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Abstract—The massive increase of spam is posing a very
serious threat to email and SMS, which have become an important
means of communication. Not only do spams annoy users, but
they also become a security threat. Machine learning techniques
have been widely used for spam detection. In this paper, we
propose another form of deep learning, a linguistic attribute
hierarchy, embedded with linguistic decision trees, for spam
detection, and examine the effect of semantic attributes on the
spam detection, represented by the linguistic attribute hierarchy.
A case study on the SMS message database from the UCI machine
learning repository has shown that a linguistic attribute hierarchy
embedded with linguistic decision trees provides a transpar-
ent approach to in-depth analysing attribute impact on spam
detection. This approach can not only efficiently tackle ‘curse
of dimensionality’ in spam detection with massive attributes,
but also improve the performance of spam detection when the
semantic attributes are constructed to a proper hierarchy.

I. INTRODUCTION

Spam is an ever-increasing problem. It pervades any infor-
mation system through email or web, social, blog or reviews
platform [1], and is increasingly being used to distribute virus,
spyware, links to phishing web sites, etc. Email spam detection
has been an important part of correspondence since email
became an essential part of our daily lives. The growth of
of the number of mobile phone users has led to a dramatic
increasing of SMS spam messages [2], and message spams
have increasingly disturbed human life and caused significant
economic losses to many mobile users. The problem of spam is
not only an annoyance, but has also become a security threat.
It has attracted much attention of researchers for decades.

Web spam can be categorised into content spam (overly
stuffed and badly rated keywords), link spam (outgoing link
spam, incoming link spam), cloaking & redirection, and click
spam. Content spam is probably the first and most widespread
form of web spam [1]. PageRank [3] is the most classic
algorithm to estimate the global importance (authority or
reputation) score of a webpage on the web, which was used
by Google Search. TrustRank [4], Anti-Trust Rank [5] and
SpamRank [6] are well-known link-based detection algorithms.
It was shown that machine learning is superior to the PageRank
algorithm for static page ranking [7]. Silva et al. [8] compared
most classical machine learning methods, such as Artificial
Neural Networks (ANN), Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), K-Nearest Neigh-
bors (KNN), Adaptive Boosting, Bagging and LogitBoost for

web spams. Recently, Wang et al. [9] investigated social spam
detection on Twitter with Bernoulli Naive Bayes (NB), KNN,
SVM, DT and RF, and the RF algorithm obtained the best F1-
measure up to 0.946 on the social Honeypot dataset. Crawford
et al. [10] applied machine learning techniques to detect false
reviews (e.g. making fake, untruthful, or deceptive reviews), of
which the purpose is to artificially promote or devalue products
and services for profit or gain. Verma and Dhawan [12]
investigated spam detection in social networks with clustered
KNN technique.

Email spam could also have content spam and click spam.
While web spams usually target public users or some specific
user groups, email spams may have clearer targets for specific
purposes. Much research on email spam detection is based
on content spam. Machine learning technologies are widely
applied for email spam detection. The family of NB classifiers
[13], [14] is one of the most commonly implemented, which
has been embedded in many popular email clients. Tretyakov
[15] used the combination of the most classic machine learning
methods (Bayesian classifier, KNN, ANNs, SVMs) for the
problem of email spam-filtering. The combination of Bayesian
classifier and SVM obtained the precision of 94.4%. Shirani-
Mehr [11] investigated SMS Spams with NB algorithm.

Feature extraction is also important in spam detection.
Wang et al. [9] used four different types of feature sets
(user features, content features, Uni-Bi features, and sentiment
features) and their combinations to validate Random Forests
for Twitter spam detection, and the experimental results show
feature combination outperformed a single type of features
on decision making. The study of Alqatawna et al. [16]
showed that adding malicious related features to training data
significantly improved the detection of spam emails. Recently,
He et al. [17] investigated spam detection through analysing
the features in email and message spams with a RBF-kernal
SVM spam detector, thus to provide clues of spams to users.

