. Correspondingly, three new control constraints should be intro-

duced.110

𝛼𝑐(𝑚𝑖𝑛) ≤ 𝛼𝑐 ≤ 𝛼𝑐(𝑚𝑎𝑥)

𝜎𝑐(𝑚𝑖𝑛) ≤ 𝜎𝑐 ≤ 𝜎𝑐(𝑚𝑎𝑥)

𝑇𝑐(𝑚𝑖𝑛) ≤ 𝑇𝑐 ≤ 𝑇𝑐(𝑚𝑎𝑥)

(4)

The box constraints and aerodynamic parameters are applied using the same

definitions in [20], whereas the path constraints are aerodynamic heating, dy-

namic pressure and load factor.

�̇�𝑑 = 𝐾𝑄𝜌
0.5𝑉 3.07(𝑐0 + 𝑐1𝛼+ 𝑐2𝛼

2 + 𝑐3𝛼
3) < �̇�𝑑𝑚𝑎𝑥

𝑃𝑑 = 1
2𝜌𝑉

2 < 𝑃𝑑𝑚𝑎𝑥

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 𝑛𝐿𝑚𝑎𝑥

(5)

where 𝑄𝑑𝑚𝑎𝑥, 𝑃𝑑𝑚𝑎𝑥 and 𝑛𝐿𝑚𝑎𝑥 represents acceptable maximum heating rate,

dynamic pressure and acceleration, respectively.115

2.2. Objective functions

In the past, early studies on spacecraft trajectory optimization problems

usually focussed on single objective. However, in order to take more practical
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requirements into account, this type of problem should be constructed contain-

ing multiple objectives [28, 31]. Nowadays the majority of research is focusing120

on that. In this paper four objectives are considered to capture more realities

of the problem. The first objective function to be minimized is the final time

such that the reconnaissance mission is completed in the shortest possible time

interval. In addition, as mentioned in [20], minimizing the total aerodynamic

heating is also chosen as one of the objectives since the vehicle structure in-125

tegrity is largely affected by the aerodynamic heating. The third objective is to

maximize the final velocity to increase the kinetic energy and, therefore, raise

the flexibility to maneuver the vehicle back into the orbit. Moreover, in this

mission scenario to ensure the SMV has enough fuel to carry-out several skip

hops, the final objective is set to minimize the fuel consumption, i.e., maximize130

the final mass value, during the whole manoeuvre. Therefore, the objective

functions selected for the analysis are:

1). Minimizing the final time:

min 𝐽1 = 𝑡𝑓 (6)

2). Minimizing the total aerodynamic heating:

min 𝐽2 =

∫︁ 𝑡𝑓

𝑡0

�̇�(𝑡)𝑑𝑡 (7)

3). Maximizing the final velocity:135

max 𝐽3 = 𝑉 (𝑡𝑓 ) (8)

4). Maximizing the final mass:

max 𝐽4 = 𝑚(𝑡𝑓 ) (9)

2.3. Discrete method

To solve the continuous SMV trajectory hopping problem, discrete algo-

rithms should be implemented so that the continuous optimal control problem

can be converted to static nonlinear programming (NLP) problem. The dis-140

crete method used in this paper combines multiple shooting and pseudospectral

method together. The control variables can be approximated by interpolation

at 𝑁𝑘th discretized time nodes [𝜏1, 𝜏2, ..., 𝜏𝑁𝑘
]. Then the equations of motion

are integrated with a fourth order Runge-Kutta method. In order to improve
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the approximation of control sequence, the orthogonal interpolation is applied,145

which means the control is approximated as:

𝑢(𝜏) ≈ 𝑈(𝜏) =

𝑁∑︁
𝑖=0

𝑈𝑖𝐿𝑖(𝜏) (10)

where 𝜏 ∈ [−1, 1],𝐿𝑖(𝜏), (𝑖 = 0, ..., 𝑁) are the collocation points and a basis of

Lagrange polynomials, respectively. The Legendre-Gauss-Radau (LGR) points

are used as the node points. LGR points are the root of linear combination of

Legendre polynomials which can be written as:150

𝑃𝐾−1(𝜏) + 𝑃𝐾(𝜏) = 0 (11)

where the 𝐾𝑡ℎ order Legendre polynomial 𝑃𝐾(𝜏) is

𝑃𝐾(𝜏) =
1

2𝐾𝐾!

