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Abstract

In this paper, a fuzzy physical programming (FPP) method has been introduced

for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory op-

timization problem based on hp-adaptive pseudospectral methods. The dynamic

model of SMV is elaborated and then, by employing hp-adaptive pseudospectral

methods, the problem has been transformed to nonlinear programming (NLP)

problem. According to the mission requirements, the solutions were calculated

for each single-objective scenario. To get a compromised solution for each tar-

get, the fuzzy physical programming (FPP) model is proposed. The preference

function is established with considering the fuzzy factor of the system such that

a proper compromised trajectory can be acquired. In addition, the NSGA-II is

tested to obtain the Pareto-optimal solution set and verify the Pareto optimality

of the FPP solution. Simulation results indicate that the proposed method is

effective and feasible in terms of dealing with the multi-objective skip trajectory

optimization for the SMV.

Keywords: Space Manoeuvre Vehicles, fuzzy physical programming,

hp-adaptive pseudospectral, nonlinear programming, multi-objective.

1. Introduction

Over the past couple of decades, trajectory optimization problems in terms

of reentry vehicle [1, 2, 3, 4, 5, 6] have attracted significant attention. One of the
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current objectives is the development of Space Manoeuvre Vehicles(SMV) for a

dynamic mission profile. The Mach number and the flight altitude of the reentry5

vehicle vary largely during the whole reentry phase, the aerodynamic feature of

the vehicle has large uncertainties and nonlinearities. Due to these reasons, the

use of numerical methods to handle these types of problems is commonly used.

Numerical methods for solving optimal control problems are divided into two

major classes: indirect methods and direct methods[7, 8, 9, 10]. However, it is10

very difficult to solve the trajectory design problem by using indirect methods

based on maximum principle. Therefore, direct optimization method has been

widely used for trajectory optimization. Applying direct methods meant the

development of several discrete methods[11].

In recent years, collocation methods for transforming optimal control prob-15

lems have increased in popularity [12, 13]. There are two main kinds of col-

location methods, local collocation method such as the direct collocation and

global collocation method e.g. the pseudospectral [14, 15, 16]. In a pseudospec-

tral method, the collocation points are based on quadrature rules and the basis

function are Lagrange or Chebyshev polynomials. In contrast to the direct col-20

location method, pseudospectral method usually divides the whole time history

into a single mesh interval whereas its counterpart, direct collocation, divides

time interval into several equal step subintervals and the convergence is achieved

by adding the degree of the polynomial. To improve accuracy and computation-

al efficiency using pseudospectral method, L. Darby presented a hp-strategy in25

[17, 18, 19]. By adding collocation points in a certain mesh interval or dividing

the current mesh into subintervals simultaneously, the accuracy of interpolation

can be improved dramatically.

Generally, the traditional trajectory design usually aims at one single ob-

jective, for example, minimizing the aerodynamic heating, maximizing the cross30

range, etc. However, in reality, for space vehicle trajectory design, most the

missions contain more than one requirements and this brings the developmen-

t of multi-objective optimization(MOO)[20]. There are many multi-objective

methods which are suitable for these kind of problems. Commonly, the method

based on weighting factors is widely used to transform different criterions into35

only one single objective but it is difficult to determine the weight coefficients.

In 1996, Messac designed a physical programming(PP) method to convert the

objectives [21, 22], which removes the information of priority and weight coeffi-
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cients. But in practice, usually there are some fuzzy factors in the real system

and because of this, a fuzzy physical programming method is proposed in this40

paper.

The mission scenario investigated in this paper focuses on the atmospheric

skip hopping, targeting the entry into the atmosphere down to a predetermined

position (predetermined altitude given by the industrial sponsor of this project)

and the required controls involved in returning back to low earth orbit. Studies45

can be found in the literature regarding the skip reentry of deep-space spacecraft

with high speed over first cosmic velocity, however in the scenario considering

in this paper, a high thrust engine would be necessary for SMV to return to low

earth orbit. The overall mission can be found in Fig.1. General skip reentry can

Figure 1: Mission profile

be divided into five phases: initial roll, down control, up control, Kepler and50

final entry. Considering the mission of the SMV is to overfly the ground target

with specific altitude, the most challenging phase 2 and 3 will be considered in

this paper.

