
ASYMPTOTIC DIOPHANTINE APPROXIMATION: THE MULTIPLICATIVE
CASE

MARTIN WIDMER

ABSTRACT. Let α and β be irrational real numbers and 0 < ε < 1/30. We prove a
precise estimate for the number of positive integers q ≤ Q that satisfy ‖qα‖·‖qβ‖< ε.
If we choose ε as a function of Q we get asymptotics as Q gets large, provided εQ grows
quickly enough in terms of the (multiplicative) Diophantine type of (α, β), e.g., if (α, β) is
a counterexample to Littlewood’s conjecture then we only need that εQ tends to infinity.
Our result yields a new upper bound on sums of reciprocals of products of fractional
parts, and sheds some light on a recent question of Lê and Vaaler.

1. INTRODUCTION

Let α and β be irrational real numbers, and let ‖·‖ be the distance to the nearest
integer. Littlewood’s conjecture asserts that

lim inf
q→∞

q · ‖qα‖·‖qβ‖= 0.

We assume that φ : [1, ∞) → (0, 1/4] is a a non-increasing1 function (depending on
(α, β)) such that

q · ‖qα‖·‖qβ‖≥ φ(q)(1.1)

for all positive integers q. Note that φ can be chosen to be constant if and only if the
pair (α, β) is a counterexample to Littlewood’s conjecture. The condition (1.1) has been
considered in various forms, e.g., by Badziahin [1]. He takes a function f : N → (0, ∞)
and considers the set

Mad( f ) =
{

(α, β) ∈ R2; lim inf
q→∞

f (q) · q · ‖qα‖·‖qβ‖> 0
}

.(1.2)

Special cases of these sets already appeared in [2]. If we assume that 1/ f is also non-
increasing then (α, β) lies in Mad( f ) if and only if (1.1) holds true with a φ satisfying
1/ f (q)�α,β φ(q)�α,β 1/ f (q).

Throughout this article, let Q ≥ 1, ε > 0, and T > 0 be real numbers, and assume

ε/T2 ≤ 1/e2,(1.3)
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1By non-increasing we mean that x, y ∈ [1, ∞) and x ≤ y implies that φ(x) ≥ φ(y).
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where e denotes the base of the (natural) logarithm. We consider the finite set

Mα,β(ε, T, Q) =
{

(p1, p2, q) ∈ Z3;|p1 + qα|·|p2 + qβ|< ε,

max{|p1 + qα|, |p2 + qβ|} ≤ T,

0 < q ≤ Q
}

.

Theorem 1.1. Suppose that (1.1) and (1.3) hold, and set C1 = 328. Then we have∣∣∣∣|Mα,β(ε, T, Q)|−4εQ
(

log
(

T2

ε

)
+ 1
)∣∣∣∣ ≤ C1(1 + 2T)2 log

(
T2

ε

)(
εQ

φ(Q)

)2/3
.

We shall see that the main term is just the volume of the set Z defined in Section 2.
The constant C1 could easily be improved. Choosing T = 1/2 we have

|Mα,β(ε, 1/2, Q)|= |{q ∈ Z; ‖qα‖·‖qβ‖< ε, 0 < q ≤ Q}|
which is of particular interest, and hence we state this case of Theorem 1.1 as a corollary.

Corollary 1.1. Suppose that (1.1) holds, that 0 < ε ≤ 1/(2e)2, and set C2 = 4C1 = 4 · 328.
Then we have∣∣|Mα,β(ε, 1/2, Q)|−4εQ (1− log(4ε))

∣∣ ≤ −C2 log(ε)
(

εQ
φ(Q)

)2/3
.

If we choose a value ε = ε(Q) ≤ 1/(2e)2 for each value of Q, and we let Q tend
to infinity then we get asymptotics for |Mα,β(ε, 1/2, Q)| provided 1/φ(Q) = o(

√
ε(Q)Q).

Let us write log+ Q = max{1, log Q}. A result of Gallagher [5] implies that for f (q) =
(log+ q)λ the set Mad( f ) has full Lebesgue measure if λ > 2 and measure zero when
λ ≤ 2. Hence, if ε(Q) � (log+ Q)2λ/Q with λ > 2 then the asymptotics are given
by the main term in Corollary 1.1 for almost2 every pair (α, β) ∈ R2. Bugeaud and
Moshchevitin [3] showed that when λ = 2 the set Mad( f ) still has full Hausdorff dimen-
sion. This was substantially improved by Badziahin [1] who showed that even with
f (q) = (log+ q)(log+(log+ q)) the set Mad( f ) has full Hausdorff dimension.