Deep learning is a branch of machine learning based on a
set of algorithms that attempt to model high level abstractions
in data by using a deep graph with multiple processing
layers of nonlinear processing units for feature extraction and
transformation. Each successive layer uses the output from the
previous layer as input, forming a hierarchy from low-level to
high-level features. A linguistic attribute hierarchy has similar
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properties to the generic deep learning. Intermediate attributes
in upper layer are functions of their child features (attributes) in
lower layer. Hence, a linguistic attribute hierarchy (LAH) can
be viewed as another form of deep learning. Unlike the generic
deep learning, which constructs a neural network architecture,
such a linguistic attribute hierarchy has a flexible tree structure
with all attributes as leaves, and all non-leaf intermediate nodes
and the top decision node of the tree can be represented by a
machine learning model (e.g. linguistic decision tree [18], [19]
and neural network [20]), fed with their child nodes. An LAH,
embedded with LDTs, integrates the linguistic rules of LDTs
in the hierarchy to form a hierarchical decision making or
classification. The linguistic rules in the hierarchy are produced
by the embedded LDTs (equivalent to the nonlinear process
units in generic deep learning) in terms of hierarchical process
of decision making or classification (see details in Section
II.C).

The ‘curse of dimensionality’ in decision making mod-
elling is the exponentially increasing number of rules asso-
ciated with the increasing number of input attributes. This is a
major bottleneck that blocks the applications of decision trees.
With n input variables, described with τ distinguishable labels,
a full decision tree could produce τn number of rules. The
research [18] has shown that a linguistic attribute hierarchy
could help tackling the ‘curse of dimensionality’ problem, and
improve the performance of decision making or classification.

In this paper, a linguistic attribute hierarchy (LAH), embed-
ded with LDTs, is investigated for the deep learning of attribute
semantics for spam detection. The set of features extracted
from the message spam database is decomposed to subsets of
features in terms of the attribute semantics. Each subset will
be fed to an LDT to form an intermediate or the final decision
varialbes in an LAH, and an LDT in upper level of the LAH
could be fed with a subset of features and/or some intermediate
attributes from lower level. A case study is performed on the
SMS message spam database from the UCI machine learning
repository.

II. METHODOLOGY

A. Linguistic Decision Tree

1) Label Semantics: Label Semantics [21] uses a finite
set of successive labels L to describe an object in an
underlying domain Ω. Each label corresponds to a fuzzy
interval. Appropriateness measure and mass assignment are
two fundamental and interrelated measures in Label Semantics.
The appropriateness measure (µL(x)) of a label L, describing
an instance x, quantifies the agent’s subjective belief how L
can be used to describe x based on its (partial) knowledge of
the current labeling conventions of the population.

A mass assignment mx on sets of labels quantifies an
agent’s belief that any particular subset (called focal element)
of labels contains all and only the labels with which it is
appropriate to describe x. For an object x∈Ω, mass assignment
on labels is a function mx : 2L → [0,1], st. ∑S⊆L mx(S) = 1,
S ̸= ϕ , as an instance can be described with at least one label,
L ∈ L . In labeling conventions, some combinations of labels
may not be appropriate to describe any object. For example,
given label set L = {small,medium, large}, {small,medium}
and {medium, large} could be used to describe an object, but

small and large cannot both be appropriate to describe an
object.

Given a label set L together with associated mass as-
signment mx, the set of focal elements for L is given by:
F = {S ⊆ L : ∃mx(S)> 0}.

A λ -mapping of a label L ∈ L is defined as λ (L) = {F ∈
F ,L ∈ F}. That is, λ (L) covers those focal elements that
include label L.

An appropriateness measure µL(x) quantifies the degree of
our belief that the label L is appropriate for x ∈ Ω. The value
of µL(x) is evaluated as the sum of mass assignments mx over
λ (L):

µL(x) = ∑
F∈λ (L)

mx(F). (1)

In Label Semantics, the consonance assumption provides an
approach to calculating mass assignments from appropriate-
ness measures uniquely. Given non-zero appropriateness mea-
sure on basic labels L = {L1,L2, ...,Lk} ordered such that
µLi(x)≥ µLi+1(x), for i = 1, ...,k−1, then the consonant mass
assignment has the form:

mx({L1, ...,Lk}) = µLk(x),
mx({L1, ...,Li}) = µLi(x)−µLi+1(x) f or i = 1, ...,k−1.

Figs. 1 (a) and (b) depict the relationship between appro-
priateness measure and mass assignment of focal elements.
Fig. 1 (a) shows the appropriateness of attribute x ∈ [0,10]
on the label set L = {vl, l,m,h,vh}. Each label represents
an interval, and they overlap by 50%. Fig. 1 (b) presents
the mass assignments on focal elements, corresponding to
the appropriateness of x on labels in Fig. 1 (a). Here, an
attribute x ∈ Ω is uniformly divided with same intervals, and
there is no empty set on labels. Label learning on data is
another topic. For example, in Figure 1 (a), given an instance,
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Fig. 1. The two fundamental and interrelated measures in Label Semantics

x ∈ [2,3], µl(x) = 1 and µvl(x) = 3 − x. In terms of the



Consonance Assumption, the order of labels are {l,vl}. Hence,
we have (see Figure 1 (b)): mx({vl, l}) = mx({l,vl}) = 3− x
and mx({l}) = 1− (3− x) = x−2, x ∈ [2,3].

