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Abstract. We may enforce an information flow policy by encrypting a protected resource and ensuring that only users autho-
rized by the policy are able to decrypt the resource. In most schemes in the literature that use symmetric cryptographic prim-
itives, each user is assigned a single secret and derives decryption keys using this secret and publicly available information.
Recent work has challenged this approach by developing schemes, based on a chain partition of the information flow policy,
that do not require public information for key derivation, the trade-off being that a user may need to be assigned more than one
secret. In general, many different chain partitions exist for the same policy and, until now, it was not known how to compute an
appropriate one.

In this paper, we introduce the notion of a tree partition, ofwhich chain partitions are a special case. We show how a tree
partition may be used to define a cryptographic enforcement scheme and prove that such schemes can be instantiated in sucha
way as to preserve the strongest security properties known for cryptographic enforcement schemes. We establish a number of
results linking the amount of secret material that needs to be distributed to users with a weighted acyclic graph derivedfrom
the tree partition. These results enable us to develop efficient algorithms for deriving tree and chain partitions that minimize the
amount of secret material that needs to be distributed.
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1. Introduction

Access control is a fundamental security service in modern computing systems and seeks to restrict
the interactions between users of the system and the resources provided by the system. Traditionally,
access control is policy-based, in the sense that a policy isdefined by the resource owner(s) specifying
those interactions that are authorized. An attempt by a userto interact with a protected resource, typi-

1This paper generalizes and extends our earlier results [16,15]. In particular, we define a new form of enforcement schemethat
subsumes chain-based [15] and tree-based enforcement schemes [16]. We generalize results specific to these earlier schemes in
order to support our more general framework.
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cally called anaccess request, is evaluated by a trusted software component, thepolicy decision point(or
authorization decision function), to determine whether the request should be permitted (if authorized) or
denied (otherwise). The use of a policy decision point is entirely appropriate when we can assume the
policy will be enforced by the same organization that definedit. However, use of third-party storage, pri-
vacy policies controlling access to personal data, and digital rights management all give rise to scenarios
where this assumption does not hold.

Cryptographic access controlprovides an alternative way of regulating access to data objects and has
attracted considerable attention in recent years. In this setting, data objects are encrypted and appropriate
decryption keys are issued to authorized users. Research into cryptographic access control began with
the seminal work of Akl and Taylor [1], and has seen a resurgence of interest in recent years. For in-
stance, there has been a considerable amount of research into attribute-based encryption [8,24], which
is regularly used to support access control (see [28], for example). Attribute-based encryption is based
on asymmetric cryptographic primitives, which means that any user is able to control read access to
data (by encrypting), while only authorized users may decrypt. However, access control policies can also
be enforced using symmetric cryptographic primitives (often a cheaper alternative to their asymmetric
counterparts). Typically, in this scenario, a specific user– the data owner – encrypts all data objects be-
fore transmitting them to a storage provider that is only trusted to store data correctly. Users are able to
retrieve data objects from the storage provider (in encrypted form) and only authorized users should be
able to decrypt them.

In the symmetric setting, the focus of research has been on enforcing information flow policies [7],
not least because many access control requirements may be articulated as information flow policies. An
information flow policy is defined by a partially ordered set of security labels and a function mapping
each user and data object to a security label. A user is authorized to read any data object associated with
a security label that is less than or equal to that of the user.

Generally, it is undesirable to explicitly provide a user with all the keys she requires to decrypt pro-
tected objects. Instead, a user is given a small number of secrets from which she is able to derive all keys
required.1 Hence, a common feature of cryptographic enforcement schemes for information flow policies
is the derivation of decryption keys (since possession of the decryption key for labelℓ implies authoriza-
tion for the decryption key for any labelℓ′ less thanℓ). Informally, each security label is associated with
a secret (which is issued to every user assigned to that security label) from which decryption keys for all
subordinate security labels may be derived. The scheme may also publish additional information in order
to support key derivation.

Therefore, the challenge is to compute efficiently the secrets and decryption keys associated with each
security label, subject to constraints on the size of relevant parameters. Thus a cryptographic enforcement
scheme may be characterized by(i) the number of secrets eachuser is given, (ii) the total number of
secrets issued to users, (iii) the amount of auxiliary (public) information required for key derivation, and
(iv) the computational effort required for key derivation.

Many schemes in the literature are space-efficient (on the user side) by providing each user with
a single secret (see, for example, [2]), the trade-off beingthat the amount of public information and
derivation time may be substantial. Moreover, the public information must either be transmitted to each

1We could, of course, simply view a set of secrets as a single secret and consider the amount of storage required by that
secret. However, it is more convenient for the analysis later in the paper to consider a set of secrets and the number of elements
in that set.



user or made available on some publicly accessible server, both possibilities giving rise to concerns either
about costs of transmission and local storage, or availability and authenticity of the information.

Crampton, Daud and Martin [14] introduced the concept of achain-basedcryptographic enforcement
scheme, which requires no public information but may require users to store more than one secret. Subse-
quent work has established that secure instantiations of chain-based schemes exist [20,21]. Chain-based
schemes are based on a decomposition of the poset of securitylabels into disjoint chains (that are, in
some appropriate sense, compatible with the poset). Informally, the secrets associated with the labels in
each chain may be derived in a top-down manner and each user isissued with a number of secrets, at
most one from each chain. Thus the number of secrets requiredby a user is no greater than the number of
chains in the decomposition, which is significantly better,generally, than the naive solution of supplying
each user with every secret for which she is authorized.

The motivation for the work in this paper can be summarized intwo observations. First, there are, in
general, many different ways to instantiate a chain-based scheme for a given information flow policy,
each instantiation being defined by a particular chain partition of the partially ordered set used to specify
the policy. The number of secrets and the amount of computation required to derive decryption keys
in a given instantiation crucially depends on the chain partition chosen. However, existing work in the
literature assumes that the chain partition is given as partof the input to the algorithm that outputs
the secrets and decryption keys. One of the questions we address (in Section 5), therefore, is how to
compute the “best” chain partition (with respect to some suitable metric) with which to instantiate a
chain-based scheme. Our second observation is that each security label has at most one parent in the chain
decomposition. The question we address (in Section 3) is whether it is possible to generalize chain-based
schemes to tree-based schemes, given that each element in a tree also has at most one parent.

Our first set of contributions is associated with the novel concept of atree partitionof an information
flow policy, from which we define the notion of aforest-basedcryptographic enforcement scheme for
information flow policies. We prove results establishing how the total number of secrets to be issued to
users varies with the structure of the forest and demonstrate that an instantiation of our scheme retains the
security property of strong key indistinguishability introduced by Freire, Paterson and Poettering [21].
We design and analyze an efficient algorithm for computing a forest that minimizes the total number
of issued secrets. This work generalizes our previous work on tree-based enforcement schemes [16]. In
addition, the more general framework enables us to simplifythe techniques and formal exposition.

Our second set of contributions is based on specializing ourgeneric scheme to chain-based schemes.2

We prove that the total number of secrets issued is determined by the number of bottom elements of the
chains in the chain partition (Lemma 3). This, in turn, allows us to prove (Theorem 3) there exists a chain
partition that simultaneously minimizes the number of secrets that need to be issued and the number
of chains in the partition (and thus the number of keys each user is required to store). The last result
is of practical importance, since the number of chains provides a tight upper bound on the number of
secrets required by any user. Moreover, the result is somewhat unexpected, as it is not usually possible to
simultaneously minimize two different parameters. Our main contribution (Theorem 4 and Section 5.1)
is to develop an efficient algorithm that enables us to find a chain partition such that the total number
of distributed secrets and the number of chains are minimized (with respect to all chain partitions). Our

2One disadvantage with forest-based schemes is that one cannot, in general, simultaneously minimize the number of secrets
issued on a per-user basis and the total number of secrets issued to users. Thus, chain-based schemes are still relevant,even
though, in general, a forest-based scheme for the same policy will require fewer secrets in total to be issued.



algorithm is based on finding a minimum cost flow in a network whose construction is based on the
technical results in Sections 3–5.

