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This paper presents an original technique for robust detection of line features from range data, which is also the core element of
an algorithm conceived for mapping 2D environments. A new approach is also discussed to improve the accuracy of position and
attitude estimates of the localization by feeding back angular information extracted from the detected edges in the updating map.
The innovative aspects of the line detection algorithm regard the proposed hierarchical clusterization method for segmentation.
Instead, line fitting is carried out by exploiting the Principal Component Analysis, unlike traditional techniques relying on least
squares linear regression. Numerical simulations are purposely conceived to compare these approaches for line fitting. Results
demonstrate the applicability of the proposed technique as it provides comparable performance in terms of computational load
and accuracy compared to the least squares method. Also, performance of the overall line detection architecture, as well as of
the solutions proposed for line-based mapping and localization-aiding, is evaluated exploiting real range data acquired in indoor
environments using an UTM-30LX-EW 2D LIDAR. This paper lies in the framework of autonomous navigation of unmanned
vehicles moving in complex 2D areas, for example, being unexplored, full of obstacles, GPS-challenging, or denied.

1. Introduction

Among the technical challenges which drive the research
activities carried out in the field of UnmannedAerial Vehicles
(UAVs), a major issue is to improve their level of autonomy.
As discussed in [1], this is equivalent to strengthen their
capabilities of autonomous guidance, navigation, and control,
taking into account factors like environment and mission
complexity, situational awareness, and real-time implemen-
tation.

For instance, in the case of large-scale outdoor scenario,
autonomous and safe navigation is ensured by the classical
sensor fusion architectures integrating an Inertial Navigation
System (INS) with GPS, typically indicated as GPS-INS
[2, 3], which has been extensively exploited by researchers
considering fixed-wing [4, 5], helicopter [6, 7], andmultirotor
[8] UAVs. Nevertheless, a wide range of both military and
civil applications, for example, urban and indoor surveillance,

infrastructure monitoring, and exploration, require a micro-
UAV (MAV) to be able to navigate in more complex environ-
ments, such as unknown areas, full of static, and/or mobile
obstacles in which the GPS signal may be completely absent
(GPS-denied, e.g., indoor) or unreliable due to multipath,
absorption, and jamming phenomena (GPS-challenging,
e.g., urban or natural canyons). Hence, alternative solutions
have to be found, which involve the use of exteroceptive
sensors that can be active, such as RADAR [9], LIDAR
[10], ultrasonic rangefinders [11], and ultra-wideband (UWB)
positioning system [12], passive, for example, monocular [13]
and stereovision [14] cameras operating in the visible band
of the electromagnetic spectrum, or hybrid, like RGB-depth
cameras [15], as they simultaneously acquire passive RGB
images and depth images of the same scene in an active way
[16].

Indeed, the use of these sensors has provided a boost
to the capability of navigating autonomously in complex
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environments by performing Simultaneous Localization and
Mapping (SLAM) [17, 18], that is, the real-time process by
which a mobile marine/ground/aerial robot, moving within
an unknown area, computes its own trajectory (localization)
while simultaneously building a map of that environment
(mapping). However, the implementation of SLAM algo-
rithms on board MAVs still presents significant technical
challenges, mainly due to the limited resources available on
board for sensing and computation, as well as their complex
and fast 3D dynamics [19]. On this basis, the adoption of
feature-based approaches for mapping is extremely promis-
ing as it can lead to a sparse but compact representation of
the observed environment, with higher speed of execution
and reduced amount of data storage with respect to alter-
native occupancy grid techniques [20]. Among the different
technological solutions suitable for SLAM (such as vision-
based [21], LIDAR-based [22, 23], and RGB-depth-based
[24]), LIDAR are more robust than passive vision systems to
operate in indoor environment, especially in case of low- or
no-light conditions. Also, they directly provide range data.
However, LIDAR-based SLAM presents significant technical
challenges, mainly related to the lower resolution and limited
texture of the available measurements with respect to images
provided by passive vision sensors. In order to deal with these
issues, strong research efforts have been recently addressed to
the possibility of augmenting LIDAR-based SLAM exploiting
intensity information [25] or detection of robust features [26].
Instead, a different investigated solution consists in integrat-
ing passive vision and active LIDAR sensors [27, 28] in order
to exploit complementary advantages and compensate their
drawbacks.

In this framework, the aim of this paper is to present a
technique for fast and robust detection of line features from
range data provided by a 2D LIDAR. Indeed, these sensors,
due to their limited size and weight, are particularly suited
for installation on board MAVs operating in indoor areas,
for example, office-like environments, but also outdoor due
to their limited sensitivity to ambient light variations. Line
extraction algorithms are typically characterized by two steps,
namely, segmentation and line fitting. The former identifies
the number of potential lines and associates the measured
points to each candidate, while the latter allows extracting
the line parameters from the aggregates of points. A review
of the techniques for line detection from 2D LIDAR data,
mostly used in the literature, is presented in [29]. Six different
approaches to the segmentation task, namely, the split-
and-merge algorithm [30, 31], the line-regression algorithm
[32], the incremental algorithm [33] (also known as line-
tracking [34]), RANSAC [35], the Hough Transform [36],
and the Expectation-Maximization (EM) algorithm [37], are
compared in [29] in terms of speed, complexity, correctness,
and precision bymeans of experimental tests on real scan data
collected in a large-scale office environment. In [29], each one
of these techniques is further accelerated by implementing
clusterization, which allows coarsely dividing a raw laser scan
into contiguous groups (clusters). With regard to line fitting,
[29] states that state-of-the-art approaches rely on the least
squares (LS) method.

