
Path Conditions and Principal Matching:
A New Approach to Access Control

Jason Crampton
Royal Holloway University of London

Egham, United Kingdom

jason.crampton@rhul.ac.uk

James Sellwood
Royal Holloway University of London

Egham, United Kingdom

james.sellwood.2010@live.rhul.ac.uk

ABSTRACT

Traditional authorization policies are user-centric, in the
sense that authorization is defined, ultimately, in terms of
user identities. We believe that this user-centric approach is
inappropriate for many applications, and that what should
determine authorization is the relationships that exist be-
tween entities in the system. While recent research has con-
sidered the possibility of specifying authorization policies
based on the relationships that exist between peers in social
networks, we are not aware of the application of these ideas
to general computing systems. We develop a formal access
control model that makes use of ideas from relationship-
based access control and a two-stage method for evaluat-
ing policies. Our policies are defined using path conditions,
which are similar to regular expressions. We define seman-
tics for path conditions, which we use to develop a rigorous
method for evaluating policies. We describe the algorithm
required to evaluate policies and establish its complexity.
Finally, we illustrate the advantages of our model using an
example and describe a preliminary implementation of our
algorithm.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; H.2.0 [Database Management]: General—
Security, integrity and protection

General Terms

Security, Design, Language, Theory

Keywords

access control; path condition; relationship; principal match-
ing; authorization

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SACMAT’14, June 25–27, 2014, London, ON, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2939-2/14/06 ...$15.00.

http://dx.doi.org/10.1145/2613087.2613094.

1. INTRODUCTION
Access control is an essential security service in any multi-

user computer system. It provides a mechanism by which
different users are restricted in the actions they can perform
within the system. An access control service typically com-
prises a policy decision point and a policy. An attempt by
a user to interact with a system resource, usually known as
an authorization request, is evaluated by the policy decision
point and is only permitted if that interaction is authorized
by the policy.

An access control model provides a syntax for authoriza-
tion policies and a specification of the algorithm used by
the policy decision point to evaluate requests. Many ac-
cess control models focus on the user and authorizing the
user to perform particular actions. As is customary in the
literature, we will use the terms subjects and objects when
referring to the parties who are to, respectively, perform and
be the target of authorization (inter)actions.

Access control has been the subject of significant research
and development in the last 40 years. As our use of technol-
ogy and the connectivity of our devices has increased, the
need for ever more robust and scalable access control mod-
els has also grown. New models attempt to improve on the
failings of their predecessors, and often do so by redefining
the policy foundations upon which authorization decisions
are made. The protection matrix model, for example, sim-
ply enumerated all authorized actions. While this provides
for precise specification of authorization policies, it does not
scale well and is difficult to manage. In order to ease this
administrative burden, various improvements have been em-
ployed by modern operating systems. The Unix operating
system, for example, replaces the individual subjects with
a mapping, performed at the time of request evaluation, to
one of three security principals (owner, group and world) [6].
In this way, whilst each object must still be enumerated, the
enumeration of subjects is limited to just these three security
principals. With complex systems involving numerous users,
this design dramatically reduces the space and administra-
tive complexity of the underlying policy. However, it also
greatly reduces the flexibility afforded when compared with
defining authorization at the user level.

Role-based access control (RBAC), which is widely used
and has been the subject of extensive research in recent
years, assigns a user to one or more organizational roles.
These roles are then authorized to perform certain actions
on particular resources. These roles, which are defined on
a per-system basis, thus reduce the administrative burden
of the protection matrix (assuming the number of roles is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/81671681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


significantly less than the number of users), and provide a
level of flexibility not available within the Unix model. This
increased flexibility also restores some of the clarity that was
lost when users where abstracted behind Unix’s three, very
general, security principals.
A significant disadvantage with RBAC is that it takes

no account of the specific relationship that might exist be-
tween a user and the resource for which access is requested.
Thus every user assigned to a doctor role can access all elec-
tronic health records if the doctor role is authorized to do so.
Clearly, it would more appropriate if the only users that are
authorized to access a particular health record have a specific
relationship with the subject of that record. In short, RBAC
is not as “fine-grained” as its supporters claim. RBAC mod-
els that use private or parameterized roles have been intro-
duce to tackle these kinds of problems [9, 10, 14]. However,
this often leads to a proliferation of roles that undermines
the advantages provided by the basic RBAC model (as the
number of roles tends towards the number of users). Thus,
we believe a new approach is required: an approach that
combines the scalability of RBAC with the granularity of
the protection matrix model and permits the specification
of authorization rules on a per user-resource basis.
Recent research on access control in social networks has

used the (social) relationship(s) that exist between users
in such networks as the basis for specifying authorization
rules [3, 4, 5, 7]. The relationship information available
in social networks provides additional context from which
access control decisions can be derived. We believe that
relationship-based access control could be applied in many
other scenarios. In particular, the coarse-grained decision-
making in RBAC can be refined using such relationship in-
formation.
In this paper, therefore, we develop a novel access con-

trol model in which policies are specified in terms of path
conditions. To a crude approximation our model takes inspi-
ration from three sources: the overall design of the decision
algorithm is similar to Unix; the path conditions are similar
in spirit to some of the proposals for relationship-based ac-
cess control; and the use of implementation-specific autho-
rization principals bears some resemblance to RBAC. We
believe our path conditions provide a more rigorous founda-
tion for access control mechanisms than existing proposals
for relationship-based access control. We also believe our use
of authorization principals provides the desired scalability.
Our model introduces several novel contributions, the

most significant being a generic model for access control
systems using relationships that is not limited to social net-
works but can be used to describe access control within more
traditional and more diverse environments. Our support for
logical entities, as well as the more usual users and resources,
allows for a fine grained definition of authorization capable
of taking into consideration relevant contextual information
encoded in the relationships a request’s participants have
with other entities. This is balanced with our abstraction
of authorization policy to principals rather than subjects,
allowing a scalable system which remains powerful and ex-
pressive.
In the next section, we describe our model for access con-

trol. This section includes the definitions of path conditions,
principal-matching rules and authorization policies, and an
explanation of how requests are evaluated. In Section 3,
we consider the algorithm for matching principals in more

detail, presenting a pseudo-code listing, an analysis of the
algorithm’s complexity and a description of a preliminary
implementation in Python. We also describe the results of
some simple experiments. We then compare our model to
existing, related work and conclude the paper with a sum-
mary of our contributions and ideas for future work. The
appendix includes an extended example, fragments of which
are used throughout the paper. This extended example is
used in our experiments.