Overall, then, the contributions of this paper generalize and unify existing work on tree- and chain-
based schemes using the novel concept of a tree partition anda forest-based enforcement scheme. Central
to our work are the results in Section 4, which enable us to link two different characterizations of the ad-
ditional secrets required, thereby allowing us to describeexisting schemes using trees and chains within a
single framework and to generalize tree-based enforcementschemes to forest-based schemes. An impor-
tant consequence of our results is that there now exist efficient methods for instantiating cryptographic
enforcement schemes that require no public information. Wethereby provide rigorous foundations for
the development of efficient chain-based enforcement schemes.

The remainder of the paper is organized as follows. In Section 2, we provide the relevant background
on cryptographic enforcement schemes, and formally identify the problem. We also discuss related work,
including preliminary versions of the ideas presented in this paper [15,16]. Then, in Section 3, we for-
mally define a tree partition and a forest-based cryptographic enforcement scheme for an information
flow policy. We establish some important results connectingthe structure of a given forest and the total
number of secrets required by the associated cryptographicenforcement scheme. We also establish that
there exist secure instantiations of our scheme and briefly discuss cryptographic primitives that would be
suitable for such an instantiation. In Section 4, we use the theoretical results of Section 3 to develop an
efficient algorithm for computing the best tree partition, in terms of the total amount of secret material
required. In Section 5, we prove that there exists a chain-based enforcement scheme in which no user
requires more thanw keys, wherew is the width of the information flow policy; and that the totalnumber
of issued secrets in a chain-based enforcement scheme is determined entirely by the number of bottom
elements of the chain partition. These results, however, are not constructiveper se. Accordingly, we also
develop an efficient algorithm to derive the best chain partition. We conclude the paper in Section 6 with
a summary of our contributions and some ideas for future work.

2. Information Flow Policies

We first recall some basic definitions from discrete mathematics and establish some notation. We then
define what is meant by an information flow policy [7] and discuss how such policies may be enforced
using cryptographic mechanisms.

A partially ordered set(or poset) is a pairP = (X,6), where6 is a reflexive, anti-symmetric,
transitive binary relation on a finite setX.

– We writex < y to indicatex 6 y andx 6= y, and we may writex > y whenevery 6 x.
– We sayx coversy, or x is aparentof y, denotedy ⋖ x, if y < x and there does not existz ∈ X

such thaty < z < x. An elementx ∈ X is maximalif it has no parents.
– TheHasse diagramof P is the directed acyclic graphH(P) = (X,Emin), where the (directed)

edgexy ∈ Emin if and only if y⋖x. We will also make use of the directed acyclic graphH∗(P) =
(X,Emax), wherexy ∈ Emax if and only ify < x. Representing the covering relation as an acyclic
digraph the Hasse diagram provides a minimal amount of information required to reconstruct the
full order relation.3

3The Hasse diagramH(P) = (X,⋖) = (X,Emin) is a unique representation of the posetP = (X,6). Conversely, as the
Hasse diagramH(P) of a posetP uniquely representsP , we may considerH(P) as a “shorthand” forP and even loosely say
thatH(P) is a poset.



– The in-degree(out-degree, respectively) of nodeu of a directed graphD = (V,E) is the number
of nodesv such thatvu ∈ E (uv ∈ E, respectively). A directed graphD is anout-forestif every
node ofD has in-degree less than or equal to1.
We sayP is a forest if H(P) is an out-forest. We sayP is a tree if it is a forest and has a unique
maximal element. That is, there is a single node in its Hasse diagram of in-degree0.
Note that every forest is a disjoint union of trees. Hasse diagrams of a poset, forest and tree are
shown in Figure 1. The edges in these Hasse diagrams (and all others in the paper) are assumed to
be directed from top to bottom.

– A setY ⊆ X is achain if for all distinct pairs of elementsx, y ∈ Y , x < y or y < x. A chain
corresponds to a directed path inH∗(P).

– A chain partitionof posetP is a disjoint union of chains such that every element ofP belongs to
one of the chains. Figure 1d depicts a chain partition of the poset in Figure 1a.

– Letx, y ∈ X with y < x. Then{z0, . . . , zl} ⊆ X, wherex = z0⋗z1⋗ · · ·⋗zl = y is aderivation
chain(from x to y) in P of lengthl. A derivation chain fromx to y corresponds to a directed path
from x to y in H(P).

– We writex q y to indicate thatx, y are incomparable, i.e.x 66 y andx 6> y. A setY ⊆ X is an
antichain if for all distinct x, y ∈ Y , x q y. Thewidth of a poset is the cardinality of an antichain
of maximum size.

– We write ↓(x) to denote{y ∈ X : y 6 x} and↑(x) to denote{y ∈ X : y > x}. Note that
↓(x) ⊆ ↓(y) if and only if x 6 y.

– A linear extensionof P is a chain(X,4) such that ifx 6 y thenx 4 y. Every (finite) partial
order has at least one linear extension, which may be computed, in linear time, by representing the
partial order as a directed acyclic graph and using a topological sort [12, §22.3].

(a) Poset (b) Forest

(c) Tree (d) Chain partition

Fig. 1. Hasse diagrams of a poset, a forest, a tree, and a chainpartition

In many cases we will use subscripts to denote a function or relation relative to a posetT . Thus,
for example, we writeT = (X,6T ), we writex ⋗T y if x >T y and there is noz ∈ X such that
x >T z >T y, and we write↓T (x) to denote the set{y ∈ X : y 6T x}.



Definition 1. An information flow policyis a tuple(X,6, U,O, λ), where:

– (X,6) is a (finite) partially ordered set ofsecurity labels;
– U is a set ofusersandO is a set ofobjects;
– λ : U ∪O → X is asecurity functionthat associates users and objects with security labels.

A useru ∈ U is authorizedto read an objecto ∈ O if and only ifλ(u) > λ(o).

Given an information flow policy(X,6, U,O, λ), we may define an equivalence relation∼ on U ,
where, for anyu, v ∈ U , u ∼ v if and only if λ(u) = λ(v). We writeUx to denote{u ∈ U : λ(u) = x}.
Similarly,Ox ⊆ O denotes the set of objects having security labelx ∈ X. In other words, useru ∈ Uy

is authorized to reado ∈ Ox whenevery > x. Henceforth, we will represent an information flow policy
(X,6, U,O, λ) as a posetP = (X,6) with the tacit understanding thatU ,O andλ are given.

2.1. Cryptographic enforcement

The intuition behind the cryptographic enforcement of information flow policies is to encrypt data
objects (using a symmetric encryption algorithm) and distribute appropriate secrets to authorized users
(from which encryption keys are derived). Hence, there are two high-level algorithms that every cryp-
tographic enforcement scheme (CES) provides: the first,SetUp, is run by the data owner and generates
secrets, keys and any public information that is required for deriving decryption keys; the second,Derive,
is used to derive decryption keys from secrets and public information. That is, in principle,SetUp and
Derive have the following functionality.

– SetUp takes as input an information flow policy(X,6).
SetUp outputs{(x, σ(x), κ(x)) : x ∈ X} andPub, whereσ(x) andκ(x) respectively determine
the secret and encryption key associated withx, and the public informationPub is used as part of
the input to theDerive algorithm.

– Derive takes as input the information flow policy,Pub, x, y ∈ X andσ(x).
Derive outputsκ(y) if y 6 x (and some distinguished failure symbol⊥ otherwise); in particular,
κ(x) can be derived fromσ(x).

Prior CES schemes follow the above syntactical framework more or less closely. In particular, dif-
ferent representations of the information flow policy have been used as input to theSetUp andDerive
algorithms, and some preprocessing may be required in orderto produce those representations. Some
schemes, for example, simply use the Hasse diagram of the poset [2] as the input toSetUp and (part
of) the input toDerive, while others use a directed, acyclic graph whose edge set isa superset ofEmin

and a subset ofEmax (and thus contains the same paths as the Hasse diagram) [4,13]. In this work, we
transform the information flow policy into a partition of trees.

Part of the specification ofDerive ensures thecorrectnessof a scheme. That is, an authorized user be-
longing toUx must be able to deriveκ(y) if x > y. In contrast, thesecurityof a CES requires that users
cannot derive keys for which they are not authorized, even ifthey collude by pooling secret information.
In particular, a user inUz wherez 6> y cannot deriveκ(y). Research in the last 10 years, pioneered
by Atallah, Blanton, Frikken and Fazio [2] and Ateniese, de Santis, Ferrara and Masucci [5], has for-
malized security notions for CESs. Informally, the adversary learns the secrets and keys associated with
some set of elementsA ⊆ X (modeling a group of colluding users) and selects a “target”x in X such
thatx 66 a for anya ∈ A (to avoid trivial cases). The adversary may be asked to determineκ(x) or to de-
termine, given a candidate keyr, whetherr isκ(x) or a random element of the key space. These informal



scenarios lead to formal concepts of and definitions forkey recoveryandkey indistinguishability[2].4

We consider the security properties of CESs in more detail inSection 3.2.