Most of the current studies in trajectory optimization are based on the nu-

merical simulation. Smirnov et al.[23][24], presented studies in terms of devel-55

oping mathematical model for evaluation of stochastic numerical errors accumu-

lation. Based on the published simulation results, the problem of accumulation

of errors cannot be ignored. Therefore, the effect of noise on the trajectory

optimization is also considered in this work, and the results are presented in

Section 5 of this paper.60

The paper is organised as follows. In section 2, we introduce the aerodynam-
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ic model of the SMV reentry vehicle and some basic principles of the trajectory

optimization problem. Section 3 describes the method used to discretize the op-

timal control problem. Then in section 4 the fuzzy physical programming(FPP)

procedures of solving multi-objective SMV trajectory problem is detailed. Fol-65

lowing that, section 5 present comparison between solution calculated for each

single-objective and the compromised solution generated by employing the FPP

approach.

2. Problem Description

2.1. SMV dynamic model70

The Earth is considered as a symmetrical sphere and the earth rotation

is ignored. Considering a three degree of freedom dynamic equations of SMV

reentry vehicle:

𝑟̇ =𝑉 sin 𝛾

𝜃 =
𝑉 cos 𝛾 sin𝜓

𝑟 cos𝜑

𝜑̇ =
𝑉 cos 𝛾 cos𝜓

𝑟

𝑉̇ =
𝑇 cos𝛼−𝐷

𝑚
− 𝑔 sin 𝛾

𝛾̇ =
𝐿 cos𝜎 + 𝑇 sin𝛼

𝑚𝑉
+ (

𝑉 2 − 𝑔𝑟

𝑟𝑉
) cos 𝛾

𝜓̇ =
𝐿 sin𝜎

𝑚𝑉 cos 𝛾
+
𝑉

𝑟
cos 𝛾 sin𝜓 tan𝜑

𝑚̇ = − 𝑇

𝐼𝑠𝑝𝑔

𝛼̇ =𝐾𝛼(𝛼𝑐 − 𝛼)

𝜎̇ =𝐾𝜎(𝜎𝑐 − 𝜎)

𝑇̇ =𝐾𝑇 (𝑇𝑐 − 𝑇 )

(1)

where 𝑟 is the radial distance from the Earth center to the vehicle, 𝜃 and 𝜑

are the longitude and latitude, 𝑉 is the Earth-relative velocity, 𝛾 is the relative75

flight-path angle, 𝜓 is the relative velocity heading angle measured clockwise

from the north, 𝑚 is the mass of the vehicle, 𝑡 is time, control variables are

angle of attack 𝛼𝐶 , bank angle 𝜎𝐶 and thrust 𝑇𝐶 , respectively. In reality, the

real control variables cannot change dramatically (i.e. from lower bound to
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upper bound). Therefore, in the model provided (1), three rate constraints are80

introduced by using the technique of first order lag which can be concluded to

the last three equations in (1).

The atmosphere model, lift 𝐿 and drag 𝐷 can be defined as:

𝑔 = 𝜇
𝑟2 𝜌 = 𝜌0 exp 𝑟−𝑟0

ℎ𝑠

𝐿 = 1
2𝜌𝑉

2𝐶𝐿𝑆 𝐷 = 1
2𝜌𝑉

2𝐶𝐷𝑆
(2)

where 𝑆 = 2690𝑓𝑡2 is reference area, 𝜇 = 1.4076539×1016𝑓𝑡3/𝑠2 is gravitational

parameter of the earth. 𝜌 is density of atmosphere and 𝜌0 = 0.002378𝑠𝑙𝑢𝑔/𝑓𝑡385

is density of atmosphere at sea-level. 𝑟0 = 20902900𝑓𝑡 is Earth’s radius, 𝐶𝐿

and 𝐶𝐷 are lift and drag coefficient determined by angle of attack 𝛼 and 𝑀𝑎,

respectively, 𝑔 is gravity acceleration.

The drag and lift coefficient can be determined by the following equations:

90

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷1𝛼+ 𝐶𝐷2𝛼
2

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿1𝛼
(3)

where 𝐶𝐿0 = −0.2070, 𝐶𝐿1 = 1.676, 𝐶𝐷0 = 0.07854, 𝐶𝐷1 = −0.3529, 𝐶𝐷2 =

2.040.

2.2. Reentry process constraints

SMV reentry process should satisfy some constraints due to safety reasons

and also depending on the mission requirements. These constraints can be95

summarised as initial and terminal constraints, path constraints and boundary

constraints.