2. THE AUTHORIZATION MODEL
Informally our model is based on the idea of a labelled

graph, in which nodes represent entities within the system
and edges represent relationships between entities. Nodes
may represent concrete entities, such as users and resources,
or logical entities, with which other entities are associated.
The relationships’ labels are used to define path conditions
which can be matched by chains of edges within the graph. A
path condition, essentially, identifies a set of authorization
principals that is associated with a request. Those prin-
cipals are authorized to perform actions, thus determining
whether a request is authorized or not. Thus our model uses
a two-stage decision process: we first identify the principals
relevant to the request and then determine whether those
principals are authorized.

As we allow entities of various types within our graph,
we can make use of a variety of kinds of relationship when
processing the authorization decision. If we were to solely
include users within our graph, then it could mimic a social
network and would be limited to inter-personal relationships
for access control policy definition. By including group and
resource entity types, we expand the possible subjects and
objects, and also the possible relationships which can inform
authorization decisions. In Section 2.5, we show that the
RBAC model can be seen as an instance of our model. If,
however, we include additional entity types and relationships
then we can make more fine-grained decisions, as illustrated
by the extended example in Appendix A.

2.1 The System Model
Formally, we assume the existence of a set of system en-

tities, which includes the sets of subjects and objects. Each
entity has a type and relationships may exist between cer-
tain types of entities. Some relationships, such as Sibling-of,
are symmetric, while others, such as Brother-of, are not. A
system model defines the types along with the entity rela-
tionships that are permitted.

Definition 1. A system model comprises a set of types
T , a set of relationship labels R, a set of symmetric rela-
tionship labels S ⊆ R and a permissible relationship graph
GPR = (VPR, EPR), where VPR = T and EPR ⊆ T × T ×R.

The example in Appendix A defines a number of types,
including Group, Project and User, and the relationship type
Client-of. Part of the permissible relationship graph includes
the edges (Group,Project) and (Group,User), both labelled
with the Client-of relationship. Figure 6 (in the appendix)
defines the entire permissible relationship graph.

Definition 2. Given a system model (T,R, S,GPR), a
system instance is defined by a system graph G = (V,E)
where V is the set of entities and E ⊆ V × V × R. We say



G is well-formed if for each entity v in V , τ(v) ∈ T , and
for every edge (v, v′, r) ∈ E, (τ(v), τ(v′), r) ∈ EPR.

The system model constrains the ‘shape’ of the system
graph by restricting the edges that can be specified. Note
that we may have multiple edges between two entities in our
system graph (because two or more relationships may exist
between vertices). Such a graph is sometimes called a multi-
graph. We will depict an edge (v, v′, s), when s ∈ S, without
arrowheads, as can be seen in Figure 1 in the case of the
Sibling-of relationship. (Due to the symmetry of s, the edge
(v, v′, s) implies an edge (v′, v, s) and vice versa.) An edge
(v, v′, r), when r ∈ R \ S, is directed from v to v′, depicted
with an arrowhead pointing towards v′ (see Figure 1a). The
directed edges (v, v′, r) and (v′, v, r) represent two different
relationships. Of course both may belong to E, in which
case this will be depicted with arrowheads at both ends of
the link between v and v′ (see Figure 1b).

Alice Bob
Sibling-of

Brother-of

Sister-of

(a)

Chris Bob
Sibling-of

Brother-of

(b)

Figure 1: Illustrating different edges in the system graph

Figure 7 (in the appendix) depicts a system graph con-
taining a substantial number of nodes of different types and
the relationships that exist between those nodes. Figure 2
shows a simple example of a system graph for illustrative
purposes, based on the one in the appendix. Users (such
as U1) are associated with projects (P1); documents (D1

and D2) are grouped together in folders (F1 and F2) and
allocated to one or more projects, either as part of a group
or as a single resource. Relationships include Participant-of,
Supervises, Resource-for, and Member-of.

U1 P1 F1

F2D1 D2

Participant-of

Supervises

Resource-for

Member-of

Member-of Member-of

Figure 2: A fragment of a system graph

2.2 Path Conditions
We use path conditions to match requests to principals

(described in Section 2.4). In this section, we define the
syntax and semantics of path conditions, and establish some
basic properties of path conditions, thereby allowing us to
restrict our attention to simple path conditions.

Definition 3. Given a set of relationships R, we define
a path condition recursively:

• ⋄ is a path condition;

• r is a path condition, for all r ∈ R;

• if π and π′ are path conditions, then π ; π′, π+ and π
are path conditions.

A path condition of the form r or r, where r ∈ R, is said to
be an edge condition.

Informally, π ;π′ represents the concatenation of two path
conditions; π+ represents one or more occurrences, in se-
quence, of π; and π represents π reversed. We define ⋄ for
completeness. We note that individual edge conditions could
be encoded using attribute-based access control (ABAC) but
it is hard to see how ABAC could be easily employed to en-
code longer chains of relationships.

Definition 4. Given a system graph G = (V,E) and
u, v ∈ V , we write G, u, v |= π to denote that G, u and
v satisfy path condition π. Formally, for all G, u, v, π, π′:

• G, u, v |= ⋄ iff v = u;

• G, u, v |= r iff (u, v, r) ∈ E;

• G, u, v |= π ; π′ iff there exists w ∈ V such that
G, u,w |= π and G,w, v |= π′;

• G, u, v |= π+ iff G, u, v |= π or G, u, v |= π ; π+;

• G, u, v |= π iff G, v, u |= π.

Note that an edge condition is satisfied by nodes that
are adjacent in the system graph. We use ⋄ to identify an
empty path condition, which is of particular use in our path-
matching algorithm in Section 3.1.

In the context of the graph in Figure 2, for exam-
ple, we have G,U1, F1 |= Participant-of ; Resource-for since
G,U1, P1 |= Participant-of and G,F1, P1 |= Resource-for.

Definition 5. Path conditions π and π′ are said to be
equivalent, denoted π ≡ π′, if, for all system graphs G =
(V,E) and all u, v ∈ V we have

G, u, v |= π if and only if G, u, v |= π
′
.

Proposition 1. For all path conditions π1 and π2:
(i) π1 ≡ π1 ; ⋄ ≡ ⋄ ; π1 (ii) ⋄ ≡ ⋄ (iii) π1 ; π2 ≡ π2 ; π1

(iv) π+

1 ≡ π1
+.

Proof. All results follow immediately from Definitions 4
and 5. Consider (iii), for example. By definition, G, u, v |=
π1 ; π2 if and only if G, v, u |= π1 ; π2. And G, v, u |= π1 ;
π2 if and only there exists w such that G, v, w |= π1 and
G,w, u |= π2. Thus we have G, u, v |= π1 ; π2 if and only
if there exists w such that G,w, v |= π1 and G, u,w |= π2.
That is G, u, v |= π2 ; π1.

