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Abstract. An image resolution enhancement approach based on discrete wavelet transform (DWT) and new
edge-directed interpolation (NEDI) for degraded satellite images by geometric distortion to correct the errors in
image geometry and recover the edge details of directional high-frequency subbands is proposed. The observed
image is decomposed into four frequency subbands through DWT, and then the three high-frequency subbands
and the observed image are processed with NEDI. To better preserve the edges and remove potential noise in
the estimated high-frequency subbands, an adaptive threshold is applied to process the estimated wavelet
coefficients. Finally, the enhanced image is reconstructed by applying inverse DWT. Four criteria are introduced,
aiming to better assess the overall performance of the proposed approach for different types of satellite images.
A public satellite images data set is selected for the validation purpose. The visual and quantitative results show
the superiority of the proposed approach over the conventional and state-of-the-art image resolution enhance-
ment techniques. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.2.023014]
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1 Introduction
Satellite imaging is usually the most cost efficient means of
collecting regular and frequent data about the earth’s surface.
These data are routinely used to monitor land use change,
urban expansion, agricultural health and productivity, the
status of urban tree corridors, fire threat, environmental
condition, etc.1 High-resolution (HR) satellite images are
strongly demanded in many applications, such as remote
sensing, astronomy, geoscience, and geographical informa-
tion systems, not only for providing better visualization but
also for extracting additional information details, which can
be crucial in these applications. For example, HR satellite
images are crucial in distinguishing an object from similar
ones and achieving a better classification of regions in a
multispectral remote sensing image.2,3

When remote sensing image data are acquired by sensors
on satellites and aircraft, the data can have errors in geometry
and in the measured intensity values of the pixels. The first is
referred to as geometric errors while the latter is referred to as
radiometric errors.4,5 The geometric errors can result from
many sources, such as the relative motions of the remote
sensing platform, nonidealities in the sensors themselves,
the rotation of the earth, and uncontrolled variations in
the position and attitude of the platform. However, the radio-
metric errors can arise from the instruments used to acquire
the image data, the wavelength dependence of solar radia-
tion, and the effect of the atmosphere. Geometric distortion
effects of the image data are more severe than radiometric
distortion and lead to varying degrees of severity in the

produced image. Therefore, image processing procedures
are used to compensate for these errors and to find more
general applications. Resolution enhancement is one of the
applications for correcting the errors in image geometry.4

Resolution enhancement based on a single low-resolution
(LR) image or multiple LR images, also called super-resolu-
tion (SR), recently has attracted lots of interest and has been
used for different applications, such as satellite imaging,6–8

medical imaging,9,10 and video surveillance systems,11 etc.
Interpolation is one of the commonly used techniques for

image resolution enhancement. Fundamentally, it is a proc-
ess of estimating values at unknown locations using known
data.12 There are four well-known conventional interpolation
methods: nearest neighbor, bilinear, bicubic, and Lanczos.
However, these linear methods cannot handle the fast grow-
ing statistics around edges and accordingly yield interpolated
images with blurred edges and undesirable artifacts. To
address this problem, other nonlinear interpolation-based
resolution enhancement methods have been developed to
improve the subjective quality by taking edge information
into account, such as edge-directed interpolation (EDI)13

and new edge-directed interpolation (NEDI).14 EDI empha-
sizes the visual integrity of the edges, and NEDI is the
upgraded version. Nevertheless, the improvements by these
methods are limited at the textures and nonlinear edges of
the interpolated images.15 However, a lot of research has
achieved enhanced performance of NEDI because the NEDI
method uses a relatively simple model and hence has low
computational complexity. The modified NEDI method
was presented in Ref. 16 by considering a modified training

*Address all correspondence to: Yifan Zhao, E-mail: yifan.zhao@cranfield.ac
.uk 1017-9909/2017/$25.00 © 2017 SPIE and IS&T

Journal of Electronic Imaging 023014-1 Mar∕Apr 2017 • Vol. 26(2)