We now discuss an application of Corollary 1.1. In [6] Lê and Vaaler showed that

Q(log+ Q)2 �
bQc

∑
q=1

(‖qα‖·‖qβ‖)−1.

Motivated by this they raised the question whether there exist real irrational numbers
α, β such that

bQc

∑
q=1

(‖qα‖·‖qβ‖)−1 �α,β Q(log+ Q)2.(1.4)

Lê and Vaaler showed that (1.4) holds for (α, β) provided the latter is a counterexample
to Littlewood’s conjecture, i.e., provided one can choose φ from (1.1) to be a constant
function. We show that φ(Q)�α,β 1/(log+ Q) suffices.

Corollary 1.2. Suppose that (1.1) holds, and set C3 = 12 and C4 = 332. Then we have
bQc

∑
q=1

(‖qα‖·‖qβ‖)−1 ≤ C3Q
(

log
(

Q
φ(Q)

))2
+ C4

Q
φ(Q)

log
(

Q
φ(Q)

)
.

2With respect to the Lebesgue measure.
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Einsiedler, Katok and Lindenstrauss [4] showed that the set of counterexamples to
Littlewood’s conjecture has Hausdorff dimension zero, and it is widely believed that no
such counterexample exists at all. On the other hand there is evidence for the existence
of pairs (α, β) with φ(Q)�α,β 1/(log+ Q). In fact, Badziahin and Velani [2, (L2)] (see also
[1, Conjecture 1]) conjectured that the set of these pairs has full Hausdorff dimension.
Unfortunately, it is not known whether such a pair (α, β) really exists and so we cannot
unconditionally answer Lê and Vaaler’s question.

2. PREREQUISITES

Lemma 2.1. If εQ < φ(Q) then the stated inequality in Theorem 1.1 holds true.

Proof. Suppose (p1, p2, q) ∈ Mα,β(ε, T, Q). Hence, 1 ≤ q ≤ Q and ‖qα‖·‖qβ‖≤ |p1 +
qα|·|p2 + qβ|< ε. On the other hand by (1.1), and using the monotonicity of φ, we have
‖qα‖·‖qβ‖≥ φ(q)/q ≥ φ(Q)/Q. Thus, if εQ < φ(Q) then |Mα,β(ε, T, Q)|= 0. It remains to
show that the main term is covered by the error term. As T2/ε ≥ e2 we have log(T2/ε) +
1 < 2 log(T2/ε). Using that εQ < φ(Q) ≤ 1/4 we see that 4εQ < (C1/2)(εQ/φ(Q))2/3.
This shows that the main term is bounded by the error term, and this proves the lemma.

�

For the proof of Theorem 1.1 we thus can and will assume that

εQ ≥ φ(Q).(2.1)

For a vector x in Rn we write |x| for the Euclidean length of x. Let Λ be a lattice
of rank n in Rn. We define the first successive minimum λ1(Λ) of Λ as the shortest
Euclidean length of a non-zero lattice vector

λ1 = inf{|x|; x ∈ Λ, x 6= 0}.
From now on suppose n ≥ 2, M ≥ 1 is also an integer, and let L be a non-negative
real. We say that a set S is in Lip(n, M, L) if S is a subset of Rn, and if there are M maps
ι1, . . . , ιM : [0, 1]n−1 −→ Rn satisfying a Lipschitz condition

|ιi(x)− ιi(y)|≤ L|x− y| for x, y ∈ [0, 1]n−1, i = 1, . . . , M

such that S is covered by the images of the maps ιi.

We will apply the following counting result which is an immediate consequence of
[7, Theorem 5.4].

Lemma 2.2. Let Λ be a lattice of rank n in Rn with first successive minimum λ1. Let S be a set
in Rn such that the boundary ∂S of S is in Lip(n, M, L). Then S is measurable, and moreover,∣∣∣∣|Λ ∩ S|− VolS

det Λ

∣∣∣∣ ≤ Dn M

(
1 +
(

L
λ1

)n−1
)

,

where Dn = n2n2
.

