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ABSTRACT
Data loss is perceived as one of the major threats for cloud
storage. Consequently, the security community developed
several challenge-response protocols that allow a user to re-
motely verify whether an outsourced file is still intact. How-
ever, two important practical problems have not yet been
considered. First, clients commonly outsource multiple files
of different sizes, raising the question how to formalize such a
scheme and in particular ensuring that all files can be simul-
taneously audited. Second, in case auditing of the files fails,
existing schemes do not provide a client with any method to
prove if the original files are still recoverable.

We address both problems and describe appropriate so-
lutions. The first problem is tackled by providing a new
type of “Proofs of Retrievability” scheme, enabling a client
to check all files simultaneously in a compact way. The sec-
ond problem is solved by defining a novel procedure called
“Proofs of Recoverability”, enabling a client to obtain an as-
surance whether a file is recoverable or irreparably damaged.
Finally, we present a combination of both schemes allowing
the client to check the recoverability of all her original files,
thus ensuring cloud storage file recoverability.

1. INTRODUCTION
Cloud service providers (CSPs) have gained continuous

importance over the last decade, e.g. Amazon AWS, Google
Cloud Platform, or Windows Azure. They offer various
services in numerous application domains such as storage,
computation, and key management. Especially storage has
matured into one of the main applications with growing in-
terests. However, as the client loses control over her data, at
the same time new security concerns rise. For instance, one
of the major risks perceived in the context of cloud storage
is the fear of data loss [1].

Proofs of Storage (PoS) [9] allow a client to remotely ver-
ify that a server truthfully stores a file. Well-studied exam-
ples of a PoS are Proofs of Retrievability (PoR) [24, 28] and
Proofs of Data Possession (PDP) [8]. In a nutshell, such
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schemes work as follows. Before uploading a file, a user pre-
processes it and stores locally some meta information about
the file. For verification, a challenge-response-protocol is ex-
ecuted. Here, a challenge covers some blocks of the file and
security of the scheme ensures that a provider can only pro-
vide a correct response if these blocks are stored entirely.
In other words, such schemes aim to ensure for a single file
that if the provider yields correct responses, the outsourced
file is stored correctly. We argue that these guarantees are
often not sufficient in practice and that these gaps require
novel solutions.

First, clients commonly outsource multiple files of various
sizes. A straightforward approach would be to run PoR
over each file. However, the effort scales over all procedures
of PoR with the number of files. Alternatively, one may
consider to randomly select blocks over the set of all blocks
of all files. However, then small files risk to be overlooked
regularly.

Second, PoR guarantee that if the response is correct then
the outsourced file is retrievable. However, PoR provide
only limited information about the original file in case of
wrong responses. At a first glance, one may argue that in
case incorrect responses are given (and hence some blocks
are missing), the provider neglected his task and is ulti-
mately accountable. However, in practice, the Service Level
Agreement (SLA) never guarantees 100% reliable storage,
and hence, the CSP could always claim that the missing
blocks are part of the expected loss [3] (including natural
data degradation), which we call regular data loss. Hence,
there is an inherent gap to provide any assurance at all about
the original file as soon as even small loss occurs. This leaves
the client with the uncertainty whether it is worth download-
ing the remaining damaged file hoping to recover the original
file since she would have to invest her own resources (stor-
age, communication, and computation). Note that posing
another set of large challenges to cover most of the blocks
not only imposes a huge communication and computation ef-
fort for the CSP which he may not be willing to do so. Large
challenges also dramatically increase the detection probabil-
ity of finding a damaged block which typically results in an
incorrect response and no information about the recoverabil-
ity of the original files. Consequently, this leaves only the
alternative to make many short challenges. This induces the
questions on determining the optimal challenge size as well
as how often those challenges need to be posed to obtain
a sufficient level of confidence that an original file can be
recovered from the damaged one.

In this work, we propose solutions to both problems. With
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respect to the multi-file case, we first describe a formal ex-
tension of PoR to the multi-file scenario and provide an in-
stantiation. With respect to the second problem, we show
how to solve it by using the previous solution as a stepping
stone enabling us to formalize proofs of recoverability that
provide the required assurance to argue about the retriev-
ability of original files even if some parts of the outsourced
version are damaged. Finally, we combine both schemes to
give a complete solution for cloud storage file recoverability.

2. PRELIMINARIES
In this section, we briefly recall the PoR model as de-

scribed in previous work [24, 28]. Furthermore, we discuss
shortcomings of the notion since we want to accommodate
multiple files and regular data loss in the realm of cloud
storage.

