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Abstract

Machine learning methods are becoming increasingly popular in economics, due to the

increased availability of large datasets. In this paper I evaluate a recently proposed

algorithm called Generalized Approximate Message Passing (GAMP), which has been very

popular in signal processing and compressive sensing. I show how this algorithm can be

combined with Bayesian hierarchical shrinkage priors typically used in economic forecasting,

resulting in computationally efficient schemes for estimating high-dimensional regression

models. Using Monte Carlo simulations I establish that in certain scenarios GAMP can

achieve estimation accuracy comparable to traditional Markov chain Monte Carlo methods,

at a tiny fraction of the computing time. In a forecasting exercise involving a large set of

orthogonal macroeconomic predictors, I show that Bayesian shrinkage estimators based on

GAMP perform very well compared to a large set of alternatives.

Keywords: high-dimensional inference; compressive sensing; belief propagation; Bayesian

shrinkage; dynamic factor models

JEL Classification: C11, C13, C15, C22, C52, C53, C61
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1 Introduction

Increased availability of large datasets is both a blessing and a curse for macroeocnomists

and financial analysts. It is a blessing because we currently have so many advanced statistical

methods and computational tools that allow us to uncover new stylized facts from disaggregated

and other high-dimensional datasets, that economists of the past didn’t have the chance to

consider. It is a curse because policy-makers and analysts cannot any more make decisions

based on a handful of preferred indicators, rather, they have to monitor hundreds or thousands

of variables, which can be costly to maintain and hard to interpret. As a consequence, given

that data availability increases at a polynomial rate, a major challenge for modern economists

and econometricians is to design estimation algorithms that i) are able to separate the “signal”

from the “noise” in a high-dimensional dataset, and ii) are computationally efficient in order to

support real-time decision making by policy-makers and analysts. The purpose of this paper

is to introduce to the economics literature a machine learning algorithm that can be used

to perform dynamic programming, maximum likelihood estimation, and Bayesian inference

using shrinkage priors. The so-called Generalized Approximate Message Passing (GAMP) has

been proposed by Rangan (2011), and is an algorithm that extends the Approximate Message

Passing (AMP) algorithm of Donoho, Maleki and Montanari (2009). In turn these are fast,

approximate versions of general message passing algorithms used in machine learning; see

Barber (2012) for an insightful introduction to this literature.

There is more than one way to motivate message passing methods. For example, Donoho,

Maleki and Montanari (2011) motivate AMP as an iterative thresholding algorithm that is a

fast alternative to convex optimization and linear programming methods; see also Bayati and

Montanari (2011). In fact, all variants of message passing algorithms are dynamic programming

methods designed for efficiently performing large computations by distributing calculations

among a number of simpler processors. Here, I build on Rangan (2011) and present an

intuitive derivation of generalized approximate message passing based on graphical methods.

My starting point is a Bayesian factor graph (Kschischang, Frey and Loeliger, 2001), that is, a

2



graphical representation of the posterior probability function of the regression coefficients using

nodes and edges. Such graphical representation of a probabilistic model allows factorizations

(decompositions) of the parameter posterior distribution into simpler probability functions.

These factorizations are basically probability rules that define how a “message is passed” from

one node of the graph to the next. The basic idea behind such decompositions in factor graphs

is that of the distributive law:

a · b+ a · c = a(b+ c). (1)

In terms of the variables a, b, c, the axiom above implies one less operation on the right hand

side. In terms of probability distributions we can derive similar factorizations that could result

- in high-dimensional spaces - in huge savings in computing power.

It becomes, therefore, apparent that GAMP can be thought of as an algorithm that

breaks down the problem of estimating a high-dimensional parameter vector into smaller, more

accessible problems. This is achieved by factorizing the high-dimensional Bayesian parameter

posterior into approximate, analytical expressions for the marginal parameter posteriors.

Put differently, if one is faced with the problem of estimating a p-dimensional vector of

parameters β, GAMP allows to obtain approximate expressions for the posteriors of each

element βi for i = 1, ..., p1. While the next section outlines the exact mechanics behind such

approximations, three questions immediately arise: i) how accurate these approximations are,

ii) how adaptable and versatile the algorithm is in various modelling scenarios, and iii) what

are the computational gains compared to existing algorithms? This paper aims to give detailed

answers to all these questions.