The proposed line detection algorithm provides solutions
for both segmentation and line fitting.The issue of developing
and testing robust techniques for segmentation has critical
importance due to the challenges of dealing with clutter in
2D environments. In this respect, an original two-level clus-
terization algorithm is presented which includes a merging
check to avoid the possibility that an edge in the scene is split
in twoormore parts only due to themeasurements noise.This
solution for segmentation can also be adapted to represent
both nonlinear and piecewise linear structures. An algorithm
based on the Principal Component Analysis (PCA) [38] is
proposed for line fitting. Specifically, it relies on the capability
of the PCA to estimate the principal directions of the 3D
datasets acquired by a 2D LIDAR. PCA has already been
used to detect lines from row and column edges extracted
in 2D images [39]. Regarding applications with range data,
PCA is used in [40] to identify feature points belonging to
planar structures and in [41] to recognize echoes produced
by pole-like objects and to extract the direction from road-
shaped point clouds in 3D urban environments. In both
[40, 41], data from 3D LIDAR systems, for example, the
Multiplatform Mobile Laser Scanning [42], are processed.
Such a system is not suitable for application on board MAVs.
PCA-based methods have also been widely exploited in the
open literature for pose estimation applications in different
scenarios [43, 44]. AlthoughPCA is not a new concept for line
fitting, a detailed analysis of its performance when used with
LIDAR range data is not available in the literature. On this
basis, performance of the proposed PCA-based line detection
algorithm is assessed bymeans of both numerical simulations
and experimental tests. A specific analysis is carried out to
compare the PCA to the LS approach for line fitting in terms
of computational load and accuracy level. This is important
to demonstrate the applicability of the proposed approach for
implementation on board MAVs, since LS is a standard and
extremely fast method to perform linear regression given a
set of range 3D data.

An additional aim of this paper is to demonstrate the
possibility of the PCA-based line detection algorithm to
be used within a 2D SLAM process. In this respect, it is
worth outlining that many UAV applications (e.g., indoor
inspection and monitoring) involve the necessity of flying in
2D environments. In this context, the capability of estimating
the horizontal motion and simultaneously a 2D map is
relevant, also considering that the height above ground can
be measured by using additional sensors suitable for the
installation on board MAVs (e.g., ultrasonic rangefinders)
or also by redirecting downward a narrow portion of the
scan emitted by the 2D LIDAR using mirrors [19]. Hence,
a line-based mapping algorithm is here presented. Specific
attention is addressed to the procedures foreseen for handling
the features to be stored in the updating map, as well as for
improving the accuracy of the position and attitude solution
provided by a localization algorithm (localization-aiding). A
SLAM algorithm using a probabilistic PCA algorithm for line
detection from 2D LIDAR data is presented in [45]. However,
results obtained in [45] applying offline the algorithm on
real data put into evidence errors in the estimated maps
due to the complexity of correctly merging clusters from
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subsequent point clouds. This justifies the need of further
investigations to demonstrate reliability and effectiveness in
performing this task. Another example of localization-aiding
exploiting line detection is discussed in [46]. Specifically, the
relative displacement and inclination between correspond-
ing lines in consecutive frames are integrated within an
Extended Kalman Filter. Instead, in this paper, correspon-
dences between new lines extracted from the actual frame
and lines already stored in the updating map are determined
using a more robust approach based on multiple angular and
position metrics, and they are adopted to directly correct the
vehicle’s position and the heading angle. However, it is worth
outlining that the development and performance analysis
of a complete SLAM framework based on the proposed
algorithms for mapping and localization-aiding is out of the
scope of this paper.

This paper is organized as follows. Section 2 describes
in detail the proposed line detection algorithm operating
on range data, as well as the line-based mapping technique
within which the algorithm is implemented, including the
approach proposed for localization-aiding. Section 3 presents
the numerical simulations which are carried out to com-
pare PCA and LS methods for line fitting in terms of
computational load and accuracy level. The experimental
setup conceived to collect real data and the results obtained
applying the PCA-based line detection algorithm aswell as an
example of full implementation of localization and mapping
are described in Section 4. Finally, Section 5 contains the
conclusion and indications concerning possible future works.

2. PCA-Based Line Detection

The PCA-based algorithm proposed for line detection is
conceived to operate receiving as input only range mea-
surements provided by a 2D LIDAR. Typically, the data
collected by these sensors are given in output according to
a representation in polar coordinates, that is, the scan angle
(𝜃), which is the angular position in the LIDAR Field-of-
View (FOV) of each emitted ray with respect to a reference
direction (usually it is the boresight one), and the range (𝜌),
which is measured by exploiting the Time-of-Flight (TOF)
principle. However, the measured 2D point clouds will be
expressed in the following also using the representation in
rectangular coordinates (𝑥 and 𝑦) which can be obtained by
applying

[𝑥𝑦] = 𝜌[cos (𝜃)sin (𝜃)] . (1)