2) The Definition of an LDT: An LDT is comprised of a set
of nodes, representing attributes, and edges, representing focal
elements describing attributes associated to nodes. A branch
(B) is a path from the root to a leaf of the LDT, and its length
(l) is the number of focal elements Fi on the branch B, for i =
1, ...l. Each branch represents a conjunction of focal elements:
F1 ∧ ...∧Fl , it is augmented with a set of conditional mass
assignments m(F |B), for each focal element F ∈ Fy, where,
Fy is the set of labels describing the goal variable y. Definition
2.1 provides the linguistic definition of an LDT.

Definition 2.1 (Linguistic Definition): In an LDT, the rule
of the branch Bi is Fi1 ∧ ...∧Fil → F : m(F |Bi), for each focal
element F ∈Fy, the mass assignment my, for a given example
with attribute values x⃗=(x1, . . . ,xm), can be calculated in terms
of Jeffrey’s rule [22] by

my(F) =
t

∑
i=1

µBi (⃗x)m(F |Bi), (2)

where t is the number of branches in the LDT, and m(F |Bi) is
equivalent to the conditional probability p(F |Bi). Assume xi j
is expressed with a focal element Fi j in the branch Bi. For a
branch Bi, we have

µBi (⃗x) =
l

∏
j=1

mxi j
(Fi j). (3)

B. The LID3 algorithm to train an LDT

LID3 [23], [18], an extension of the well-known ID3
algorithm [24], is used to train an LDT based on a given
database. The induction is guided by a modified measure of
information gain according to label semantics.

Definition 2.2 (Information Entropy of Branch): Given a
goal variable, belonging to class set C = {C1, ...,Ct}, the
information entropy of branch B is defined as

E(B) =−
t

∑
i=1

P(Ci|B)log2P(Ci|B). (4)

Definition 2.3 (Expected Entropy): When x j is appended
to the branch B, the Expected Entropy can be calculated as

EE(B,x j) = ∑
Fj∈F j

E(B∪Fj)P(Fj|B), (5)

where B∪Fj represents the new branch obtained by appending
the focal element Fj to the end of the branch B. The probability
of Fj given B can be calculated as

P(Fj|B) =
∑x⃗∈D P(B∪Fj |⃗x)

∑x⃗∈D P(B|⃗x)
, (6)

where P(B|⃗x) = µB(⃗x) (see Definition 2.1).

Definition 2.4 (Information Gain): Using the notations of
Definitions 2.2 and 2.3, the information gain can be calculated
as

IG(B,x j) = E(B)−EE(B,x j). (7)

In LID3, the most informative attribute is selected as the root of
an LDT, and the tree will be expanded with branches associated
with all possible focal elements of this attribute. For each
branch, the attribute with maximal information gain in all free
attributes will be the next node until the branch reaches the
specified maximum length or the maximum class probability
reaches the given threshold. The learning process forms a level
order traversal based on the training data.

C. A hierarchy of LDTs

The process of aggregation of evidence in multi-attribute
decision making or classification based on attributes x1, ...,xn
can be represented with a functional mapping y = f (x1, ...,xn),
where y is the goal variable. However, this mapping is often
dynamic and it is difficult to define it with an exact mathematic
equation. An attribute hierarchy decomposes the function f
into a hierarchy of sub-functions, each of which represents
a new intermediate attribute. The set of original attributes
{x1, ...,xn} is divided into m subsets S1, ...,Sm, and correspond-
ingly m new intermediate attributes z1, ...,zm are represented by
the functions of the subsets. Namely, zi =Gi(Si) for i= 1, ...,m.
The mapping function f is then equivalent to a new function F
of the intermediate attributes z1, ..,zm. Hence, y = f (x1, ...,xn)
= F(z1, ...,z2) = F(G1(S1),...,Gm(Sm)). The function of a subset
can be decomposed recursively.