𝑑𝐾

𝑑𝜏𝐾
[(𝜏2 − 1)𝐾 ] (12)

By using the approach described above, the SMV trajectory optimization prob-

lem is converted to NLP with control variables at collocation nodes.

3. Adaptive differential evolution based on modified game theory

The proposed method is based on the genetic class of evolutionary algo-155

rithms (EA), which generates solutions to optimization problems taking inspi-

ration from natural selection and survival of the fittest in the biological world.

This algorithm can be used as a distributed behavioural algorithm which can

perform a multi-dimensional search to find the solution of various optimization

problems. There are four main procedures for the proposed algorithm, initial-160

ization, selection, crossover and mutation. In the initialization part, after the

scale of the population and the number of iterations are assigned, the first popu-

lation needs to be generated. According to the discretization method described

in Eq.(10) to Eq.(12), the optimization parameters (demanded angle of attack

𝛼𝑐, bank angle 𝜎𝑐 and thrust 𝑇𝑐) should be initialized at all the discrete time165

nodes, which can satisfy the control constraints described in Eq.(4). This can

be written as:

𝑈𝑖𝑗,𝐺 = 𝑈𝑙𝑗 + 𝑟𝑎𝑛𝑑(0, 1] × (𝑈ℎ𝑗
− 𝑈𝑙𝑗 ), (𝑖 = 1, 2...𝑁𝑃 ; 𝑗 = 1, 2...𝑁𝑘) (13)

where 𝑈𝑖,𝐺 is each individual in 𝐺th generation, 𝑈𝑙𝑗 and 𝑈ℎ𝑗
are the lower

and upper bounds of control variables in dimension 𝑗. 𝑁𝑃 = 200 is the size
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of population, whereas 𝑁𝑘 = 50 is the number of time nodes. In order to170

select the next population 𝑈𝑖,𝐺+1, the target vector 𝑈𝑗,𝐺 competes with the

corresponding trial vector 𝑈𝑖,𝐺 by using the modified game theory, which will

be further discussed in Section 3.2.

Following the population initialization, the mutation strategy is applied

to generate a mutant vector 𝑣𝑖,𝐺 with respect to the target vector 𝑈𝑖,𝐺. The175

mutation operator can be described as:

𝑣𝑖,𝐺 = 𝛾𝑈*
𝑖,𝐺 + (1 − 𝛾)𝑈𝑖,𝐺 + 𝐹

𝐾∑︁
𝑖=1

(𝑈𝑖𝑘𝑎 − 𝑈𝑖𝑘𝑏 ) (14)

where 𝛾 ∈ [0, 1] is the greediness of the individual. 𝑈*
𝑖,𝐺 is the best individual

in the 𝐺th generation and 𝐾 is the number of differentials applied to calculate

the perturbation. The control parameter 𝛾 stands for the degree of exploitation

and greediness of the mutation operator. That is, if 𝛾 value is large, it is180

expected to emphasize the exploitation ability of the algorithm and vice versa.

Another control parameter 𝐹 controls the diversity and exploration ability of

the mutation process, which means the larger 𝐹 value is, the higher the diversity

of exploration can be. According to some recent work [32], 𝐹 should be chosen

in a tight region between 0.4 and 1. Taking this into consideration, the range185

of 𝐹 value in the proposed method is set in [0.4, 1.0].

As for the crossover strategy, there are two types of crossover methods

employed in differential evolution (DE) community: binomial and exponen-

tial crossovers. From existing literature [33], it is found that the exponential

crossover tends to be more sensitive with respect to the problem size than the190

binomial method. Since the size of discrete optimal control problem depends

largely on the number of time nodes, the binomial crossover is conducted in the

proposed method.