2.1 Proofs of Retrievability
Proofs of Retrievability are a minimally interactive pro-

tocol between a client and cloud storage provider which
cryptographically proves the retrievability of an outsourced
file. In more detail, a PoR scheme consist of three basic
procedures, namely Setup, Store, and PoRP. The first two
procedures basically initialize the scheme as well as prepare
the file to be outsourced, i.e., the file is processed with an
erasure-correcting code (ECC). An ECC encoding is a pro-
cess that adds redundant data to the original file in such a
way that a receiver may recover the original file even when a
number of erasures were introduced into the processed (out-
sourced) file1, either during the transmission of the file, or
while storing it. We denote the ECC coding rate by ρ with
0 < ρ ≤ 1. The final procedure PoRP is a minimally inter-
active protocol between a verifier and a prover determining
whether the outsourced file is retrievable by outputting a
decision bit δ ∈ {accept, reject}.2 The term minimally
refers to a single execution of a challenge-response proto-
col providing a provable statement about the retrievability
of the outsourced file. Such a single execution suffices here
since the ECC functionality boosts the probability to detect
a misbehaving server. In more detail, the detection probabil-
ity of a cheating server is approximately 1− (1− ρ)` where
` corresponds to the size of the challenge which describes
the number of different blocks of the processed file that are
simultaneously checked. In case a malicious server is de-
tected, the procedure outputs δ = reject with overwhelm-
ing probability indicating that the processed file is not fully
intact anymore. In other words, the CSP is misbehaving.
Note that we discuss in the full version [21] different types
of ECC that can be employed in the realm of PoR.

2.2 Adversarial Model
We consider a stateful rational attacker in form of a mali-

cious storage provider that may try to delete bits, blocks, or
rearrange specific files in order to make storage space avail-
able, thus obtaining a financial benefit, e.g. by letting the
same space multiple times. Since the adversary can precisely
choose which bits or bytes to delete within the outsourced
file, we call this an adversarial erasure strategy. Note that
we assume the adversary only deletes data prior to a PoRP

1Note that we use the terms“outsourced file”and“processed
file” interchangeably.
2For a formal definition of PoR please refer to [28].

procedure. In other words, the adversary does not dynami-
cally delete any data while the file is being checked.

2.3 Multiple Files
It is natural that a client aims to store multiple (different-

sized) files F (1), . . . , F (f) at a storage provider and wishes
to obtain a provable assurance that the provider is indeed
in possession of the files as well as them being retrievable.
However, current known PoR proposals do not support the
multiple files case well. In more detail, assume one out-
sources multiple files F (1), . . . , F (f) to a provider and simply
performs a separate PoR for each file individually. However,
even if this approach theoretically works, it is inefficient due
to the increased workload that scales in the number of files
over all procedures. Another approach is to simply concate-

nate all files into one (large) file F̂ = F (1)‖F (2)‖ . . . ‖F (f)

and execute a PoR scheme for the composed file F̂ . Un-
fortunately, the employed type of ECC encoding used while
processing the file becomes the bottleneck rendering this ap-
proach to be infeasible. For example, a “concatenated-file
ECC” encoding results in a processed file of the form F =

F (1)‖F (2)‖ . . . ‖F (f)‖P (1,...,f) = F̂‖P (1,...,f) where P (1,...,f)

denotes the added redundancy generated over the concate-
nation of all files. In this particular case it may be possible
to use existing PoR notions depending on the size of f , how-
ever, this approach suffers from other drawbacks making it
an unattractive solution. In more detail, in case a client
wishes to update a single file F (i), i ∈ [f ] := {1, . . . , f},
then she is required to download the whole processed file F
since the redundancy was generated over the concatenated
file and thus makes (individual) file updates expensive. Note
that the same holds in case the client wants to delete files
and that F may include all outsourced files.

Another type of ECC encoding called“individual-file ECC”
results in obtaining a processed file of the form
F = F (1)‖P (1)‖F (2)‖P (2)‖ . . . ‖F (f)‖P (f) where each orig-

inal file F (i), i ∈ [f ], is initially processed before all files are

concatenated and thus all parity parts P (i) are independent
from each other. Here, updating a file F (i) is easier since
we can solely download the required file, however, this ap-
proach suffers from the “small file problem”. In more detail,
if some file F (i) of the processed file F is small (e.g. the file
solely consists of a password) then there is a non-negligible
probability that within a single PoRP execution this file does
not get examined while the procedure outputs accept, since
only a small number of blocks is being checked. However,
this acceptance token may be false positive since the pro-
cedure has not checked all files and hence the statement
cannot provide sufficient assurance about the retrievability
of all files. Yet another drawback of this approach is that in
case any file and respective parity block is deleted then this
specific file is completely deleted. Both approaches suffer
from the problem that in case PoRP fails (i.e., outputting
reject), it is unclear in which file(s) the error has occurred
and thus forces the client to download the whole processed
file and losing her initial advantage of outsourcing the files
in the first place.

To overcome the above problems we introduce a new PoR
notion called cloud storage proofs of retrievability (CSPoR)
in Section 3.