Definition 6. Given a set of relationships R, we define
a simple path condition recursively:

• ⋄, r and r, where r ∈ R, are simple path conditions;

• if π 6= ⋄ and π′ 6= ⋄ are simple path conditions, then
π ; π′ and π+ are simple path conditions.

In other words, ⋆ occurs in a simple path condition if and
only if ⋆ is an element of R. It follows from Proposition 1
that every path condition may be reduced to a simple path
condition. The path condition r1 ; r2 ; (r1 ; r3)+, for exam-
ple, can be transformed into the equivalent path condition
(r3 ; r1)

+ ; r1 ; r2 using the equivalences in Proposition 1.
Henceforth, we assume all path conditions are simple.



2.3 Policy Specification
Subjects within a system request authorization to perform

actions on objects. The policies of a system define the au-
thorized and unauthorized actions and the rules for deter-
mining the principals to which these actions are assigned.
Principals are mapped to paths within the system graph,
where these paths exist between the subject and object of
an authorization request. The potential paths are described
by path conditions, which are defined using relationships.

Definition 7. Let P be a set of authorization princi-
pals and let R be a set of relationship labels. A principal-
matching rule has the form (π, p), where p is an authoriza-
tion principal and π is either a path condition defined on R
or the special symbol ⊤. The path condition π is called a
principal-matching condition. A principal-matching policy
ρ is a list of principal-matching rules.

Informally, a principal-matching rule (π, p) is applicable
to a request (s, o, a) if there is a path from s to o in the
system graph that satisfies π.
In order to support scenarios where a default principal

should apply, much like the concept of ‘world’ in the Unix
access control system, we allow the definition of a special
principal-matching rule with the principal-matching condi-
tion set to ⊤. This default principal-matching rule is, if
present, always the last rule in the principal-matching pol-
icy and (whenever it is evaluated) is applicable to every re-
quest. This rule’s associated principal, therefore, matches
whenever the rule is evaluated.

Definition 8. An authorization rule has the form
(p, ⋆, a, b) or (p, o, a, b), where a is an action, p is a prin-
cipal, o is an object and b ∈ {0, 1}. An authorization policy
is a list of authorization rules.

A rule of the form (p, o, a, 0) asserts that p is explicitly
unauthorized (or prohibited) to perform action a on object
o, while the rule (p, o, a, 1) explicitly authorizes p. Rules
of this form allow us to specify on a per-object basis the
actions for which a principal p is (un)authorized. A rule of
the form (p, ⋆, a, 0) asserts that the principal is unauthorized
for all objects, while (p, ⋆, a, 1) asserts that the principal is
authorized for all objects. Rules of this form allow us to
specify the actions for which a principal is (un)authorized,
irrespective of the object to which access is requested. In
this case, the authorization policy is concentrated in the
principal-matching rule. Note also that we can combine
rules (p, ⋆, a, 0) and (p, o, a, 1), for example, to specify that
action a is generally unauthorized for principal p, but is, as
an exception, authorized for object o.
Table 2 (in the appendix) lists the principal-matching

rules for our example whilst Table 3 lists the authorization
rules. A combination of authorization rules has been used
in Table 3 to ensure that the Project Resource User is specif-
ically unable to write to Func.Spec.#1 whilst other objects
are writable by that principal.
A principal may be explicitly authorized or unauthorized

for particular actions. The absence of any explicit autho-
rization rules may itself be considered an implicit authoriza-
tion depending on the default behaviour of the system. A
default access control decision (allow or deny) needs to be
specified in the event that no authorization rules apply to a
request. Systems may need to support allow-by-default when

the system enters an emergency state, such as the opening of
fire exit doors when there is a fire. Other circumstances will
commonly require fail-safe handling, where a deny-by-default

strategy is implemented in order to ensure no unauthorised
access is allowed. Some systems may be deemed so sensitive
that there may be no conditions under which allow-by-default

would be enabled. In Section 2.4.3 we discuss the specifica-
tion of default strategies in our model.

2.4 Request Evaluation
Our model for request evaluation is inspired by the Unix

access control model and relationship-based access control
models and is summarized in Figure 3. From the Unix
model, we take the idea of binding a request to a princi-
pal before computing an access control decision, which we
combine with the idea of specifying authorization policies
in terms of relationships. Firstly, we use the subject and
object specified in the request to compute a set of appli-
cable principals. Then we compute the actions for which
those principals are authorized. Finally a decision is made
to allow or deny the request based on those authorizations.

Request
Compute
Principals

Compute
Authorizations

Decision

Figure 3: Processing overview

We now describe request evaluation, which has two main
stages and is depicted schematically in Figure 4, in more
detail. The first stage determines a list of matched princi-
pals for the request: in Figure 4 this stage is represented
by the horizontal row of steps from ‘START’. The second
stage determines the authorizations explicitly defined for
those matched principals identified in the first stage. This
second stage is represented in Figure 4 by the vertical col-
umn of steps beginning at the ‘MP list empty?’ decision
point. A conflict resolution process is employed to resolve
any conflicting authorization rules and from this a decision
is made.

2.4.1 Principal Matching

The list of matched principals is determined by the eval-
uation of principal-matching rules within the principal-
matching policy. Thus, we first specify what it means for
a principal-matching rule to be matched.

Definition 9. Let q = (s, o, a) be a request and G =
(V,E) be a system graph. Then request q matches principal-
matching rule (π, p) if G, s, o |= π. Given a principal-

matching policy and a system graph, we write G, q
π

−→ p

if there exists a principal-matching rule (π, p) and request q
matches (π, p).

Informally, a principal-matching rule maps a (complex)
relationship between entities in a graph to a principal; in
other words, a principal-matching rule enables us, concep-
tually, to replace a path between two entities with a sin-
gle edge labelled by a principal. Figure 5 illustrates such a
matching, where request q = (s, o, a) matches a principal-
matching rule (r1 ;r2 ;r3 ;r4, p). It is worth noting that, based
on the relationships shown in Figure 5, where r4 is a sym-
metric label (identified by the lack of arrows on the edge),
the principal-matching rule would also have been matched
if the path condition had been r1 ; r2 ; r3 ; r4.



request
q = (s, o, a)

system
graph

G = (V,E)

principal-
matching
policy ρ

default-
per-subject

default-
per-object

system-
wide

default

START
compute
principals

list of
matched
principals
MP

MP list
empty?

process
rules for no
matching
principal

authorization
decision

principal-
matching
strategy
PMS

author-
ization

policy PA

compute
autho-
rizations

request
q = (s, o, a)

FirstMatch AllMatch

set of
possible
decisions
PD

default
per object

system-
wide

default

DenyOverride AllowOverride PD = ∅?