𝑈
′

𝑖𝑗,𝐺 =

{︃
𝑣𝑖𝑗,𝐺, if 𝑟𝑎𝑛𝑑(0, 1) < 𝐶𝑅;

𝑈𝑖𝑗,𝐺, otherwise.
(15)

where 𝐶𝑅 is the crossover rate and is set 𝐶𝑅 = 0.3. The quality of a multi-

objective evolutionary algorithm consists of three design goals [23, 34]. Since195

most of the multi-objective algorithms are based on nondominated solutions,

the distance of the resulting nondominated set to the true pareto-optimal front

should be minimized. Moreover, a good distribution of the obtained solutions

found is desirable. Last, the extent of the obtained nondominated front should

9



be maximized. Specifically, a wide range of values should be covered by the200

nondominated solutions. To describe these criteria explicitly, the performance

matrices which contain hypervolume, spacing and maximum spread should be

formulated. The adaptive differential evolution begins with randomly generat-

ed population (see Eq.(13)). Then the mutation and crossover processes are

applied. The offspring is combined with parent generation to generate the non-205

dominant solutions. The obtained nondominated front is then measured by all

the component of performance metrics.

3.1. Performance metrics and control logic

In order to quantify convergence, the hypervolume indicator is used [26].

This method can calculate the size of obtained nondominated front 𝑁𝐹𝑘𝑛𝑜𝑤𝑛.210

More precisely, an individual (also can be treated as a reference point) on the

current 2-D front defines a rectangle area 𝑅(𝑈𝑖). The union of all the rectangle

areas is referred to as hyperarea of 𝑁𝐹𝑘𝑛𝑜𝑤𝑛.

𝐻(𝑁𝐹𝑘𝑛𝑜𝑤𝑛) = {
⋃︁
𝑖

𝑅(𝑈𝑖) | ∀𝑈𝑖 ∈ 𝑁𝐹𝑘𝑛𝑜𝑤𝑛} (16)

where H can reflect both the convergence and distribution of a pareto set. The

reference point can be chosen similar with [21, 26]. To further measure the215

degree of uniform distribution, the following spacing equation is used [23, 26].

𝑆 = (
1

𝑛

𝑁∑︁
𝑖=1

(𝑑𝑖 − 𝑑)2)
1
2 , 𝑁 →| 𝑁𝐹𝑘𝑛𝑜𝑤𝑛 | (17)

where 𝑑𝑖 is the Euclidean distance and is projected onto the objective space

between 𝑈𝑖 and the nearest solution on the pareto front. 𝑁 is the number

of solution in the calculated pareto set. Another factor which can reflect the

performance of algorithms is the maximum speed 𝑉𝑚𝑎𝑥 [23, 25]. It measures220

the length of diagonal hyperbox formed by the extreme solution observed in the

current pareto front. The maximum speed can be set as:

𝑉𝑚𝑎𝑥 = (
1

𝑀

𝑀∑︁
𝑚=1

(
max𝑄𝑖=1 𝑓

𝑖
𝑚 − min𝑄𝑖=1 𝑓

𝑖
𝑚

𝐹𝑚𝑎𝑥𝑚 − 𝐹𝑚𝑖𝑛𝑚

)2)
1
2 (18)

where 𝑀 is the number of objective function, whereas 𝑄 the observed pareto set.