Journal of Electronic Imaging 26(2), 023014 (Mar∕Apr 2017)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

http://dx.doi.org/10.1117/1.JEI.26.2.023014
http://dx.doi.org/10.1117/1.JEI.26.2.023014
http://dx.doi.org/10.1117/1.JEI.26.2.023014
http://dx.doi.org/10.1117/1.JEI.26.2.023014
http://dx.doi.org/10.1117/1.JEI.26.2.023014
http://dx.doi.org/10.1117/1.JEI.26.2.023014
mailto:yifan.zhao@cranfield.ac.uk
mailto:yifan.zhao@cranfield.ac.uk
mailto:yifan.zhao@cranfield.ac.uk
mailto:yifan.zhao@cranfield.ac.uk
li2106
Text Box
Published by SPIE. Issued with Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).  
Available online at DOI:10.1117/1.JEI.26.2.023014.  Please refer to any applicable publisher terms of use.




widow structure to eliminate the prediction error accumula-
tion and extending the covariance values into multiple direc-
tions to mitigate the covariance mismatch problem.

Another class of resolution enhancement methods is
wavelet based. A common assumption of wavelet-based
methods is that the LR image is the low-pass filtered subband
of the wavelet-transformed HR image. Estimating the
unknown wavelet coefficients in subbands containing high-
pass frequency spatial information is the essential target of
this class of algorithms to estimate the HR image from the
LR image. A simple approach, called wavelet zero padding
(WZP), is to recover an approximation to the HR image by
filling the unknown detail wavelet coefficients with zeros
and applying the inverse wavelet transform. Although this
method is able to surpass the conventional interpolation
methods, it commonly introduces artifacts, such as smooth-
ing and ringing, into the reconstructed HR image.

Many advanced methods have been introduced to esti-
mate the wavelet coefficients of high-frequency subbands.
In Refs. 17 and 18, only the coefficients of high-frequency
subbands with significant magnitudes were estimated as the
evolution of the wavelet coefficients among the scales while
it was difficult to estimate the other small coefficients. The
performance is mainly affected by the signs of the estimated
coefficients being copied directly from the signs of the parent
coefficients without any attempt to estimate the actual signs.
However, the accepted fact is that there is very low correla-
tion between the signs of the parent coefficients and the
estimated coefficients. Therefore, the signs of the estimated
coefficients using extrema evolution techniques cannot be
relied upon. A hidden Markov tree-based method was pro-
posed in Ref. 19 and an extended version of this method was
presented in Ref. 20, to estimate the unknown detail coeffi-
cients by the mixed Gaussian distributions, which are sym-
metrical around zero. These methods are used to determine
the most probable state for the estimated coefficient. The
performance is also affected by the sign changes between
the scales not being taken into account. A nondirectional
cycle-spinning (CS) technique,21 called WZP-CS, was devel-
oped as an effective method toward reducing ringing artifacts
by averaging out the translated zero-padded reconstructed
images. However, ringing artifacts not only occur in the
neighborhood of edges; in particular, they are predominantly
correlated with the orientation of the edges. A directional
CS technique, which can refine better edge orientation and
prevent ringing artifacts, was introduced in Ref. 22. Addition-
ally, it can reduce the computational complexity compared
with a nondirectional CS technique. A further improvement
of this method could be obtained by applying a CS and edge
rectification technique.23 Recently, a dual-tree complex
wavelet transform (DT-CWT) technique6 was proposed for
resolution enhancement of satellite images. One-level DT-
CWT decomposes an input LR image into different fre-
quency subbands, and then the high-frequency subbands and
the input image are interpolated using bicubic interpolation.
Finally, a super-resolved image is generated by combining
all these interpolated subbands through the inverse DT-
CWT. More recently, a DT-CWT technique8 based on non-
local-means filter and Lanczos interpolation was proposed to
improve the performance. In recent years, discrete wavelet
transform (DWT)-based image resolution enhancement tech-
niques have attracted increasing investigations. Acharya and