First I show that GAMP can be combined with, among others, Normal-Gamma shrinkage

priors (Griffin and Brown, 2010) as well as variable selection priors (George and McCulloch,

1993). While GAMP only provides the solution to sparse regression coefficients, any additional

parameters involved in an econometric model, such as a regression variance, can be updated

using the EM algorithm. Next, I perform a Monte Carlo experiment where I generate data

1The exact marginal posterior of βi involves calculating a p−1 multidimensional integral, since this posterior
is obtained after “marginalizing” the impact of the remaining p− 1 elements of β. When p is large, computing
such integrals is impossible, even for simple regression models.
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from sparse regression models in order to evaluate the numerical stability and computational

efficiency of GAMP. GAMP-based algorithms perform at least as well, or better in several

cases, than MCMC-based shrinkage algorithms2 in recovering the true regression coefficients,

at a fraction of the computing time. Finally, the precision and usefulness of GAMP is

evaluated in an extensive forecasting exercise following closely Stock and Watson (2012).

This exercise involves estimating univariate regression models for forecasting 222 quarterly US

macroeconomic series using a large set of orthogonal predictors, typically in the form of factors

(principal components). Under a wide-range of alternative shrinkage algorithms (Bayesian

MCMC-based algorithms, bootstrap aggregation, and naive approaches) the proposed GAMP-

based algorithms perform extremely well. The results are robust both when looking at all 222

series as well as a selection of 14 important series (such as GDP, employment, IP, CPI inflation,

Federal funds rate, SP500 returns etc), and under both recursive and rolling forecasting

schemes. Therefore, this paper makes a strong case in establishing GAMP-based algorithms

as a significant and “low-cost” (in terms of requirements in tuning, computational resources,

and maintenance/updating) tool for macroeconomic forecasting using many predictors, and

for general monitoring of large datasets.

In the next section I outline this new methdology using Bayesian arguments, and I explain

the intuition behind the approximations to marginal posterior distributions achieved using

GAMP. I also discuss convergence issues and demonstrate the kind of shrinkage and variable

selection priors one can combine with GAMP. Next, in section 3 I provide results of the

Monte Carlo study, and in section 4 I implement the large-scale forecasting exercise. Section 5

concludes the paper with an evaluation of GAMP and with thoughts for future incorporation

of GAMP in other models and settings that economists are interested in (such as vector

autoregressions).

2In particular, I contrast to the Bayesian lasso (Park and Casella, 2008) and stochastic search variable
selection (SSVS; George and McCulloch, 1993).
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2 Methodology

The starting point is the following regression model in vector/matrix form

y = xβ + ε (2)

where y is a T × 1 vector of the variable of interest, x is a T × p matrix of predictors

(possibly including lags of y), β is a p × 1 vector of coefficients, and ε ∼ N
(
0, σ2IT

)
. A

motivating assumption for considering estimation algorithms that perform shrinkage and are

computationally efficient is that p� T , that is, the specification in equation (2) can be thought

of as a regression with more predictors than observations. However, I will subsequently show

that GAMP performs very well in any “large p” regression case, even if p < T . Note that

when estimating a regression interest also lies in the estimation of σ2, but I first consider this

parameter to be known and I subsequently discuss joint estimation of β, σ2 later in this section.

Let us consider first an independent (but not necessarily i.i.d) prior for β, denoted p (β) =∏p
i=1 p (βi), and the resulting posterior from Bayes Theorem

p (β|y) ∝ p (y|β) p (β) (3)

=
T∏
t=1

p (yt|β)

p∏
i=1

p (βi) . (4)

The exact marginal posterior for βi, i = 1, ..., p is of the form

p (βi|y) =

∫
p (β|y) dβj 6=i, (5)

∝
∫
p (y|β) p (β) dβj 6=i, (6)

= p (βi)

∫
p (y|β)

p∏
j=1,j 6=i

p (βj) dβj 6=i, (7)

where dβj 6=i denotes integration over the whole set of p−1 parameters βj for j 6= i. Therefore,

the formula above requires integration over a (p−1)-dimensional integral, a numerical problem
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that can become computationally infeasible for high-dimensional vectors β.