2.2. Related Work

Essentially, designing a cryptographic enforcement scheme comes down to defining(i) whatsecrets
each user will receive, (ii) how users will generate anykeysthey require to decrypt data objects, and
(iii) how secrets and keys are related. Broadly speaking, there are two standard ways of designing a
cryptographic enforcement scheme for information flow policies. These methods assume each user is
given a single key from which all other relevant secrets and key may be derived, and are distinguished
by the information used to derive secrets and keys. The first method, which we will call “node-based”,
relies only on secret information known to the user, while the second, which we will call “edge-based”,
assumes that some additional information must be made knownto all users.5

Informally, a node-based scheme uses one-way functions: for y < x the secret associated withy
is some (one-way) function ofσ(x), the secretσ(x) associated withx, andκ(y), the key associated
with y, is some (one-way) function ofσ(y). Some of the earliest work on cryptographic enforcement of
information flow policies used these kinds of techniques [27]. However, in this setting, it is unclear how
to distribute secrets such thatσ(y) can be derived fromσ(xi) for each of the parentsx1, . . . , xn that node
y might have, without simultaneously exposing the scheme to collusion attacks.

In an edge-based scheme, public information is associated with each pair(x, y) wherex > y from
which σ(y) can be extracted with knowledge ofσ(x). Thus, informally, we might definePub(x, y) to
beenck(σ(y)), whereenck is some symmetric encryption algorithm with keyk contained inσ(x). An
edge-based scheme can be used for arbitrary posets but requires public information [2].

Research into schemes that allocate a single secret to each user investigated what trade-offs were
possible between the number of items of public data and the number of key derivation operations (in the
worst case) [3,13]. Some of this work focused on posets with aparticular structure (such as chains [3]).
Such research was able to define specific data structures and algorithms, and perform exact complexity
analyses [3,4,13]. Other work considered arbitrary posetsand used results from graph and poset theory
to develop analyses that were generic but arguably less useful in specific cases [5]. In all this work, the
amount of public information required for key derivation necessarily increases.

A representation of the policy is required as input to theDerive algorithm. Hence, the data owner must
publish the policy (or distribute it with the appropriate secrets to every user). The size of the policy is
proportional to the number of edges (each representing a piece of public information) used for secret
derivation; that isO(n2), wheren is the cardinality ofX (the set of security labels). However, compact
representations, using ann × n binary matrix, exist. In the case of edge-based schemes, thedata owner
must also publish (or otherwise distribute)Pub, which is also proportional in size to the number of edges.
However, the size ofPub will be several orders of magnitude bigger than the policy representation (due
to the relative sizes of each datum of information). An alternative is to storePub on a public server. In

4Note that a scheme in whichDerive may be used to computeκ(y) from κ(x) whenevery < x (rather than fromσ(x)) does
not possess the key indistinguishability property: the adversary may selectx andA such thatx ⋗ a for somea ∈ A, usex, a,
Pub andr (that is, assumer = κ(x)) as inputs to theDerive algorithm, and test the output for equality withκ(a). Concerns
about key indistinguishability in CESs led to the separation between secrets and keys [2].

5There are some other types of schemes but each of them suffer from a number of disadvantages (see [17], for example) so
research has tended to focus on node- and edge-based schemes.



this case, the server must be on-line and accessible to any user that wishes to run theDerive algorithm.
Thus, it may be advantageous to devise schemes that require no public information.

Cramptonet al. [14] introduced the idea of cryptographic enforcement schemes, based on chain parti-
tions of the information flow policy, that require no public information. The trade-off with such schemes
is that some users may require more than one secret in order tobe able to derive all the required encryp-
tion keys. Subsequent work established that secure instantiations of such schemes are possible [20,21].

To summarize, informally, the core trade-off made when designing a CES is the amount of public
information that is required to assist in the derivation of secrets against the number of additional secrets
that are associated with nodes. Broadly speaking, on the onehand one assumes each node is associated
with a single secret and defines a “secret-derivation digraph” G = (X,E), whereEmin ⊆ E ⊆ Emax.
(In other words, ifx > z in (X,6) there is a derivation path inG, sinceE ⊇ Emin; and if x ≯ z

there is no derivation path inG, sinceE ⊆ Emax.) On the other hand, one selects a secret-derivation
digraphG = (X,E) such thatE ⊂ Emin, G is an out-forest, and each node is associated with at least
one secret. Then, ifx > z, there is some nodey such that every user inUx is given the secret associated
with nodey and there is a directed path fromy to z in G. Figure 2 provides a crude comparison of the
generic schemes in the literature:E is the set of edges used to derive secrets;d is the length of the longest
directed path inG = (X,E); w is the width ofX; n is the cardinality ofX.

Generic scheme Edge set Public
information

Derivation
time

Secrets per
node

Single-step secret derivation E = Emax O(|E|) O(1) k = 1
Multi-step secret derivation Emin ⊆ E ⊂ Emax O(|E|) O(d) k = 1
Chain-based secret derivationE ⊂ Emin None O(d) k ∈ [1, w]
All secrets distributed E = ∅ None 0 k ∈ [1, n]

Fig. 2. A high-level comparison of generic cryptographic enforcement schemes

The significant open problem with prior work on chain-based schemes is the assumption that the chain
partition is part of the input to theSetUp algorithm: there may be many such partitions and it is not
immediately obvious how one should select a specific partition in order to optimize characteristics of the
corresponding enforcement scheme (an example being to minimize the number of secrets issued). Hence,
it seems very natural to ask how difficult it is to compute a “good” chain partition, given that (i) schemes
based on chain partitions do not require public information, and (ii) the number of secrets that need to
be distributed to users is determined by the choice of chain partition. Our recent work [15] shows that it
is possible to compute a minimal chain partition in polynomial time using a minimum cost network flow
algorithm.

Cramptonet al. [16] made use of the fact that derivation paths are uniquely defined in trees (as well as
in chains) to develop the idea of a tree-based cryptographicenforcement scheme. Their work established
that it was possible to compute (in polynomial time) an optimal tree for the information flow policy.

2.3. Problem overview

While chain-based enforcement schemes require no public information, some users may be required
to store more than one secret, unlike the majority of schemesin the literature. The number of secrets
required by an instantiation of such a scheme depends on the chain partition chosen. Moreover, a natural



extension of the chain-based approach, explored in the current work, is to use a forest related to the poset
defining the information flow policy. In this paper, therefore, we explore three questions:

– What is the optimal choice of chain partition and can we compute such a partition efficiently?
– How do we implement a cryptographic enforcement scheme based on a partition of the information

flow policy into trees rather than chains?
– What is the optimal choice of tree partition and can we compute such a partition efficiently?

In the next section, we consider the second of these questions, the results of which enable us to answer
the other two questions.

3. Enforcement Schemes from Tree Partitions

In this section, we generalize the approach taken by Crampton et al. [14] for chain-based enforcement
schemes, and Cramptonet al. [16] for tree-based enforcement schemes. In particular, weintroduce the
concept of a tree partition of a poset(X,6) and show how such a partition may be used to construct a
cryptographic enforcement scheme for an information flow policy defined by(X,6).

Definition 2. LetP = (X,6) be a poset, with Hasse diagramH(P) = (X,E). A tree partitionof P is
a posetT = (X,6T ) such thatH(T ) = (X,ET ) is an out-forest andET ⊆ E.

If P = (X,6) is a poset,T = (X,6T ) is a tree partition ofP andy ≮ x, theny ≮T x. However,
we may havey < x but y ≮T x. Thus, the problem with a tree partition, in the context of cryptographic
enforcement schemes (CESs), is that some authorized labelsthat were “reachable” by a derivation chain
in P will no longer be reachable inT . Accordingly, we define the notion of forest-based enforcement
scheme for a tree partition ofP = (X,6).