Tsai24,25 proposed using one-level DWT to separate an LR
image into four frequency subbands, and then the three
high-frequency subbands are upsampled by inserting zeros
between successive rows and columns. An upsampled image
is generated by performing the inverse DWT on these
approximated subbands. Recently, a Demirel–Anbarjafari
super-resolution (DASR) technique was proposed26 in which
the decomposed three high-frequency subbands and the
input image were interpolated using bicubic interpolation.
Upgrading from the DASR, Demirel and Anbarjafari7 intro-
duced a DWT-Diff method, in which the high-frequency sub-
bands are further enhanced by considering the difference
between the input LR image and the interpolated low-low
(LL) subband. The same authors proposed a DWT–station-
ary wavelet transform (SWT) technique based on DWT and
SWT,27 which introduced an intermediate process by adding
the high-frequency subbands obtained through SWT of the
input image with the high-frequency subbands obtained
through DWT.

This paper proposes an improved image resolution
enhancement approach, called DWT-NEDI, which integrates
merits from both the frequency domain and spatial domain.
There are three major stages in the proposed method. First, a
DWT is employed to decompose the input image into differ-
ent frequency subbands in the frequency domain. Second,
for the three high-frequency subbands, NEDI is employed
to process each of them and output the estimated subbands
using soft-thresholding. Meanwhile, the input image is
directly interpolated by NEDI to output the low-frequency
subband. Finally, after combining both low- and high-
frequency subbands, the processed image is transformed
back to the spatial domain as the outcome of resolution
enhancement through inverse discrete wavelet transform
(IDWT). Recently, learning-based SR methods have emerged
to further boost the efficiency of single image SR. For exam-
ple, Timofte et al.28 introduced a simple function method and
the anchored neighbor regression (ANR) method. The same
authors further improved the ANR method and proposed the
adjusted ANR (A+) for fast SR.29 These methods divide the
training data into a small number of groups and learn a
regression model for each group. Deep learning-based SR
approaches have also appeared to improve SR results. Huang
and Siu30 proposed using a decision tree method and an SR
hierarchical decision trees (SRHDT) method for improving
SR performance. To better model complex image contents
and details, deep learning networks methods have been intro-
duced. Dong et al.31 proposed an SR convolution neural net-
work (SRCNN) method to perform a sparse reconstruction.
However, this method does not exploit natural image priors
and suffers from losing sharp edges. Following the SRCNN
method, a deep edge-guided recurrent residual method32

was proposed to provide high-quality image SR and recover
the edges by recurrent residual learning. A limitation of
learning-based methods is that they require a large amount
of training data sets.

The majority of developed SR approaches focus on
grayscale or single-channel image SR, while this paper
applies the performance of the proposed technique to color
images. Although the proposed approach also works well for
other types of images, this paper focuses its application on
satellite images. The paper is organized as follows. Section 2
introduces the detail of the proposed method. Results and
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discussions based on testing five categories of satellite
images are presented in Sec. 3, and conclusions are given
in Sec. 4.

2 Proposed Resolution Enhancement Approach
The main drawback for using a direct interpolation to
enhance image resolution is the generated visual degrada-
tions around edge areas and, as a result, the production of
blurred edges. This degradation is due to annoying levels
of smoothing across edges caused by the employed interpo-
lation method, which does not use any information pertinent
to the edges in the original image. Preserving the high-
frequency components (i.e., edges) and consequently
increasing the quality of the resulted HR image is the fun-
damental target for reconstructing the HR image from the
given LR image.

Therefore, in this work, the DWT process was employed
to isolate and preserve the edges of the image using the
interpolation of high-frequency subbands. This is due to the
interpolation of isolated high-frequency components in the
high-frequency subbands preserving more edges of the image
than interpolating the image directly. On the other hand, DWT
decomposes the given image into three directional high-
frequency subbands, which isolate the edges in three direc-
tions and thus reduce the annoying interdirectional inter-
ference in the resolution enhancement process. Although a
number of DWT-based interpolation methods7,24,26,27 have
been developed for preserving the missing high-frequency
components of the given LR image, the blurring effect from
their employed interpolation methods causes the potential loss
of edges in these subbands. For example, bicubic, the most
widely used interpolation method in wavelet-based resolution
enhancement approaches, can produce blurring around edge
areas because of the smoothing process. Therefore, the
blurring effect caused by the interpolation method needs to
be addressed.