2.1 Generalized Approximate Message Passing

The computationally efficient GAMP algorithm approximations can be motivated using

factor graphs, that is, graphical models that allow to factorize random variables into lower-

dimensional quantities. In our case, the random variable we want to factorize is the high-

dimensional parameter posterior β. Based on Bayes Theorem above, the resulting factor

graph is depicted in Figure 1. This graph consists of variable vertices β = (β1, ..., βp)

which are denoted with a white circle, and function vertices f = [p (β) , p (y|β)] =

[p (β1) , ..., p (βp) , p (y1|β) , ..., p (yT |β)] which are represented using filled boxes. I denote by

µp(•)→a the message passed from probability function p(•) to random variable a, and vice-

versa for the message µa→p(•). We are now able to redefine the marginal posterior of βi,

presented in equation (7), as the product of incoming messages at node βi in the graph

p (βi|y) = µp(βi)→βi

T∏
t=1

µp(yt|β)→βi . (8)

The message µp(βi)→βi is simply the prior distribution p (βi). According to the sum-product

message rule, the term inside the product can be decomposed as

µp(yt|β)→βi =

∫
p (yt|β)

p∏
j=1,j 6=i

µβj→p(yt|β)dβj 6=i. (9)

In the decomposition above, the message from node βj to function p (yt|β) is the product of

all incoming messages to node βi, excluding the message coming from p (yt|β) itself

µβj→p(yt|β) = p (βj)

T∏
s=1,s 6=t

µp(ys|β)→βj . (10)

We can see in equations (9)-(10) that in order to obtain the message µp(yt|β)→βi we need

µβj→p(yt|β) and vice-versa. Therefore, one can simply update both equations iteratively, using

a scheme that is called Belief Propagation (BP; see Pearl, 1982) and consists of the following

6



p (β1)

β1

p (y1|β)
y1

p (β2)

β2

p (y2|β)
y2

p (β3)

β3

... ... ... ...

p (yT |β)

yT

p (βp)
βp

Figure 1: Factor graph for the posterior distribution of β

iterations

µ
(r+1)
p(yt|β)→βi =

∫
p (yt|β)

p∏
j=1,j 6=i

µ
(r)
βj→p(yt|β)dβj 6=i, (11)

µ
(r+1)
βj→p(yt|β) = p (βj)

T∏
s=1,s 6=t

µ
(r)
p(ys|β)→βj , (12)

where superscript (r) denotes the rth iteration of the algorithm. In graphs with a tree

structure, one iteration of the algorithm above can recover the exact marginal posteriors for

the parameters βi. In a factor graph with loops, that is, when a message can start from a

given node and return to the same node using various alternative paths, the BP algorithm can

sometimes achieve a good approximation. This algorithmic issue is discussed in the following

subsection.

From that point onward the GAMP algorithm can be derived by introducing two

further approximations to the BP iterations. First, when p → ∞ a central limit theorem
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(CLT) postulates that the messages
∏p
j=1,j 6=i µβj→p(yt|β) can be approximated by a Gaussian

distribution with respect to the uniform norm 3. This result means that both messages in

(9)-(10) can be represented as products of Gaussian distributions. A second approximation

involves taking the Taylor-series expansion of terms in the messages, so that the mean and

variance of p (βi|y) can be obtained analytically up to the omission of O (1/p) terms. Exact

derivation of these steps involve many tedious steps, and the reader is referred to the Technical

Appendix of Rangan (2011) for more details. What is important to stress at this point is that

both the CLT and Taylor-series approximations vanish as p → ∞ with p/T → δ for some

constant δ; see Rangan (2011) for more details. This is an example of the “blessing of Big

Data”, and the GAMP algorithm fully facilitates the large p asymptotics.

The final product of all the approximations to the two Belief Propagation update rules

of equations (11) - (12), is a simple iterative algorithm that provides marginal parameter

posteriors of βi and zt, where define zt = Xtβ and assume, without loss of generality4, that

Xt ∼ N
(
0, T−1I

)
. In particular, GAMP approximates p (βi|y) with

p (βi|y, qi, τq,i) =
p (βi)N (βi|qi, τq,i)∫
β p (βi)N (βi|qi, τq,i)

, (13)

where qi, τq,i are certain quantities computed iteratively, and are given in the Technical

Appendix. Similarly, the second update rule of Belief Propagation provides an approximation

to p (zt|y) using

p (zt|y, ct, τc,t) =
p (yt|zt)N (zt|ct, τc,t)∫
z p (yt|zt)N (zt|ct, τc,t)

, (14)

where ct, τc,t are also computed iteratively and more details can be found in the Techincal

Appendix.