2.4 Recovering Corrupted Files
So far, a single execution of PoRP solely enables one to



detect a cheating server or regular data loss with overwhelm-
ing probability. Thus, in case PoRP returns reject we know
that the outsourced file is not retrievable (with overwhelm-
ing probability) and that at least one block is missing or
damaged. Usually, the literature does not further investi-
gate this case and it seems to be a common agreement that
the client is supposed to blame the provider and also to ini-
tiate countermeasures in order to secure the remaining data
by typically downloading all remaining file parts. In prac-
tice, however, the provider claims that he is not the one to
blame since the SLA never guarantees 100% reliable storage
and hence the missing block(s) are part of the (potential)
expected regular data loss, yielding corrupted files. The
countermeasure of downloading the file is not a very satisfy-
ing solution since the client is now in the position of losing
the initial advantage of outsourcing her files and is required
to invest her own precious resources to get the files. Further-
more, she does not know whether a large erasure (i.e., more
data than the amount of parity data encoded into the file got
deleted) or a small erasure (i.e., at most the amount of par-
ity data encoded into the file got deleted) occurred. Hence,
putting it all together we observe that a negative PoRP an-
swer does not provide us with any information about the
retrievability or irretrievability of the original file. Thus, it
is the client’s goal to determine whether the original file is
recoverable without downloading it. To achieve this goal, we
need to ensure that we obtain the knowledge that at least
a certain minimal amount of file blocks in the processed file
(at least as many blocks as the original file consists of) is
valid. In order to sample this minimum amount of blocks,
we require to perform multiple audits over the file. If this
is successful, then, by the properties of the ECC decoding
procedure, we are able to recover the original file. Otherwise
the file is irrecoverable.

To the best of our knowledge, we are the first to inves-
tigate a solution towards ensuring recoverability of a file in
the single-server setting after a PoR scheme returns a neg-
ative reply. In Section 4, we discuss in detail our approach
and solution towards ensuring recoverability of the original
file and thus closing an important gap within the PoR func-
tionality. We also propose a solution which is applicable in
the multi file case.

3. CLOUD STORAGE PROOFS OF
RETRIEVABILITY

In this section we introduce our new PoR notion called
Cloud Storage Proofs of Retrievability (CSPoR) scheme
which is a natural generalization of “classical” PoR systems,
overcoming the previously discussed problems. Furthermore,
we briefly present the appropriate security model and pro-
vide details about the concrete instantiation.

3.1 Formal Definition
In this section we present a formal definition of CSPoR.

Prior to this, let us briefly introduce the notion of a cloud
storage which acts as the underlying abstract model of data
storage in which digital data can be stored. We denote the
cloud storage by S and assume it can store multiple arbi-
trary files F ∈ {0, 1}∗.

Definition 1. A cloud storage proofs of retrievability
(CSPoR) scheme CSPoR comprises the following procedures:

(pk, sk,S)
$← CSPoRSetup(1λ): this randomized algorithm

generates a public-private key pair (pk, sk) and takes as
input the security parameter λ. It initializes a cloud stor-
age S;

(F̂ , τ̂ ,S)
$← CSPoRStore(sk, F̂ ): this randomized data stor-

ing algorithm takes as input a secret key sk and the set of

all files F̂ a client wishes to store at the provider’s cloud
storage. The set of files consists of K ∈ N files where

F̂ := {F (k) | F (k) ∈ {0, 1}∗, k ∈ [K]}. Each file within the
cloud storage gets processed yielding the set of all processed

files F̂ := {F (k) | k ∈ [K]} and a respective set of file tags

is generated τ̂ := {τ (k) | k ∈ [K]} where each tag contains
additional information (e.g. meta data) about the processed
file. Furthermore, the algorithm outputs the updated cloud
storage S;

δ
$←
[
CSPoRVerify(pk, sk, τ̂ ′)
 CSPoRProve(pk, F̂ ′, τ̂ ′)

]
:

this challenge-response protocol defines a protocol for prov-
ing cloud storage retrievability. The prover algorithm takes
as input the public key pk, the file tag set τ̂ ′ := {τ (k) | k ∈
[K′]} and the set of the processed files F̂ ′ := {F (k) | k ∈
[K′]}, where [K′] ⊆ [K]. The verification algorithm uses
as input the key pair (pk, sk) and the file tag set τ̂ ′. Algo-
rithm CSPoRVerify finally outputs a binary value δ which
equals accept if verification succeeds, indicating the files

F̂ ′ are being stored and retrievable from the cloud storage
provider, and reject otherwise.

Note that F̂ may not be exactly equal to F̂ but it must

be guaranteed that F̂ can be recovered from F̂ . We remark
that the involved file tag set τ̂ ′ in the challenge-response
protocol can correspond to either the full set of file tags τ̂ or
any arbitrary subset of file tags enabling a CSPoR scheme to
flexibly check any set of files by specifying the appropriate
tags. Informally, a CSPoR scheme is correct if all processed

files F̂ outputted by the store procedure CSPoRStore will
be accepted by the verification algorithm when interacting
with a valid prover. We denote the above challenge-response

procedure of CSPoR by CSPoRP(pk, sk, τ̂ ′, F̂ ′), if the context
is clear briefly CSPoRP, which we will refer to as an audit.

Remark 1. Cloud Storage and Storage Container.
Recall that we denote by cloud storage an abstract model of
data storage in which one stores digital data. However, mov-
ing towards realizing a cloud storage architecture, we can in-
troduce another storage unit called a storage container. Such
a storage unit allows for storing multiple files within one lo-
cation (in the physical layer of the cloud environment), pro-
viding a client with a file system structure. Note that similar
concepts are already in practical use called Buckets [2, 20]
or Blobs [25]. Usually, a storage container is limited by a
pre-defined storage space size. Hence, a client may create
and handle multiple storage containers simultaneously. Ul-
timately, we call the set of all storage containers a cloud
storage.