Many DT-CWT-based resolution enhancement
methods33–35 attempt to address this problem. In Ref. 33,
EDI13 was employed as an alternative interpolation method
of high-frequency subbands obtained by DT-CWT. Later,
Izadpanahi and Demirel34 proposed an extended version
of this approach for multiframe SR. Recently, the same
authors applied NEDI,14 which improved the performance
of EDI, for the interpolation of high-frequency subbands
generated by DT-CWT for motion-based video SR.35 In
this work, NEDI is employed to process the high-frequency
subbands obtained through DWTand output the interpolated
subbands using a nonlinear adaptive threshold.

This paper proposes combining DWT and NEDI, which
integrates merits from both the frequency domain and spatial
domain and substantially improves the visual quality of the
pixels around edges. The advantage of using DWT with
NEDI is it recovers the edge details of directional high-fre-
quency subbands and thus decreases the undesirable inter-
directional interference in the SR process. This merit cannot
be achieved using only the NEDI method. Consider an input
LR image with the size of W ×H, and the scale factor is
denoted by α. Initially, one-level DWT process decomposes
the input LR image into four frequency subbands, called
low-high (LH), high-low (HL), and high-high (HH) respec-
tively. Each subband has half of the size of the input image
due to downsampling. The high-frequency subbands (LH,

HL, and HH) are interpolated using the NEDI method
with the scale factor α. Generally, data sets recorded by sen-
sors are most commonly corrupted by noise, such as additive
Gaussian noise and multiplicative noise. Therefore, to pre-
serve more edges and reduce the noise in the estimated
high-frequency subbands, a thresholding procedure using an
adaptive threshold is included to process the produced wave-
let coefficients. Many types of thresholding functions have
been introduced for the modification of estimated wavelet
coefficients, such as hard, soft, semisoft, and garrote.36 This
paper employs a soft-thresholding technique proposed by
Donoho37 and extended by Zhang.38 The universal threshold
τ for the considered subband can be calculated as

EQ-TARGET;temp:intralink-;e001;326;609τ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðNÞ∕N

p
; (1)

where σ is the standard deviation of the subband and N is
the total number of pixels. The nonlinear soft-thresholding
function is defined as

EQ-TARGET;temp:intralink-;e002;326;543Xoutði; jÞ ¼
8<
:

Xinði; jÞ − τ Xinði; jÞ > τ

0 jXinði; jÞj ≤ τ

Xinði; jÞ þ τ Xinði; jÞ < −τ
: (2)

The basic idea of this thresholding process is that the
energy of a signal is often concentrated on a few coefficients
while the energy of noise is spread among all coefficients in
the wavelet domains. Therefore, the nonlinear soft-threshold-
ing tends to maintain few larger coefficients representing the
signal while reducing noise coefficients to zero in the wave-
let domain. A universal threshold is intuitively expected to
uniformly remove the noise since the Gaussian noise still has
the same variance over different scales in the transform
domain.38 The application of this soft-thresholding function
is based on the hypothesis that the large coefficients in the
high-frequency subbands reflect the true edges of objects
while the small coefficients reflect the noise. This hypothesis
can be proven by Fig. 1, where (a) shows the observed LR
image and (b) shows the reconstruction image of high-
frequency subbands only without thresholding. Both true
edges and noise can be observed in Fig. 1(b). Figure 1(c)
shows the reconstruction image of high-frequency subbands
where the small coefficients are removed. It can be observed
that the noise is significantly reduced while the true edges are
preserved. The reconstruction image of high-frequency sub-
bands where the large coefficients are removed is illustrated
by Fig. 1(d), which is dominated by noise with very little true
edge information found.