process
rules for

no explicit
permis-
sions

authorization
decision

FirstMatch

conflict
resolution
strategy
CRS

compute
decision

authorization
decision

Y

N

Y

N

Figure 4: Detailed architecture

s v1 v2 v3 o
r1 r2 r3 r4

p

π = r1 ; r2 ; r3 ; r4

Figure 5: Principal-matching rule

A request may match more than one rule in the principal-
matching policy. A principal-matching strategy (PMS) de-
fines how the principals in matched rules should be combined
(if at all). We consider two very natural PMSs: FirstMatch

and AllMatch, but other options may be appropriate in some
circumstances. The former evaluates the list of principal-
matching rules in order and terminates when a path condi-
tion is matched, returning the corresponding principal. The
latter evaluates the entire list of rules in the policy and re-
turns a list of the principals in rules for which the request
matches the path condition.
If used in conjunction with the FirstMatch PMS, the de-

fault principal rule (⊤, p), when present, would only be trig-
gered, and so only apply, if no other rule matches. When
used with AllMatch this rule would always apply, resulting
in the default principal always being added to the list of
matched principals.
An authorization system comprises a principal-matching

policy ρ, a principal-matching strategy PMS , an authoriza-
tion policy PA, and a conflict resolution strategy CRS (de-
scribed in the next section). Given an authorization system,
a system graph G and a request q, the list of matched princi-
pals MP includes those principals resulting from successful
matches made in accordance with the specified principal-

matching strategy. We write G, q
ρ

−→ MP to indicate that
the list of matched principals for q (with respect to policy
ρ and system graph G) is MP . If MP is empty then an
authorization decision must be made based on pre-defined
defaults. This process is described in Section 2.4.3.

2.4.2 Computing Authorizations and Decisions

The second stage of request authorization identifies
whether the requested action (on the object) is explicitly
authorized or unauthorized for one or more of the matched
principals. Subsequently any conflicting assignments are
resolved and we determine whether the requested action
should, therefore, be allowed or denied.

Definition 10. Given a policy ρ, a request q = (s, o, a)

and a system graph G such that G, q
ρ

−→ MP, we de-
fine the set of possible decisions, denoted PD, to be
{b ∈ {0, 1} : (p, o, a, b) ∈ PA, p ∈ MP}.

PD can take one of four values: {0}, {1}, {0, 1} and ∅.

• If PD = {b}, b ∈ {0, 1}, a decision can unambiguously
be made (as a deny or allow, respectively).

• If PD = {0, 1}, we must employ a conflict resolution
strategy (CRS) to determine the decision. We define
three conflict resolution strategies: FirstMatch, Deny-
Override and AllowOverride. The use of one of these
strategies allows a single decision to be made from the
conflicting assignments. In order to support the first
of these, we require that the set of possible decisions
be determined by considering each authorization, from
the list PA, in turn.

The FirstMatch CRS takes the first element to be
added to PD as the decision. In this way, if a posi-
tive authorization is identified first, then the request is



allowed. If a negative authorization is identified first,
however, then the request is denied.

The DenyOverride and AllowOverride CRSs allow their
respective elements, 0 and 1, to take precedence over
the alternative, no matter which is identified first.

• The final case is PD = ∅. In this case, the autho-
rization decision must once again be made using pre-
defined defaults, as explained in Section 2.4.3 below.

2.4.3 Defaults

There are two circumstances when default decision mak-
ing applies. The first is when no matched principals are
identified, whilst the second is, as just described, when the
set of possible decisions is empty.
To accommodate varying needs in these circumstances, we

allow for default allow or deny of a request to be determined
at one of the following levels: default-per-subject, default-
per-object or system-wide default. We only support the
default-per-subject when there are no matched principals,
and not later, when there are no explicit authorizations. At
the time when the set of possible decisions is determined, the
subject is no longer directly relevant, having already been
used to identify the appropriate matched principals. It is
therefore unnecessary to reconsider the subject in order to
evaluate the authorization decision.
The three defaults are evaluated in order, where specified,

with the first applicable default determining the authoriza-
tion decision. In this way, if there is a default specified for
the subject s of the request q = (s, o, a), the subject’s de-
fault (allow or deny) applies. If no subject default is defined
for s, then the default for the object o of the request shall
apply, if specified. If there is no subject default for s and
no object default for o, then the system-wide default shall
apply. Whilst defaults for the subject and object are op-
tional and may not be specified for the entities involved in
the request, a system-wide default must be specified so as
to ensure authorization decisions can be made in all circum-
stances.

2.5 Special Cases
The Unix access control mechanism employs a similar, al-

beit far simpler, mapping technique as that used above to
identify principals from path conditions [6]. It can, there-
fore, be trivially represented using our model. In particular,
the system model contains a set of three types: users, groups
and objects, and a set of three relationships (none of which
are symmetric): User-object, User-group and Group-object,
which we will label uo, ug and go, respectively. The permis-
sible relationship graph links the users to the objects and to
the groups, as well as linking the groups to the objects (this
is as our relationship naming suggests). There are three
principal-matching rules: (uo, owner), (ug ; go, group) and,
the default, (⊤,world). Finally, we use the FirstMatch PMS
and evaluate the rules in the above order.
Note also that we can configure our model to implement

core RBAC [2]. We assume the set of entities is the disjoint
union of users, roles, permissions and objects. Then there
are two types of relationship, the User-role relationship, re-
ferred to as user assignment and abbreviated ua, along with
the Role-permission relationship, referred to as permission
assignment and abbreviated pa. At its simplest we then de-
fine a principal-matching policy where each rule has the form

(ua ; pa, p) where the principal p has the same name as the
permission identified by the pa edge. The authorization pol-
icy contains elements (p, ob, op, 1) which map the principals
to objects, allowing them operations (as per the permission
binary relation in RBAC).

Additionally, we can introduce the Role-role relationship
(abbreviated rr) in order to extend this configuration to im-
plement a role hierarchy. Finally, we could also introduce
the User-permission relationship (abbreviated up), in order
to articulate exceptions to the basic RBAC model by di-
rectly associating permissions with users.

Our model does not directly support the concept of ses-
sions. However, if we were to introduce support for changing
the system graph, we could employ a User-session-role rela-
tionship. The User-session-role relationship may only con-
nect users and roles who are already joined by a User-role re-
lationship. We then modify the original principal-matching
rules to have the form (usr ;pa, p). Supporting (constrained)
updates to the system graph in real time will be an impor-
tant aspect of our future work.

3. PATH MATCHING
Principal matching, the first stage of request evaluation,

described in Section 2.4.1, is the most complex part of re-
quest evaluation. (The second stage amounts to a sequence
of simple lookups and comparisons.) Principal matching re-
quires us to determine whether there exists a path in the
graph from subject to object that matches a path condition.
In this section, we describe the MatchPrincipal algorithm,
which takes a path condition, two nodes (the subject and
object of a request), the set of symmetric relationship la-
bels and a system graph as inputs and returns a Boolean
value indicating whether there exists a matching path in
the graph.