3This is a result of the Berry-Esseen central limit theorem which states that a sum of random variables
converge to a Gaussian density; see a proof of that theorem in Donoho, Maleki and Montanari (2010). Given
that the Belief Propagation equations involve products of random variables, rather than sums, derivations of
GAMP based on this central limit theorem typically proceed by taking logarithms of equations (8)-(10). The
marginal posterior p (βi|y) is then recovered by performing an exponential transformation of the log messages,
and by normalizing so that the posterior integrates to one.

4As Donoho, Maleki and Montanari (2010) show, one can relax this assumption and consider other
distributions; see also Bayati and Montanari (2011).
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2.2 Stability of GAMP

The GAMP algorithm, whose steps are provided in detail in the Technical Appendix, iterates

through simple scalar multiplications and additions that result in a total of O(Tp) algorithmic

operations. That is, estimation of the marginal parameter posterior distribution does not

involve any matrix inversion that is typically met in many forms of parametric estimation

algorithms. Convergence is achieved when the difference between estimates of the posterior

mean of β between two consecutive iterations is below a pre-specified tolerance level. Therefore,

an important question is whether there are theoretical guarantees that the algorithm will

converge. The answer is partly yes. In graphs with loops, such as the one specified in the

previous section, the Belief Propagation algorithm will approximate the marginal posterior

distribution for βi by only considering its dependence on its direct neighbours. What this means

in practical terms is that all the factorizations of distributions resulting from BP implicitly

assume that there is a low correlation between the p elements β and, as a consequence, the p

columns of X. In general, many MCMC-based variable selection and shrinkage algorithms also

suffer from the presence of highly correlated predictors. However, GAMP, due to its underlying

approximate factorizations, has even lower threshold for handling correlated data. In the next

section I show using Monte Carlo experiments that GAMP in the case of regressions with mildly

correlated predictors can achieve estimation accuracy comparable to MCMC, at a fraction of

the computing time 5. Additionally, the empirical exercise involves regressions with orthogonal

predictors such as principal components, or predictors that have been orthogonalized (that is,

rotated and rescaled such that x ∼ iid(0, Ip)) prior to estimation.

2.3 Joint Parameter Estimation

A salient feature of the derivations above is that they are also valid when the prior on β is

conditional on some hyperparameters θ, that is when the prior is of the general hierarchical

5Additionally, there is a large literature in engineering documenting that loopy BP works very well in various
applications including turbo decoding (McEliece et al., 1998), computer vision (Freeman et al., 2000), and
compressed sensing (Baron et al., 2010).
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form

p (β, θ) = p (β|θ) p (θ) . (15)

In this paper I consider two cases of hierarchical priors that result in regularized posterior

means. The first prior considered is a Normal-Gamma prior (Griffin and Brown, 2010) of the

form

p (βi|αi) = N
(
0, α−1

)
, (16)

p (αi) = Gamma (a, b) . (17)

I use here the convention that prior hyperparametes with an underscore are fixed (calibrated)

while prior hyperparameters without an underscore are random variables and are, hence,

updated by the data. With this hierarchical prior specification each prior variance α−1i is

learned by the data, while following arguments in Griffin and Brown (2010) it can be shown

that this prior leads to sparse solutions by allowing alphai →∞. Following Zou, Li, Fang and

Li (2016) the estimation algorithm under this prior is hereafter denoted as Sparse Bayesian

Learning (SBL).

The second prior considered is the “spike and slab” prior, which is typically used in Bayesian

inference for the purpose of variable selection and for testing the hypothesis H0 : βi = 0, and

which is of the form

p (βi|π0) = (1− π0) δ0 + π0N
(
0, α−1

)
, (18)

p (π0) = Beta
(
ρ
1
, ρ

2

)
. (19)

This is a mixture prior with one component being a point mass at zero (the Dirac delta funtion

δ0, which can be thought of as the limit of a N(0, 0) distribution), and the other component

being a typical Normal prior with α−1i 6= 0. From this point forward the abbreviation SNS

(Spike N’ Slab) will be used to denote the resulting GAMP algorithm using this prior. Finally, I

also consider a prior for the regression variance, which in the previous subsections I intentionally
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ignored and considered given. The prior considered for this parameter is also of standard form,

that is

p
(
σ2
)

= Gamma (c1, c2) . (20)

Updates of prior hyperparameters as well as the regression variance can be implemented by

combining the GAMP algorithm with Expectation-Maxization (EM) updates. In the Technical

Appendix I illustrate that derivations of these steps result in familiar formulas from MCMC

updates. Additionally, there are several papers in the literature establishing that such joint

EM-GAMP algorithms result in consistent estimates of β; see further results in Kamilov,

Rangan, Fletcher and Unser (2014).