2.2.1. Initial and terminal constraints

The complete mission can be divided into two phases, the descent phase

and exit phase. Due to the mission requirement, the state variables at minimum100

decent point are specified. The initial conditions of all the states are:

[𝑟, 𝜑, 𝜃, 𝑉, 𝛾, 𝜓,𝑚, 𝛼, 𝜎, 𝑇 ] = [𝑟0, 𝜑0, 𝜃0, 𝑉0, 𝛾0, 𝜓0,𝑚0, 𝛼0, 𝜎0, 𝑇0] (4)

On the other hand, at the minimum altitude point and final point(i.e. final

point to return back into low earth orbit), hence complete one hop, the terminal

altitude constraints are:

[𝑟(1), 𝑟(𝑓)] = [𝑟𝑏, 𝑟𝑓 ] (5)
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where 𝑟(1) and 𝑟(𝑓) stand for altitude value at bottom point and final time,105

respectively.

2.2.2. Path constraints

During the whole time period, to protect the structure of reentry vehicle,

in simulation the SMV model need to satisfy strict path constraint, which can

be summarised as follows:110

𝑄̇𝑑 = 𝐾𝑄𝜌
0.5𝑉 3.07(𝑐0 + 𝑐1𝛼+ 𝑐2𝛼

2 + 𝑐3𝛼
3) < ˙𝑄𝑑𝑚𝑎𝑥

𝑃𝑑 = 1
2𝜌𝑉

2 < 𝑃𝑑𝑚𝑎𝑥

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 𝑛𝐿𝑚𝑎𝑥

(6)

where 𝑐0 = 1.067, 𝑐1 = −1.101, 𝑐2 = 0.6988, 𝑐3 = −0.1903 and 𝐾𝑄 = 9.289 ×
10−9𝐵𝑡𝑢 · 𝑠2.07/𝑓𝑡3.57/𝑠𝑙𝑢𝑔0.5. 𝑄𝑑𝑚𝑎𝑥, 𝑃𝑑𝑚𝑎𝑥 and 𝑛𝐿𝑚𝑎𝑥 represents allowable

maximum heating rate, dynamic pressure and acceleration, respectively.

2.2.3. Boundary constraints

For the SMV, the states should be limited as:115

𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥

𝜑𝑚𝑖𝑛 ≤ 𝜑 ≤ 𝜑𝑚𝑎𝑥 𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥

𝛾𝑚𝑖𝑛 ≤ 𝛾 ≤ 𝛾𝑚𝑎𝑥 𝜓𝑚𝑖𝑛 ≤ 𝜓 ≤ 𝜓𝑚𝑎𝑥

𝑚𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥 𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥

𝜎𝑚𝑖𝑛 ≤ 𝜎 ≤ 𝜎𝑚𝑎𝑥 𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥

(7)

and the boundaries in terms of the control variables are defined as:

𝛼𝑐(𝑚𝑖𝑛) ≤ 𝛼𝑐 ≤ 𝛼𝑐(𝑚𝑎𝑥)

𝜎𝑐(𝑚𝑖𝑛) ≤ 𝜎𝑐 ≤ 𝜎𝑐(𝑚𝑎𝑥)

𝑇𝑐(𝑚𝑖𝑛) ≤ 𝑇𝑐 ≤ 𝑇𝑐(𝑚𝑎𝑥)

(8)

2.3. Objective function

To ensure the SMV has enough fuel carry-out several skip loops and max-

imise the number of hops, the first objective would be to minimize the fuel con-

sumption, i.e., maximize final mass value, during the whole process. Moveover,120

the total aerodynamic heating is very important and it can have a serious im-

plications on the SMV integrity structure. In addition, it is not desirable to

have too many oscillations during the mission as it will also impact the integri-

ty of the structure. On the other hand, a high final velocity will provide more
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kinetic energy for the vehicle and hence reduce the overall mission time which125

is desirable. Therefore, the objective functions are selected in the analysis.

1). Maximizing the final mass:

max 𝐽1 = 𝑚(𝑡𝑓 ) (9)

2). Minimizing the total aerodynamic heating:

min 𝐽2 =

∫︁ 𝑡𝑓

𝑡0

˙𝑄(𝑡)𝑑𝑡 (10)

3). Minimizing the oscillation:

min 𝐽3 =

∫︁ 𝑡𝑓

𝑡0

˙𝛾(𝑡)
2
𝑑𝑡 (11)

4). Maximizing the final velocity:130

max 𝐽4 = 𝑉 (𝑡𝑓 ) (12)

5). Minimizing the final time:

min 𝐽5 = 𝑡𝑓 (13)

By setting the cost function described in Eq.(9)-Eq.(13), the SMV tra-

jectory problem can be considered as an optimal control problem which has

minimum or maximum cost function value and satisfy the initial and termi-

nal state constraints, control variable constraints, three path constraints and135

dynamic equations.