The input LR image, interpolated by the NEDI method
with half of the scale factor α∕2, is used as the estimated
LL subband because it contains more information than the
LL subband produced by the DWT process, as suggested
in Refs. 7, 24, and 26. Finally, IDWT is applied to achieve
a super-resolved image by combining the estimated LL sub-
band and corrected high-frequency subbands. The block dia-
gram of the DWT-NEDI approach is illustrated by Fig. 2.

The proposed approach can be summarized by the follow-
ing steps:

1. Consider the red channel of the observed LR image.
2. Compute one-level DWT decomposition of this

channel.

Journal of Electronic Imaging 023014-3 Mar∕Apr 2017 • Vol. 26(2)

Witwit et al.: Satellite image resolution enhancement. . .

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



3. Apply the NEDI method to LH, HL, and HH high-
frequency subbands with the scale factor α.

4. For each high-frequency subband, calculate the thresh-
old τ.

5. Apply the adaptive thresholding process for each high-
frequency subband and create the estimated L̂H, ĤL,
and ĤH.

6. Apply the NEDI method to the input LR image with
the scale factor α∕2 to create L̂L.;

7. Apply IDWT using ðL̂L; L̂H; ĤL; ĤHÞ to produce the
enhanced channel.

8. Repeat steps 2 to 7 for the blue and green channels.
9. Combine the three enhanced channels into the final

enhanced HR color image.

3 Results and Discussions

3.1 Visual Evaluation
The proposed technique was tested on 20 different satellite
images obtained from the Satellite Imaging Corporation
webpage,39 which is a public data set. To assess the variation
in performance in terms of different types of images, the
studied satellite images were divided into five classes: “natu-
ral disaster, tourism, defence and intelligence, construction,
and cadastre and land.” Each class includes four images that
were randomly selected from the data set. The size of the
original HR images in the public data set is different. For
the consistency of comparison, each original HR image
was therefore resized to 512 × 512 pixels as the reference
image. The input LR images with the size of 128 × 128 pix-
els were produced from blurring and downsampling the
original HR images by applying twice cascaded DWT
with the db.9/7 wavelet filter. The LR images are further
corrupted by a Gaussian noise with the signal-to-noise ratio
(SNR) of 40 dB. The biorthogonal Daubechies (db.9/7) was
chosen because the literature review shows that it is the most
commonly used wavelet function for the decomposition
process by DWT.40 Note that all methods, including the
proposed method and other considered methods, were imple-
mented by the authors using MATLAB® 2015.

To demonstrate the visual quality of the produced results,
one image was randomly selected from four groups and
tested by the proposed technique. Figures 3 and 4 show
the super-resolved images using the proposed technique
and the other considered methods with an enlargement
from 128 × 128 to 512 × 512 of the images from the con-
struction and tourism groups. The visual results demonstrate
the ability of the DWT-NEDI technique to enhance the
observed LR images by proving more sharp edges, poten-
tially offering more details of interested objects.

3.2 Quantitative Evaluation
The difference between the super-resolved images from
different techniques can be small, and it is difficult to be
inspected visually. This section presents the results of quan-
titative comparison. The peak-SNR (PSNR) between the
super-resolved image and the original HR image is one of
the most commonly used objective fidelity criteria for evalu-
ating image quality. It can be calculated as

EQ-TARGET;temp:intralink-;e003;326;124PSNR ¼ 10 log10

�
L2

MSE

�
; (3)

where L is the maximum fluctuation in the image. If the
image is represented by 8-bit grayscale, the value of L

Fig. 2 Block diagram of the proposed DWT-NEDI resolution
enhancement approach.