Definition 3. Given an information flow policyP = (X,6) and a tree partitionT = (X,6T ), a
forest-based enforcement schemeis a pair (T , ψ), whereψ : X → 2X and:

1. if u 6 x then there existsz ∈ ψ(x) such thatu 6T z;
2. if u 66 x then for allz ∈ ψ(x), u 66T z.

Informally, conditions 1 and 2 correspond to the correctness and security requirements of CESs, re-
spectively. Note thatx ∈ ψ(x). To see this, suppose, in order to obtain a contradiction, that x 6∈ ψ(x).
Then, by the first property, there existsz ∈ ψ(x) such thatx <T z. This impliesx < z and thusz 66 x.
By the second property for allz∗ ∈ ψ(x) we then havez 66T z∗. This holds in particular forz∗ = z and
we obtainz 66T z, a contradiction.

Definition 4. LetP be a poset andT a tree partition ofP. Then, givenx, z ∈ X, the maximum element
(if it exists) in↓P(x) ∩ ↑T (z), is theanchorbetweenx andz and denoted byα(xz).

We note the following facts, which we state without proof:

– α(xz) exists iffx > z;
– α(xz) is a unique maximal element (that is, a maximum element) since ↑T (z) is a chain;
– if x > z andx >T z then there exists a derivation chain inT from x to z andα(xz) = x (sincex

is the maximum element in↓P(x)); and
– if x > z andx ≯T z then there exists a derivation chain inT from α(xz) to z andx > α(xz).



GivenP and a tree partitionT , defineφT : X → 2X as follows:

φT (x) = {α(xz) : x > z}

Proposition 1. For any posetP and any tree partitionT of P, (T , φT ) is a forest-based enforcement
scheme.

Proof. If u 6 x, thenz = α(xu) belongs toφT (x) andu 6T z. And if u 66 x then for everyz ∈ φT (x)
we havez 6>T u.

In other words, given the secrets corresponding to the elements inφT (x), a user inUx can derive the
secret for all elementsz 6 x using a derivation chain starting atα(xz).

Lemma 1. Let P = (X,6) be a poset,T be a tree partition ofP, and (T , ψ) be a forest-based
enforcement scheme. ThenφT (x) ⊆ ψ(x) for all x ∈ X.

Proof. Suppose, in order to obtain a contradiction, thaty ∈ φT (x) andy 6∈ ψ(x). By definition,y 6 x;
therefore, there must existy′ ∈ ψ(x) such thaty′ >T y, and thusx > y′. Moreover,y >T z so we have
x > y′ >T y >T z; that is,y′ ∈ ↓P(x) ∩ ↑T (z). Thusy is not the maximal element in↓P(x) ∩ ↑T (z),
the desired contradiction.

The following simple lemma characterizes the elements ofφT and will be used to prove Proposition 2
and Theorem 2.

Lemma 2. LetT = (X,6T ) be a tree partition of posetP = (X,6). Then for everyx in X and every
z inX, z ∈ φT (x) if and only if exactly one of the following conditions holds:(i) z = x; (ii) z < x, z has
a parent inT andx 6> parT (z); (iii) z < x andz has no parent inT .

Proof. Supposex > z andx 6> parT (z). Sincex 6> parT (z) ⋗T z, z is the maximal element in
↓P(x) ∩ ↑T (z). Similarly, if z has no parent orz = x, thenz is the maximal element in↓P(x) ∩ ↑T (z).
In either case,z = α(xz) andz ∈ φT (x).

Conversely, ifz ∈ φT (x), thenx > z, by definition, andα(xz) = z. Thus,x 6> parT (z) if z has a
parent (otherwise,parT (z) ∈ ↓P(x) ∩ ↑T (z) andz 6= α(xz)).

Proposition 2. LetP = (X,6) be an information flow policy and letT = (X,6T ) be a tree partition.
ThenφT can be computed in timeO(n2), wheren = |X|.

Proof. By Lemma 2, for allx ∈ X, besidesx itself, we add all those elementsz ∈ X, z < x, toφT (x)
that are either maximal inT or, if not, satisfyx 6> parT (z). In both cases, we must determine whether
x > z for somez ∈ X.

After O(n2) time preprocessing, we may assume that we have data structures allowing us to check
whetherx > z in O(1) time, and test whetherz is a maximal element inT (and computeparT (z)
otherwise) inO(1) time. Hence, we can computeφT in O(n2) time.



3.1. Generic instantiation

The above results enable us to specify the algorithms of a cryptographic enforcement scheme. The
construction can be considered a generalization of the one using chains (rather than trees) defined by
Freireet al. [21]. When definingSetUp andDerive we assume that the information flow policyP =
(X,6) is presented in the form of a tree partitionT = (X,6T ), and that for the latter a specific forest-
based enforcement scheme(T , ψ) has been selected (such as(T , φT )). Further, for then = |X| labels
ofX we assume a numbering convention that follows a (reverse) linear extension≺ of 6; more precisely,
we assume thatX = {x1, . . . , xn} wherexn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 (in particular,xn is a minimal
element inX andx1 is a maximal element). The cryptographic building block of our construction is a
pseudorandom function (PRF) where the key space and the output space are the same setK. Given such
a functionF : K× {0, 1}∗ → K and an (injective) label naming functionℓ : X → {0, 1}∗ we define:

Algorithm SetUp, on input an information flow policy in the format described above:

1. Fori = 1 to n do (i.e., count from a maximal down to a minimal label):

– if xi is maximal in(X,6T ) pick fresh random keys(xi)←$ K;
– otherwise, identify the (unique) parenty of xi in T and assigns(xi) ← F(s(y), ℓ(xi))

(wheres(y) is the PRF key andℓ(xi) is the PRF input);

2. For eachx ∈ X outputσ(x) = {(v, s(v)) : v ∈ ψ(x)} andκ(x) = F(s(x), ℓ(x)); no public
information is needed, i.e.,Pub = ∅.

The general principle of this CES is to derive secrets in a top-down fashion: top nodes (according to6T )
are assigned random keys, and the keys of all other nodes are deterministically derived from their parent
using the PRF. Observe that, as we arranged≺ to be a linear extension of6 (and thus6T ), step (1) of
SetUp is actually well-defined. We next define the correspondingDerive algorithm:

Algorithm Derive, on input the information flow policy, labelsx, y ∈ X, and secretσ(x):

1. Return⊥ if x 6> y;
2. Identify the (unique)z ∈ ψ(x) such thaty 6T z and recovers(z) from σ(x);
3. Letz = z0 ⋗ z1 ⋗ · · ·⋗ zm = y be the complete derivation chain inT betweenz andy;
4. Fori = 1 tom do: s(zi)← F(s(zi−1), ℓ(zi));
5. Outputκ(y) = F(s(y), ℓ(y)).

In this instantiation, the same pseudorandom functionF is used as a secret- and key-generation func-
tion; secret values, and values derived from secret values,serve as PRF keys, and fixed strings that
uniquely identify the corresponding node are its inputs.

3.2. Security analysis

We assess the security of our enforcement scheme using the principles of provable security. We start
by formalizing the properties of the cryptographic building block, the pseudorandom functionF . Our
definition is not the most general possible: rather, it is tailored to the requirements of our construction;
specifically, we require that the keyspace and the range of the PRF are the same set.



Definition 5. A pseudorandom function(PRF) with keyspace and rangeK is any efficient function
F : K × {0, 1}∗ → K. We also writeFK(x) to denoteF(K,x). We define theadvantageof an adver-
saryD in distinguishingF from a random function as

AdvF (D) =
∣∣Pr[K ←$ K;D

FK ⇒ 1]− Pr[ϕ←$ 〈{0, 1}
∗ → K〉;Dϕ ⇒ 1]

∣∣ .

We say that PRFF is (ǫ, τ)-indistinguishablefrom a random function ifǫ upper-bounds the advantage
of all distinguishersD that run in time at mostτ .

In the definition above,〈{0, 1}∗ → K〉 denotes the universe of all functions mapping{0, 1}∗ to K,
and writing “DF ⇒ 1” for a functionF means that algorithmD has oracle access toF and terminates
outputting value1. In Definition 5,F either implements access to a keyed PRF instanceFK , or it imple-
ments a completely random function. That is, the smaller we can chooseǫ, the closer a particular PRFF
is to a random function. We discuss some practical candidatefunctions in Section 3.3.