Correspondingly, 𝑓 𝑖𝑚 is the value of the 𝑚th objective function of the 𝑖th number

of 𝑄. 𝐹𝑚𝑎𝑥𝑚 and 𝐹𝑚𝑖𝑛𝑚 are the maximum and minimum values of the current225
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optimal solution, respectively. Since all the quality factors of a multi-objective

algorithm are converted to mathematical expressions, the next step is to design

an adaptive control logic in order to enhance the convergence ability and quality

of the solution. The input value is the change of performance metrics generated

every two successive generation, whereas the output is the trends of control230

parameters 𝐹 and 𝛾. For simplicity reasons, the relationships are described

as “increase”, “decrease” and “no change”. This adaptive control logic can be

summarised in Table 1. The control logic illustrated in Table 1 is used for

Table 1: Adaptive control logic

No.logic
Input Output

𝑁𝐹𝑘𝑛𝑜𝑤𝑛 S 𝑉𝑚𝑎𝑥 F 𝛾

1 Increase Increase Increase No change Increase

2 Increase Decrease Increase No change No change

3 Increase Increase Decrease No change Decrease

4 Increase Decrease Decrease Increase No change

5 Decrease Increase Increase No change Decrease

6 Decrease Decrease Increase Increase No change

7 Decrease Increase Decrease Increase Decrease

8 Decrease Decrease Decrease Increase No change

adjusting the control parameter 𝐹 and 𝛾 in order to emphasize the greediness

or diversity of the mutation strategy. Specifically, based on the performance235

metrics, if it is desired to emphasize the exploitation, the value of 𝛾 should

be increased and 𝐹 should be decreased. On the other hand, if it is desired to

enhance exploration, 𝛾 is decreased while 𝐹 is increased. The logic “No change”

can be used to 𝛾 or 𝐹 when it is desired to have a mild emphasis in terms of

exploitation or exploration. It should be noted that logic number 2 is the best240

case because hypervolume is increasing and spacing is decreasing, which implies

that the population is converging. Therefore, the control parameters 𝛾 and 𝐹

remain unchanged. On the other hand, logic number 7 is the worst case scenario

since all the quality factors indicate that the current front is diverging and losing

diversity and extensiveness. Therefore, it is desired to emphasize exploration so245

to decrease 𝛾 and increase 𝐹 .
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3.2. Modified game theory

The selection process is conducted in a competitive way. A modified game

theory is applied to make a comparison between different individuals and con-

struct the compromised solution. Generally, there are two types of strategies in250

the game theory, namely non-cooperative and cooperative game theory. Each

objective function is associated with a player. Thus, the 𝑖th player aims to opti-

mize his/her own objective function 𝐽𝑖. In this paper, it is assumed that all the

players agree to find a compromised solution according to a mutually agreeable

model or super-criterion. The super-criterion is formulated so as to maximize255

the deviation of the 𝑖th objective function value from its worst possible value

for each of the player 𝑖(𝑖 = 1, 2, ...,𝑀). This method works properly as long as

there are conflicts between different objective functions. Based on the definition

of objectives, the following algorithm is given as follows:

1. Optimize each of the 𝑖th objectives stated in Eq.(6) to (9) subject to260

the constraints defined in Eq.(4) to (5) by using the adaptive differential

evolution algorithm.

2. Construct the payoff table (illustrated in Table 2) based on the solution

from step 1 to get the best and worst values for each objective function.

3. Normalize each of the objectives using Eq.(19).265

𝜇𝐽𝑖(𝑈) =

⎧⎪⎪⎨⎪⎪⎩
0, 𝐽𝑖(𝑈) ≤ 𝐽*

𝑖 ;
𝐽𝑖(𝑈)−𝐽*

𝑖

𝐹𝑖−𝐽*
𝑖
, 𝐽*

𝑖 ≤ 𝐽𝑖(𝑈) ≤ 𝐹𝑖;

1, 𝐹𝑖 ≤ 𝐽𝑖(𝑈).

(19)

where 𝐹𝑖 is the worst value of the 𝑖th objective function (e.g. 𝐹𝑖 =

max 𝐽𝑖(𝑥, 𝑢)), whereas 𝐽*
𝑖 is the optimum value obtained in step 1 of the

𝑖th objective function.