Assume each attribute is described with a set of labels,
and subsequent label expressions are derived. In a linguistic
attribute hierarchy (LAH), functional mappings between parent
and child attribute nodes can be defined in terms of weighted
linguistic rules that explicitly model both the uncertainty and
vagueness, which often indicates our knowledge of such aggre-
gation functions. Now, assume that the introduced intermediate
attributes are approximations of the goal variable y with the
same domain and description labels. For an example, in Fig.
2, z1 is an approximation of y based only on x1 and x2.
Unlike general deep learning, a neural network is constructed
through layer by layer training, the new type of deep learning
will construct a tree of LDTs. Hence, an LAH can present
a hierarchical decision making or classification. With this
property, it is easy to perform semantic attribute deep learning
through a hierarchy of LDTs.
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Fig. 2. An example of LAH

III. CASE STUDY

Here, we demonstrate the use of the proposed approach on
a benchmark database from UCI machine learning repository
[25], and evaluate the performance of different linguistic
attribute hierarchies embedded with LDTs, and compare com-
paring them with the performance of the single LDT.



A. The data base

The SMSSpamCollection database, created by Almeida et
al. [2], provides 5574 raw messages, of which 747 are spams,
accounting for 13.4% of total messages. As SMS messages
are short, the features extracted from the SMS message data
are binary values. If a KEY-WORD or a kind of behaviour
exists in an SMS message, the corresponding feature is set to
one, otherwise, it is set to zero, and key-words are not case-
sensitive. For example, key-word, ‘free’ indicates if any words,
in which ‘free’ is partial phase (e.g. Free, FREE, Freedom,
free), then x1 will be set to 1, otherwise, 0. x17 indicates
all spams of noisy advertisements, which claim cheap service
price, for instances, 1p/MIN, 1.5p/MIN, ... 2.5p/call, etc; x19
intends to find SMS messages, which include money values
with different currency units.

The feature set is basically the same as in [17], however,
there are some changes in the way features are extracted: (1)
the features ‘half price’ has been removed, as the sample with
positive feature ‘price’ covers all samples with positive feature
‘half price’; (2)according to the results in [17], the feature ‘!’ is
extracted, as its importance has been shown in the email spam
detection; (3) features ’WIN’ and ’WON’ are combined as one
feature by the excel command, ‘IF(OR(x1,x2),1,0)’. There are
totally 20 features, shown in Table I.

TABLE I. FEATURES FOR THE SMS MESSAGE DATA BASED ON [17]

x key word x key-word
0 urgent 10 stop
1 congrat 11 click
2 ! 12 Text,Txt
3 WIN/WON 13 sex
4 Offer 14 girl
5 Award 15 cash
6 Prize 16 free
7 Call 17 0p, 1p, ..., 9p
8 Reply 18 EURO, GBP, pound,L , $, e
9 Send 19 price

B. Experiment methodologies

Mass assignments of attributes: As all features extracted
from the SMSSpamCollection database are binary variables,
the mass assignment on a discrete label is 1 if the attribute
value is 1, otherwise 0.

Two-fold cross validation: Data is split into two approx-
imate equal partitions. One is used for training, and the other
one is for testing, and reverse the process.

Performance measure: Four performance measures will
be evaluated:

(1) True positive rate (TPR, sensitivity, recall) measures
the proportion of positives that are correctly identified as such.
Therefore, sensitivity quantifies the avoiding of false negatives.
It is calculated with T P/P, where, T P is the number of spams
that are correctly identified, and P is the number of spams in
the database.

(2) True negative rate (TNR, specificity) measures the
proportion of negatives that are correctly identified as such.
Therefore, specificity quantifies the avoiding of false positives.
It is calculated with T N/N, where, T N is the number of hams
that are correctly identified, and N is the number of hams in
the database.

(3) General accuracy (A) measures the proportion of sam-
ples (either spams or hams) that are correctly identified as
such. It is calculated with (T P+T N)/(P+N).

(4) ROC curve and Area under ROC curve (AROC): In
statistics, a receiver operating characteristic (ROC), or ROC
curve, is a graphical plot that illustrates the performance of
a binary classifier system as its discrimination threshold is
varied. The curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold
settings.

C. Attribute Decomposition

Decomposition 1 All features could represent some mean-
ings in a message, for example, interjection, attraction, be-
haviour, benefit, etc. Hence, the feature set extracted from the
SMSSpamCollection is decomposed to five subsets semanti-
cally in terms of their specific meanings.

(1) Interjection (3): x0:‘urgent’,x1:‘congrat’, x2:‘!’