3. Global collocation method

To solve the problem using the numerical method, the trajectory design

problem needs to be transformed to nonlinear programming(NLP) and the basic

method used in this paper is the pseudospectral method. Compared to local140

direct collocation, it uses the initial time point 𝑡0 and terminal time point 𝑡𝑓

as two node points and removes numbers of small time segment introduced in

direct collocation method. In other words, by using pseudospectral method,

there is only one time interval [𝑡0, 𝑡𝑓 ] and can use orthogonal polynomial to

approximate the state and control for the whole time history.145
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Assuming the time interval of an optimal control problem is [𝑡0, 𝑡𝑓 ], the

pseudospectral method must be used on the [−1, 1] and therefore, we transform

the time interval by using:

𝑡 =
𝑡𝑓 − 𝑡0

2
𝜏 +

𝑡𝑓 + 𝑡0
2

(14)

Following the transformation of the time interval to the values [−1, 1], the

next step is to generate the approximation of state and control. In the Pseu-150

dospectral method, the state and control of an optimal control problem are

approximated as:

𝑥(𝜏) ≈ 𝑋(𝜏) =

𝑁∑︁
0

𝑋𝑖𝐿𝑖(𝜏)

𝑢(𝜏) ≈ 𝑈(𝜏) =

𝑁∑︁
0

𝑈𝑖𝐿𝑖(𝜏)

(15)

where 𝜏 ∈ [−1, 1],𝐿𝑖(𝜏), (𝑖 = 0, ..., 𝑁) are the collocation points and a basis of

Lagrange polynomials, respectively. The LGR points are used as the collocation

point. LGR points are the root of linear combination of Legendre polynomials155

which can be written as:

𝑃𝐾−1(𝜏) + 𝑃𝐾(𝜏) = 0 (16)

where the 𝐾𝑡ℎ order Legendre polynominal 𝑃𝐾(𝜏) is

𝑃𝐾(𝜏) =
1

2𝐾𝐾!

𝑑𝐾

𝑑𝜏𝐾
[(𝜏2 − 1)𝐾 ] (17)

In order to improve the performance of global pseudospectral method, hp-

strategy has been developed for mesh refinement. The goal of the hp-adaptive

algorithm is to improve the accuracy of the solution in an effective manner by160

judging if a certain mesh interval has met a specified tolerance. If the mesh

cannot meet the accuracy tolerance, then the number of nodes or intervals

should be changed either by increasing the degree of the polynomial in the

mesh interval or dividing the mesh into several segments.

Let 𝑒𝑚𝑎𝑥 mean the maximum error at 𝑖𝑡ℎ collocation point. If 𝑒𝑚𝑎𝑥 can165

satisfy the tolerance, then can stop the iteration since collocation points in

the 𝑘𝑡ℎ interval can reach the tolerance. Otherwise, it should be divided into

subintervals or more collocation points are added.
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Whether we need to divide the interval into segments or add collocation

points, this can be determined by using curvature. If the value of curvature170

overpass the tolerance, then the trajectory in the current interval is very noisy

and it should be divided into new subintervals. On the other hand, if the

tolerance can be satisfied, meaning the trajectory is flat in current interval and

the accuracy can be improved by adding more collocation points.

By using the approach described above, the dynamic model can be trans-175

formed to algebraic constraints. Combining with the constraints mentioned in

section 2.2 and cost function presented in section 2.3, the SMV trajectory prob-

lem is converted to a nonlinear programming problem(NLP) with state and

control variables at collocation points.

4. Fuzzy physical programming180

The multi-objective optimization problem of SMV trajectory design can

be solved using the Fuzzy Physical Programming(FPP) method. FPP involves

converting a multi-objective problem into a single objective problem using fuzzy

performance functions that capture the decision maker’s preferences, and after

that solving this transformed single-objective optimization to find a compromise185

solution.

4.1. Physical programming

To generate a preferred compromise during multi-objective system opti-

mization, a method called physical programming(PP) is introduced. The way

that PP captures the designer’s preferences is by using preference function-190

s. Compared with other multi-objective methods, the application of PP does

not require the decision maker to specify weights for different object functions.

Rather, the decision maker needs to define ranges of differing degrees of desir-

ability for each objective function. It has been shown that PP offers the user

several advantages, for example, it can reduce computational effort and time,195

and at the same time, eliminate iterative selection of weights and priorities of

objective functions.

The objective functions are classified into four types:

(i) Class 1-S: smaller-is-better(minimization).

(ii) Class 2-S: larger-is-better(maximization).200
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(iii) Class 3-S: value-is-better(seek value).

(iv) Class 4-S: range-is-better(seek range).