Fig. 1 An example to help justify the use of thresholding process:
(a) the observed LR image, (b) the reconstruction image of high-
frequency subbands only without thresholding, (c) the reconstruction
image of high-frequency subbands where the small coefficients are
removed, and (d) the reconstruction image of high-frequency sub-
bands where the large coefficients are removed.
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will be 255. MSE represents the mean-square-error between
the super-resolved image X̂ði; jÞ and the original HR image
Xði; jÞ. It can be calculated as

EQ-TARGET;temp:intralink-;e004;63;412MSE ¼ 1

W ×H

XW
i¼1

XH
j¼1

½X̂ði; jÞ − Xði; jÞ�2: (4)

The root-mean-square error (RMSE) between these two
images is also one of the commonly used quantitative mea-
sures,12 and it can be expressed as

EQ-TARGET;temp:intralink-;e005;326;412RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
: (5)

Fig. 3 Resolution enhanced results from the proposed approach with an enlargement from 128 × 128 to
512 × 512 for an image selected from the construction group: (a) the whole input LR image; (b) the
selected region of the input LR image; super-resolved HR images by (c) bicubic, (d) WZP,
(e) DASR, and (f) the proposed method.

Fig. 4 Resolution enhanced results from the proposed approach with an enlargement from 128 × 128 to
512 × 512 for an image selected from the tourism group: (a) the whole input LR image; (b) the selected
region of the input LR image; resolution enhanced images by (c) bicubic, (d) WZP, (e) DASR, and
(f) the proposed method.
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Entropy is another quantitative measure used to assess
image quality when the error images for different image res-
olution enhancement techniques are very close to each other
and it is very difficult to make assessment. The entropy of
a negative error image, denoted by E, can be calculated as

EQ-TARGET;temp:intralink-;e006;63;697E ¼ −
XL
k¼1

PðrkÞ log2 PðrkÞ; (6)

where PðrkÞ is the probability of an intensity value rk. The
lower the E, the better the improvement is.41

To complement the quantitative analysis, the structural
similarity (SSIM)42 image quality measure has also been
applied. The SSIM index evaluates the visual effect of
three characteristics of an image: luminance, contrast, and
structure. It is based on the computation of these three com-
ponents and is an inner product of them. It is defined as

EQ-TARGET;temp:intralink-;e007;63;560SSIM ¼ ð2μX̂μX þ C1Þð2σX̂σX þ C2Þ
ðμ2

X̂
þ μ2X þ C1Þðσ2X̂ þ σ2X þ C2Þ

; (7)

where μX̂, μX are the local means for the images X̂, X, respec-
tively, σX̂ , σX are corresponding standard deviations, and C1,
C2 are two constants used to avoid the instability.

The quantitative performances measured by PSNR,
RMSE, entropy, and SSIM for the selected examples of
each group are listed in Tables 1–4, respectively. In terms
of the results of PSNR and RMSE, the proposed technique
has the best performance for all five selected images. In
terms of the results of SSIM, the proposed technique and

WZP-CS achieve the highest performance for the images
from the natural disaster and tourism groups, whereas the
proposed technique is the best for the images from the
remaining groups. In terms of the values of entropy, the near-
est neighbor has the best performance for the images from

Table 1 PSNR (db) results of the selected images for resolution
enhancement from 128 × 128 to 512 × 512, where the bold values
indicate the best performance of each column in terms of PSNR.

Techniques

Image groupa

1 2 3 4 5

Nearest 22.42 25.87 22.53 19.66 15.92

Bilinear 23.25 26.67 23.21 20.42 16.65

Bicubic 23.20 26.68 23.18 20.39 16.61

Lanczos 23.15 26.65 23.13 20.35 16.56

WZP 23.65 26.92 23.50 20.82 16.93

WZP-CS 24.17 27.57 23.79 21.27 17.34

DWT 23.54 26.83 23.42 20.71 16.85

DASR 22.99 26.48 22.90 20.00 16.51

DWT-Diff 21.92 25.47 21.89 18.94 15.57

DWT-SWT 22.31 25.87 22.37 19.43 15.99

DWT-NEDI 24.90 27.83 24.53 21.93 18.01

aGroup 1: natural disaster; 2: tourism; 3: defence and intelligence,
4: construction, and 5: cadastre and land.

Table 2 RMSE results of the selected images for resolution
enhancement from 128 × 128 to 512 × 512, where the bold values
indicate the best performance of each column in terms of RMSE.