3.2 Security Model
The underlying security model for a CSPoR scheme cap-

tures the usual extractability notion, i.e., the adversary aims
to convince the verifier with overwhelming probability that
the files are still fully intact and retrievable. In our model,
we crucially extend the notion to accommodate multiple
files. Due to space restrictions, the full security model and
proof can be found in the full version [21].



3.3 Instantiation Details
Our concrete instantiation is based on the private PoR

scheme of Shacham and Waters (SW-PoR) [28] mainly due
to its ability to handle an unbounded number of verification
queries in a compact way. In case a better communication
complexity is required, one may build upon the scheme pre-
sented in [13]. On a high level, our instantiation exploits
the homomorphic properties of the SW-PoR proposal en-
abling us to aggregate a proof for all files into a small value.
Our CSPoR instantiation overcomes the identified limita-
tions, as discussed in Section 2.3, when employing existing
schemes straightforwardly to prove retrievability for multiple
different-sized files simultaneously. After outlining our main
building blocks, we provide details about our instantiation.

Building Blocks
Unless otherwise specified all operations are performed over
the finite field F = Zp where p is a λ-bit prime with λ being
the security parameter. As we instantiate a private CSPoR
system, it suffices to use a symmetric encryption scheme and
we set the public key pk =⊥. We utilize a MAC scheme and
a pseudo-random function (PRF) g : {0, 1}∗×{0, 1}φprf → F,
where φprf is the key length of the PRF. Furthermore, we
make use of a cloud storage S, cf. Section 3.1, which contains
all outsourced data.

Specification of the CSPoRSetup Procedure
In the CSPoRSetup procedure, the client derives a random

symmetric key κenc
$← Kenc and a random MAC key κmac

$←
Kmac, where Kenc and Kmac are the respective key spaces.
The secret key is sk = (κenc, κmac) and requests create a
cloud storage S.

Specification of the CSPoRStore Procedure
The CSPoRStore procedure is initiated by the client holding

a set of K ∈ N files where F̂ := {F (k) | F (k) ∈ {0, 1}∗, k ∈
[K]} that she wishes to store in S. The following steps are

carried out for each file F (k) of F̂ :
1. First, we apply an information dispersal algorithm (i.e.

an erasure code, e.g. a systematic MDC ECC like per-
muted and encrypted Reed-Solomon code [7]) with code

rate ρ over the file F (k) which originally consists of
n(k) ∈ N blocks. The resulting processed file is de-
noted by F (k);

2. Next, we divide the processed file F (k) into ñ(k) ∈
N blocks, each block being s symbols long. That is

F (k) = {f (k)
ij }, where 1 ≤ i ≤ ñ(k), 1 ≤ j ≤ s, and

f
(k)
ij ∈ F. Note that s is constant for all files while the

number of blocks ñ(k) varies depending on the respec-
tive underlying original file size;

3. We sample uniformly at random a PRF key κ
(k)
prf

$←
{0, 1}φprf and sample s random elements from the fi-
nite field F which are kept private by the client, that

is α
(k)
1 , . . . , α

(k)
s

$← F;

4. Then, we compute for each block of F (k) an authenti-

cation tag σ
(k)
i ← g

κ
(k)
prf

(i)+
∑s
j=1 α

(k)
j f

(k)
ij ∈ F, i ∈ [ñ];

5. At last, compute file tag τ (k) := τ
(k)
0 ‖MACκmac(τ

(k)
0 ),

where τ
(k)
0 := ñ(k)‖Encryptκenc

(
κ
(k)
prf‖α

(k)
1 ‖ . . . ‖α

(k)
s

)
.

Finally, the client combines all authentication tags into the

set σ̂, all file tags into the set τ̂ , as well as all processed files

are aggregated as the set F̂ . The three sets are uploaded

to the cloud storage S of the provider while σ̂ and F̂ are
removed locally from the client (τ̂ is optional). Note that
in the fifth step the provider only learns the size of the out-
sourced file, since the remaining part of τ (k) is encrypted
with the client’s secret key.

Specification of the CSPoRP Procedure
The CSPoRP procedure obtains an assurance about the re-
trievability of the files. In the following we describe the
technical details of an audit step providing a reply δ. Note
that the client may wish to audit only a subset K′ of all K
outsourced files, hence we have [K′] ⊆ [K].

1. The client first verifies the MAC on each τ (k) within
τ̂ . If the MAC is invalid the client aborts the protocol
and outputs reject. Otherwise, she parses all τ (k)

from τ̂ and uses κenc in order to recover ñ(k), κ
(k)
prf and

α
(k)
1 , . . . , α

(k)
s for all k ∈ [K′];

2. Next the client selects a random subset I(k) ⊆$ [ñ(k)]

of size `(k) and chooses for each i ∈ I(k) a random
element from the finite field ν

(k)
i

$← F for all k ∈ [K′];
3. Then the client generates the challenge by aggregat-

ing the sampled values from Step (2) per file to a set

Q(k) = {(i, ν(k)i )i∈I(k)} of size `(k), for all k ∈ [K′].