4. The pareto front can be calculated by constructing a weighted objective

function Φ:270

Φ = 𝑤1𝜇𝐽𝑖(𝑈)+𝑤2𝜇𝐽𝑖(𝑈)+ ...+𝑤𝑀−1𝜇𝐽𝑖(𝑈)+(1−
𝑀−1∑︁
𝑘=1

𝑤𝑘)𝜇𝐽𝑖(𝑈) (20)

where 0 ≤ 𝑤 ≤ 1 and
∑︀𝑀
𝑘=1 𝑤𝑘 = 1. The super-criterion 𝑆 is designed

such that each of the normalized objective function can be as far away

as possible from its worst possible value of 1 (for 𝑘 = 1, 2, ...,𝑀). The

12



sup-criterion can be expressed as:

𝑆 =

𝑀∏︁
𝑘=1

(1 − 𝜇𝐽𝑖(𝑈)) (21)

Hereafter, a new fitness function can be created to find a Pareto optimal275

solution, which can represent a compromised solution.

𝐹 = Φ − 𝑆 (22)

Table 2: Payoff table

𝐽1 𝐽2 𝐽3 · · · 𝐽𝑚

Opt 𝐽1(𝑥, 𝑢) 𝐽1(𝑥*1, 𝑢
*
1) 𝐽2(𝑥*1, 𝑢

*
1) 𝐽3(𝑥*1, 𝑢

*
1) · · · 𝐽𝑚(𝑥*1, 𝑢

*
1)

Opt 𝐽2(𝑥, 𝑢) 𝐽1(𝑥*2, 𝑢
*
2) 𝐽2(𝑥*2, 𝑢

*
2) 𝐽3(𝑥*2, 𝑢

*
2) · · · 𝐽𝑚(𝑥*2, 𝑢

*
2)

Opt 𝐽3(𝑥, 𝑢) 𝐽1(𝑥*3, 𝑢
*
3) 𝐽2(𝑥*3, 𝑢

*
3) 𝐽3(𝑥*3, 𝑢

*
3) · · · 𝐽𝑚(𝑥*3, 𝑢

*
3)

...
...

...
...

...
...

Opt 𝐽𝑚(𝑥, 𝑢) 𝐽1(𝑥*𝑚, 𝑢
*
𝑚) 𝐽2(𝑥*𝑚, 𝑢

*
𝑚) 𝐽3(𝑥*𝑚, 𝑢

*
𝑚) · · · 𝐽𝑚(𝑥*𝑚, 𝑢

*
𝑚)

Using the adaptive differential evolution algorithm based on modified game

theory, the pareto optimal set can be calculated. The flow chart of the proposed

method is presented in Fig 3.

4. Simulation results280

The initial state boundary conditions of the skip process are set as 𝑥0 =

[𝑟0, 𝜃0, 𝜑0, 𝑉0, 𝛾0, 𝜓0,𝑚0]=[6450451.9𝑚, 0𝑑𝑒𝑔, 0𝑑𝑒𝑔, 7802.9𝑚/𝑠,−1𝑑𝑒𝑔, 90𝑑𝑒𝑔,

92078.8𝑘𝑔]. The final altitude point is set as 𝑟𝑓 = 21162900𝑓𝑡. Box constraints

for each state variable are set as 𝑥𝑚𝑖𝑛 = [21066900𝑓𝑡,−180𝑑𝑒𝑔,−70𝑑𝑒𝑔, 609.6𝑚/𝑠,

−80𝑑𝑒𝑔,−180𝑑𝑒𝑔, 20000𝑘𝑔] and 𝑥𝑚𝑎𝑥 = [6450451.9𝑚, 180𝑑𝑒𝑔, 70𝑑𝑒𝑔, 13716𝑚/𝑠,285

80𝑑𝑒𝑔, 180𝑑𝑒𝑔, 92078.8𝑘𝑔], respectively. It is worth noting that the same pa-

rameter setting can be found in [20]. The specific boundary conditions were set

specifically at the start of the project for this type of missions. In order to verify

the feasibility of proposed method, only the first hop is taken into account in

the paper. The initial altitude is around 80𝑘𝑚 where is the assumed edge of290

atmosphere.