Once a 2D point cloud is acquired by a 2D LIDAR,
the PCA-based line detection algorithm starts with the
segmentation step, which is carried out by performing a clus-
terization process characterized by two hierarchical levels. At
the higher level, the scan is coarsely subdivided into main
clusters which represent clearly separated portions of the
observed scene. This is done by looking for peaks of the
interpoint distance (i.e., the distance between consecutive
points in the scan) as a function of 𝜃. These peaks, indicated
as break-points, represent the beginning of any individual

cluster which is found moving along the scanning direc-
tion, and they are recognized as those locations where the
interpoint distance is larger than a specific threshold (DTh).
The correct value of DTh can be easily selected, considering
the specifications of the available sensor in terms of angular
resolution and operating range, in order to avoid separating
points belonging to same main cluster. For instance, the
UTM-30LX-EW produced by Hokuyo is characterized by an
angular resolution of 0.25∘ and a maximum range of 30m.
Hence, DTh is set to 15 cm considering that the maximum
interpoint distance at a range of 30m is 13.1 cm. Figure 1
shows an example of implementation of this step of the
algorithm over a point cloud acquired within a 2D corridor
environment, using the UTM-30LX-EW LIDAR.

Four separate main clusters are identified in Figure 1.
Before moving to the next phase, it is worth mentioning that
if a cluster is too small (typically less than 5 points) it is
neglected from the line detection process. Once the main
clusters are separated from each other, a 2nd-level (low-level)
clusterization is required to deeply search for subclusters
potentially corresponding to different linear structures in the
observed scene. Specifically, this step looks for local peaks of
the two derivatives with respect to 𝜃 of the functions 𝑥󸀠(𝜃)
and 𝑦󸀠(𝜃) by setting, as new break-points, those locations (i)
at which either (2a) or (2b) is satisfied:

𝑥󸀠 (𝜃𝑖) = 𝑑𝑥 (𝜃𝑖)𝑑𝜃 > [[
1𝑁
𝑁∑
𝑖=1

𝑑𝑥 (𝜃𝑖)𝑑𝜃
+ 1𝑁 − 1

𝑁∑
𝑖=1

(𝑑𝑥 (𝜃𝑖)𝑑𝜃 − 1𝑁
𝑁∑
𝑖=1

𝑑𝑥 (𝜃𝑖)𝑑𝜃 )2]] ,
(2a)

𝑦󸀠 (𝜃𝑖) = 𝑑𝑦 (𝜃𝑖)𝑑𝜃 > [[
1𝑁
𝑁∑
𝑖=1

𝑑𝑦 (𝜃𝑖)𝑑𝜃
+ 1𝑁 − 1

𝑁∑
𝑖=1

(𝑑𝑦 (𝜃𝑖)𝑑𝜃 − 1𝑁
𝑁∑
𝑖=1

𝑑𝑦 (𝜃𝑖)𝑑𝜃 )2]] .
(2b)

In the equations above, where𝑁 is the number of points
in the considered main cluster, the threshold assigned to
identify the local peaks of 𝑥󸀠(𝜃) and 𝑦󸀠(𝜃) is the sum of their
mean and standard deviation computed over the cluster.This
original approach is particularly convenient to better describe
quite complex indoor environments where, for instance,
the walls are characterized by frequent corners due to the
presence of doors, windows, or other obstacles. By looking at
Figure 2, it is clear how the number of break-points increases
after the 2nd-level clusterization is applied with respect to
Figure 1.

Of course, due to the measurement noise, some of the
new break-points do not correspond to the beginning of a
different linear structure.This issue is solved, after line fitting,
by implementing an additional step necessary to merge
adjacent lines corresponding to the same linear structure.
Before entering this detail, it is necessary to focus on the line
fitting step, which relies on the PCA, that is, a technique able



4 International Journal of Aerospace Engineering

Clusterization, 1st level

 
−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−4

(m)

LIDAR measurements
Break-points

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

(m
)

Figure 1: Example of implementation of the PCA-based line detec-
tion algorithm in a corridor environment: 1st-level clusterization.

to determine the principal directions of a multidimensional
dataset by analyzing the eigenvectors and eigenvalues of its
covariance matrix (𝑄). In this case, given a generic subcluster
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Figure 2: Example of implementation of the PCA-based line detec-
tion algorithm in a corridor environment: 2nd-level clusterization.

(composed of 𝑁SC measurements), 𝑄 can be estimated by
applying

𝑄 = 1𝑁SC

[[[[[[[
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𝑦𝑖)
2

]]]]]]]
. (3)

Hence, a line is extracted from the subcluster if the ratio,𝑟, between the two eigenvalues of𝑄 (which is ameasure of the
elongation of the point-set) is larger than a specific threshold
(ETh). Indeed, if the point-set does not have a linear structure,
the value of 𝑟 will not be far from 1. So, the choice of ETh
mainly affects the capability to declare a subcluster as line
depending on its length, and it must be done considering
the range measurement accuracy of the available LIDAR. Of
course, the larger ETh is, the more elongated the selected
point-setmust be to be recognized as line. For instance, if ETh
is set to 100, the probability to identify a 75 cm linear structure
at a distance of 10m (assuming a std of 4 cm in the direction
perpendicular to the linear one) is 1.35% (evaluated over 105
simulations). If ETh is increased to 380 this probability goes
to zero. Specific numerical simulations (not discussed for
the sake of brevity) have demonstrated that values of ETh
around a few tens are adequate to robustly extract even very
small linear structures (down to 10 cm) from the observed
scene.