All sets Q(k) are combined to Q̂ := {Q(k) | k ∈ [K′]}
which is then sent to the provider.

The cloud service provider now parses all files from F̂ as

{f (k)
ij } and {σ(k)

i }, and the corresponding challenges Q(k)

from Q̂. Then, the provider computes for 1 ≤ j ≤ s and

all k ∈ [K′] the values µ
(k)
j ←

∑(
i,ν

(k)
i

)
∈Q(k) ν

(k)
i f

(k)
ij and

σ(k) ←
∑(

i,ν
(k)
i

)
∈Q(k) ν

(k)
i σ

(k)
i . Next, the CSP accumu-

lates all responses and authentication tags to output µ̃j :=∑
k∈[K′] µ

(k)
j and σ̃ :=

∑
k∈[K′] σ

(k) for each 1 ≤ j ≤ s Fi-
nally, the client parses the provider’s response and checks

σ̃
?
=
∑
k∈[K′]

 ∑
(
i,ν

(k)
i

)
∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +

s∑
j=1

α
(k)
j µ̃j

 .

If this equality check is successful, the verifier outputs δ =
accept, and otherwise she outputs δ = reject. Note that it
is easy to check the correctness for the above instantiation
and the formal treatment is deferred to the full version [21].

Remark 2. Applicability of CSPoR to Current
Cloud Architectures. The above introduced CSPoR sys-
tem can be translated straightforwardly into present cloud ar-
chitectures. This can be achieved by introducing procedures
(e.g., CSPoRStore) that capture the communication steps be-
tween a client and a storage provider. Let us assume that
a provider exposes a standard interface to its client offer-
ing a handful of commands in order to execute some basic
operations such as storing or downloading a file, as well as
other commands. To implement such an interface for our
CSPoR system, we can use currently employed APIs from
Amazon [2], Google [19] or Microsoft [25]. Following those
APIs, it suffices to use only two commands to implement
the above procedures for a CSPoR system in current cloud
architectures, namely POST and GET. Note that all formal
details and discussions are deferred to the full version [21].



4. DETERMINING FILE
RECOVERABILITY

As mentioned in the previous sections, PoR schemes de-
tect with an overwhelming probability whether data loss has
occurred within a single audit. Since data may be lost with-
out violating the mutually agreed SLA, the CSPoR scheme
will output δ = reject, although the original files may still
be retrievable. Thus, in summary, we can check multiple files
with CSPoR simultaneously. If the scheme returns accept

this indicates that all files are retrievable with overwhelming
probability, while in contrast we only know that at least one
block of some file is corrupted if CSPoR returns reject. Re-
call that the literature has not further considered a solution
towards forming a provable statement about the retrievabil-
ity of the original file in case the scheme returns a rejection
token.3 In the following, we provide a solution to close this
gap.

Let us assume that CSPoR returns a rejection token. In
the following let us redefine CSPoRP to take as input a single
processed file F , a single file tag τ , and the challenged block
identifiers I, which we abbreviate by CSPoRP’, i.e.

CSPoRP′(I, τ,F) := [CSPoRVerify(I, τ)
 CSPoRProve(F , τ)].

Next we introduce a new algorithm called Proofs of Recov-
erability (PoRec), see Algorithm 1, which is initiated by the
verifier C and involves the provider S. It takes as input
the ECC code rate ρ, a file tag τ of the outsourced file F
from C, and S inputs the outsourced file F . At the end, the
algorithm outputs accept if and only if the original file F
is recoverable from F , otherwise reject. Line 1 represents

Algorithm 1: PoRec (Proofs of Recoverability)

Input: C: Filetag τ , ECC code rate ρ; S: processed file F
Output: accept if original F is recoverable, else reject

1 ñ←↩ τ // extract number of blocks of F
2 n←− ñρ // number of blocks of F
3 `←− 1 // Theorem 1
4 a←− 0 // number of accepts
5 r←− 0 // number of rejects
6 S ←− ∅ // set of previously challenged block ids
7 for A← 1 to ñ do

8 I
$!{`}←− [ñ] \ S

9 S ←− S ∪ I
10 δ′ ←− CSPoRP′(I, τ,F)

11 if δ′ = accept then a← a +1
12 else r←− r +1
13 if a = n then return accept // Theorem 2
14 if r = ñ− n+ 1 then return reject // Theorem 2

15 return reject

the extraction of ñ from τ , Line 3 follows from Theorem 1,
Line 8 denotes a random sampling of ` disjunctive elements
of the set [ñ] \ S, and Lines 13 and 14 follow from Theo-
rem 2. Note that a non-random sampling would give the
attacker information about the verifier’s query pattern and
hence may enable him to predict her behavior to determine
specific parts of the file which are usually seldomly checked
and thus motivates the attacker to delete them.