We next make precise the level of security that we target for our enforcement scheme. Many different
cryptographic models for CES with security guarantees of various strengths have been proposed (see [11]
for a comparative overview). The notion we target and reproduce below, strong key indistinguishabil-
ity [21], was not only proven to imply all other notions (i.e., to define the highest level of security),6 but
is also, we believe, the most natural and versatile one. It isbased on the security experimentExptkist,bX,x
defined in Fig. 3, where we use the following notation:

σ̄ = {(v, σ(v)) : v ∈ X} ,

κ̄ = {(v, κ(v)) : v ∈ X} ,

CorruptX,x = {(v, σ(v)) : v ∈ X,x 66 v} ,

KeysX,x = {(v, κ(v)) : v ∈ X \ {x}} .

In the experiment we assume that the adversary receives the information flow policy(X,6) in the same
format as theSetUp algorithm does.

Definition 6. Let(X,6) be an arbitrary poset. A CES for(X,6) is (ǫ, τ)-strongly key indistinguishable
with respect to static adversaries[21] if, for all x ∈ X, the advantage of all adversariesA that interact
in experimentExptkist,bX,x (A) and run in time at mostτ is bounded byǫ, where we define

AdvkistX,x(A) =
∣∣∣Pr

[
Exptkist,1X,x (A)⇒ 1

]
− Pr

[
Exptkist,0X,x (A)⇒ 1

]∣∣∣ .

Observe that in this definition the adversary obtains, in principle, all secrets embedded in the system
(that is, allσ(x) andκ(x) values), excluding only those that would allow distinguishing the challenge
key by trivial means (e.g., by invoking theDerive algorithm).

6[11] show that not all of these implications are strict; in particular strong key indistinguishability is polynomiallyequivalent
to the notion of (plain) key indistinguishability of [2], with tightness lossn = |X|. Note also our model considers a static setup
where the challenge label is fixed a priori. A variant of Definition 6 would consider dynamic adversaries: such an adversary
is able to choose the challenge labelx during the experiment, rather than having it fixed as one of the experiment’s parame-
ters. However, it has been shown that static and dynamic definitions of strong key indistinguishability are polynomially equiv-
alent [21]; corresponding results for (plain) key indistinguishability have also been obtained [5]. To simplify the exposition,
therefore, we restrict our attention to the static case.



Exptkist,bX,x (A):

1. (Pub, σ̄, κ̄)←$ SetUp(X)
2. DeriveCorruptX,x andKeysX,x from σ̄ andκ̄
3. K0 ←$ K
4. K1 ← κ(x), extracted from̄κ
5. b′ ←$ A(X,x,Pub,CorruptX,x,KeysX,x,Kb)
6. Returnb′

Fig. 3. Security experiment for strong key indistinguishability

The final step of our analysis is to prove that our forest-based enforcement scheme from the preced-
ing section is strongly key indistinguishable in the sense of Definition 6. More precisely, we have the
following result.

Theorem 1. For any poset(X,6), x ∈ X, and adversaryA that runs in time at mostτ , there exists a
constant0 6 c 6 |X| and distinguishersD0

1, . . . ,D
0
c ,D1

1, . . . ,D
1
c against the underlying PRF such that

AdvkistX,x(A) 6 AdvF (D0
1) + · · ·+AdvF (D0

c ) + AdvF (D1
1) + · · · +AdvF (D1

c )

and the respective running times are at mostτ bi = τ + O(|X|). That is, if the PRF is(ǫ′, τ + O(|X|))-
indistinguishable then our CES construction is(ǫ, τ)-strongly key indistinguishable withǫ = 2|X|ǫ′.

Proof. The argument proceeds using a sequence of|X| = n hybrid games that interpolate between
experimentsExptkist,0X,x andExptkist,1X,x . In each hybrid step, if specific conditions are met, we replace one
PRF instance by a random function; from the point of view of the adversary, the distance between each
two consecutive hybrids is not greater thanAdvF (D) for a specific PRF distinguisherD.

Fix a poset(X,6) together with a (reverse) linear extensionxn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 ofX, a label
x ∈ X, and a CES adversaryA that runs in time at mostτ . We use sequencexn ≺ · · · ≺ x1 to define our
hybrid experiments: Forb ∈ {0, 1}, we setGb

0 = Exptkist,bX,x and define gamesGb
1, . . . , G

b
n (in that order)

such that if1 ≤ k ≤ n andxk > x then the difference between gamesGb
k andGb

k−1 is precisely that
all PRF invocations with keys(xk) are replaced by assignments with values drawn uniformly at random
from K (correspondingly, also the keys considered in lines (2) and(4) are changed). For the remaining
indicesk, i.e., in casexk 6> x, gamesGb

k andGb
k−1 are identical. LetSb

k denotePr[Gb
k(A) ⇒ 1] for

all b, k.
Observe that we replace PRF invocations by random assignments for precisely those labelsx ∈ X

that do not have a corresponding entry inCorruptX,x. Observe also that, as we consider the labels in
a suitable order, for all switchings from a PRF to a random function we have that the corresponding
PRF keys(x) was replaced with a uniform random value before. Thus, the difference between any two
consecutive games is bounded by a PRF advantage: by a standard reductionist argument, in the cases
x 6 xk, we have

|Sb
k − S

b
k−1| = |Pr[G

b
k(A)⇒ 1]− Pr[Gb

k−1(A)⇒ 1]| = AdvF (D) , (1)

for a specific distinguisherD with running time approximatelyτ + |X| · Tprf ∈ τ +O(|X|), whereTprf
is the time required for one PRF evaluation; in addition, wheneverx 66 xk we haveGb

k = Gb
k−1 and



hence|Sb
k − S

b
k−1| = 0. Now, by repeated application of the triangle inequality and (1), we have

∣∣∣Sb
0 − S

b
n

∣∣∣ 6
n∑

k=1

∣∣∣Sb
k−1 − S

b
k

∣∣∣ 6
c∑

k=1

AdvF (Db
k) ,

wherec = |{x′ ∈ X : x 6 x′}| and distinguishersDb
k are constructed as specified. We now consider

gamesG0
n andG1

n. In both casesκ(x) is picked uniformly at random, thus lines (3) and (4) in the
experiment implement the same operation. HenceG0

n is identical toG1
n and

∣∣S0
n − S

1
n

∣∣ = 0. Thus, we
obtain

AdvkistX,x(A) = |S
1
0 − S

0
0 | 6 |S

1
0 − S

1
n|+ |S

1
n − S

0
n|+ |S

0
n − S

0
0 |

6AdvF (D1
1) + . . .+AdvF (D1

c ) + 0 + AdvF (D0
1) + . . . +AdvF (D0

c )

as required.

Note that by results of [11] it would have sufficed to prove (plain) key indistinguishability of our
scheme, as the latter would imply the notion of strong key indistinguishability that we target. Observe
however that going this way introduces a tightness loss ofn = |X|. Besides saving this factor, we believe
our direct approach is also more intuitive.

3.3. On practical instantiations of the PRF component

We now briefly consider how one might instantiate our CES in practice. Although pseudorandom func-
tions are a standard building block in the domain of provablesecurity, corresponding constructions do not
explicitly appear in most international cryptographic standards documents (e.g., by ANSI, IEEE, NIST,
IETF, etc.). However, certain standardized MACs and block ciphers can be used as a PRF replacement,
as we discuss next.

The primary aim of message authentication codes (MACs) is integrity protection and data authentica-
tion. A standard result says that any PRF may also be used as a MAC. The converse is in general not true:
a good MAC is not automatically a good PRF. Fortunately, however, essentially all standardized MAC
constructions are in fact good PRFs, including the popular HMAC [26], CMAC [18], GMAC [19], and
PMAC [10] schemes.

In our application, the data input of the PRF and hence of the MAC is the nameℓ(x) of a node
x ∈ X. For the sake of generality we did not impose any constraintson the format of these names
(in particular, strings of arbitrary length are allowed). We note that all of the MAC schemes mentioned
above are designed to process arbitrary-length strings, ofany format. By consequence, all of them are
suitable to securely instantiate our enforcement scheme. However, we point out that if we imposed a
constant-length restriction onℓ(x), then a much simpler PRF than the MACs mentioned above can be
used: by the PRF/PRP switching lemma [9], any block cipher (a.k.a. pseudorandom permutation, PRP)
also constitutes a PRF, where the input length is equal to theoutput length and coincides with the cipher’s
block size. In particular, if one is satisfied with using 128 bit keys and may require 128-bit labels for
elements inX then the AES block cipher can be used without modification as the pseudorandom function
of our CES construction. Further, if the target is a securitylevel of 256 bit and one uses 127-bit labels,
then the following function would be a suitable PRF:

F : {0, 1}256 × {0, 1}127 → {0, 1}256 , where(K, s) 7→ AESK(0 ‖ s) ‖ AESK(1 ‖ s).