If the condition on 𝑟 is satisfied, the parameters suitable
to univocally identify the line can be computed, for example,

on the basis of the classical Cartesian representation shown
in

𝑦 = 𝑚𝐿𝑥 + 𝑛𝐿, (4)

where 𝑥 and 𝑦 are the coordinates of a generic point of the
line, 𝑚𝐿 is the angular coefficient, and 𝑛𝐿 is the known term.
As the direction of the line (𝛼𝐿) is given by the eigenvector
(whose components are 𝜆𝑥 and 𝜆𝑦) corresponding to the
maximum eigenvalue of 𝑄,𝑚𝐿 is derived using

𝑚𝐿 = tan (𝛼𝐿) = 𝜆𝑦𝜆𝑥 , (5)

while 𝑛𝐿 is obtained by assuming that the centroid of the
subcluster (whose coordinates are 𝑥𝐶 and 𝑦𝐶) belongs to the
line, as shown in

𝑛𝐿 = 𝑦𝐶 − 𝑚𝐿𝑥𝐶. (6)

Of course, the two ends of the line must be assigned
in order to obtain a finite line segment (which models the
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Figure 3: Example of full implementation of the PCA-based line
detection algorithm in a corridor environment: clusterization and
line fitting.

observed linear structure). This is done by projecting the
first and last points of the subcluster in the line direction.
Finally, the previouslymentionedmerging step allows joining
two adjacent subclusters if the corresponding lines satisfy the
conditions highlighted in

(𝛼𝐿1 − 𝛼𝐿2) < 𝛼𝑇 ∩ [((𝛼𝐿1 − 𝛼𝐶𝐶) < 𝛼𝑇)
∩ ((𝛼𝐿2 − 𝛼𝐶𝐶) < 𝛼𝑇)]
∪ [((𝛼𝐿1 − (180 − 𝛼𝐶𝐶)) < 𝛼𝑇)
∩ ((𝛼𝐿2 − (180 − 𝛼𝐶𝐶)) < 𝛼𝑇)] ,

(7)

where 𝛼𝐶𝐶 is the orientation of the direction of the segment
which links their centroids, 𝛼𝑇 is an angular threshold, and
the subscripts “1” and “2” are used to distinguish between
the two lines. Also, the symbols ∩ and ∪ are used to
indicate the intersection and union operators from set theory,
respectively. Small values of 𝛼𝑇 (e.g., 0.05∘) allow the method
to recognize even slight variation in the orientation of the
observed linear structure. As a result, Figure 3 is obtained
by applying this line fitting approach (setting ETh to 50 and
including the merging step) to the clusterized dataset shown
in Figure 2.

2.1. Line-Based Mapping and Localization-Aiding. The algo-
rithm proposed for line-based mapping is conceived to build
a 2D map of the observed environment in an incremental
way, that is, by progressively adding and updating lines as
they are detected through subsequent acquisitions of range
data. Of course, in accordance with the concept of SLAM,
an adequate solution in terms of position and attitude must
be provided by a localization algorithm. Indeed, the first
step consists in applying this pose solution to convert the

acquired point cloud from the sensor reference frame (SRF)
to the inertial frame (e.g., East-North-Up or North-East-
Down with fixed origin) in which the trajectory of the
moving platform and the map of the observed scenario
are determined. Afterwards, the PCA-based line detection
algorithm is implemented and the extracted line segments
are used to update the map. Specifically, each of this segment
is a potential candidate to contribute to the map generation
process, but a decision-making step is required to establish
whether or not it corresponds to a linear structure already
contained (at least partially) in the map. To this aim, each of
the new detected lines is compared to all the existing ones
in the map using two metrics, namely, Δ𝛼𝐿 and Δ𝜌𝐿. The
former represents the difference between the two compared
lines in terms of orientation (𝛼𝐿) which can be easily obtained
from (5). The latter, instead, is a distance metric derived by
summing two contributions as shown in

Δ𝜌𝐿 = Δ𝑑𝐿 + Δ𝐶𝐿; (8)

Δ𝑑𝐿 is the difference between the two compared lines in terms
of the distance from the map origin (𝑑𝐿) which is computed
using

𝑑𝐿 = −𝑦𝐶 + tan (𝛼𝐿) 𝑥𝐶√1 + tan2 (𝛼𝐿) . (9)

Instead, Δ𝐶𝐿 is the distance between the centroids of the
two compared lines, whose coordinates are (𝑥𝐶1, 𝑦𝐶1) and(𝑥𝐶2, 𝑦𝐶2), respectively. Δ𝐶𝐿 can be derived using

Δ𝐶𝐿 = √(𝑥𝐶1 − 𝑥𝐶2)2 + (𝑦𝐶1 − 𝑦𝐶2)2. (10)

Given a line detected in the current dataset, if it is not
possible to find an already stored segment for which both
metrics are kept below aminimum threshold assigned taking
localization errors into account (e.g., 15∘ and 1m, resp.), it
is classified as a new element of the map. Conversely, the
detected line is matched to the line in the map for whichΔ𝜌𝐿 is the minimum. Indeed, among the two metrics, Δ𝜌𝐿 is
certainly the most important to ensure correct line matches,
as in many indoor scenarios (e.g., corridors); it is likely to
findmore than one linear structure with the same orientation
(Δ𝛼𝐿 is similar) but located at different positions. Once all the
possible matches are found, the corresponding elements of
the map must be updated. This is done by projecting the two
ends of the new line on the direction of the old one, so that
the two updated ends are the ones for which the length of the
line is the maximum.