Take class 1-S as an example, the boundary of the preference region is

represented by some values of objective function and there are six ranges for

classes 1-S and 2-S defined as follows:205

(i) Ideal range (𝑓𝑖 ≤ 𝑓𝑖1)

(ii) Desirable range (𝑓𝑖1 ≤ 𝑓𝑖 ≤ 𝑓𝑖2)

(iii) Tolerable range (𝑓𝑖2 ≤ 𝑓𝑖 ≤ 𝑓𝑖3)

(iv) Undesirable range (𝑓𝑖3 ≤ 𝑓𝑖 ≤ 𝑓𝑖4)

(v) Highly undesirable range (𝑓𝑖4 ≤ 𝑓𝑖 ≤ 𝑓𝑖5)210

(vi) Unacceptable range (𝑓𝑖 ≥ 𝑓𝑖5)

The parameters 𝑓𝑖1−𝑓𝑖5 are physically meaningful values that are specified

by the decision maker to quantify the preference functions with respect to the 𝑖𝑡ℎ

cost function. In the paper, these parameters are computed by single objective

optimization and the values can be determined using the following payoff table215

constructed by optimal solution of single objective optimization(see Table 1).

Table 1: Payoff table

𝑓1 𝑓2 𝑓3 · · · 𝑓𝑚

Opt 𝑓1(𝑥, 𝑢) 𝑓1(𝑥*1, 𝑢
*
1) 𝑓2(𝑥*1, 𝑢

*
1) 𝑓3(𝑥*1, 𝑢

*
1) · · · 𝑓𝑚(𝑥*1, 𝑢

*
1)

Opt 𝑓2(𝑥, 𝑢) 𝑓1(𝑥*2, 𝑢
*
2) 𝑓2(𝑥*2, 𝑢

*
2) 𝑓3(𝑥*2, 𝑢

*
2) · · · 𝑓𝑚(𝑥*2, 𝑢

*
2)

Opt 𝑓3(𝑥, 𝑢) 𝑓1(𝑥*3, 𝑢
*
3) 𝑓2(𝑥*3, 𝑢

*
3) 𝑓3(𝑥*3, 𝑢

*
3) · · · 𝑓𝑚(𝑥*3, 𝑢

*
3)

...
...

...
...

...
...

Opt 𝑓𝑚(𝑥, 𝑢) 𝑓1(𝑥*𝑚, 𝑢
*
𝑚) 𝑓2(𝑥*𝑚, 𝑢

*
𝑚) 𝑓3(𝑥*𝑚, 𝑢

*
𝑚) · · · 𝑓𝑚(𝑥*𝑚, 𝑢

*
𝑚)

For instance, (𝑥*𝑗 , 𝑢
*
𝑗 ) is the optimal solution of the 𝑗 − 𝑡ℎ single objective

optimization, then 𝑓𝑖1 can be achieved by:

𝑓𝑖1 = min
𝑗=1,...,𝑚

𝑓𝑖(𝑥
*
𝑗 , 𝑢

*
𝑗 ), 𝑖 = 1, ...,𝑚. (18)

Once the range parameters have been determined for each objective func-

tion, preference functions are constructed. Considering the case of class 1-S, the220

preference function 𝑝𝑖(𝑓𝑖(𝑋)) are defined as follows, and the preference function

for class 2-S is the mirror image of class 1-S.

𝑝𝑘𝑖 = 𝐴0(𝜉𝑘𝑖 )𝑝𝑖(𝑘−1) +𝐴1(𝜉𝑘𝑖 )𝑝𝑖𝑘 +𝐴0(𝜉𝑘𝑖 , 𝜆
𝑘
𝑖 )𝑠𝑖(𝑘−1) +𝐴1(𝜉𝑘𝑖 , 𝜆

𝑘
𝑖 )𝑠𝑖𝑘 (19)
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where 𝜉𝑘𝑖 = (𝑓𝑖 − 𝑓𝑖(𝑘−1))/(𝑓𝑖𝑘 − 𝑓𝑖(𝑘−1)) and 0 < 𝜉𝑘𝑖 < 1, 𝜆𝑘𝑖 = (𝑓𝑖𝑘 − 𝑓𝑖(𝑘−1)), 𝑘

is the number of region and 𝑘 = 2, 3, 4, 5. As can be seen from Eq.(19), for each

region, the preference function takes the form of a spline segment which can be225

defined by its value and slope.