4. Selecting a Good Tree Partition

Each poset admits many possible tree partitions and each tree partition gives rise to many possible
enforcement schemes. In this section, we investigate whichenforcement scheme to select for a given tree
partition and which tree partition to select for a given poset. Our analysis is based on the assumption that
we wish to minimize the total number of secrets that need to bedistributed to users. Thus, given a tree
partitionT = (X,6T ) and a forest-based enforcement scheme(T , ψ), we define

S(T , ψ) =
∑

x∈X

|ψ(x)| · |Ux| .

Note that|ψ(x)| denotes the number of secrets issued to eachu ∈ Ux for the enforcement scheme(T , ψ).
Thus,S(T , ψ) is the total number of secrets that need to be distributed to users when we apply scheme
(T , ψ). By Lemma 1, for a given tree partitionT = (X,6T ), any forest-based enforcement scheme
(T , ψ) and anyx ∈ X, we haveφT (x) ⊆ ψ(x); thus |φT (x)| 6 |ψ(x)| andS(T , φT ) 6 S(T , ψ).
Hence, for a given tree partitionT , we will assume the use of the forest-based enforcement scheme
(T , φT ).

Let P = (X,6) be an information flow policy and letT = (X,6T ) be a tree partition ofP. Then
we say thatT is aminimal tree partitionof P if, for any tree partitionT ′ of P, we haveS(T , φT ) 6

S(T ′, φT ′). (In other words,T is a tree partition that minimizes the total number of distributed secrets.)
For any tree partitionT = (X,6T ) and for allx ∈ X, x must have at most one parent in(X,6T ).

Informally, then, to construct a tree partitionT from P = (X,6), for all x ∈ X we must discard all but
(at most) one parent ofx in P. Hence, if we can associate the choice of parenty for z with an appropriate
cost of the edgeyz in H∗ = (X,Emax), then computing a minimal tree partition can be translated into a
problem of selecting a suitable weighted forest.

We now describe how to compute such a cost function. Given an information flow policyP = (X,6),
for each pairyz such thaty > z, we defineγP(yz) = {x ∈ X : x > z, x 6> y}.

Proposition 3. For all x > y > z, γP(xz) ⊃ γP(yz).

Proof. Let t ∈ γP(yz). Thent > z andt 6> y. Now if t > x, we would havet > y, by transitivity. Thus
t 6> x and hencet ∈ γP(xz). Moreover,y ∈ γP(xz), sincey > z andy 6> x, andy 6∈ γP(yz), so the
inclusion is strict.

Define a weight functionωP : X ×X → N, where

ωP(yz) =

{∑
x∈γP (yz) |Ux| if y > z,

0 otherwise.

Note that for any tree partitionT , z has at most one parent inT , so we may writeγT (z) for
γP(parT (z)z) without ambiguity. Given a tree partitionT of X, we define the weight function
ΩT : X → N, where

ΩT (z) =





∑

x>z

|Ux| if z is maximal inT ,

∑

x∈γT (z)

|Ux| otherwise.



Informally,ΩT (z) represents the number of users that will require the secret associated withz, on the
one hand ifz is maximal inT and on the other if edgeparT (z)z is used inT . We can now prove the
main result of this section, which establishes a relationship betweenS(T , φT ) andΩT , and thus enables
us to define an (efficient) algorithm for computing a minimal tree partition.

Theorem 2. LetP = (X,6) be a poset with Hasse diagramH(P) = (X,Emin) and letT be a tree
partition T ofP. Then

S(T , φT ) =
∑

z∈X

ΩT (z). (2)

Moreover, we can compute a minimal tree partitionT̂ ofP in timeO(|Emin|+ |X|
2).

Proof. We first prove (2). LetX ′′ denote the set of maximal elements inT andX ′ denote the set of
non-maximal elements. By definition,

S(T , φT ) =
∑

x∈X

|φT (x)||Ux|

and, by Lemma 2, we have

|φT (x)| =
∣∣{z ∈ X ′ \ {x} : x ∈ γT (z)

}∣∣+
∣∣{z ∈ X ′′ : x > z

}∣∣+ 1.

Hence

S(T , φT ) =
∑

x∈X

(
∣∣{z ∈ X ′ : x ∈ γT (z)

}∣∣+
∣∣{z ∈ X ′′ : x > z

}∣∣+ 1)|Ux|

=
∑

x∈X

∣∣{z ∈ X ′ : x ∈ γT (z)
}∣∣ |Ux| −

∑

x∈X′

|Ux|+
∑

x∈X

∣∣{z ∈ X ′′ : x > z
}∣∣ |Ux|+

∑

x∈X

|Ux|

=
∑

x∈X

∣∣{z ∈ X ′ : x ∈ γT (z)
}∣∣ |Ux|+

∑

x∈X

∣∣{z ∈ X ′′ : x > z
}∣∣ |Ux|+

∑

x∈X′′

|Ux|

=
∑

z∈X′

∑

x∈γT (z)

|Ux|+
∑

z∈X′′

∑

x>z

|Ux|

=
∑

z∈X

ΩT (z)

We next establish the choice ofT that minimizesS(T , φT ). Observe that ifz is not a maximal element
of X, a minimal tree partition̂T will not havez as a maximal element either. Indeed, supposez is a
maximal element in a tree partitionT and lety be a parent ofz in X. ThenΩT (z) > ΩT ′(z), whereT ′

is obtained fromT by adding edgeyz to the Hasse diagram ofT , since{x ∈ X : x ∈ γT ′(z)} ⊂ {x ∈

X : x > z}; the inclusion is strict sincey is in the first set but not the second. Thus,z is a maximal inT̂
if and only if z is maximal inX. It remains to decide on parents in̂T for non-maximal elements inX.

Let T be a tree partition andz is not maximal inT . Note thatΩT (z) = ωP(parT (z)z). By Propo-
sition 3, we haveγP(yz) ⊂ γP (xz) for x > y > z. It follows thatωP(yz) 6 ωP(xz), the inequality



being strict if we assume that at least one user is assigned toeach node inX. Thus it suffices to consider
only parents ofz in X when constructing a minimum tree partition. Moreover, to build T̂ , for each non-
maximalz ∈ X, we select a parenty of z in X such thatωP(yz) 6 ωP(y

′z) for all other parentsy′ of
z.

Finally, we analyze the running time to compute a minimum tree partition. We can computeωP(yz)
for each non-maximalz and each parenty of z in P in timeO(|X|2) using an algorithm similar to that
used for computingφT . Now a minimal tree partitionT of P can be obtained by settingy = parT (z),
whereωP(yz) 6 ωP(xz) for all x ∈ X such thatx > z. This will require timeO(|Emin|). Thus, the
total time required isO(|Emin|+ |X|

2).7

We have shown that we can compute a minimal tree partition efficiently. Recall that|φT (x)| mea-
sures the number of secrets a user inUx will require to derive all authorized secrets (and keys). We
now consider whether it is possible to compute a minimal treepartition that simultaneously bounds
maxx∈X {|φT (x)|}. Let T be a minimal tree partition ofP = (X,6). We will say thatT is anoptimal
tree partitionof P if T has the minimum number of minimal elements among all minimaltree partitions.
An optimal tree partition withℓ leaves has the property that no user will require more thanℓ secrets.

For each non-maximalz ∈ P = (X,6), let Y (z) be the set ofy ∈ X such thaty > z andωP(yz)
is minimum. Construct a directed acyclic graphH with vertex setX; for every non-maximaly ∈ X,
the in-neighborhood ofy is Y (y), and each maximaly ∈ X has no in-neighbors. Add toH a new
vertexr which is an in-neighbor of everyx ∈ X. Now apply the polynomial-time algorithm MINLEAF

[25], that allows us to find an out-tree rooted atr with minimum number of leaves, i.e., vertices with
no out-neighbors. As a result, we obtain, among all tree partitions with minimum number of secrets,
one with minimum number of minimal elements. LetX ′ denote the set of non-maximal elements inP.
Then MINLEAF’s runtime isO(s + |X|3/2s1/2), wheres =

∑
z∈X′ |Y (z)|. Observe thats 6 |Emax|

and |Emax| 6 |X|
2. This implies thatO(s + |X|3/2s1/2) = O(|X|3/2 |Emax|

1/2). Thus, we have the
following result.