Thematches between newdetected lines and old elements
of the map can be used for localization-aiding, that is,
to improve the accuracy of the position and attitude esti-
mates provided by a localization algorithm. Here, a strategy
for localization-aiding is proposed which exploits angular
information extracted from the previously mentioned line
matches. Specifically, if 𝑁ML is the total number of line
matches at a generic time (𝑡𝑘), the heading solution at that
time can be corrected as shown in

𝛾NEW (𝑡𝑘) = 𝛾OLD (𝑡𝑘) + Δ𝛾MAP, (11)
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where the subscripts “OLD” and “NEW” indicate the orig-
inal (provided by the localization algorithm) and updated
estimates of the heading angle (𝛾), respectively, while the
correcting factor (Δ𝛾NEW) is the weighted average of the
angular offsets between the matched lines, as shown in

Δ𝛾MAP (𝑡𝑘) = ∑𝑁ML
𝑖=1 𝑤𝑖MLΔ𝛼𝑖ML∑𝑁ML
𝑖=1 𝑤𝑖ML

. (12)

The values of the weights (𝑤ML) in (12) are determined
using the distance metric Δ𝜌𝐿 as shown in (13), thus giving
more relevance to those matches which are closer in terms of
location occupied in the map

𝑤ML = ( 1Δ𝜌𝐿)
2 . (13)

At this point, also the position can be updated using

𝑇NEW (𝑡𝑘) = 𝑇 (𝑡𝑘−1)
+ [ cos (Δ𝛾MAP) sin (Δ𝛾MAP)−sin (Δ𝛾MAP) cos (Δ𝛾MAP)] (𝑇OLD (𝑡𝑘)
− 𝑇 (𝑡𝑘−1)) ,

(14)

where 𝑡𝑘−1 is the previous time instant and the subscripts
“OLD” and “NEW” are again used to indicate the original
(provided by the localization algorithm) and updated esti-
mates of the vehicle’s position (𝑇).
3. Numerical Simulation Results

This section presents description and results of the numerical
simulations carried out to assess absolute performance of
the PCA when used for line fitting and to get a comparison
with the traditional LS method [47], for which a fast version
is implemented [48]. The main aspects which are deemed
relevant to this analysis are the attained accuracy level and
the computational load.

Since the goal of these simulations is to assess line fitting
performance of the PCA method over sets of points dis-
tributed according to a linear pattern, a realistic reproduction
of the operation of a range sensor (e.g., 2D LIDAR) is not
carried out. In this respect, the simulations simply rely on the
generation of a set of 𝑛 points, randomly distributed along
a linear direction identified by the angular coefficient (𝑚𝐿),
so that the point coordinates (𝑥𝑖 and 𝑦𝑖) can be determined
using

𝑥𝑖 = 𝑥𝑆𝑖,
𝑦𝑖 = 𝑚𝐿𝑥𝑖 + ]𝜎

𝑖,
𝑖 = 1, . . . , 𝑛,

(15)

where 𝑥𝑆 is the point separation and ]𝜎
𝑖 is the 𝑖th extraction

from a normal distribution with zero mean and standard
deviation equal to 𝜎. An example of simulated dataset is
shown in Figure 4.

−6
−4
−2

0
2
4
6

(m
)

5 10 15 20 25 30 35 400
(m)

Figure 4: Example of simulated point datasets. Setting parameters:𝑚𝐿 = 0; 𝑛 = 1000; 𝑥𝑆 = 4 cm; 𝜎 = 50 cm.

The effect on the results of considering different settings
for𝑥𝑆 and𝜎 is analyzed. Indeed,𝑥𝑆 is ameasure of the angular
resolution of the range data (although its variation can also
reproduce the effect of modifying the distance of the sensor
from the scene given a fixed resolution), while 𝜎 simulates the
sensor noise in the measured distance. On the other hand,𝑚𝐿 is set to 0 as line fitting performance is independent of
the orientation of the linear dataset. As a consequence of this
choice, the length of the simulated linear dataset (𝐿), which
also has an impact on line fitting performance, is determined
by the selected values of 𝑛.

Once the setting parameters of the simulated range data
are chosen, both PCA and LS methods are applied obtaining
the corresponding lines, each one identified by an angular
coefficient (𝑚PCA and 𝑚LS, resp.) and a constant term (𝑛PCA
and 𝑛LS, resp.). Finally, the line fitting accuracy is evaluated as
the standard deviation of the distance of the assigned points
from the estimated line (𝐸𝑟𝑟PCA and 𝐸𝑟𝑟LS, resp.), according
to

𝐸𝑟𝑟PCA = √ 1𝑛
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑚PCA𝑥𝑖 − 𝑛PCA)2, (16a)

𝐸𝑟𝑟LS = √ 1𝑛
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑚LS𝑥𝑖 − 𝑛LS)2. (16b)

It is worth mentioning that, for any selected configura-
tion of the setting parameters, the results are averaged on
10000 simulations thus having the possibility of carrying
out meaningful statistical analyses. Firstly, different values
of 𝑥𝑆 are considered, ranging from 5mm to 10 cm, thus
being consistent with typical 2D LIDAR specification in
terms of angular resolution (e.g., 0.1∘–0.25∘) taking also their
typical operational range (up to a few tens of meters) into
account. Instead, 𝜎 is kept fixed to 4 cm, which is also in
line with typical range noise of a 2D LIDAR. The analyzed
configurations and the corresponding simulation results are
summarized in Table 1 where the computational time (𝑡PCA
and 𝑡LS, resp.) is expressed in milliseconds (ms).