The algorithm uses a (modified) breadth-first search to
determine whether there exists a path in the system graph
that begins at the subject and ends at the object such that
concatenation of the relationship labels is equal to the path
condition. It is employed iteratively to as many rules in
the principal-matching policy as required, given the PMS in
use: if FirstMatch is used then the algorithm is run on each
principal-matching rule in turn, until a match is found; if the
AllMatch PMS is used, the algorithm is run for every rule
in the policy. In order to determine satisfaction of a simple
path condition, we attempt to satisfy its component edge
conditions one at a time. It is helpful to define the head and
suffix of a path condition: the head is used to match edge
labels in the graph, while the suffix determines the residual
path condition.

Definition 11. Let π 6= ⋄ be a simple path condition.
Then we define the head and suffix of π, denoted H(π) and
S(π), respectively, as follows:

• H(r) = r and S(r) = ⋄;

• H(r) = r and S(r) = ⋄;

• H(π1 ; π2) = H(π1) and S(π1 ; π2) = S(π1) ; π2;

• H(π+) = H(π) and S(π+) = S(π);π∗, where π∗ denotes
0 or more occurrences of π.

Proposition 2. Let π be a simple path condition. Then
H(π) is equal to r or r for some r ∈ R. Moreover, S(π) is a
simple path condition.



Proof. The results follow immediately by a simple in-
duction on the structure of simple path conditions.

Proposition 3. Let π be a simple path condition. Then
π ≡ H(π) ; S(π).

Proof. The proof proceeds by induction on the structure
of π. Consider the (base) case π = r. Then

G, u, v |= H(r) ; S(r)⇔ G, u, v |= r ; ⋄

⇔ G, u, v |= r

Thus H(r) ; S(r) ≡ r, as required. We prove the case π = r

in a similar fashion. Now consider π = π1 ; π2 and assume
the result holds for π1 and π2. Then

G, u, v |= H(π1 ; π2) ; S(π1 ; π2)⇔ G, u, v |= H(π1) ; S(π1) ; π2

⇔ G, u, v |= π1 ; π2

Finally, consider π+ and assume the result holds for π. Then

G, u, v |= H(π+) ; S(π+)⇔ G, u, v |= H(π) ; S(π) ; π∗

⇔ G, u, v |= π ; π∗

⇔ G, u, v |= π
+

concluding the proof.

We now develop the path-matching algorithm in more de-
tail.

3.1 The Path-Matching Algorithm
The algorithm takes a start node (the subject), a target

node (the object) and a path condition as part of its in-
put. The current node is initialized to be the start node.
The path-matching algorithm traverses the provided sys-
tem graph ‘consuming’ the head of the path condition as
it matches it against (one or more of) the relationship la-
bels associated with incident edges of the current node. It
then considers each of the adjacent edges in turn replacing
the path condition with the relevant suffix. The algorithm
terminates if it ‘consumes’ the entire path condition with
the adjacent node equal to the target node or if no further
matches can be made.
If we consider, for example, the graph in Figure 5, the

request (s, o, a) and path condition r1 ; r2, then H(r1 ; r2) =
r1, which is the label on edge (s, v1, r1). Hence, the edge
is traversed and we next consider the node v1 with path
condition S(r1 ; r2) = r2. The algorithm terminates at this
point (returning false) because there is no outgoing edge
from v1 labelled r2.
The MatchPrincipal algorithm (listed in Algorithm 1) is,

essentially, a modified breadth-first search algorithm. How-
ever, there are some awkward aspects to the design of the
algorithm. First, we have to allow for nodes to be revisited.
Second, we have to allow matching of edge conditions of the
form r and r. Finally, our algorithm has to be able to handle
path conditions of the form π+ without entering an endless
loop, in order for the algorithm to terminate.
The algorithm uses a queue Q to track nodes that we have

to visit. Unlike a conventional breadth-first search, we allow
those nodes to be revisited because path conditions may be
satisfied by a cycle in the system graph. However, if we
revisit a node then we require a different non-empty path
condition on each visit. In this way we avoid infinite loops
whilst processing the path condition.

Algorithm 1 MatchPrincipal

Require: Graph G = (V,E), set of symmetric relationship
labels S, nodes u and v, and path condition π

Ensure: Returns true if G, u, v |= π and false if it does not
1: Initialize empty queue Q
2: Initialize empty set of visited nodes SEEN
3: add (u, π) to Q
4: SEEN = SEEN ∪ {(u, π)}
5: while Q is not empty do

6: dequeue next entry (h, φ) from Q

7: Initialize empty list of (node, suffix) tuples Θ
8: // consider edges directed away from h

9: for each edge (h,w, r) ∈ E do

10: if φ = π∗

1 ; π2 then

11: Θ = Θ ⊔ [(h, π2)]
12: φ = π+

1 ; π2

13: end if

14: if H(φ) = r then

15: Θ = Θ ⊔ [(w, S(φ))]
16: end if

17: if (r ∈ S and (w, h, r) 6∈ E) then
18: if H(φ) = r then

19: Θ = Θ ⊔ [(w, S(φ))]
20: end if

21: end if

22: end for

23: // consider edges directed towards h
24: for each edge (w, h, r) ∈ E do

25: if φ = π∗

1 ; π2 then

26: Θ = Θ ⊔ [(h, π2)]
27: φ = π+

1 ; π2

28: end if

29: if H(φ) = r then

30: Θ = Θ ⊔ [(w, S(φ))]
31: end if

32: if (r ∈ S and (h,w, r) 6∈ E) then
33: if H(φ) = r then

34: Θ = Θ ⊔ [(w, S(φ))]
35: end if

36: end if

37: end for

38: // determine match or other nodes to visit
39: for each (n, φs) ∈ Θ do

40: if (n, φs) 6∈ SEEN then

41: if φs = ⋄ then
42: if n = v then

43: return true // match
44: end if

45: else

46: add (n, φs) to Q
47: SEEN = SEEN ∪ {(n, φs)}
48: end if

49: end if

50: end for

51: end while

52: return false // no match

Previously visited nodes, and the path condition at the
time of the visit, are tracked using the set SEEN . At each
node h we visit, we identify incident edges from our sys-
tem graph G = (V,E), it is these edges that we attempt



to traverse by matching a label to the head of our path
condition. Matched edges result in path condition suffixes
relevant at specific adjacent nodes; we hold these in a list as
node-suffix pairs. We use the notation list1 ⊔ list2 to indi-
cate the concatenation of two lists, where the entries from
list2 are appended, in order, to the end of list1.
The algorithm performs its edge condition matching in

lines 8 to 22 and 23 to 37 for outgoing and incoming edges
to the current node h respectively. However, the implemen-
tation is complicated by the handling of path conditions of
the form π+, whose suffix includes π∗ (see Proposition 3),
which may represent 0 occurrences of π or at least one oc-
currence of π. When processing path conditions, therefore,
we first determine if it has the structure π∗