Corollary 1. Given an information flow policyP = (X,6), we can find an optimal tree partition
T = (X,6T ) ofP in timeO(|X|3/2 |Emax|

1/2).

We conclude this section with an example illustrating our results. Let[n] = {1, 2, . . . , n} and let
[i, j] = {i, i + 1, . . . , j − 1, j} for i ≤ j. Then define the poset

I(n) = {[i, j] : 1 6 i 6 j 6 n} ,

where [i, j] 6 [i′, j′] if and only if i′ 6 i and j′ > j. The Hasse diagram forI(5) is illustrated in
Figure 1a. The posetI(n) has attracted considerable interest because of its application to “time-bound”
access control (see [4,13], for example). In particular, the numbers1, . . . , n represent time points or time
intervals, and elements inI(n) represent contiguous intervals of time (either consecutive points or a
sequence of consecutive intervals). A useru assigned the interval[i, j] is authorized to access any object
assigned an interval[i′, j′] ⊆ [i, j].

The cardinality ofγP(yz), y, z ∈ I(5), y ⋗ z, is shown in Figure 4a. A tree of minimum weight
is shown in Figure 4b and the corresponding values ofΩT (z) are shown in Figure 4c. It is possible to

7Since|Emin| 6 |X|2 we can simplify the total time toO(|X|2). However, we decided to keep|Emin| to stress that only
parents of elements need to be considered to compute a minimum tree partition.



show that the minimum number of secrets required in total, assuming|Ux| = 1 for eachx ∈ I(n), is
1
6m(m+ 1)(4m − 1) if n = 2m− 1, and 1

6m(m+ 1)(4m+ 5) if n = 2m.

1 1

1 2 2 1

1 3 2 2 3 1

1 4 2 3 3 2 4 1

(a) |γ(yz)|

1 1

1 2 1

1 2 2 1

1 2 3 2 1

(b) T̂
1 2 3 2 1

1 2 2 1

1 2 1

1 1

1

(c)Ω
T̂
(z)

Fig. 4. A minimal tree partition of(I(5),⊆)

5. Selecting a Good Chain Partition

In this section, we consider chain-based schemes. Recall that a chain partition of a posetP is a disjoint
union of chains such that every element ofP belongs to one of the chains. An elementz of a chainC is
calledtop (bottom, respectively) if the in-degree (out-degree, respectively) of z in H(C) is zero.

We first show that the number of secrets to be issued in a chain-based enforcement scheme is deter-
mined by the bottom elements of the chains in the corresponding chain partition. This in turn implies that
there exists a chain partition with a minimum number of secrets issued for which the number of chains
is exactly the width of the poset.

Lemma 3. For any posetP = (X,6) and any chain partitionC = (X,6C) of (X,6) with chains
{C1, . . . , Cℓ}, let chainCi have bottom elementbi, 1 6 i 6 ℓ. Then

S(C, φC) =
ℓ∑

i=1

∑

x∈↑P (bi)

|Ux| . (3)

Proof. Let Ci comprise elementsz1, z2, . . . , zc such thatz1 > z2 > · · · > zc (i.e., bi = zc) and
observe that↑P(bi) is the disjoint union of setsXi, 1 6 i 6 c, whereX1 = {x : x > z1} and
Xj = {x : x 6> zj−1, x > zj}, 2 6 j 6 c. Observe thatXj = {x : x ∈ γC(z)}, 2 6 j 6 c. This
decomposition of↑P(bi) into setsXi, 1 6 i 6 c, will be used in the following derivation.



By (2) and the definition ofΩC(z),

S(C, φC) =
∑

z∈X

ΩC(z)

=

ℓ∑

i=1

∑

x∈X1

|Ux|+
ℓ∑

i=1

ℓ∑

j=2

∑

x∈Xj

|Ux|

=
ℓ∑

i=1

∑

x∈↑P (bi)

|Ux|

By Dilworth’s Theorem, a poset(X,6) of width w of has a chain partition withw chains. Such a
chain partition can be obtained in timeO(|X|2.5) [23]. Thus, in particular, we can computew in time
O(|X|2.5). The next theorem can be viewed as a strengthening of Dilworth’s Theorem. In Subsection
5.1, we will show how to compute a minimal chain partition of widthw in polynomial time.

Theorem 3. Let P = (X,6) be an information flow policy of widthw. Then there exists a minimal
chain partition of widthw.

Proof. Let C = (X,6C) be a minimal chain partition ofX into t > w chains and letB be the set of
bottom elements in the chains ofC. A theorem of Gallai and Milgram asserts that if a chain partition C
of a posetP containst chains, wheret > w, then there exists a chain partitionC′ = (X,6C′) into t− 1
chains such that the set of bottom elements inC′ is a subset ofB [22].8 Hence, by iterated applications
of the Gallai-Milgram theorem, there exists a chain partitionC∗ = (X,6C∗) of widthw such that the set
of bottom elementsB∗ in C∗ is a subset ofB. Moreover, by Lemma 3,

S(C∗, φC∗) =
∑

b∈B∗

∑

x∈↑P (b)

|Ux| 6
∑

b∈B

∑

x∈↑P (b)

|Ux| = S(C, φC)

As C is a minimal chain partition, we conclude thatC∗ is also a minimal chain partition.

Corollary 2. LetP = (X,6) be an information flow policy. There exists a chain partitionC = (X,6C)
such thatS(C, φC) is minimized andmax {|φC(x)| : x ∈ X} 6 w.

Proof. The result follows immediately from Theorem 3 and the fact that |φC(x)| is bounded above by
the number of chains inC for all x ∈ X.

The above corollary shows that no user requires more thanw secrets in a chain-based enforcement
scheme.

Returning to our example ofI(n), note that the width ofI(n) is n as the minimal elements form the
largest antichain. Thus, any chain partition withn chains requires the same number of secrets. It is not
hard to show that this number is16n(n + 1)(n + 2), which is minimum possible. Thus the minimal tree
partition ofI(n) (discussed in Section 4) requires approximately half the number of secrets required by
the minimal chain partition.

8The result is phrased in the language of digraphs, but every poset may be represented by an equivalent transitive acyclic
digraph.



5.1. Computing a minimal chain partition

A chain partition imposes stronger constraints than a tree partition. Specifically, each element in a chain
partition has at most one parent and one child, whereas a treepartition only requires that each element
has at most one parent. Thus, the straightforward algorithmfor computing a minimal tree partition cannot
be used to compute a minimal chain partition.

SupposeP = (X,6) is a poset of widthw. In general, a chain partition ofP hasℓ > w chains.
Theorem 3 asserts that there exists a minimal chain partition comprisingw chains. We now show how
such a chain partition may be constructed. In particular, weshow how to transform the problem of finding
a minimal chain partitionC = (X,6C) into a problem of finding a minimum cost flow in a network.

Informally, anetworkis a directed graph in which each edge is associated with acapacity. A network
flowassociates each edge in a given network with a flow, which mustnot exceed the capacity of the edge.
Networks are widely used to model systems in which some quantity passes through channels (edges in
the network) that meet at junctions (vertices); examples include traffic in a road system, fluids in pipes,
or electrical current in circuits. Our definitions for networks and network flows follow the presentation
of Bang-Jensen and Gutin [6].

Definition 7. A networkis a tupleN = (D, l, u, c, β), where:

– D = (V,A) is a directed graph with vertex setV and edge setA;
– l : V × V → N such thatl(vv′) = 0 if vv′ 6∈ A and l(vv′) > 0 otherwise;
– u : V × V → N such thatu(vv′) = 0 if vv′ 6∈ A andu(vv′) > l(vv′) > 0 otherwise;
– c : V × V → R;
– β : V → R such that

∑
v∈V β(v) = 0.