𝑠𝑖𝑘 =
𝜕𝑝𝑘𝑖
𝜕𝑓𝑘𝑖

|𝑓𝑘
𝑖 =𝑓𝑖𝑘

(20)

𝐴0(𝜉) =
1

2
𝜉4 − 1

2
(𝜉 − 1)4 − 2𝜉 +

3

2
(21)

𝐴1(𝜉) = −1

2
𝜉4 − 1

2
(𝜉 − 1)4 + 2𝜉 − 1

2
(22)

𝐴0(𝜉, 𝜆) = 𝜆[
1

8
𝜉4 − 3

8
(𝜉 − 1)4 − 1

2
𝜉 +

3

8
] (23)

230

𝐴1(𝜉, 𝜆) = 𝜆[
3

8
𝜉4 − 1

8
(𝜉 − 1)4 − 1

2
𝜉 +

1

8
] (24)

In the end, for the first region, the preference function can be defined by

an exponential function:

𝑝1𝑖 = 𝑝𝑖1 exp[(
𝑠1𝑖
𝑝𝑖1

)(𝑓𝑖 − 𝑓𝑖1)] (25)

4.2. Fuzzy preference

To take into account the decision maker’s physical understanding of the de-

sired design outcomes, a fuzzy preference is introduced during the optimization235

process. In this way, it can enable the decision maker to control the optimization

to some extent. Suppose that the preference function of the 𝑖 − 𝑡ℎ objectives

belongs to Class-1, we define the parameter 𝑓𝑖𝑘 as a normal fuzzy number 𝑓𝑖𝑘

and therefore, its membership function follows the form:

𝜇 ˜𝑓𝑖𝑘
(𝑓𝑖) = exp

−[
𝑓𝑖−𝑓𝑖𝑘

𝛿𝑖𝑘
]2
, 𝛿𝑖𝑘 > 0 (26)

where 𝛿𝑖𝑘 is the fuzzy parameter of the 𝑘 − 𝑡ℎ boundary of preference function240

and it can be defined based on [25, 26]. Then the fuzzy preference function can

be summarised as follows:

𝑓𝑝𝑖𝑘
(𝑓𝑖𝑘) =

∫︀ 𝑓𝑖(𝑋)+3𝛿𝑖𝑘
𝑓𝑖(𝑋)−3𝛿𝑖𝑘

𝑓𝑖(𝑓𝑖)𝜇 ˜𝑓𝑖𝑘
(𝑓𝑖)𝑑𝑓𝑖∫︀ 𝑓𝑖(𝑋)+3𝛿𝑖𝑘

𝑓𝑖(𝑋)−3𝛿𝑖𝑘
𝜇 ˜𝑓𝑖𝑘

(𝑓𝑖)𝑑𝑓𝑖
(27)
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𝑓𝑖(𝑓𝑖) is the preference function of 𝑖 − 𝑡ℎ objective function without con-

sidering fuzzy factor.

4.3. Fuzzy programming problem245

By defining the fuzzy preference function and range parameters for each

objective function, the compromise solution can be achieved by solving the

optimization problem as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min𝑃 = 𝑙𝑜𝑔10{ 1
𝑛𝑠

∑︀𝑛𝑠

𝑖=1 𝑓𝑝𝑖𝑘
(𝑓𝑖𝑘)},

𝑓𝑖(𝑋) ≤ 𝑓𝑖5, for class 1-S;

𝑓𝑖(𝑋) ≥ 𝑓𝑖5, for class 2-S;

𝑓𝑖5𝐿 ≤ 𝑓𝑖(𝑋) ≥ 𝑓𝑖5𝑅, for class 3-S;

𝑓𝑖5𝐿 ≤ 𝑓𝑖(𝑋) ≥ 𝑓𝑖5𝑅, for class 4-S.

(28)

where 𝑛𝑠 is the number of ranges associated with the problem and the range

limits can be specified by defining the pay-off table. Take the case of Class 1-S250

as an example, the fuzzy preference function is shown in Fig.2.

Figure 2: Fuzzy preference function for Class 1-S

5. Simulation results

5.1. Parameters setting

The maximum values of heat flux, dynamic pressure and load factor are

𝑄𝑑𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2/𝑠;𝑃𝑑𝑚𝑎𝑥 = 13406.4583𝑃𝑎;𝑛𝐿𝑚𝑎𝑥 = 2.5, respectively.255

The initial and terminal conditions of the entire process and boundary con-

straints can be found in Table 2.
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Table 2: Parameters setting

Initial Bottom Terminal Minimum Maximum

r(ft) 21162900 21066900 21162900 21066900 21162900

𝜃(𝑑𝑒𝑔) 0 free free -180 180

𝜑(𝑑𝑒𝑔) 0 free free -70 70

V(ft/s) 25600 free free 2000 45000

𝛾(𝑑𝑒𝑔) -1 free free -80 80

𝜓(𝑑𝑒𝑔) 90 free free -180 180

m(sl) 6309.4 free free 1370.4 6309.4

𝛼(𝑑𝑒𝑔) 17.43 free free 0 40

𝜎(𝑑𝑒𝑔) -75 free free -90 1

𝑇 (𝑁) 0 free free 0 2000000

The specific boundary conditions are given by the industrial sponsor Lock-

heed Martin Space Systems Company and only the first hop is taken into ac-

count in the paper. The initial altitude is around 80𝑘𝑚 where is the edge of260

atmosphere.