We stress again that CSPoR is used to detect corruptions,
and PoRec determines if an original file is fully recoverable

3As discussed in Section 2.4, it seems that the literature
assumes that in case a rejection token is returned that one
downloads all remaining parts of the file independent of the
actual degree of data loss.

from the respective damaged outsourced file. Combining
both allows us to prove if all original files are fully recover-
able, see Section 4.3.

4.1 Challenge Size
The situation we consider is that some data loss has oc-

curred in the outsourced file F which results in a reject

using CSPoR. Recall that in the procedure CSPoRVerify the
challenge size ` is usually chosen conservatively, i.e. ` = λ.
To obtain an assurance that F is fully recoverable from its
respective damaged outsourced file, we need to prove that
there exist at least any n valid blocks out of ñ blocks in the
outsourced file, and hence enables us to recover the original
file by using the ECC decoding procedure. In Theorem 1 we
show that ` = 1 enables us to learn whether a certain block
is valid.

Theorem 1 (Challenge Size). Let 0 < ρ ≤ 1 be the
ECC code rate, |F| = ñ, |F | = n = ñρ, and let 1 ≤ ` ≤ ñ be
the challenge size of each audit A ∈ N. Assume that at least
one of the blocks of F is damaged. To ensure that at least
any valid n blocks are contained in F using the CSPoRP’
algorithm, it must hold ` = 1.

Proof. Let ` ∈ N0. Obviously ` < 1 results in no chal-
lenge at all and thus we can ignore this case. If ` > 1, then
CSPoRP′ likely returns reject since the detection probabil-
ity of finding a damaged block is overwhelming. However,
this does not provide any information on how many blocks
are in fact damaged. At this point, we only know that at
least one block is damaged but at most `. Of course, there
is a probability to hit the non-damaged blocks with ` > 1,
however it gets very small depending on the degree of era-
sure. In other words, CSPoRP′ may return reject for ` > 1,
even if the original data could indeed be recovered due to the
ECC. Therefore, we explicitly require to know if any n valid
blocks are contained in F , and thus need to determine this
number precisely. Hence, ` = 1, which allows us to count
the non-damaged blocks in a precise manner.

In terms of CSPoRP′, this means that the challenge set Q̂
consists only of a single block identifier and coefficient.

4.2 Number of Audits
In order to count the number of valid blocks, we need

to know how often CSPoRP′ needs to be performed, i.e.
the number of audits A. Theorem 2 gives lower and up-
per bounds for A.

Theorem 2 (Audit Bounds). Let ρ, ñ, n be defined
as in Theorem 1, let ` = 1, and assume that at least one of
the blocks of F is damaged. Then min(n, ñ−n+1) ≤ A ≤ ñ
disjunctive audits are required for the PoRec algorithm to
output either accept or reject.

Proof. The number of audits required is lower bounded
by the minimum of two values. First, after any n disjunc-
tive audits have yielded accept, the PoRec procedure re-
turns accept. The other lower bound is fulfilled when the
ECC decoding is not able to reconstruct F out of the re-
maining blocks of F . That is, if any ñ − n + 1 audits re-
sulted in reject, the PoRec algorithm aborts and outputs
reject. The upper bound is reached if n− 1 audits resulted
in accept but the last undamaged block may be on the last



remaining unchecked position. Depending on the retrievabil-
ity of the final block, the PoRec procedure returns accept or
reject.

Finally, the verifier performs A times CSPoRP′ accumu-
lating the number of valid and invalid responses. Since the
randomly sampled block identifiers are disjunct, the verifier
performs audits for as long as it takes until she is convinced
that the number of valid (accept) or invalid (reject) re-
sponses is sufficiently large. The algorithm PoRec defines
this formally and finally either outputs accept or reject

meaning that the file F is recoverable from F or not, re-
spectively.

Remark 3. SW-PoR Scheme and Recoverability.
Note that the SW-PoR scheme on which our CSPoR scheme
CSPoR builts upon yields no recoverability guarantees for a
large challenge size `, e.g. ` = n. This holds since the de-
tection probability is overwhelming even if only one of the `
challenged blocks of F is damaged resulting in the SW-PoR
scheme outputting a rejection token, and hence, we cannot
determine whether the original file can be recovered. Also,
if we perform the SW-PoR scheme A times with ` = 1, this
will not provide an assurance about the recoverability, since
the challenges are chosen randomly and hence are not dis-
junct with high probability. Therefore, this results in likely
challenging too few blocks or inefficiency.

4.3 Locating Damaged Files
As described in both preceding Sections 4.1 and 4.2, the

output of PoRec determines whether a file F is recoverable
from the remaining parts of F . Now we apply this to the
multi-file case with the goal to convince the verifier that any
n out of ñ blocks for each file are still valid which enables
us to argue that all files are recoverable. In other words, we
combine CSPoR and PoRec.