Techniques

Image group

1 2 3 4 5

Nearest 19.31 12.98 19.06 26.51 40.80

Bilinear 17.55 11.84 17.62 24.30 37.50

Bicubic 17.63 11.83 17.68 24.39 37.68

Lanczos 17.74 11.87 17.78 24.51 37.91

WZP 16.75 11.50 17.04 23.20 36.30

WZP-CS 15.77 10.67 16.49 22.03 34.63

DWT 16.96 11.61 17.20 23.50 36.64

DASR 18.08 12.10 18.26 25.50 38.11

DWT-Diff 20.43 13.59 20.51 28.82 42.46

DWT-SWT 19.54 12.97 19.42 27.24 40.47

Proposed method 14.50 10.35 15.13 20.42 32.05

Table 3 Entropy results of the selected images for resolution
enhancement from 128 × 128 to 512 × 512, where the bold values
indicate the best performance of each column in terms of entropy.

Techniques

Image group

1 2 3 4 5

Nearest 5.01 4.83 5.62 5.83 6.06

Bilinear 5.31 4.96 5.84 6.08 6.19

Bicubic 5.21 4.92 5.82 5.92 6.15

Lanczos 5.21 4.92 5.81 5.91 6.21

WZP 5.13 4.86 5.60 5.67 5.98

WZP-CS 5.20 4.87 5.79 5.65 6.11

DWT 5.04 4.89 5.62 5.59 5.98

DASR 5.17 4.85 5.70 5.87 6.13

DWT-Diff 5.20 4.86 5.71 5.71 5.88

DWT-SWT 5.17 5.02 5.66 5.84 5.90

Proposed method 5.16 4.89 5.83 5.54 6.14
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the natural disaster and tourism groups, WZP and DWT-Diff
produces the highest performance for the images from the
defence and cadastre groups, while the proposed technique
is the best for the images from the construction group.

The above four criteria can be used to compare the per-
formances of different techniques for a single image. How-
ever, they are not straightforward for collectively evaluating
the performance for a number of testing images. This paper
proposes four normalized criteria to better measure the
improved performance of a considered resolution enhance-
ment technique compared with a reference technique,
which includes ratio of PSNR (RPSNR), ratio of RMSE
(RRMSE), ratio of entropy (RENTROPY), and ratio of
SSIM (RSSIM). They can be calculated as

EQ-TARGET;temp:intralink-;e008;326;642RPSNRðm1; m2Þ ¼
PSNRðm1Þ − PSNRðm2Þ

PSNRðm2Þ
× 100%; (8)

EQ-TARGET;temp:intralink-;e009;326;599RRMSEðm1; m2Þ ¼
RMSEðm1Þ − RMSRðm2Þ

RMSEðm2Þ
× 100%;

(9)

EQ-TARGET;temp:intralink-;e010;326;547RENTROPYðm1; m2Þ ¼
Eðm1Þ − Eðm2Þ

Eðm2Þ
× 100%; (10)

EQ-TARGET;temp:intralink-;e011;326;508RSSIMðm1; m2Þ ¼
PSNRðm1Þ − PSNRðm2Þ

PSNRðm2Þ
× 100%;

(11)

where m1 is the considered resolution enhancement tech-
nique and m2 is the reference technique, which was chosen
as the bicubic interpolation method in this paper due to its
popularity. The higher the RPSNR and RSSIM, the better the
performance of the considered technique is. A positive value
of RPSNR indicates a better performance than the reference

Table 4 SSIM results of the selected images for resolution enhance-
ment from 128 × 128 to 512 × 512, where the bold values indicate
the best performance of each column in terms of SSIM.