Next we introduce the sets

H = {(x, y) ∈ R2; |xy|< ε, |x|≤ T, |y|≤ T},
Z = H × (0, Q],

and the lattice

Λ = (1, 0, 0)Z + (0, 1, 0)Z + (α, β, 1)Z.

Clearly,

|Mα,β(ε, T, Q)|= |Λ ∩ Z|.(2.2)
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Instead of working with Z it is more convenient to decompose Z into four identically
shaped parts Zj and two rectangles Rj. We set

H1 = {(x, y) ∈ R2; |xy|< ε, 0 < x ≤ T, 0 < y ≤ T},
H2 = {(x, y) ∈ R2; |xy|< ε,−T ≤ x < 0, 0 < y ≤ T},
H3 = {(x, y) ∈ R2; |xy|< ε, 0 < x ≤ T,−T ≤ y < 0},
H4 = {(x, y) ∈ R2; |xy|< ε,−T ≤ x < 0,−T ≤ y < 0}.

Furthermore, we put for 1 ≤ j ≤ 4

Zj = Hj × (0, Q],

R1 = [−T, T]× {0} × (0, Q],

R2 = {0} × [−T, T]× (0, Q],

so that we have the following partition

Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ R1 ∪ R2.

Due to the irrationality of α and β we have

|Λ ∩ R1|= |Λ ∩ R2|= 2bTc + 1 < 2(T + 1).

Hence, ∣∣∣∣∣|Λ ∩ Z|−
4

∑
j=1
|Λ ∩ Zj|

∣∣∣∣∣ < 4(T + 1).

Using the automorphisms defined by τ1(x, y, z) = (x, y, z), τ2(x, y, z) = (−x, y, z), τ3(x, y, z) =
(x,−y, z), and τ4(x, y, z) = (−x,−y, z) we have τjZj = Z1. Setting for 1 ≤ j ≤ 4

Λj = τj(Λ),

we find ∣∣∣∣∣|Mα,β(ε, T, Q)|−
4

∑
j=1
|Λj ∩ Z1|

∣∣∣∣∣ < 4(T + 1).(2.3)

Unfortunately, our set Z1 is increasingly distorted when approaching the coordinate-
axes. After the trivial decomposition of Z we shall now consider a less obvious decom-
position of our new counting domain Z1.

3. PARTITIONING THE COUNTING DOMAIN

First let us decompose H1 into three disjoint pieces. Set

∆x = {(x, y); 0 < y < (ε/T2)x, 0 < x ≤ T},
∆y = {(x, y); (T2/ε)x ≤ y ≤ T, 0 < x < ε/T},

S = {(x, y); 0 < (ε/T2)x ≤ y < (T2/ε)x, xy < ε}.
Hence, we have

|Λj ∩ Z1|= |Λj ∩ ∆x × (0, Q]|+|Λj ∩ ∆y × (0, Q]|+|Λj ∩ S× (0, Q]|.(3.1)

The sets ∆x and ∆y are long and thin triangles, distorted only in x-direction or y-direction
respectively. The set S is more troublesome and requires a further decomposition into
about − log(ε/T2) pieces. Recall that by hypothesis 0 < ε/T2 ≤ 1/e2. Let ν ∈ [1/e2, 1/e]
be maximal such that N = log(ε/T2)/log ν is an integer. Hence,

1 ≤ N ≤ − log(ε/T2).(3.2)
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Decompose S into the 2N pieces S−N+1, . . . , SN , where

Si = {(x, y); 0 < νix ≤ y < νi−1x, xy < ε}.
Then we have the following partition

S =
⋃

−N+1≤i≤N
Si .(3.3)

Note that

S0 ⊂ [0,
√

ε]× [0,
√

ε/ν] ⊂ [0, 3
√

ε]2.(3.4)

A straightforward calculation yields

Vol2(S0) =
√

εν
√

ε/ν

2
+
∫ √ε

√
νε

ε

x
dx− ε

2
= − ε

2
log ν.

Hence,

V = Vol3(S0 × (0, Q]) = − ε

2
Q log ν.

Thus
εQ
2
≤ V ≤ εQ.(3.5)

4. APPLYING FLOWS

In this section we construct certain elements of the diagonal flow on R3 that trans-
form our distorted sets into sets of small diameter.

We introduce the following automorphisms of R2

gi(x, y) = (νi/2x, ν−i/2y).