1 ; π2 (where π2

may be ⋄) and, if so, we treat it as π+

1 ; π2; in addition we
add π2 (corresponding to 0 occurrences of π1), along with
the current node h, to our list of node-suffix pairs for con-
sideration later (see Algorithm 1 lines 10 to 13 and 25 to
28).
After an edge condition is matched by the algorithm, each

node-suffix pair is checked against SEEN and ignored if pre-
viously processed. The suffix φs of each unseen tuple is com-
pared to ⋄, those matching indicate fully processed path con-
ditions. If the node n associated with such a tuple is equal
to the target node v then the path condition is considered
to have been matched between u and v and the algorithm
returns true. If the node isn’t the target node, then the tu-
ple is discarded as there is no remaining path condition to
evaluate. Those unseen tuples, whose suffixes are not ⋄, are
added to the queue of nodes to be visited (see Algorithm 1
lines 38 to 50).
Once all incident edges are considered for the current

node, we move to the next node as indicated by the next
entry in the queue Q. If the queue is empty and we have
not already returned a value, then the path condition cannot
be matched (because there are no further nodes to examine)
and the algorithm returns false (see Algorithm 1 lines 5, 6
and 52).
Consider, for example, the system graph depicted in Fig-

ure 5 and the path condition r+1 ; r2 ; r3 ; r4 with start node s
and end node o. Then we are able to match edge condition
r1 and progress to node v1 with path condition r∗1 ;r2 ;r3 ;r4.
We now attempt to match r1 again, which fails. In addition,
we add (v1, r2 ;r3 ;r4) to the list of node-path condition pairs
to consider. This will, eventually, lead to the node-suffix pair
(o, ⋄) being identified, at which point the algorithm will re-
turn a match (for path condition r+1 ; r2 ; r3 ; r4 with start
and end nodes s and o).

3.2 Correctness and Complexity
We first introduce the concept of the length of a simple

path condition. Informally, it is equal to the number of edge
conditions (r or r) which it contains.

Definition 12. The length ℓ(π) of simple path condition
π is defined as follows:

• ℓ(r) = ℓ(r) = 1;

• ℓ(π ; π′) = ℓ(π) + ℓ(π′);

• ℓ(π+) = ℓ(π).

The length ℓ(ρ) of a principal-matching policy ρ is equal
to the length of the longest path condition of the principal-
matching rules within ρ, ℓ(ρ) = max

π∈ρ

(ℓ(π)).

Our algorithm terminates because, with one exception dis-
cussed below, ℓ(S(π)) = ℓ(π) − 1 because an edge is con-
sumed in matching the head of the path condition. Thus,
any node-suffix pair that is enqueued contains a shorter path
condition. Eventually, the path condition will be reduced to
⋄ and we test whether the adjacent node is the target node.
The exception arises when we consider a path condition of
the form π∗ ; π′. In this case, we enqueue a path condition
of the form π′ and also evaluate the path condition π+ ; π′.
Thus, we could, in the worst case visit every node in the sys-
tem graph and evaluate the path condition π+ ;π′. However,
we do not enqueue a node-suffix pair if we have previously
evaluated it (in the same way that a normal breadth-first
search keeps track of visited nodes). Thus, for this excep-
tional case, we will eventually process the path condition
π′ (since π+ ; π′ will either be discarded or fail to find a
matching edge).

We can summarise our path-matching algorithm’s pro-
cessing as a breadth-first search through the graph, attempt-
ing to match edges to the remaining path condition. At each
node the number of possible comparisons depends on the de-
gree of that node. The path condition under consideration
is re-written as each edge comparison is performed, with
the head of the path condition removed if the edge satisfied
the next element in the path condition. The path condi-
tion under consideration at adjacent nodes is, therefore, one
element shorter than at the current one.

The time complexity of a standard breadth-first search
is determined by the number of nodes and edges, since, in
the worst case, each node and edge will be explored. For
the PrincipalMatch algorithm, the number of “nodes” is de-
termined by the number of nodes in the system graph and
the length of the path condition. Specifically, the size of the
queue is bounded by |V | · ℓ(φ). The number of edges in the
system graph is O(|V |2 · |R|). Thus, the total complexity of
the algorithm is O(|V | · ℓ(φ) + |V |2 · |R|).

The MatchPrincipal algorithm determines whether a sin-
gle path condition matches. In order to compute the list
of matching principals in the worst case, every rule in the
principal-matching policy ρ may need to be evaluated. The
worst-case time complexity of principal matching is, there-
fore, determined by the complexity of matching one rule, the
number of rules in the policy and ℓ(ρ).

3.3 Implementation
We have created a Python implementation of the Match-

Principal algorithm which roughly follows the structure
shown in Algorithm 1. We represent a path condition as
a tree of nodes, where each node is a data structure contain-
ing (i) pointers to a left and a right node (ii) a relationship
label if it is a leaf node (iii) a node type if the node is a non-
leaf node (indicating the operation used to construct the
path condition). Our implementation modifies the pseudo-
code listed in Algorithm 1 in order to improve the processing
of path conditions containing π∗. In particular, we process
both possibilities for π∗ when we meet it, rather than simply
putting one aside for consideration later (as we do in lines
11 and 26 of Algorithm 1).

Using this implementation we evaluated the requests in
our appendix example. The results are summarized in Ta-
ble 1, which shows the number of nodes visited (n) and
edges considered (e) during the evaluation of one specific
principal-matching rule for each of these requests.



Path condition π ℓ(π) Request n e Found

P ; R ;M
+

3 (Sales.#2,Func.Spec.#1,write) 5 19 Yes

P ; R ;M
+

3 (Tech.#2,Test.Spec.#1, read) 7 24 Yes

S ; R ;M
+

3 (Tech.#2,Func.Spec.#1,write) 4 15 Yes

S+ ;M ; S ; D ;M
+

5 (CTO,Proj.#1 Report#1, read) 17 58 Yes

S+ ;M ; S ; D ;M
+

5 (CEO,Proj.#1 Report#1, read) 7 24 No

Table 1: Running our implementation of MatchPrincipal using path conditions and requests from Tables 2 and 4

Notice that the algorithmmay visit many more nodes than
exist on the shortest path between the subject and object
of the request. This is because we are using a breadth-
first search. Notice also that two different subject nodes
may be the same distance from the object node (as is the
case for the subjects in the first and second rows) and yet
one request is resolved with less computational effort. It
would be interesting to see whether there is any advantage
to be gained in using a depth-first search. This is certainly
something we hope to investigate in future work.