Employing a File Tree
The verifier usually performs the CSPoRP procedure of the

CSPoR scheme over all stored files F̂ with ` = λ for each
file (except for ñ < λ, then ` = ñ). Each time CSPoRP
outputs accept, the verifier knows that the probability of
some fraction of the data being damaged is negligible. As

a result, all original files F̂ can be recovered. However, if
one CSPoRP results in a reject, the verifier stops with the
regular execution of CSPoR. Since this does not provide any
information about the retrievability of the original files, the
verifier organizes her files in a b-ary tree and performs a mul-
tiple b-ary search on this tree. The root of the tree represents

the result of CSPoRP over all processed files f := F̂ ′ ⊆ F̂ ,
which the verifier wishes to check. Then, the first level of
the tree consists of b nodes where each contains disjunctive
filesets. For each of these nodes, the verifier again performs
a CSPoRP with ` = λ. If a CSPoRP returns accept, the
verifier discards the node from his tree since all associated
(outsourced) files are retrievable. Otherwise the node is split
again into b nodes and for each node a CSPoRP is executed.
This process is repeated until the set of files which a single
CSPoRP execution checks contains only one file. At the end,

the verifier gets a list of all processed files fc := F̂ ′c which
are corrupted. Finally, for each file Fc of fc, the verifier
executes PoRec(τ, ρ,Fc). Now the verifier knows which files
can be recovered and which are ultimately lost. Note that

all files f \ fc are also obviously recoverable since they did
not contain any corrupted blocks with overwhelming prob-
ability.

An example is shown in Figure 1 for values b = 3, |f | =
4, and |fc| = 2. Traversing the tree yields the corrupted
and sound files. The input of a CSPoRP (©) consists of
the set of all files to which the CSPoRP node is a parent
node. The output of the procedure is displayed next to the
respective node. Regarding PoRec (�), the input consists of
the outsourced file labeled below the box, and the output is
displayed at the bottom of each PoRec. The fourth CSPoRP
returned accept, hence all files belonging to this specific
node do not need any further inspection and are immediately
marked as accepted, i.e., retrievable. This is shown by the
dashed lines between the accepted CSPoR and its leaves, as
well as the omitted PoRec executions, which are not required
to be executed since there is no output and the files are
directly marked as sound (X).

reject

reject

rej.

F (1)

acc.

F (2)

acc.

F (3)

reject

acc.

F (4)

acc.

F (5)

acc.

F (?)

accept

X

F (7)

X

F (8)

X

F (9)

Figure 1: Traversing the file tree spanned over nine
different outsourced files. Four times CSPoRP is per-
formed (©) and six times PoRec (�). As a result F (1)

is damaged beyond repair (�), F (5) is damaged but

recoverable ( ), and all other files are sound and
recoverable.

Observe that in the worst case, all f files need to be

checked which requires 1 +
∑logb(f)
i=1 bi CSPoRP executions.

In the best case of only a single file being damaged, a maxi-
mum of 1 + b logb(f) CSPoRP executions are required. Fur-
ther steps, regarding repairing the damaged files, changing
or taking legal actions against the cloud storage provider, is
out of the scope of this work.

Combining CSPoR and PoRec

Combining CSPoR and PoRec to a single procedure yields

our final algorithm CSPoR-PoRec(F̂ , ρ, λ), see Algorithm 2.
CSPoR-PoRec checks from time to time the retrievability of

the fileset F̂ (or a subset thereof) employing CSPoR. This
is done until an error occurs. Then, the corrupted files get
located and PoRec is performed outputting references to all
recoverable files as well as all irrecoverable files as A and R,
respectively.

Remark 4. Optimizations for the Verifier. First
note that the verifier might want to check the retrievability
of all files regularly. More precisely, she is able to run a
scheduled CSPoRP routine, where each audit is planned for
a certain time period and file set. This is represented in Al-
gorithm 2 by Lines 3-5. Further, the verifier might optimize
the way she performs CSPoRP and PoRec. For CSPoRP, de-
pending on the ECC, the verifier might change the size of
`(k), for some files F (k), k ∈ [K′], in order to decrease the
effort required for an audit. Regarding PoRec, the verifier



Algorithm 2: CSPoR-PoRec

Input: C: set of files F̂ , ECC code rate ρ, security parameter λ
Output: List of recoverable (A) and non-recoverable (R) files

1 (pk, sk,S)←− CSPoRSetup(1λ) // Definition 1

2 (F̂, τ̂ ,S)←− CSPoRStore(sk, F̂ ) // Definition 1
3 repeat

4 δ ←− CSPoRP(pk, sk, τ̂ ′,S, F̂ ′) // Definition 1
5 until δ = reject

6 Create b-ary tree T using F̂ ′

7 repeat
8 Perform CSPoRP for all child nodes of rejected nodes of T

9 until tree traversed as needed, yielding F̂ ′
c // Section 4.3

10 A←− ∅, R←− ∅
11 foreach Fc ∈ F̂ ′

c do
12 δ ←− PoRec(pk, sk, τ, ρ,Fc) // Algorithm 1
13 if δ = accept then A←− A ∪ τ
14 else R←− R ∪ τ
15 return (A,R)

might be already convinced if tn accept tokens are counted
for a certain threshold 0 < t ≤ 1.