3 Simulation study

In this section I compare the performance of GAMP-based algorithms using data generated

from sparse regression models, and contrast them to MCMC-based algorithms. I generate p

predictors, with T observations each, from a Normal distribution with correlation corr(xi, xj) =

ρ|i−j| for ρ ∈ [0, 1]. I assume that only q columns of the predictors x are important for y, and

the remaining p− q columns are excluded from the regression. That is, the coefficient vector is

of the form β = [β1, ..., βq, 0, 0, ..., 0, 0], where q = bc× pe, 0 < c < 1 and b•e denotes round-off

to the nearest integer. I generate βi for i = 1, ..., q from a continuous U (−4, 4) distribution.

I consider various combinations of p, T and ρ cases, in order to assess how sparsity,

correlation, and changing number of samples impact performance:

1. Model 1: T = 50, p = 100, 200, 500 and ρ = 0.3. I assume moderate correlation, and the

case of a small sample T that allows us to fully understand how the algorithm works in

the large p - small T limit. I set c = 0.01 meaning only one, two and five predictors out

of p = 100, 200, 500, respectively, are responsible for having generated y.

2. Model 2: T = 200, p = 100, 200, 500 and ρ = 0.3. This is like Model 1, but with higher

number of observations, to reflect approximate the T found in quarterly macroeconomic
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data. I set c = 0.05 meaning only one predictor out of p is responsible for having generated

y. I set c = 0.05 meaning only five, 10 and 25 predictors out of p = 100, 200, 500,

respectively, are responsible for having generated y.

3. Model 3: T = 200, p = 100 and ρ = 0.9. In this case I only evaluate the case where

T > p so that orthogonalization of predictors is possible. For such high correlation,

the GAMP algorithm would collapse and the MCMC-based estimation algorithms would

also have a hard time converging. Orthogonalization is implemented by simply taking

the sample covariance of X, Ω̂ and defining X̃ = XŴ−1 where W is the Choleski factor

of Ω̂. Note that if p < T then W is rank deficient and orthogonalization of the original

space spanned by the columns of X is not possible. I also set c = 0.05 in this case.

Each of the three Monte Carlo simulations is repeated 500 times. Precision of each algorithm is

measured by means of absolute deviations of estimated coefficients from the actually generated

ones in all 500 cases. That is, the estimate with the smallest value of the mean absolute

deviation statistic

MAD =
1

500

500∑
i=1

∣∣∣β̂(i)Mj
− β̃(i)

∣∣∣ ,
where β̂

(i)
Mj

is the point estimate (or posterior mean) of β from estimation method Mj , and

β̃(i) are the generated coefficients in each Monte Carlo iteration. I evaluate the following four

algorithms: 1) the GAMP algorithm with Normal Gamma prior, which I denote as sparse

Bayesian learning (SBL); 2) the GAMP algorithm with spike and slab (SNS) prior; 3) the

Bayesian least absolute shrinkage and selection operator (lasso) estimated using the Gibbs

sampler as in Park and Casella (2008); and 4) the stochastic search variable selection (SSVS)

algorithm of George and McCullogh (1993), also based on the Gibbs sampler. Therefore, in

this comparison there are four models Mj for j = SBL, SNS,LASSO, SSV S.

The following Figures 2-4 show boxplots of the MAD statistics for the four algorithms run

over the 500 Monte Carlo iterations for the three exercises, respectively. Note first that boxplots

of the MAD statistics of a naive, unrestricted estimator (OLS applied using one predictor at

a time) is omitted from the three graphs, because these are typically five to 20 times larger
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(depending on the values of T, p) than the MAD values of the four shrinkage algorithms6. So

the first general observation is that, even if there are visual differences among the distribution

of MAD statistics for the four estimators, these are typically small if the MAD of OLS applied

predictor-by-predictor is used as a reference point. When T is small relative to p, as depicted in

Figure 2 for the case T = 50, the SBL and SNS versions of the GAMP algorithm perform well.