4. RELATED WORK
We have already noted those aspects of the Unix access

control model and role-based access control that have in-
fluenced the design of our model. Our work also takes
inspiration from the formal model developed for Unix by
Crampton [6], which suggested that the two-stage evalua-
tion process used by Unix could provide inspiration for novel
relationship-based access control models. We now compare
our model with related work in the literature.
The widespread use of social networks and restricting the

access to resources within such networks has inspired the
development of research into relationship-based access con-
trol. The early work of Kruk et al. used friend and friend-of-

a-friend relationships to determine access to resources [12],
while the work of Ali et al. was based on the trust rela-
tionships between users [1]. Carminati et al. synthesized
these elements to create an access control model for social
networks based on relationships [3]. They represent a so-
cial network as a graph in which the edges are labelled by
relationships (such as friend) and all nodes represent users.
Each edge is also labelled with a trust value, indicating the
“strength” of the relationship. An access condition has the
form (u, r, d, t), where u is a user, r is a relationship label, d
is the depth and t is the trust threshold. An access rule has
the form (o, C), where o is an object and C is a set of access
conditions. A user v is authorized to access the resource o if
v satisfies the access conditions specified in C. More recent
work has built on this model to provide additional features,
such as joint management of access policies, but only in the
context of social networks [11].
If we ignore the trust threshold, access conditions are a

special case of path conditions. Specifically a relationship r
of depth d can be represented by the path condition r ; . . . ; r
(repeated d times). Moreover, we can specify relationships
of unbounded depth using the path condition r+. However,
access conditions certainly cannot represent arbitrary path
conditions. In other words, our approach significantly ex-
tends the possibilities for policy specification. (Trust thresh-
olds may be useful in social networks, but we feel their use
for our intended applications is inappropriate. Of course,

our framework may be easily adapted to accommodate trust
thresholds by having a path condition built from pairs of the
form (r, t), where r is a relationship label and t is a thresh-
old.)

Fong’s recent work on relationship-based access control
also concentrates on access control in social networks and
models the social network as a graph in which the edges
are labelled by relationships and all nodes are users [7, 8].
Fong’s work specifies a policy for each resource, where a pol-
icy is specified using a multi-modal logic.1 Thus Fong’s work
provides a richer policy language than that of Carminati et
al. The policy syntax is specified by the grammar

φ, ψ ::= ⊤ | a | ¬φ | φ ∨ ψ | 〈i〉φ

where i is a relationship identifier. Informally, ⊤ serves
the same purpose as our default path condition ⊤; a is
analogous to ⋄; 〈i〉 is equivalent to our path condition r.
Fong’s language can encode alternatives (using ∨); we would
simply specify alternative principal-matching rules. Fong’s
language does support negation, which we do not. Con-
versely, our language does support unbounded path condi-
tions, which are useful when traversing a sub-graph com-
prising similar types of elements that might have arbitrary
diameter (as in a directory tree, for example). A limitation
of Fong’s language is that a policy has to be specified for
every resource and admits no relationships, other than own-
ership, between users and resources. In our approach, we
simply identify the principals that apply to a request, given
the subject and object of the request, thereby leveraging
some of the advantages of a role-based approach. Moreover,
we allow for arbitrary relationships between the nodes (sub-
ject to the constraints in the permissible relationship graph)
in the system graph.

Cheng et al. also focused on the use of relationship-based
access control within Online Social Networks [4, 5]. Their
work allows for the specification of user-to-resource relation-
ships (other than ownership). However, our model is more
general still in its support for entities of any kind (includ-
ing logical ones) and policies not focused on, but still ap-
plicable to, social networks. Cheng et al. employ a path
checking algorithm which is comparable to our concept of
path matching. However, their approach directly assigns
permissions, whereas we introduce some of the benefits of
RBAC and Unix access control by abstracting that assign-
ment to matched principals. Their path expressions are
directly based on regular expressions, including wildcards,

1The rationale for using a modal logic is that each relation-
ship specifies an accessibility relation between users, which
is used to provide semantics for policies. We do this more di-
rectly by working with path conditions and specifying their
semantics in terms of a graph.



although they constrain rules containing wildcards so that
such rules could, in fact, be enumerated as different alter-
natives. (Thus paths of arbitrary length are not properly
supported.) In contrast, we only provide direct support for
π+ in path conditions, but do not limit the number of edges
across which it can match, something that is crucial when
dealing with variable depth data structures such as directory
trees. Moreover, as we have seen, we can encode alternation
in a rule’s path condition as two (or more rules): the rule
(π1 | π2, p) is simply defined as two principal-matching rules
(π1, p) and (π2, p). Similarly, we can handle (π∗, p) by defin-
ing the rules (π+, p) and (⋄, p).

5. CONCLUSION
We have formally defined a new graph-based model for

access control based on two concepts: path conditions and
principal matching. We believe that path conditions are
a novel contribution to the literature on relationship-based
access control and that these conditions allow us to specify
a wide range of policies that are relevant to access control
in a wide range of applications, not just in the usual con-
text of social networks. Principal matching enables us to
leverage the advantages of both Unix and RBAC and ex-
tend the capabilities of both models. We also believe our
model provides significant advantages over existing models
for relationship-based access control, both in terms of the ex-
pressive power of path conditions and the relatively straight-
forward request evaluation process. Additionally, our model
is generic, thus able to describe systems of various forms be
they social networks, IT systems (singularly or as networks)
or entire businesses. We have illustrated how the model
can be implemented by describing an algorithm to support
principal matching and, thereby, enable request evaluation
within our model.
There are many opportunities for further work. In partic-

ular, we would like to investigate alternative path-matching
algorithms and compare their efficiency with the one de-
scribed in Section 3. SPARQL is an RDF query language
that may well be an suitable alternative. We would also
like to extend the policy language to include more expres-
sive matching as a means of directly supporting access con-
straints such as separation of duty, binding of duty and Chi-
nese Wall. We believe that such constraints can be sup-
ported simply by introducing conjunction within, and nega-
tion of, path conditions. Extending this further we plan to
consider the matching of subgraphs, rather than paths, and
to investigate the trade-offs in increased expressive power
with the more expensive request evaluation algorithms that
will be required. We also intend to develop an administra-
tive model to manage components such as the system graph.
In this way, we should be able to handle dynamic concepts,
such as sessions in RBAC. RT is a family of role-based trust
management languages [13] that combine features of RBAC
with distributed access control models. Many of the rules of
RT can, like the assignment relations in RBAC, be encoded
as a single type of relationship within a system graph in
our model. However, the RT delegation rule A.r ← A′.r′.r′′

cannot be directly encoded within our model. We would like
to be able to provide support for distributed access control,
in which different parts of the subgraph form different ad-
ministrative domains. Then RT-like rules would specify the
edges that link different subgraphs. Finally, we would also
like to enrich the model with stateful objects, such as work-

flow tasks, for which the set of authorized individuals may
change over time. We expect that this will result in the sys-
tem graph being updated as the state of an object changes
(for example to support task-based separation of duty).