It can be clearly stated that the computational time
provided by the PCA (largely less than 1ms) is comparable to
the result of the LS approach. Also, there are no significant
differences in the accuracy level. Indeed, the difference
between the root mean squares (rms) of the estimation error
provided by the twomethods is always negligible if compared
to the absolute performance attained by the PCA. This result
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Table 1: Comparison between PCA and LS approaches for line fitting. The same noise level (𝜎 = 4 cm) is considered for all the analyzed
configurations of the setting parameters. Results are averaged over 10000 simulations.

𝑥𝑆 (m) 𝑛 𝐿 (m) 𝑡PCA
mean (ms)

𝑡LS
mean (ms)

𝐸𝑟𝑟PCA
rms (m)

(𝐸𝑟𝑟PCA −𝐸𝑟𝑟LS)/𝐸𝑟𝑟PCA
(%)

0.005 200 1 0.10 0.02 0.040 2.41 ⋅ 10−1
0.005 1000 5 0.12 0.04 0.040 9.60 ⋅ 10−3
0.005 2000 10 0.59 0.34 0.040 2.00 ⋅ 10−5
0.01 100 1 0.09 0.02 0.040 2.41 ⋅ 10−1
0.01 500 5 0.11 0.03 0.040 9.60 ⋅ 10−3
0.01 1000 10 0.12 0.04 0.040 2.41 ⋅ 10−3
0.025 40 1 0.09 0.02 0.039 2.41 ⋅ 10−1
0.025 200 5 0.10 0.02 0.040 9.61 ⋅ 10−3
0.025 400 10 0.10 0.03 0.040 2.40 ⋅ 10−3
0.05 20 1 0.09 0.02 0.038 2.42 ⋅ 10−1
0.05 100 5 0.09 0.02 0.040 9.60 ⋅ 10−3
0.05 200 10 0.10 0.03 0.040 2.40 ⋅ 10−3
0.1 10 1 0.09 0.02 0.036 2.41 ⋅ 10−1
0.1 50 5 0.09 0.02 0.039 9.60 ⋅ 10−3
0.1 100 10 0.08 0.02 0.036 2.41 ⋅ 10−1

Table 2: Comparison between PCA and LS approaches for line
fitting. Effect of the noise level (n = 20; 𝑥𝑆 = 5 cm; L = 1m). Results
are averaged over 10000 simulations.

𝜎 (m) 𝐸𝑟𝑟PCA
rms (m)

(𝐸𝑟𝑟PCA −𝐸𝑟𝑟LS)/𝐸𝑟𝑟PCA
(%)

0.005 0.005 4.00 ⋅ 10−3
0.01 0.009 1.50 ⋅ 10−2
0.05 0.048 3.79 ⋅ 10−1
0.1 0.096 1.56
0.2 0.204 6.85

is not affected by variation of density of the simulated dataset,
which is represented by𝑥𝑆. As expected, the longer the dataset
is (for a given value of 𝑥𝑆), the higher the associated value of 𝑟
becomes, and consequently the closer PCA and LS accuracy
levels get. Indeed, the difference reduces of two orders of
magnitude, that is, from 10−1% to 10−3%, as 𝐿 goes from 1m
to 10m. Additional numerical simulations are carried out
to show how the results presented above can be affected by
a variation in the level of measurement noise. Specifically,𝑥𝑆 is set to 5 cm and 𝑛 is set to 20, so that 𝐿 is 1m, thus
reproducing a quite sparse dataset characterized by a linear
spatial distribution. Instead, five different values of 𝜎 are
considered ranging from 5mm (best-case) to 20 cm (worst-
case). Simulation results are collected in Table 2.

Before discussing the absolute accuracy level attained by
the PCA and the comparison with the LS performance, it is

worth outlining that three of the selected values of 𝜎, that
is, 5mm, 1 cm, and 5 cm, are consistent with the nominal
levels of performance that scanning LIDAR, exploiting the
TOF principle for distance measurement, are able to ensure.
Indeed, high-performance systems may be characterized by
range accuracies from around 1 cmdown to even submillime-
ter level, while, for the majority of scanning LIDAR, 𝜎 never
exceeds the interval going from 3 cm to 5 cm. Conversely, the
remaining values to which 𝜎 is set in the simulations (i.e.,
10 cm and 20 cm) are representative of worst-case conditions
whichmay only occur if the sensor receives too-much energy
due to, for instance, direct sun illumination in outdoor envi-
ronment. On this basis, results in Table 2 show that the PCA
is able to carry out line fitting with the same accuracy level as
the LS method, even operating on sparse data characterized
by large nonnominal values of the range measurement noise.

Finally, it is interesting to carry out further simulations
to evaluate the impact on line fitting accuracy caused by
the presence of outliers in the considered dataset. Since we
are just dealing with the problem of line fitting, outliers
must be modeled as measured points which have been
erroneously attributed to a given cluster. Specifically, outliers
are generated by randomly extracting (according to a uniform
probability distribution) a percentage of points (𝑃𝑂) in
the dataset for which the displacement from the reference
direction is equal to 3𝜎. Again, it is important to stress that
even if these simulated data are not representative of real laser
scan data, they can be considered adequate for the analysis
of line fitting performance as the segmentation necessary to
separate clusters belonging to different linear structures is not
addressed. For this analysis, 𝑥𝑆 is set to 2.5 cm and 𝑛 is set to
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Figure 5: Conceptual representation of the conceived experimental setup.