On average they give sharper results compared to LASSO and SSVS, with lower averages and

more concentrated distributions of MAD statistics. When T is larger in which case a different

ratio δ is achieved (see discussion in subsection 2.1) then performance of the four algorithms

is comparable when p ≤ T , i.e. for p = 100, 200. For the case p = 500 the two GAMP-based

algorithms perform slightly worse than the two MCMC-based algorithms, but differences can

be considered small (the average MAD of OLS in this case is 0.67, while for the four shrinkage

algorithms all average MADs are less than 0.05). In general, under mild correlation among

predictors, GAMP-based algorithms perform comparably to MCMC-based algorithms.

An interesting case is the one where one wants to do inference with correlated predictors.

Figure 4 shows what happens in the case T = 200, p = 100. While the assumption p < T

seems quite restrictive for general Big Data applications, the example in Model 3 is a quite

realistic representation of many modern macroeconomic applications 7. In this instance also the

performance of GAMP methods is excellent and considerably better than that of the LASSO.

6In particular, for the mildly correlated predictors that are generated, the OLS applied predictor-by-predictor
performs as well (in terms of MADs) for the q coefficients which are non-zero. It is for the case of the zero
coefficients where the shrinkage estimators generate substantially lower error compared to OLS.

7For example, Stock and Watson (2012) and Korobilis (2013) consider datasets with around p = 100
predictors and T = 200 quarterly observations.
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Figure 2: Boxplots of MAD statistics over the 500 Monte Carlo iterations for Model 1 case
(T = 50, p = 100, 200, 500).
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Figure 3: Boxplots of MAD statistics over the 500 Monte Carlo iterations for Model 2 case
(T = 200, p = 100, 200, 500).
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Figure 4: Boxplots of MAD statistics over the 500 Monte Carlo iterations for Model 3 case
(T = 200, p = 100).

Having established that GAMP-based methods perform comparably when the data

generating process is that of a sparse regression model, I proceed to documenting the vast

computational gains from the GAMP approximations. Table 1 demonstrates a striking feature

of GAMP, that is, the fact that it is much faster than both MCMC-based algorithms used in

the simulations above. Entries in this Table are computing times measured in seconds (using

the tic and toc commands in MATLAB). The differences are vast, since for the majority of

the experiments the GAMP-based algorithms remain below 0.01 seconds. The only exception

is for SNS when T = 200 and p = 500, and the explanation is that these algorithms run

until a convergence criterion is achieved (as is the case for e.g. the EM algorithm) and in

this case convergence took longer. In contrast, MCMC based algorithms have to run for a

fixed number of iterations 8. Finally, note that while the GAMP algorithm can be further

8Note that for the purposes of the Monte Carlo exercise in particular, I run both MCMC-based estimators
using only 2000 iterations after discarding an initial 1000 burn-in iterations. This low number ensures satisfactory
numerical precision, but in practical situations one would want to run thousand times more MCMC iterations.
Thus, the high computing times of LASSO and SSVS are actually favourable due to the limited number of
iterations.
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enhanced by trivially modifying it to run in multiple CPU cores, MCMC-based algorithms are

not parallelizable unless further approximations are introduced.

Table 1: Computing time (seconds) per Monte Carlo iteration for each of the four algorithms.
SBL SNS LASSO SSVS

p = 100 < 0.01 < 0.01 4.03 1.81
T = 50 p = 200 < 0.01 < 0.01 12.88 5.29

p = 500 < 0.01 0.01 92.99 38.59

p = 100 < 0.01 0.01 6.28 1.98
T = 200 p = 200 < 0.01 0.01 12.54 5.11

p = 500 < 0.01 0.28 54.89 18.29
Notes: The reference machine is a 64 bit Windows 7-based PC with Intel Core 7 4770K CPU, 32GB DDR3

RAM running MATLAB 2016a.

4 Empirics

4.1 Forecasting model, data, and competing methods

For the purposes of forecasting, the regression in equation (2) is converted into a forecasting

relationship for y by determining appropriately the timing of the predictors. Therefore, the

following regression is defined

yt+h = ytφ+ Ptβ + εt+h, (21)

where yt+h is the h-step ahead value of the variable of interest and Pt are orthogonal predictors,

which, following Stock and Watson (2012), are going to be factors from a large macroeconomic

dataset. The dataset consists of 222 quarterly U.S. macroeconomic and financial time series

observed for the period 1959Q1 - 2015Q3. The series are transformed by taking logarithms

and/or differencing, that is, first differences of logarithms are used for real quantity variables,

first differences are used for nominal interest rates, and second differences of logarithms for

price series. When a given variable is the variable to be predicted, yht+h, then relevant h-step

ahead transformations are defined, see also Stock and Watson (2012) for more details.