6. REFERENCES
[1] Ali, B., Villegas, W., and Maheswaran, M. A

trust based approach for protecting user data in social
networks. In CASCON (2007), K. A. Lyons and
C. Couturier, Eds., IBM, pp. 288–293.

[2] ANSI. American National Standard for Information
Technology - Role Based Access Control (359-2004).
ANSI INCITIS, 2004.

[3] Carminati, B., Ferrari, E., and Perego, A.

Enforcing access control in web-based social networks.
ACM Trans. Inf. Syst. Secur. 13, 1 (2009).

[4] Cheng, Y., Park, J., and Sandhu, R. S.

Relationship-based access control for online social
networks: Beyond user-to-user relationships. In
SocialCom/PASSAT (2012), IEEE, pp. 646–655.

[5] Cheng, Y., Park, J., and Sandhu, R. S. A
user-to-user relationship-based access control model
for online social networks. In DBSec (2012),
N. Cuppens-Boulahia, F. Cuppens, and
J. Garćıa-Alfaro, Eds., vol. 7371 of Lecture Notes in
Computer Science, Springer, pp. 8–24.

[6] Crampton, J. Why we should take a second look at
access control in unix. In 13th Nordic Conference on
Secure IT Systems (2008), NORDSEC’08, ACM.

[7] Fong, P. W. L. Relationship-based access control:
protection model and policy language. In CODASPY
(2011), R. S. Sandhu and E. Bertino, Eds., ACM,
pp. 191–202.

[8] Fong, P. W. L., Anwar, M. M., and Zhao, Z. A
privacy preservation model for facebook-style social
network systems. In ESORICS (2009), M. Backes and
P. Ning, Eds., vol. 5789 of Lecture Notes in Computer
Science, Springer, pp. 303–320.

[9] Ge, M., and Osborn, S. L. A design for
parameterized roles. In DBSec (2004), C. Farkas and
P. Samarati, Eds., Kluwer, pp. 251–264.

[10] Giuri, L., and Iglio, P. Role templates for
content-based access control. In ACM Workshop on
Role-Based Access Control (1997), pp. 153–159.

[11] Hu, H., Ahn, G.-J., and Jorgensen, J. Multiparty
access control for online social networks: Model and
mechanisms. IEEE Trans. Knowl. Data Eng. 25, 7
(2013), 1614–1627.

[12] Kruk, S. R., Grzonkowski, S., Gzella, A.,

Woroniecki, T., and Choi, H.-C. D-FOAF:
Distributed identity management with access rights
delegation. In ASWC (2006), R. Mizoguchi, Z. Shi,
and F. Giunchiglia, Eds., vol. 4185 of Lecture Notes in
Computer Science, Springer, pp. 140–154.

[13] Li, N., Mitchell, J. C., and Winsborough, W. H.

Design of a role-based trust-management framework.
In IEEE Symposium on Security and Privacy (2002),
IEEE Computer Society, pp. 114–130.

[14] Sandhu, R. S., Coyne, E. J., Feinstein, H. L.,

and Youman, C. E. Role-based access control
models. IEEE Computer 29, 2 (1996), 38–47.



APPENDIX

A. CORPORATE EXAMPLE
The following example applies our model to the project

environment within a fictional company. To support this
specific system, we initially define the underlying system
model (T,R, S,GPR) where the set of types is

T = {File,Folder,Group,Printer,Project,User}

The set of relationship labels used in the system model is

R = {Client-of,Deliverable-for,Member-of,

Participant-of,Resource-for,Supervises}

There are no symmetric relationship labels. Finally, the
permissible relationship graph GPR, defined using T and R,
is shown in Figure 6.

Figure 6: Permissible relationship graph

Using this system model we then describe the project en-
vironment using the system graph shown in Figure 7.
Within our authorization system we define the principal-

matching rules shown in Table 2 and make use of the All-

Match PMS.
Additionally, we define the authorization policy shown in

Table 3 and whilst we define no per-subject or per-object de-
faults, we define the system-wide default as deny-by-default.
We employ the FirstMatch conflict resolution strategy.

# Principal-Matching Rule

1 (C ; D ;M
+
,Deliverable Client)

2 (S+ ;M ; S ; D,Deliverable Reviewer)

3 (S+ ;M ; S ; D ;M
+
,Deliverable Reviewer)

4 (S ; D,Deliverable Supervisor)

5 (S ; D ;M
+
,Deliverable Supervisor)

6 (P ; D,Deliverable User)

7 (P ; D ;M
+
,Deliverable User)

8 (S ; R,Project Resource Supervisor)

9 (S ; R ;M
+
,Project Resource Supervisor)

10 (P ; R,Project Resource User)

11 (P ; R ;M
+
,Project Resource User)

12 (M ; R,Team Resource User)

Table 2: Principal-matching policy

# Authorization Rule

1 (Deliverable Client, ⋆, read, 1)

2 (Deliverable Reviewer, ⋆, read, 1)

3 (Deliverable Supervisor, ⋆, read, 1)

4 (Deliverable Supervisor, ⋆,write, 1)

5 (Deliverable User, ⋆, read, 1)

6 (Project Resource Supervisor, ⋆, read, 1)

7 (Project Resource Supervisor, ⋆,write, 1)

8 (Project Resource User, ⋆, read, 1)

9 (Project Resource User,Func.Spec.#1,write, 0)

10 (Project Resource User, ⋆,write, 1)

11 (Team Resource User, ⋆,write, 1)

Table 3: Authorization policy

Table 4 lists some illustrative requests, together
with the result of their evaluation. Requests 1
and 2 would result in the list of matched principals
[Project Resource Supervisor,Project Resource User]. Re-
quests 3 and 4 would result in the matched principal
lists [Project Resource User] and [Deliverable reviewer], re-
spectively, while the final request would match no principals.



Figure 7: System graph

# Request Decision set Outcome Comment

1 (Tech.#2,Test.Spec.#1, read) {1} Allow

2 (Tech.#2,Func.Spec.#1,write) {1, 0} Allow First match

3 (Sales.#2,Func.Spec.#1,write) {0} Deny

4 (CTO,Proj.#1 Report#1, read) {1} Allow

5 (CEO,Proj.#1 Report#1, read) {} Deny System default

Table 4: Sample requests