Firstly, to generate the payoff table for the modified game theory, the op-

timization results for each single objective function are generated using the

adaptive differential evolution algorithm. The results are shown in Fig.4 to 7.

13



Figure 3: Flow chart of the proposed algorithm

Figure 4: Altitude for different objective function
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Figure 5: Speed for different objective function

Figure 6: Mass for different objective function

As can be seen from Fig.4 to 7, conflicts exist between each objective func-295

tion, therefore it is impossible to find a solution optimizing each cost function.

More precisely, in the case of maximizing final velocity, if there is no compro-

15



Figure 7: Heating for different objective function

mised procedure, then to achieve higher speeds, the SMV is tending to complete

the mission taking longer time and accelerating during the whole time period.

That implies it is trying to consume all the fuel (see e.g. Fig.6). Hence, after300

reaching the low earth orbit, the SMV has no fuel left to continue the mission.

Based on the single-objective solution, the following payoff table is constructed

(see e.g. Table 3).

Table 3: Payoff table

𝐽1 𝐽2 𝐽3 𝐽4

min 𝐽1 851.65 89.23 17862.4 3563.2

min 𝐽2 942.84 75.65 16978.6 4042.8

max 𝐽3 2085.41 219.32 30846.8 1370.4

max 𝐽4 1502.03 123.86 15012.8 4297.5

4.1. Pareto front

From the payoff table [20], the worst value 𝐹𝑖 and optimum solution 𝐽*
𝑖305

can be obtained: 𝐹1 = 2085.41, 𝐹2 = 219.32, 𝐹3 = 15012.8 and 𝐹4 = 1370.4,

whereas 𝐽*
1 = 851.65, 𝐽*

2 = 75.65, 𝐽*
3 = 30846.8 and 𝐽*

4 = 4297.5, respectively.
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Using these solutions, the modified game theory model can be constructed. The

optimized solution of multi-objective SMV trajectory optimization problem are

then generated using the proposed Adaptive Differential Evolution and Modi-310

fied Game Theory (ADEMGT) method. The solutions are shown in Fig.8 to

9. These solutions are known as the pareto-optimal set or pareto front. An at-

tempt is made to compare the proposed method with different multi-objective

evolutionary algorithms. The alternative evolutionary algorithms used are as

follows:315

(1) MOEA/D-DE [21]: MOEA/D with a DE operator and polynomial mu-

tation.

(2) NSGA2 [23, 34]: The non-dominated sorting genetic algorithm.

(3) SPEA2 [24, 35]: The strength pareto evolutionary algorithm.

(4) NPGA [36, 37]: The niched pareto genetic algorithm.320

(5) ADEMGT (proposed): Adaptive differential evolution based on modi-

fied game theory.

It is worth noting that in [20], the NSGA2 method was applied to generate

the pareto front of the multi-objective SMV trajectory optimization problem.

Therefore, in this paper, NSGA2 method is also chosen as one of the comparative325

studies. During the optimization procedure, the pareto front is generated as the

set of solutions that has the highest fitness value and is not dominated by any

other solutions in the current population. By limiting the computational effort

for all of the algorithms (computational time), the Pareto fronts, generated by

MOEA/D-DE, NSGA2, SPEA2, NPGA and proposed ADEMGT algorithms,330

are projected onto two planes as shown in Fig.8 and Fig.9.

By checking the constraint profiles, all the methods stated above manage to

generate skip entry trajectories between the predetermined initial position and

terminal position without violating the path constraints. Therefore, the struc-

ture integrity of the SMV can be guaranteed and all the solutions calculated by335

applying different multi-objective evolutionary algorithms (ADEMGT) can be

accepted as feasible solutions. As can be seen from Fig.8 and Fig.9, the adaptive

differential evolution based on modified game theory method generally performs

better than other multi-objective evolutionary algorithms for solving the SMV

17
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trajectory optimization problem. This can be reflected by the quality of gener-340

ated pareto front. Specifically, the pareto set calculated by applying ADEMGT

can cover the pareto front calculated using other evolutionary algorithms. Based
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on the control logic described in Section 3, the control parameters, 𝐹 and 𝛾,

are updated during the iteration process, which means the exploitation and ex-

ploration of the pareto front can be emphasized adaptively. Hence, the quality345

of multi-objective solution can be guaranteed by implementing the proposed

method.