All 222 macroeconomic variables are used, one at a time, as the variable of interest, that

is, the variable to forecast. The remaining variables are used as exogenous right-hand side
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predictors. In particular, when a high-level aggregate and a subaggregate variable are present,

and when these two are typically related by an identity, I only use the lower-level subaggregate

to extract factors. This leaves 130 variables to extract the factors from, despite the fact that

we evaluate forecasts of all 222 variables. Out of a maximum of 130 factors, I follow Stock

and Watson (2012) and use a maximum of 50 factors estimated by simple principal component

analysis.

The reqression in equation (21) is estimated using several competing estimators. I contrast

the two GAMP-based shrinkage estimators, SBL and SNS described in subsection 2.3, with

the following cases

1. Bayesian lasso prior estimated with MCMC (LASSO): More description of this prior

and its settings is provided in the previous section and the Technical Appendix.

2. Stochastic search variable selection (SSVS): More description of this prior and its settings

is provided in the previous section and the Technical Appendix.

3. Bayesian Model Averaging (BMA): This setting follows Fernandez, Ley and Steel

(2001a,b). A g-prior is specified with g = 1/p2, where p is the number of predictors.

Estimation is via MCMC methods and in particular the MC3 algorithm of Madigan and

York (1995).

4. Bootstrap aggregation or bagging (BAG): Bagging involves generating a large number of

bootstrap samples from the original data, calculating least squares estimates, conducting

two-sided t-tests on each parameter estimate, generating forecasts and averaging forecasts

across bootstrap samples. The exact settings and critical values used are identical to the

ones proposed in Ribeiro (2016, pages 6-7).

5. Five factors (DFM5): The DFM-5 forecast uses the first five principle components as

predictors, with coefficients estimated by OLS without shrinkage. This is a parsimonious

specification and can be thought of as a naive approach to shrinkage that, in practice,

may perform better than the state-of-the-art methods outlined above.
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6. Full model (OLS): As an indication of how well shrinkage methods perform, I quote

results from the model with all 50 factors included estimated with unrestricted least

squares.

7. Minimal model (ARp): This is a the model with zero factors and only a single lag of the

dependent variable, estimated by OLS. I do not explicitly quote results for this model,

rather I use it as a reference point for other methods (i.e. all results are relative to the

AR(1) model).

I use the second half of the sample to evaluate forecasts from the regression model using

all estimation methods outlined above. The first estimation period is 1959Q1-1985Q4, and I

forecast h = 1, 2, 4 and 8 steps ahead. Estimation and forecasting is recursive, adding each

quarter one observation to the initial estimation sample, until the whole sample is exhausted.

That is, the last estimation period is 1959Q1 - (2015Q2-h). Additional results based on rolling

forecasts are presented in the Appendix. Given that Bayesian and non-Bayesian estimation

methods are compared, I focus on point estimation only, following closely Stock and Watson

(2012). Results are typically evaluated by taking two standard distance functions of forecast

errors, the rectilinear (l1-norm) and Euclidean (l2-norm), leading to the mean absolute forecast

error (MAFE) and the root mean square forecast error (RMFSE).

4.2 Main Results

This section presents the main results of this paper for all 222 series and for the case of recursive

forecasts. Additional results for rolling forecasts and for selected series are discussed in the

next subsection, and additional tables can be found in the Appendix.

Table 2 reports the distributions of relative root mean squared errors (RMSEs) for the

various forecasting methods. The rows represent percentiles of the distribution of RMSEs over

the 222 series for the eight forecasting methods, where all RMSEs are relative to the AR(1)

benchmark. Values less than one signify improvement over the benchmark, while values larger

than one suggest that the benchmark performs well. First note that the general results are in-
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line with the findings of Stock and Watson (2012): All shrinkage or parsimonious methods (that

is, excluding OLS using all 50 factors) improve over the AR(1) benchmark. The improvements

in some cases are not as large as the ones that Stock and Watson find in their respective Table

2, but note that they use an AR(4) benchmark (which, in general, is inferior to the AR(1) for

this kind of data). Additionally, it can also be seen that the forecast improvement from using

shrinkage estimators over the naive, but parsimonious, DFM5 approach, is modest. The only

consistent pattern that seems to emerge is that in the 95% percentile, the shrinkage methods

do not generate as large MSFEs as the DFM5. For example, for h = 8 DFM5 has RMSFE

of the order of 32% worse than the benchmark AR(1), while the vast majority of shrinkage

estimators provide reduction in forecast accuracy of 10%-20%.