Then we have for −N + 1 ≤ i ≤ N
giSi = S0.

We extend gi to an automorphism of R3

Gi(x, y, z) = (νi/2x, ν−i/2y, z),

so that
Gi(Si × (0, Q]) = S0 × (0, Q].

Next we introduce a further automorphism of R3

Gθ(x, y, z) = (θx, θy, θ−2z),

where

θ =
V1/3
√

ε
.

Let us write
ϕi = Gθ ◦ Gi .

Then we have

ϕi(Si × (0, Q]) = θS0 × (0, θ−2Q].

Combining (3.4) and (3.5) we get

ϕi(Si × (0, Q]) = θS0 × (0, θ−2Q] ⊂ [0, 3θ
√

ε]2 × (0, θ−2Q] ⊂ [0, 3V1/3]3.(4.1)

Similarly, we find

ϕN(∆x × (0, Q]) ⊂ [0, 3V1/3]3,(4.2)

ϕ−N+1(∆y × (0, Q]) ⊂ [0, 3V1/3]3.(4.3)
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Lemma 4.1. For −N + 1 ≤ i ≤ N the boundary of ϕi(Si × (0, Q]), ϕN(∆x × (0, Q]) and
ϕ−N+1(∆y × (0, Q]) lies in Lip(3, M, L) where M = 5, L = CLV1/3 and CL = 12.

Proof. The boundary of the set ϕi(Si × (0, Q]) = θS0 × (0, θ−2Q] can be covered by 4
planes and the set

{(x, θ2ε/x, z); θ
√

νε ≤ x ≤ θ
√

ε, 0 ≤ z ≤ Qθ−2}.
For the Jacobian J of the parameterising map

(t1, t2)→ (at1 + b,
θ2ε

(at1 + b)
, ct2)

with a = θ
√

ε(1−
√

ν), b = θ
√

νε, c = Q/θ2, and domain [0, 1]2 we get for its l2-operator
norm ‖J‖2≤ 4V1/3 which yields the required Lipschitz condition thanks to the Mean-
Value Theorem. Hence, we are left with the linear pieces of the boundary. Clearly, a
subset of a plane with diameter no larger than d can be parameterised by a single affine
map with domain [0, 1]2 and Lipschitz constant 2d. Thus, it suffices to show that the
diameter of ϕi(Si × (0, Q]) is ≤ 6V1/3. But the latter holds due to (4.1).

Finally, the boundary of the set ϕN(∆x × (0, Q]) and of the set ϕ−N+1(∆y× (0, Q]) can
each be covered by 5 planes. Moreover, by (4.2) and (4.3) their diameter is also ≤ 6V1/3.
This proves the lemma. �

5. CONTROLLING THE ORBITS

Our transformations of the previous section have brought our distorted sets into
nice shapes. Unfortunately, they transform our lattices Λj in a less favourable manner.
Indeed, the corresponding orbit of Λj escapes to infinity, i.e., the fist successive mini-
mum gets arbitrarily small. However, the rate of escape is controllable and sufficiently
slow.

Lemma 5.1. For 1 ≤ j ≤ 4, −N + 1 ≤ i ≤ N, and Q ≥ 1 we have

λ1(ϕiΛj) ≥ min{1, 1/(2T)}φ(Q)1/3.

Proof. Let v ∈ Λj be an arbitrary non-zero lattice point. Then there exist ε1 and ε2 in
{−1, 1} and p1, p2, q ∈ Z, not all zero, such that v = (ε1(p1 + qα), ε2(p2 + qβ), q). First
suppose q 6= 0. Then by the inequality of arithmetic and geometric means we have

|ϕiv|2≥ 3(|p1 + qα|·|p2 + qβ|·|q|)2/3.

Using our hypothesis (1.1) we get |p1 + qα|·|p2 + qβ|·|q|≥ φ(|q|). If |q|≤ Q we conclude,
by the monotonicity of φ, that φ(|q|) ≥ φ(Q), and hence

|ϕiv|≥ φ(Q)1/3.

If, on the other hand, |q|> Q then, looking only at the last coordinate, and using (2.1),
we find

|ϕiv|> θ−2Q ≥ (εQ)1/3 ≥ φ(Q)1/3.
Suppose now that q = 0. Then p1 and p2 are not both zero, and hence

|ϕiv|≥ max{θνi/2|p1|, θν−i/2|p2|} ≥ θν|i|/2 ≥ θνN/2.