5.2. Time history of the state and control

Firstly, the optimization results for each single objective function accord-

ing to the dynamic model, objectives and constraints given in Section 2 are

generated. The results are shown in Figs.3-7.265

Figure 3: Altitude for different objective function

As can be seen from Fig.3-7, conflicts exist between each objective function,

therefore it is impossible to find a solution optimizing each cost function. For

13



Figure 4: Speed for different objective function

Figure 5: Flight path angle for different objective function

Figure 6: Angle of attack for different objective function
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Figure 7: Aerodynamic heating for different objective function

example, in the case of maximizing final velocity, if there is no compromised

procedure, then to achieve a higher speeds, the SMV is tending to complete

the mission with longer time and accelerating during the whole time period,270

which means it is trying to consume all the fuel. Hence, after reaching the low

earth orbit, the SMV has no fuel left to continue the mission. Similar with [27]

presented by Hu and Xin, to see the results more clearly, the payoff table results

are tabulated in Table.3.

Table 3: Payoff table

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5

max 𝐽1 4437.5 121.86 8.840 × 10−3 15013.5 1512.04

min 𝐽2 3971.2 75.38 2.459 × 10−2 16887.4 940.96

min 𝐽3 1667.7 195.12 7.443 × 10−6 22327.3 1403.22

max 𝐽4 1370.4 217.63 9.376 × 10−3 30937.6 2086.42

min 𝐽5 2782.1 89.17 7.642 × 10−5 17467.5 850.56

From the pay-off table, we can conclude the boundary based on the best275

solution and worst solution from single objectives results that: 𝑓11 = 4427.5,

𝑓21 = 75.38, 𝑓31 = 7.443 × 10−6, 𝑓41 = 30937.6, 𝑓51 = 850.56 and 𝑓15 = 1370.4,

𝑓25 = 217.63, 𝑓35 = 2.459 × 10−2, 𝑓45 = 15013.5, 𝑓55 = 2086.42. Then the FFP

15



model can be obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝑙𝑜𝑔10{ 1
5

∑︀5
𝑖=1 𝑓𝑝𝑖𝑘

(𝑓𝑖𝑘)},
𝑓1(𝑋) ≥ 1370.4

𝑓2(𝑋) ≤ 217.63

𝑓3 ≤ 2.459 × 10−2

𝑓4 ≥ 15013.5

𝑓5 ≤ 2086.42

𝑄̇𝑑 = 𝐾𝑄𝜌
0.5𝑉 3.07(𝑐0 + 𝑐1𝛼+ 𝑐2𝛼

2 + 𝑐3𝛼
3) < 200𝐵𝑇𝑈/𝑓𝑡2/𝑠

𝑃𝑑 = 1
2𝜌𝑉

2 < 13406.4583𝑃𝑎

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 2.5

(4), (5), (7)𝑎𝑛𝑑(8)

(29)

where the first equation of the optimization objective of (29) is to optimize280

all the objectives by minimizing the preference function values. By solving

the model illustrated above, we can achieve the compromised time history of

each state and control. The corresponding trajectories generated by using PP

and FPP for optimization parameters and constraint can be found in Figs.8-16,

respectively.285

Figure 8: Altitude for FPP and PP

To further compare the results generated from PP and FPP, simulation re-

sults were done in order to verify the Pareto optimality of PP and FPP solution

by comprising with the Pareto-optimal solutions obtained using NSGA-II and

the weighted method, which can be seen in Table 5. NSGA-II shares a simi-
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Figure 9: Speed for FPP and PP

Figure 10: Flight path angle for FPP and PP

lar idea with PP of transforming the multi-objectives to a well-designed single290

fitness function and creates a number of fronts. During the optimization pro-

cedure, the first front is generated as the set of solutions that has the highest

fitness value and is not dominated by any other solutions in the current popu-

lation. For the NSGA-II simulation, the population size is 200, the maximum

number of generations is 500 while the tournament selection scale is 3. The295

probability of crossover and mutation are 0.8 and 0.1, respectively.