4.4 Efficiency Comparison
Let f denote the number of multiple different files being

checked simultaneously. We can compare the storage and
communication overhead of CSPoR to SW-PoR. Regarding
storage, in SW-PoR-Setup the keys are file-dependent and
thus require a storage amount of 2fλ. CSPoR uses the same
keys κenc and κmac for each file, requiring a file-independent
storage amount of 2λ. The challenge phase in both SW-PoR
and CSPoR demand the same communication overhead of
2`fλ from the client. However, the response in SW-PoR has
a communication effort of (s + 1)fλ for the provider, while
in CSPoR only a file-independent effort of (s+1)λ is needed.
Similarly, the verification phase has a computation effort of
f in SW-PoR, while having a constant computation effort
of a single execution in CSPoR.

The algorithm PoRec is an even smaller version of the
audit phase of CSPoR, hence requiring a constant minimal
computation and communication effort. However, each exe-
cution of PoRec is repeated up to ñ times for each file. Ob-
serve that downloading x disjunctive blocks is much larger
in terms of computation, communication, and storage over-
head than checking the recoverability of these x blocks using
PoRec. Regarding computation, the ECC decoding proce-
dure requires more information than a single block resulting
in a lot of overhead due to downloading additional data and
decoding all of it. In terms of communication, the actual
block would need to be transferred instead of a single bit
per block as in PoRec. Lastly, the client would need to store
the whole downloaded blocks, however, in PoRec only about
log(A)+S bits need to be stored per file. This is why PoRec
is more efficient than downloading the blocks directly.

5. RELATED WORK
Proofs of Retrievability [6, 11, 13, 15, 17, 23, 24, 26, 27,

28, 29, 32] allow a client to store her data on a remote server
and provably check that all her data is still fully intact and
can be retrieved. The concept was initially defined by Juels
and Kaliski [24]. Concurrently, Ateniese et al. [8] proposed a
close variant of PoR called Proofs of Data Possession (PDP).
The main difference between PoR and PDP is the notion
of security they achieve. More precisely, a PoR provides
stronger security guarantees than PDP, as a PoR assures
that the server maintains full knowledge of the client’s pro-

cessed data whereas a PDP only assures that most of the
data is retained. Both concepts have received much research
attention.

On the one hand, there are works focusing on the case
where the data is static. Here works have been developed
that propose improvements [13] compared to [24], offer the
use of homomorphic authenticators yielding compact proofs
[28], and [17] introducing the notion of PoR codes. In [6]
the notion of an outsourced PoR scheme was introduced in
which a user can task an external auditor to perform and
verify PoR procedures.

On the other hand, some approaches deal with the con-
struction of dynamic schemes supporting efficient updates.
Cash et al. [15] achieve dynamic updates using oblivious
RAM, whereas [29] improves the performance by relying on a
Merkle hash tree. Stefanov et al. [30] consider updates where
a trusted “portal” performs operations on the client’s behalf.
Furthermore, dynamic PDP solutions were proposed in [10]
where the problem of dynamic writes/updates is considered,
and [18] uses authenticated dictionaries based on rank infor-
mation. Some works explore the direction to extend works
into the multi-server setting [12, 14, 16] and [22] introduces
a third party enabling the client to efficiently check the in-
tegrity of the data. In particular, Bowers et al. [12] use
a related notion of recoverability compared to ours in the
multi-server scenario. Here after detecting a file corruption,
a test-and-redistribute protocol is initiated which recovers the
file from uncorrupted samples of other servers and restores
it. Guan et al. [23] explore the usage of indistinguishabil-
ity obfuscation for building a PoR scheme that offers public
verification while the encryption process is based on sym-
metric key primitives. Recently, Armknecht et al. [4] in-
troduce a unified model for proving data replication and
data retrievability. Vasilopoulos et al. [31] suggest a similar
scheme proposing a message-locked PoR approach rendering
the involved algorithms to be deterministic and therefore
enabling file-based deduplication. In [5], Armknecht et al.
extend the classical PoR scheme accommodating multiple
clients proposing a storage efficient PoR solution by using
data deduplication.

6. CONCLUSION
In this paper we have introduced two extensions to the tra-

ditional PoR concept which we call cloud storage proofs of
retrievability (CSPoR) and proofs of recoverability (PoRec)
as well as provide a combined CSPoR-PoRec solution. This
scheme is motivated by the natural desire to outsource mul-
tiple different-sized files to a cloud storage provider and also
takes a model of an abstract storage unit into account to
map current cloud storage practice such as regular data loss
into the realm of PoR. We showed that there is an inher-
ent gap in the functionality of PoR such that in case the
scheme returns a rejection token one is not able to formalize
a provable statement about the retrievability of the origi-
nal file. Hence, we close this gap by systematically studying
this problem and propose solutions towards formalizing a
proof of recoverability based on PoR techniques. In order
to gather enough knowledge to output a proof of recover-
ability, our technique relies on repeatedly auditing the dam-
aged files with special parameters, that is formally executing
PoRP with a small challenge size. Future work may consider
a different adversarial model where the adversary may dy-

namically delete data while the verifier aims to obtain a



proof of recoverability.
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