Table 3: Comparison between PCA and LS approaches for line
fitting. Effect of the outliers percentage (n = 200; 𝑥𝑆 = 2.5 cm; L =
5m). Results are averaged over 10000 simulations.

𝑃𝑂 (%) 𝐸𝑟𝑟PCA
rms (m)

(𝐸𝑟𝑟PCA −𝐸𝑟𝑟LS)/𝐸𝑟𝑟PCA
(%)

1 0.041 1.0 ⋅ 10−2
5 0.047 1.4 ⋅ 10−2
10 0.053 1.7 ⋅ 10−2
20 0.062 2.4 ⋅ 10−2

200, so that 𝐿 is 5m, while 𝜎 is 4 cm. Simulation results are
collected in Table 3, where four different values, namely, 1%,
5%, 10%, and 20%, are considered for 𝑃𝑂.

Results in Table 3 show that the PCA-based line fitting
technique has comparable performance to LS and ensures
cm-level accuracy even setting 𝑃𝑂 to 20%, which in the
analyzed case corresponds to 40 outliers over the total
number of 200 points composing the dataset.

4. Tests on Experimental Data

The scope of this section is to present the results obtained
applying the proposed algorithms and techniques on real
range data. To this aim, it is necessary to describe the
experimental setup conceived for data collection as well as to
clarify in which scenarios the experimental tests are carried
out. As regards the setup, the selected 2D LIDAR is the UTM-
30LX-EW produced by Hokuyo, for which the main specifi-
cations and a full characterization can be found in [49]
and [50], respectively. This sensor is installed on a portable
platform together with one autopilot, that is, the Pixhawk
produced by 3D robotics, which is used to obtain reference
information regarding the attitude of the platform, and
one embedded board, that is, the Nitrogen6X produced by
Boundary-Devices. This latter component is used to register
data from both the Pixhawk (using USB connection) and
the LIDAR (using Ethernet connection) by exploiting the

corresponding nodes of the Robot Operating System (ROS)
[51], that is, the mavros and the urg_node, respectively.
This ensures simultaneous recording of range data from
the LIDAR and inertial data from the Pixhawk, together
with their timestamps, within the same bag-file. The data
acquisition is commanded by a laptop exploiting a Wi-Fi
connection. A conceptual representation of the experimental
setup is shown in Figure 5.

This setup has been first used to perform static acquisition
of range data within indoor cluttered environments consid-
ering both limited-size areas, like corridors or offices, and
wider scenarios such as halls. Figure 6 shows a portion of the
scaled-planimetry of the ground floor of Building 83 (which
is part of the School of Engineering) inside the Cranfield
University Campus. In this planimetry, red polygons are used
to highlight the areas where LIDAR data have been collected.

Each horizontal sequence of images in Figure 7 shows
partial (clusterization) andfinal (line fitting) outputs obtained
implementing the PCA-based line detection algorithm over
point clouds collected within the previously defined indoor
scenarios. These results demonstrate the robustness of the
proposed line detection approach. Indeed, it has been able
to extract a large number of linear structures characterized
by largely variable lengths, that is, ranging from a few meters
down to a few tens of centimeters. The standard deviation
of the distance between the points belonging to each cluster
and the corresponding detected line is of cm-level. Also, the
algorithm appears to be able to deal with the presence of
clutter in the observed scene. This is particularly clear by
looking at Figures 7(b), 7(c), and 7(e).

4.1. Localization and Mapping Experiments. Dynamic acqui-
sitions have also been realized with the experimental setup
transported by a human operator, thus partially reproducing
the 3D dynamics which characterizes the flight of MAVs.The
2D maze shown in Figure 8 is the test area prepared for the
dynamic experiment.

The major goal of these tests is the preliminary assess-
ment of the algorithms presented in Section 2.1 for map-
ping and localization-aiding. This is done by implementing
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(c), (d), (e)
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Figure 6: Cranfield University Campus. School of Engineering.
Portion of the planimetry of Building 83 (ground floor). Red
polygons are used to enclose the areas selected for the experimental
tests. The letters in brackets are used to specify the areas relative to
the results presented in Figure 7.

the entire localization and mapping process, in which the
LIDAR/Inertial Odometry algorithm presented in [52] is
in charge of the localization step. The structure of this
localization and mapping process is summarized in Figure 9.

Once LIDAR and inertial data are collected exploiting
the experimental setup described in the previous subsection,
the localization and mapping algorithm are run offline in
MATLAB environment. An example of application of this
localization and mapping approach is shown in Figure 10.

By looking at Figure 10, it is clear that the line-based
mapping technique allows generating a sparse but accurate
representation of the observed scene. Indeed, all the edges of
the real map (black lines) are adequately represented by the
detected lines, in terms of length, location, and orientation.
In this respect, the localization-aiding step has a fundamental
role since it allows bounding potential drifts of the error in
the estimated trajectory which could cause the edges of the
estimatedmap to be characterized by position and/or angular
offsets with respect to the real corresponding linear structure.

In order to better highlight the attained advantages, Fig-
ure 11(a) shows the correction provided by the localization-
aiding step, according to (12), to the time behavior of the

heading angle with respect to the solution given by the
Pixhawk (𝛾FCU). As a consequence, (14) can be applied thus
making the estimated trajectory not to drift eastward as it
occurs if the localization-aiding step is not implemented (as
in [52]). This is highlighted in Figure 11(b).