The Pareto fronts, generated by NSGA-II, PP, FPP and weighted method(i.e.

solutions can be found in Table.4), are projected onto two plane shown in Fig.17

and Fig.18. From the plane of minimizing terminal time versus minimizing to-
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Figure 11: Angle of attack FPP and PP

Figure 12: Mass for FPP and PP

Table 4: Optimization results for weighted method

Weights Objective values(𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5)

(0.30, 0.10, 0.10, 0.30, 0.20) (4330.2, 97.57, 7.93 × 10−4, 16770.7, 963.9)

(0.35, 0.15, 0.15, 0.20, 0.15) (4342.3, 99.48, 7.63 × 10−4, 16502.2, 975.5)

(0.40, 0.20, 0.20, 0.10, 0.10) (4378.7, 105.42, 6.75 × 10−4, 16492.2, 988.1)

tal heating and maximizing final velocity versus maximizing final mass, it is300

clear that both PP and FPP can get the solutions around the Pareto fron-

tier generated by NSGA-II while it is hard for weighted method to generate

a Pareto-optimal solution. Specifically, the compromised solution obtained by
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Figure 13: Thrust for FPP and PP

Figure 14: Load factor for different objective function

FPP can have a better preference than its counterpart PP, hence it has smaller

variance with the Pareto frontier. As FPP approach is designed to generate305

a single Pareto-optimal solution in one run whereas NSGA-II approach is de-

signed to obtain hundreds of solutions in one run, therefore, FPP is definitely

competitive in computational effort and is more convenient in the numerical

experiments and practical use.

Table.5 contains the compromised solution for each objective function and310

the variance proportion. As can be seen from Table.5, the maximum variance

percentage can reach around 8.4% , that means if we do not consider the fuzzy

factor, there will be some differences between the calculated solution with com-
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Figure 15: Aerodynamic heating for different objective function

Figure 16: Dynamic pressure for different objective function

pared to the practical solution. Both solutions calculated from PP and FPP

satisfy the path constraints and for the solution of FPP, it is found that all of315

the compromised objective values can be successfully obtained. Specifically, the

value of 𝐽1 is in the tolerable region whereas the value of 𝐽2 is in the desirable

region. 𝐽3 and 𝐽5 are in the tolerable region while the value of 𝐽4 can reach de-

sirable region. This further proves that the combination of hp-adaptive discrete

method with FPP can be applied to multi-objective optimization for trajectory320

design problems.

Using the technique of hp-adaptive pseudospectral method, the time history

for the states and controls can be much smoother. This can be seen from
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Figure 17: Total heating versus terminal time

Figure 18: Final mass versus final speed

Table 5: Objective values

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5

PP 4380.3 92.63 5.43 × 10−4 16798.5 976.06

FPP 4330.1 92.35 5.01 × 10−4 18208.1 965.62

Variance(%) 1.6 0.3 5.9 8.4 1.1

Figs.8-16, where the distribution of collocation points tend to be denser at those

areas having a high value of curvature, on the other hand, the distribution of325

collocation points tend to be sparser at those flat areas. That way can control

the number of optimization parameters and control the size of NLP problem
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effectively. Also, since the trajectory becomes smoother, it is more possible and

reasonable for practical use.

The accumulation of errors generated from numerical simulation model330

should be evaluated depending on technique used. The parameters used in

model have errors and are modeled in the simulation as a Gaussian white nois-

es. Comparative simulation results are shown in Fig.19-20. It is shown that

computational errors accumulation affects the shape of trajectory slightly. The

reliability of results can be guaranteed since the hp-strategy used for mesh re-335

finement can improve the accuracy of current mesh grids.

Figure 19: Altitude vs time

Figure 20: Flight path angle vs time

In summary, all the figures and data provided earlier confirm the feasibility
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of the proposed combination method in terms of SMV trajectory design problem.

6. Conclusions

In order to design a proper trajectory for the SMV, the previously proposed340

single-objective optimization formulation were extended to multi-objective op-

timization, including maximum final mass, minimum total aerodynamic heat-

ing, minimum oscillation, maximum final velocity and minimum final time. A

multi-objective optimization method FPP based on hp-adaptive pseudospectral

method was proposed. When considering the fuzzy factor for the system, in345

FPP, fuzzy preference function is introduced to adjust the boundary defined by

the decision maker. The simulation results show that there are significant dif-

ferences between each single-objective solution and by using the FFP method,

a compromised solution can be obtained. A comparison was made between the

results obtained by using FPP and NSGA-II, which showed that the method350

proposed in this paper can have a better preference in terms of generating Pare-

to optimal solution than other methods and therefore, it tends to be feasible for

the SMV trajectory design problem and the definition of the fuzzy function is

important.
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