Techniques

Image group

1 2 3 4 5

Nearest 0.27 0.26 0.21 0.24 0.17

Bilinear 0.31 0.29 0.21 0.26 0.19

Bicubic 0.33 0.31 0.23 0.28 0.21

Lanczos 0.33 0.31 0.24 0.28 0.21

WZP 0.34 0.34 0.29 0.33 0.25

WZP-CS 0.38 0.37 0.30 0.35 0.27

DWT 0.33 0.33 0.28 0.32 0.25

DASR 0.31 0.30 0.24 0.26 0.22

DWT-Diff 0.25 0.25 0.21 0.23 0.19

DWT-SWT 0.28 0.27 0.22 0.24 0.20

Proposed method 0.38 0.36 0.32 0.37 0.28

Fig. 5 Comparison of RPSNR, RRMSE, RSSIM, and RENTROPY results of all tested images for res-
olution enhancement from 128 × 128 to 512 × 512 by the proposed approach and the conventional and
state-of-the-art resolution enhancement techniques.
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method. The lower the RRMSE and RENTROPY, the better
the performance of the considered technique is. A negative
value of RRMSE and RENTROPY indicates a better perfor-
mance than the reference method.

Figure 5 shows the results of the proposed criteria for
all 20 testing images, organized by five groups, using the
selected nine resolution enhancement techniques, which
include the nearest neighbor, the bilinear interpolation,
the bicubic interpolation, the Lanczos interpolation, WZP,
WZP-CS, DWT, DASR, and the proposed technique. The
wavelet function db.9/7 was used in the wavelet-based tech-
niques. To evaluate the overall performance of the proposed
technique for different classes of satellite images, Table 5
shows the percentage of images in which the DWT-NEDI
technique has the best performance among the considered
techniques. It can be inferred from Fig. 5 that the DWT-
NEDI technique has superior performance against other
methods in terms of RPSNR and RRMSE, which is sup-
ported by it topping the performance for 80% of images,
especially for the image from the construction group in
which it tops 100%. In terms of RSSIM, it tops the perfor-
mance for 100% of all images from five groups. For the
remaining 20% of images, the WZP-CS has the best perfor-
mance. However, in terms of RENROPY, the difference of
performance is not significant among the considered meth-
ods. On average, the DWT-NEDI technique still has the best
performance as it tops 60% of images.

3.3 Variation of Wavelet Functions
All above results from the wavelet-based resolution enhance-
ment techniques were produced by the most widely used
wavelet function db.9/7. This section discusses the prospect
of the proposed approach using other wavelet functions.
Previous research shows that the selection of wavelet func-
tion can affect the performance.43 A total of 50 wavelet func-
tions, including db.1-20, sym.2-20, bior.1-6, and coif.1-5,44

were tested using the proposed technique. Table 6 shows
the calculated PSNR results for randomly selected satellite
images from each group using nine wavelet functions,
which include db1, db2, sym16, sym20, ciof1, ciof2,
db.9/7, bior5.5, and bior6.8 as well as bicubic interpolation.
These functions were selected due to their better perfor-
mance than the remaining functions. The patterns for five
groups of images are very similar; for example, (a) the

performance of the proposed technique using the selected
wavelet functions is better than the bicubic interpolation;
(b) the function db.9/7 has relatively high PSNR and is in the
top 3; and (c) the function bior5.5 has the highest PSNR
value, although its superiority over db.9/7 is relatively small.

4 Conclusions
A resolution enhancement approach based on DWT and
NEDI was proposed in this paper to correct the errors in
image geometry and recover the details of directional high-
frequency subbands. A nonlinear adaptive thresholding proc-
ess is also included to boost the edges and reduce the noise in
the estimated high-frequency subbands for enhancing satel-
lite images. The motivation for this approach is to better pre-
serve the edges and remove potential noise in the estimated
high-frequency subbands since a direct interpolation through
interpolation methods will blur the areas around edges. Five
groups of satellite images (totally 20 images), randomly
selected from a public data set, were tested by the proposed
approach, and the results were compared with the conven-
tional interpolation methods and state-of-the-art techniques.
Four criteria were introduced to better evaluate the overall
performance of the proposed technique for multiple images.
Results show that the proposed method outperforms conven-
tional image interpolation approaches, in both objective and
subjective terms, and in most scenarios it also outperforms
the state-of-the-art methods operating in the wavelet domain.

Future work will focus on the employment of other
advanced decomposition approaches, such as curvelet,
contourlet, and Shearlet transform, to further improve the
performance.
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