(2) Attraction (4): x3:‘WIN/WON’, x4:‘offer’, x5:‘Award’,
x6:‘Prize’

(3) Behaviour (6): x7:‘call’, x8:‘Reply’, x9:‘send’,
x10:‘stop’, x11:‘click’, x12:‘text/txt’

(4) Benefit (5): x15:‘cash’, x16:‘free’, x17:‘0p...9p’,
x18:‘EURO, GBP, pound,L , $, e’, x19:‘price’

(5) Other purpose (2): x13:‘sex’, x14:‘girl’.

Decomposition 2 As some features may have approximate
meanings or roles, they could be combined together to be
one feature, which can be implemented easily with the ex-
cel formula: ‘if(or(x1,x2,...xk),1,0)’. For example, ‘Award’ and
‘Prize’ are combined to be one feature, ‘award/prize’, similarly,
‘sex/girl’, ‘reply/send’, ‘cash/price’,‘free/0p..9p’‘,‘stop/click’.
Thus, the number of features is reduced to 14 from original
20. In addition, the purpose of ‘sex/girl’ could be to attract the
attention of the message receivers. Hence, it is placed to the
subset of attraction. The new set of 14 features are decomposed
to the following four subsets.

(1) Interjection (3): x0:‘urgent’, x1:congrate’,x2:‘!’

(2) Attraction (4): x3:‘WIN/WON’, x4:‘offer’, x5
Award/Prize’, x6:‘sex/girl’

(3) Behaviour (4): x7:‘call’, x8:‘Reply/send’,
x9:‘stop/click’, x10:‘text/txt’

(4) Benefit (3): x11:‘cash/price’, x12:‘free/0p...9p’,
x13:‘EURO, GBP, pound,L , $, e’

Decomposition 3 In this decomposition, subset one and
subset two in Decomposition 2 are combined to be one subset,
as the general purpose of these features could be to attract the
attention of message receivers. Therefore, the 14 features are
decomposed to three subsets.

(1) Attraction (7): x0:‘urgent’, x1:congrate’,x2:‘!’,
x3:‘WIN/WON’, x4:‘offer’, x5 Award/Prize’,
x6:‘sex/girl’

(2) Behaviour (4): x7:‘call’, x8:‘Reply/send’,
x9:‘stop/click’, x10:‘text/txt’



(3) Benefit (3): x11:‘cash/price’, x12:‘free/0p...9p’,
x13:‘EURO, GBP, pound,L , $, e’

D. Impact of each subset on spam detection

Results of Decomposition 1 The 20 features have been
divided into five categories: (1) interjection (S1), (2) attraction
(S2), (3) behaviour (S3), (4) benefit (S4), (5) other purpose (S5).
The data with a subset of features are used to train and test
an LDT. The outputs of the trained LDT are the appropriate
measures of ‘ham’ and ‘spam’ for each tested message. If the
message is more appropriate to be described with ’ham’, it
will be identified to ‘ham’, otherwise, ‘spam’. If the estimated
label is the same as the real label of the message sample, the
identification is a true decision making. In terms of definitions,
TPR, TNR, and A are calculated. The sensitivity, specificity
and general accuracy for each subset of features are observed,
and shown in Fig. 3 (a).

From Fig. 3 (a), it can be seen that the sensitivities are
much lower than the specificities for each subset of features,
and sensitivities are increasing as the order from S1 to S4, but
S5 has the lowest sensitivity. The subset of benefit related fea-
tures (S4) is with the largest sensitivity. This demonstrates the
capability of each subset in identifying positives or avoiding
false negatives. S1, S2 and S5 have similar specificities, and S3
and S4 have similar specificities, but which are smaller than
that of S1, S2 and S5. S4 obtains the highest general accuracy.

Results of Decomposition 2 Decomposition 2 made some
adjustment of features based on Decomposition 1. The number
of features is reduced to 14, and S5 is combined to S2. From
Fig. 3 (b), it can be seen that the sensitivities and general
accuracies are increasing as the order from S1 to S4, but S1
and S2 obtain higher specificities than that S3 and S4 do.

Results of Decomposition 3 Fig. 3 (c) shows that the
combination of S1 and S2 in Decomposition 2 improves the
sensitivity, although the sensitivities still keep increasing in
the order from S1 to S3 in Decomposition 3. It can be seen
that the specificity of S1 in Decomposition 3 does not drop as
its sensitivity increases. Hence, it seems reasonable to combine
S1 and S2 in Decomposition 2 to form the Decomposition 3.