4.2. Convergence ability

Another important factor to qualify the algorithm is the convergence a-

bility. The history of the fitness value was projected onto the fitness versus350

iteration time plane shown in Fig.10. Generally, the fitness value of all the
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Figure 10: Fitness versus iteration time

multi-objective evolutionary algorithms tend to converge to around 1, which

means all the stated methods can converge in finite iterations. From Fig.10,

the final value of fitness function of the proposed ADEMGT method is higher

than its counterparts. Moveover, since by applying the modified game theory, it355

can not only simplifies the computational procedure using a super-criterion, but

also considers the solution of the general single-objective optimization problem-

s involving all the design variables. Therefore, compared with other methods

tested in this paper, the ADEMGT can always achieve a quicker convergence

speed (less generations to converge). That implies by using limited computa-360

19



tional efforts, the quality of solutions generated from ADEMGT is better than

other methods. This is important especially when the computational burden

must be taken into account in practical uses.

4.3. Algorithm stability

In order to analyze the algorithm stability, a series of simulations are con-365

ducted by testing three different target position scenarios. More specifically, the

target radii are set as 𝑟1 = 21066900ft (6421.2km), 𝑟2 = 21074900ft (6423.6km)

and 𝑟3 = 21080900ft (6425.5km) for each scenario. Fig.11 to 13 illustrate the

convergence results of the proposed method for each scenario in terms of fitness

function versus iteration time pane.

Figure 11: Fitness versus iteration time (Scenario 1: Radius=6421.2km)

370

It can be seen from Fig.11 to 13 that the proposed algorithm tend to con-

verge after finite generations for each scenario. These results confirm that the

ADEMGT algorithm is not sensitive with respect to different boundary con-

ditions and can be used to generate compromised solution for multi-objective

trajectory optimization problems.375

In summary, all the figures and data provided earlier confirm the feasibility

of the proposed adaptive differential evolution based on modified game theory

20



Figure 12: Fitness versus iteration time (Scenario 2: Radius=6423.6km)

Figure 13: Fitness versus iteration time (Scenario 3: Radius=6425.5km)

method. By using different multi-objective evolutionary optimization strate-

gies, the SMV can reach the target position and return back to the low Earth

orbit without violating path constraints and boundary conditions. In addition,380
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it is shown that the proposed algorithm has better convergence ability and

convergence speed than other strategies tested in this paper, which means the

compromised trajectories calculated using ADEGMT are feasible and reliable.

5. Conclusions

In this paper, the original single-objective trajectory optimization model385

was extended to multi-objective optimization formulation, including minimum

final time, aerodynamic heating, maximum final velocity and mass, in order to

design a near optimal trajectory, which can capture multiple requirements for

SMV. In order to transcribe the continuous-time optimal control problem, a spe-

cific multiple shooting method is applied to discrete the dynamics. An adaptive390

differential evolution based on modified game theory algorithm is then designed

to solve the resulting nonlinear programming problem. This algorithm uses an

adaptive strategy to update the mutation operator and applies a modified game

theory to guide the evolution procedure. In addition, to control the algorith-

m and improve the quality of the solution, a control logic is embedded in the395

proposed method framework. Simulation results show that compared with oth-

er multi-objective evolutionary approaches, the proposed algorithm has better

performance in terms of generating high quality pareto front. Also, by applying

the control logic and modified game theory, the proposed algorithm can have a

better convergence ability and quicker convergence speed than other approaches400

without violating any path and box constraints. Then, the proposed method is

efficient and effective to solve the SMV trajectory optimization problem.
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