5. Conclusions

This paper presented a new technique for line detection from
range data (2D point clouds) provided by a 2D LIDAR,
which is of interest to Unmanned Aerial Vehicles which need
to carry out autonomous navigation applications, such as
localization and mapping, in 2D cluttered environments.

As regards the two steps composing the algorithm,
segmentation consisted of a hierarchical-level clusterization
approach suitable for quickly subdividing themeasured point
cloud into distinct aggregates of points representing potential
candidates to be extracted as lines. Line fitting relied on the
Principal Component Analysis (PCA) instead of exploiting
the classical least squares (LS) linear regression as most of the
state-of-the-art approaches.

Numerical simulations were realized to assess line fitting
performance of the PCA in comparison with a fast LS
solution. The comparison was done in terms of accuracy
and computational load, and the simulations considered the
variability of dataset density and length, and robustness
against noise and outliers. Although the algorithms were
implemented offline in MATLAB, results allowed stating
that the PCA is compatible with real-time implementation
as it kept the run-time below 1ms and close to the LS
performance, even considering large clusters of 2000 points.
Also, PCA ensured the same accuracy level of LS in spite of
the variability of the characteristics of the simulated dataset.

Performance of the entire line detection process was
evaluated over real LIDARdata acquired by using a purposely
realized experimental setup. Runs over static acquisitions
performed in different indoor environments, such as corri-
dors, offices, and halls, demonstrated the effectiveness of the
proposed method in extracting most of the linear structures
in the scene with cm-level accuracy and its robustness when
dealing with the presence of high level of clutter.

In order to demonstrate the applicability of the proposed
line detection algorithm for autonomous navigation in 2D
environments, it was integrated within an innovative line-
based mapping technique including also a new method
for localization-aiding based on the extraction of angular
information from the updating map. Dynamic acquisitions
within a purposely prepared 2D test area were carried out
to obtain a first performance assessment of the line-based
mapping algorithm and to show the advantages provided by
the introduction of the localization-aiding method. Indeed,
the results showed the capability of this approach to generate
a sparse but cm-level accurate representation of the observed
scene and to correct the heading and position solution
provided, respectively, by an inertial unit and by a localization
algorithm. Future works will be aimed at testing the proposed
methods installing the experimental setup on board of a
MAV, in order to fully assess performance in terms of
localization and mapping capabilities.
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Figure 7: Continued.
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Figure 7: From (a) to (e), step-by-step results from the PCA-based line detection algorithm over LIDAR point clouds collected within indoor
cluttered areas. (a)-(b) Corridors; (c)-(d)-(e) halls.
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form mobile laser scanning: usability and performance,” Sen-
sors, vol. 12, no. 9, pp. 11712–11733, 2012.

[43] R. Opromolla, G. Fasano, G. Rufino, and M. Grassi, “Large
space debris pose acquisition in close-proximity operations,”
in Proceedings of the 2nd IEEE International Workshop on
Metrology for Aerospace (MetroAeroSpace ’15), pp. 491–496,
IEEE, Benevento, Italy, June 2015.

[44] Z. Cao, Y. Sheikh, and N. K. Banerjee, “Real-time scalable
6DOF pose estimation for textureless objects,” in Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA ’16), pp. 2441–2448, IEEE, Stockholm, Sweden,May 2016.

[45] E. Brunskill andN. Roy, “SLAMusing incremental probabilistic
PCA and dimensionality reduction,” in Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 342–
347, Barcelona, Spain, April 2005.

[46] Y. Gao, S. Liu, M. M. Atia, and A. Noureldin, “INS/GPS/LiDAR
integrated navigation system for urban and indoor environ-
ments using hybrid scan matching algorithm,” Sensors, vol. 15,
no. 9, pp. 23286–23302, 2015.

[47] J. F. Kenney and E. S. Keeping, “Linear regression and correla-
tion,” inMathematics of Statistics, chapter 15, part 1, pp. 252–285,
Van Nostrand, Princeton, NJ, USA, 3rd edition, 1962.

[48] http://mathworld.wolfram.com/LeastSquaresFitting.html.
[49] Hokuyo, https://www.hokuyo-aut.jp/02sensor/07scanner/down-

load/products/utm-30lx-ew.
[50] P. Demski, M. Mikulski, and R. Koteras, “Characterization of

hokuyo utm-30lx laser range finder for an autonomous mobile
robot,” in Advanced Technologies for Intelligent Systems of
National Border Security, pp. 143–153, Springer, Berlin, Ger-
many, 2013.

[51] M. Quigley, K. Conley, B. P. Gerkey et al., “ROS: an open-source
Robot Operating System,” in Proceedings of the ICRAWorkshop
on Open Source Software, 2009.

[52] R. Opromolla, G. Fasano, G. Rufino,M. Grassi, and A. Savvaris,
“LIDAR-inertial integration for UAV localization and mapping
in complex environments,” in Proceedings of the International
Conference onUnmannedAircraft Systems (ICUAS ’16), pp. 649–
656, Arlington, Va, USA, June 2016.

http://mathworld.wolfram.com/LeastSquaresFitting.html
https://www.hokuyo-aut.jp/02sensor/07scanner/download/products/utm-30lx-ew
https://www.hokuyo-aut.jp/02sensor/07scanner/download/products/utm-30lx-ew


Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