E. Integrated impact of LAHs

In this section, some LAHs embedded with LDTs are
constructed and trained. Each LDT is fed with a subset of
features. The construction of an LAH from bottom to top will
be in terms of the sensitivity of identifying spams from low
to high. Namely the LDTs are fed in turn with the order S5,
S1, S2, S3, S4.

LAHs constructed with Decomposition 1 Five LDT-based
LAHs (Figs. 5 - 9) are constructed and trained, and their
performance, TPR TNR, Accuracy and the area under the ROC
curve, are listed in Table II. An LDT is fed with a set S of
features is denoted as LDT(S).

The first LAH with 5 subsets (denote as LAH1(5)) is a
cascade of LDTs, i.e. the output of the LDT in lower layer will
be the input of the LDT in upper layer(see Fig. 5). In LAH2(5),
shown in Fig. 6, LDT(S5) and LDT(S1) are at the bottom layer
of the LAH. In LAH3(5), shown in Fig. 7, LDT(S5), LDT(S1),
LDT(S2) are at the bottom layer of the LAH. In LAH4(5),
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Fig. 3. Sensitivity, Specificity, and Accuracy for Decompositions 1, 2 & 3

shown in Fig. 8, LDT(S5), LDT(S1), LDT(S2) and LDT(S3)
are at the bottom layer of the LAH. In LAH5(5), shown in
Fig. 9, LDT(S5), LDT(S1), LDT(S2), LDT(S3), LDT(S4) are
all at the bottom layer of the LAH.

Table II lists all sensitivities, specificities, accuracies and
the areas under ROC curves for the five LAHs. It can be seen
that LAH1(5) - LAH4(5) have similar performance. LAH5(5)
has different performance to that the previous four LAHs
have, its sensitivity drops, and specificity increases. But the
accuracy of LAH5(5) is close to that of LAH2(5), and LAH5(5)
obtained the largest area under the ROC curve. Namely, when
the LDT(S4) is placed at the same layer with other four LDTs,
the features in other subsets could affect the performance, so
that the sensitivity of LAH5(5) drops, not keeping the level of
sensitivity obtained by LDT(S4) at different layers.

TABLE II. TPR, TNR AND ACCURACY OF LINGUISTIC ATTRIBUTE
HIERARCHIES CONSTRUCTED WITH DECOMPOSITION 1

LAHs TPR TNR A AROC

LAH1(5), Fig. 5 0.717537 0.987156 0.951023 0.945513
LAH2(5), Fig. 6 0.721553 0.987570 0.951920 0.947119
LAH3(5), Fig. 7 0.710843 0.985913 0.949049 0.948952
LAH4(5), Fig. 8 0.732262 0.978869 0.945820 0.948518
LAH5(5), Fig. 9 0.650602 0.998135 0.951561 0.958341

LAHs constructed with Decomposition 2 Similarly, four
LAHs are constructed, trained and tested. In LAH1(4), shown
in Fig. 10, LDT(S1) - LDT(S4) are cascaded at the different
layers of the LAH. In LAH2(4), shown in Fig. 11, LDT(S1)



and LDT(S2) are at the bottom layer of the LAH. In LAH3(4),
shown in Fig. 12, LDT(S1), LDT(S2), LDT(S3) are at the
bottom layer of the LAH. In LAH4(4), shown in Fig. 13,
LDT(S1), LDT(S2), LDT(S3), LDT(S4) are all at the bottom
layer of the LAH.

Their performance in TPR, TNR, Accuracy and the area
under ROC curve are listed in Table III. The results are
similar to that of Decomposition 1. LAH4(4) has the best
performance in specificity, accuracy and the area under ROC,
but its sensitivity is worse than that of other LAHs.

TABLE III. TPR, TNR, ACCURACY, AROC OF LINGUISTIC ATTRIBUTE
HIERARCHIES CONSTRUCTED WITH DECOMPOSITION 2

LAHs TPR TNR A AROC

LAH1(4), Fig. 10 0.741633 0.978455 0.946717 0.950168
LAH2(4), Fig. 11 0.741633 0.978455 0.946717 0.956266
LAH3(4), Fig. 12 0.741633 0.978455 0.946717 0.958916
LAH4(4), Fig. 13 0.625167 0.998550 0.948511 0.956282

LAHs constructed with Decomposition 3 Again, with
the same strategy, three LAHs are constructed, trained and
tested. In LAH1(3), shown in Fig. 14, LDT(S1) - LDT(S3) are
cascaded at the different layers of the LAH. In LAH2(3), shown
in Fig. 15, LDT(S1) and LDT(S2) are at the bottom layer of
the LAH. In LAH3(3), shown in Fig. 16, LDT(S1), LDT(S2)
and LDT(S3) are all at the bottom layer of the LAH.