Recall that νN/2 =
√

ε/T, and θ = V1/3/
√

ε ≥ 2−1/3 (Q/
√

ε
)1/3. Hence,

θνN/2 ≥ 1
2T

(εQ)1/3 ≥ 1
2T

φ(Q)1/3.

This proves the lemma. �
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6. PROOF OF THEOREM 1.1

Let 1 ≤ j ≤ 4. Decomposing the set Z1 using (3.1) and (3.3) and then applying the
automorphisms ϕi yields

|Λj ∩ Z1|= |Λj ∩ ∆x × (0, Q]|+|Λj ∩ ∆y × (0, Q]|+
N

∑
i=−N+1

|Λj ∩ Si × (0, Q]|

= |ϕNΛj ∩ ϕN(∆x × (0, Q])|
+|ϕ−N+1Λj ∩ ϕ−N+1(∆y × (0, Q])|

+
N

∑
i=−N+1

|ϕiΛj ∩ ϕi(Si × (0, Q])|.

Note that det ϕiΛj = 1. Applying Lemma 2.2 to each summand, using Lemma 4.1, and
collecting the main terms and the error terms terms yields∣∣|Λj ∩ Z1|−Vol3(Z1)

∣∣ ≤ 2D3MC2
L

N

∑
i=−N+1

(
1 +

V2/3

λ1(ϕiΛj)2

)
.(6.1)

Then, applying Lemma 5.1, we see that the right hand-side of (6.1) is bounded by

≤ 4D3MC2
L max{1, 2T}2N

(
1 +

V2/3

φ(Q)2/3

)
.

Using that by (3.5) V ≤ εQ, and then again that εQ ≥ φ(Q) we conclude that the latter
is bounded by

≤ 8D3MC2
L(1 + 2T)2N

(
εQ

φ(Q)

)2/3
.

Putting C5 = 8D3MC2
L = 8 · 318 · 5 · 122, and recalling that N ≤ log(T2/ε) we conclude

that ∣∣|Λj ∩ Z1|−Vol3(Z1)
∣∣ ≤ C5(1 + 2T)2 log

(
T2

ε

)(
εQ

φ(Q)

)2/3
.

By virtue of inequality (2.3), we get∣∣|Mα,β(ε, T, Q)|−4Vol3(Z1)
∣∣ ≤5C5(1 + 2T)2 log

(
T2

ε

)(
εQ

φ(Q)

)2/3
.

Finally, we note that 5C5 < 328 = C1 and

Vol3(Z1) = εQ
(

log
(

T2

ε

)
+ 1
)

,

and this completes the proof of Theorem 1.1.

7. PROOF OF COROLLARY 1.2

We have
bQc

∑
q=1

(‖qα‖·‖qβ‖)−1 ≤
∞

∑
k=1

2k+1|{q; 1 ≤ q ≤ Q, 2−k−1 ≤ ‖qα‖·‖qβ‖< 2−k}|

≤
∞

∑
k=1

2k+1|{q; 1 ≤ q ≤ Q, ‖qα‖·‖qβ‖< 2−k}|

=
∞

∑
k=1

2k+1|Mα,β(2−k , 1/2, Q)|.
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Moreover, in the proof of Lemma 2.1 we have seen that Mα,β(ε, T, Q) = ∅ when ε <

φ(Q)/Q. We apply this with ε = 2−k and T = 1/2. Hence,

∞

∑
k=1

2k+1|Mα,β(2−k , 1/2, Q)| =
blog2(Q/φ(Q))c

∑
k=1

2k+1|Mα,β(2−k , 1/2, Q)|

< 4 · 25Q +
blog2(Q/φ(Q))c

∑
k=5

2k+1|Mα,β(2−k , 1/2, Q)|.(7.1)

From Corollary 1.1 we get for integers k ≥ 5

|Mα,β(2−k , 1/2, Q)|≤4(log 2)Qk2−k + C2(log 2)k

(
2−kQ
φ(Q)

)2/3

.(7.2)

Combining (7.1) and (7.2) Corollary 1.2 follows from a straightforward calculation using
the trivial estimates ∑K

k=1 k ≤ K2 and ∑K
k=1 kxk ≤ KxK+1/(x− 1) (where x > 1) and that

φ(Q) ≤ 1/4.
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