Intuitively, l andu represent lower and upper bounds, respectively, on how muchflow can pass through
each edge, andc represents the cost associated with each unit of flow in each edge. The functionβ
represents how much flow should enter or leave the network at agiven vertex. Ifβ(x) = 0, then the flow
going intox should be equal to the flow going out ofx. If β(x) > 0, then there should beβ(x) more
flow coming out ofx than going intox. If β(x) < 0, there should be|β(x)| more flow going intox than
coming out ofx.

Definition 8. Given a networkN = (D, l, u, c, β), a functionf : V × V → N is a feasible flowfor N
if the following conditions are satisfied:

– u(vv′) > f(vv′) > l(vv′) for everyvv′ ∈ V × V ;
–
∑

v′∈V (f(vv
′)− f(v′v)) = β(v) for everyv ∈ V .

Thecostof f is defined to be

∑

vv′∈A

c(vv′)f(vv′).

Our aim is to find a treeC = (X,6C) such thatC is a chain partition ofX with preciselyw chains that
minimizesS(C, φC). To do this, we will construct a networkN such that the minimum cost flow ofN
corresponds to the desired chain partition. We can then find the minimum cost flow ofN in polynomial
time.

Every top vertex inC must have one child and no parent inC, every bottom vertex inC must have one
parent and no child inC, and every other vertex inC must have one parent and one child. We cannot



represent this requirement directly in a network. However,we can use thevertex splitting procedure[6]
to simulate it. Specifically, given posetP = (X,6), define first a directed graphD = (V,A). Let
Xin = {xin : x ∈ X} andXout = {xout : x ∈ X}, and define the vertex setV = Xin ∪Xout ∪ {s, t},
where{s, t} ∩ (Xin ∪Xout) = ∅. Define the edge setA as follows: forv, v′ ∈ Xin ∪Xout, vv′ ∈ A if
and only if eitherv = xin andv′ = xout for somex ∈ X, or v = xout andv′ = yin for somex, y ∈ X
such thaty 6 x; for everyv ∈ Xin we havesv ∈ A; and for everyv ∈ Xout we havevt ∈ A.

Then define a networkN = (D, l, u, c, β), where

l(vv′) =

{
1 if v = xin, v

′ = xout, wherex ∈ X

0 otherwise;

u(vv′) =

{
1 if vv′ ∈ A

0 otherwise;

c(vv′) =

{∑
x∈↑P (v) |Ux| if v′ = t, v = xout, wherex ∈ X

0 otherwise;

β(v) =





w if v = s

−w if v = t

0 otherwise.

We call this network thenetwork chain-representation of(X,6). Note that any feasible flowf for this
network must have0 6 f(xy) 6 1 for all xy ∈ A.

Lemma 4. LetN be the network chain-representation of an information flow policy P = (X,6). Then
the minimum number of secrets issued by a chain-based enforcement scheme for(X,6) with w chains
is f̂ , wheref̂ is the minimum cost of a feasible flow inN .

Proof. Suppose we are given a chain partitionC = (X,6C).Consider the following flow:

f(xinxout) = 1 for all x ∈ X;

f(xoutyin) = 1 if x = parC(y);

f(sxin) = 1 if x is the top element in a chain inC;

f(xoutt) = 1 if x is the bottom element in a chain inC;

f = 0 otherwise.

Observe thatf is a feasible flow. Indeed, by construction all edgesxy satisfyu(xy) > f(xy) > l(xy). In
the graph formed by edgesxy with f(xy) = 1, it is clear that every vertexx has in-degree and out-degree
1, except fors andt. Also, s has in-degree0 and out-degreew in this graph, andt has in-degreew and
out-degree0. As all edgesxy havef(xy) = 1 or f(xy) = 0, we have that

∑

v∈V (D)

(f(xv)− f(vx)) = β(x)



for all x, as required. Moreover, the cost off equals
∑

b∈B

∑
x∈↑P (b) |Ux|, whereB is the set of bottom

elements of chains inC, which by (3) equalsS(C, φC).
Conversely, supposef is a feasible flow forN . Then we definey ⋖C x if and only if x, y ∈ X and

f(xoutyin) = 1. By the construction ofN and definition off , it is not hard to see thatC is a chain
partition ofX with w chains. By construction ofN , the cost off equals

∑
b∈B

∑
x∈↑P (b) |Ux|, whereB

is the set of bottom elements of chains inC, which by (3) equalsS(C, φC).

Lemma 5. We can find a minimum cost flow forN in O(|X|4w) time.

Proof. Recall that computingw can be done in timeO(|X|2.5). To compute
∑

x∈↑P (y) |Ux| for each
y ∈ X requires timeO(|Emax| + |X|) using depth-first search fromy in the digraph obtained from
H∗(X) by changing orientation of every edge. Thus, to compute

∑
x∈↑P (y) |Ux| for all y ∈ X requires

timeO(|X|(|Emax|+ |X|)).
The well-known buildup algorithm (see [6, §4.10.5], for example) finds a minimum cost flow for a

network withn vertices andm edges in timeO(n2mM), whereM denotes the maximum of all absolute
values of balance demands on vertices. By construction ofN , we have thatn = 2|X| + 2 = O(|X|),
m = O(n2) = O(|X|2), andM = w. Thus we get the desired running time.

Remark 1. Strictly speaking, the buildup algorithm assumes that all lower bounds on edges are0. In its
current form, our network does not satisfy this condition. However, we can satisfy this condition, given
N = (D, l, u, c, β), by defining the networkN ′ = (D, l′, u′, c, β′), where

l′(xy) = 0 β′(x) = β(x)− l(xy)

u′(xy) = u(xy)− l(xy) β′(y) = β(y) + l(xy)

Then the minimum cost flowf ′ forN ′ will have cost exactly
∑

xy l(xy)c(xy) less than the minimum cost
flow forN , andf ′ can be transformed into a minimum cost feasible flowf for N by settingf(xy) =
f ′(xy) + l(xy).

We are now able to prove our main result, for this section which is, essentially, a corollary of Theorem 3
and Lemmas 4 and 5.

Theorem 4. Let P = (X,6) be an information flow policy of widthw. Then we can find a minimal
chain partition comprisingw chains in timeO(|X|4w). In such a chain partition no user requires more
thanw secrets.

Proof. Let S denote the minimum number of secrets issued by a chain-basedenforcement scheme for
X. By Theorem 3, there exists a chain partition that has exactly w chains, for which the corresponding
chain-based enforcement scheme only requiresS secrets. Then by Lemma 4,S is equal to the minimum
cost of a feasible flow inN , the network chain-representation ofP. By Lemma 5, such a flow can be
found inO(|X|4w) time, and this flow can be easily transformed into the corresponding chain partition
C = (X,6C). Finally, by definition ofφC(x), |φC(x)| 6 w for eachx ∈ X and therefore no user requires
more thanw secrets.



6. Concluding Remarks

In this paper, we introduced the concept of a tree partition,generalizing prior work on chain partitions
and tree-based enforcement schemes. We have proved that it is possible to compute optimal chain and
tree partitions for an arbitrary information flow policy in polynomial time. And we have proved that there
exist secure instantiations of enforcement schemes based on tree partitions. In short, we have shown that
it is possible to construct forest-based cryptographic enforcement schemes for information flow policies
efficiently.

Perhaps the most important contribution of our work on cryptographic enforcement schemes based on
tree and chain partitions is to provide alternative trade-offs between the parameters of such enforcement
schemes. These additional trade-offs provide data owners with a greater range of potential enforcement
schemes, enabling them to select the most appropriate for their particular information flow policy and
deployment constraints (such as storage and connectivity capabilities of end-user devices). We might, for
example, wish to use an existing scheme that requires each device to store a single secret when storage
is limited. Alternatively, we might wish to use a chain-based scheme when the distribution of public
information is difficult and we wish to impose a small upper bound on the number of secrets that any
device needs to store. We might use a tree-based scheme if distribution of public information is difficult
and we wish to minimize the amount of data we wish to transmit to the user population.

Another difference between minimal tree-based and chain-based schemes is that computing the for-
mer is significantly faster than the latter as the former can essentially be computed by a simple greedy
algorithm, while the latter requires a more sophisticated and much slower minimum cost flow algorithm.
While still polynomial-time, minimum cost flow algorithms may be too slow when|X| is large.

In future work, we hope to investigate the difficulty of finding a tree partition in which the worst-
case derivation time is as similar as possible for all users (whilst still minimizing the number of secrets
issued).
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