The performance in TPR, TNR, Accuracy and the area
under ROC for the three LAHs are listed in Table IV. Similar
to the previous two decompositions, the specificity, accuracy
and the area under ROC are increasing (non-decreasing) as the
place of LDT(S4) drops from top to bottom. But the sensitivity
of LAH2(3) is larger than that of LAH1(3) while LAH2(3)
keeps the same specificity as LAH1(3). However, LAH3(3) is
with the dropped sensitivity again as the LAHs for previous
two decompositions.

TABLE IV. TPR, TNR AND ACCURACY OF LINGUISTIC ATTRIBUTE
HIERARCHIES CONSTRUCTED WITH DECOMPOSITION 3

LAHs TPR TNR A AROC

LAH1(3), Fig. 14 0.736278 0.978455 0.945999 0.948868
LAH2(3), Fig. 15 0.742972 0.978455 0.946896 0.955243
LAH3(3), Fig. 16 0.654618 0.996271 0.950484 0.960311

F. Comparison of best solutions for different decompositions

(1) Best performance in accuracy Table V lists the
performance of the solutions that obtained the best accuracy
in all LAHs, constructed with different decompositions. For

TABLE V. TPR, TNR, ACCURACY, AREA UNDER ROC OF LAHS
WITH THE HIGHEST ACCURACY CONSTRUCTED WITH DIFFERENT

DECOMPOSITIONS

LAHs TPR TNR A AROC

LAH2(5), Fig. 6 0.721553 0.987570 0.951920 0.947119
LAH4(4), Fig. 13 0.625167 0.998550 0.948511 0.956282
LAH3(3), Fig. 16 0.654618 0.996271 0.950484 0.960311

Decompositions 2 and 3, the LAHs with all LDTs at the bottom
layers of the LAHs obtained best accuracy, but both have
lowest sensitivities. For Decomposition 1, the best solution is
not the LAH with all LDTs at the bottom layers of the LAH,
but the second LAH, in which LDT(S1) and LDT(S2) are at the
bottom layer of the LAH. This may indicate S1 and S2 together

could improve the accuracy. Regarding sensitivity, LAH2(5) is
the best. Regarding the area under ROC, LAH3(3) is the best.

(2) Best ROC curves for different decompositions Table
VI lists the performance of LAHs with the best area under the
ROC curve for the three decompositions. Two single LDTs
were trained and tested with the two full sets (20 and 14) of
features, and their performance is listed in the table as well.
Fig. 4 shows the ROC curves for the five solutions. Regarding
the area under ROC curve, LAH3(3) is the best in the all
listed solutions; regarding specificity, LAH5(5) is the best; and
regarding sensitivity and accuracy, LDT(14) is the best. It is
surprising that the two single LDTs have worse performance
in the area under ROC curves than the listed LAHs, as this is
different to the convention.

TABLE VI. TPR, TNR AND ACCURACY OF LINGUISTIC ATTRIBUTE
HIERARCHIES WITH HIGHEST AROC

LAHs TPR TNR A AROC

LAH5(5), Fig. 9 0.650602 0.998135 0.951561 0.958341
LAH3(4), Fig. 12 0.741633 0.978455 0.946717 0.958916
LAH3(3), Fig. 16 0.654618 0.996271 0.950484 0.960311
LDT(S20) 0.757697 0.991092 0.959813 0.881349
LDT(S14) 0.769746 0.990470 0.960890 0.912419
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Fig. 4. Best ROC curves of LAHs for each decomposition and the two single
LDTs

G. Comparison of branch numbers of different solutions for
different decompositions

If we do not set the threshold of probability during the
training process of an LDT, fed with n features, each branch
in the single LDT will have n edges. If we use each focal
element to represent an edge in an LDT, and each variable
(feature) could be described with τ focal elements, then each
non-leaf node in an LDT will have τ child nodes. Namely, the
single LDT is a τ-branch tree with τn leaves (branches). In the
implementation, the learning threshold is set to the maximum
1. Namely, if the probability of positive or negative gets 1,
the node will be a leave (i.e. no further learning process).
Therefore, real number of branches of a single LDT is less
than the maximum. Assume ρi is the number of input attributes
for LDTi in an LAH. An LDT will be a τ-branch tree with τρi

branches. The number of total branches in a hierarchy:

β (H) = ∑
i
(βi) = ∑

i
(τρi). (8)



TABLE VII. BRANCH NUMBERS OF ALL SOLUTIONS, WHERE β
DENOTES THE NUMBER OF BRANCHES

Decomp. 1 Decomp. 2 Decomp. 3 Single LDT
Figs β Figs β Figs β n β
Fig. 5 237 Fig. 10 138 Fig. 14 151 20 697
Fig. 6 269 Fig. 11 146 Fig. 15 157 14 421
Fig. 7 471 Fig. 12 150 Fig. 16 106
Fig. 8 212 Fig. 13 105
Fig. 9 202

Table VII lists the branch numbers of the single LDTs and all
solutions in Figs. 5 - 16 in Appendix.

From Table VII, it can be seen that the branch numbers of
all LAHs in Figs. 5 - 9 for Decomposition 1 are less than that
(697 branches) of the single LDT, trained with the 20 attribute
data set, and the branch numbers of all LAHs in Figs. 10-16 for
Decompositions 2 and 3 are less than that (421 branches) of the
single LDT, trained with the 14 attribute data set. Moreover,
due to the set of features are decomposed to subsets of features,
the number of input features for each LDT in an LAH is less
than the number n of total features. Namely, the length of each
branch is short than that of branches in the single LDT. This
indicates the computing complexity is reduced very much.

IV. CONCLUSIONS

In this paper, we proposed another form of deep learn-
ing, a linguistic attribute hierarchy, embedded with linguistic
decision trees, for spam detection. A case study was carried
out on the SMS message database from the UCI machine
learning repository. It has been shown that the decomposition
of features plays an important role in the construction of
the linguistic attribute hierarchy, which directly affects the
performance of decision making by the constructed linguistic
attribute hierarchy. In the experiments, three decompositions
of features (attributes) were investigated, and the LAHs were
constructed based on strategies for the three decompositions
semantically. The performance of LAHs for different decom-
positions were examined in term of sensitivity, specificity,
accuracy and ROC curve. According to the experimental
results, the LDT with the highest sensitivity should stay in
the top layer, different to the layers where other LDTs with
lower sensitivity in order to obtain a high sensitivity of the
LAH, but in order to obtain large area under ROC, all LDTs
should be placed in the bottom layer of the LAH. However,
without decomposition, a single LDT trained by the full set of
features cannot obtain a larger area under ROC than an LAH
could have. The experimental results show that the features
related to the benefits and finance have important impact on
the sensitivity of identifying spam messages. This observation
matches the convention of human knowledge. The process
of experiments has demonstrated the use of a hierarchy of
linguistic decision tree approach for deep learning of feature
impact on spam detection. Hence, an LAH, embedded with
LDTs, provides a transparent approach to in-depth analysing
feature impact to the spam detection. This approach can not
only improve the performance of spam detection when the
semantic attributes are constructed to a proper hierarchy, but
also efficiently tackle ‘curse of dimensionality’ in spam detec-
tion with massive attributes. The automatic knowledge based
decomposition of features and the optimisation of linguistic
attribute hierarchies and high performance spam detectors will
be the future work.
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APPENDIX

A. LAHs based on Decomposition 1 (Figures 5-9)

Fig. 5. Cascade of five LDTs in the LAH

Fig. 6. LDT1 and LDT2 are at the same level in the LAH

Fig. 7. LDT1, LDT2 and LDT3 are at the same level in the LAH

Fig. 8. LD1 - LD4 are at the same level in the LAH

Fig. 9. All five LDTs are at the same level in the LAH

B. LAHs based on Decomposition 2 (Figures 10-13)

C. LAHs based on Decomposition 3 (Figures 14-16)

Fig. 10. A cascade of four LDTs in the LAH

Fig. 11. LDT1 and LDT2 are at the same level in the LAH

Fig. 12. LD1 - LD3 are the same level in the LAH

Fig. 13. All LDTs are at the same level in the LAH

Fig. 14. A cascade of LDTs in the LAH

Fig. 15. LDT1 and LDT2 are at the same level in the LAH

Fig. 16. All LDTs are at the same level in the LAH