These important observations aside, the main research question in this paper is how

GAMP-based algorithms perform compared to other shrinkage algorithms. The answer to

that question is strikingly straightforward to respond to based on evidence in Table 2. In

particular GAMP-SBL seems to perform extremely well, but also GAMP-SNS follows closely.

In terms of the median SBL is better than DFM5 in three out of four forecast horizons, while

SNS is performing satisfactorily, meaning that it improves AR(1) forecasts and at the same

time is comparable to the performance of the remaining shrinkage methods. In terms of the 5th

percentile, all shrinkage methods and the DFM5, are comparable. However, when looking at

the 95th percentiles, SBL and SNS generate consistently lower RMSFEs compared to DFM5.

The reason why GAMP-SBL and GAMP-SNS perform consistently well at all forecast

horizons, while alternative shrinkage methods might perform well in some cases (e.g. for h = 1)

but not so well in others (e.g. for h = 8 all other shrinkage methods, apart from the DFM5,

perform worse than the AR(1) in the median), is simply the fact that GAMP-based algorithms

do not require tuning of prior quantities, since all hyperpriors are estimated automatically using

the EM updates. So when correlations between the predictors and the variable of interest,

yt+h, change as the horizon h changes, GAMP-based algorithms will adapt automatically to

the new setting. Given the simplicity and tractability of GAMP, one can think of even further

enhancements, for example run multiple instances of GAMP using different initial parameter
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guesses in order to eliminate the effect of initial conditions and increase its precision even

further. MCMC-based algorithms may also suffer from the effect of initial conditions, but in

many cases it may be computationally impractical to run multiple instances of an MCMC

algorithm.

Table 3 summarizes the results of the previous Table by considering the weighted means

square forecast error measure (WMSFE) used in Christoffersen and Diebold (1998). This is a

weighted measure, where the scale of each of the 222 variables is taken into account. Results

are also standardized to be relative to the AR(1) WMSFE. In this table we also see that

using this criterion most methods do not perform better than the AR(1), but SBL and SNS

are strongly better, especially SBL for h = 3 where improvements are substantial. Table 4

explores whether forecasts from the competing methods differ from each other. Specifically,

the Table presents two measures of similarity of the performance of one-step ahead forecasts,

namely the correlation (over series) among RMSEs, relative the AR(1) forecasts, and the mean

absolute difference of these relative RMSEs. All shrinkage forecasts are highly correlated, while

DFM5 and OLS are less correlated with other methods and with each other. Nevertheless,

the parsimonious DFM5 generates mean absolute differences which are similar to ones by

the shrinkage methods, while the non-parsimonious OLS fails to a large extent to perform

well. This suggests two things. First, the two GAMP-based algorithms generate RMSFEs

in accordance with other shrinkage methods. Second, even though the first few principal

components typically explain most of the variability in a dataset (such as the one used here

to extract factors), the shrinkage methods might not be selecting consistently the first few

components. If that was the case, their RMSFEs would not have such low correlation with the

DFM5 forecasts. This low correlation might suggest that shrinkage methods retain possibly the

first few components as well as a mix of less informative components. Finally, Table 5 shows the

hit rates in terms of mean absolute and root mean square forecast errors of the eight competing

methods. These hit rates simply measure the percentage of times, over the 222 series, that

each method had achieved the lowest MAFE or RMSFE. Again, we can see that this criterion

also confirms the excellent performance of SBL and particularly SNS compared to all other
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methods. It is noteworthy that the GAMP-based methods retain over all forecast horizons their

good percentages of being the best performing methods, while SSVS has gradually decreasing

hit-rates while DFM5 consistently improves over the forecast horizons.

Table 2: Distributions of Relative Root Mean Squared Errors (RMSE), Relative to the AR(1)
Forecast, by Forecasting Method, all 222 series

Horizon h = 1

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.746 0.763 0.781 0.723 0.733 0.757 0.745 0.872
0.25 0.898 0.935 0.943 0.917 0.915 0.921 0.915 1.033
0.5 0.975 0.999 0.996 0.990 0.990 0.987 0.993 1.130
0.075 1.011 1.002 1.040 1.003 1.013 1.020 1.029 1.273
0.95 1.058 1.021 1.111 1.037 1.068 1.087 1.106 1.544

Horizon h = 2

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.745 0.737 0.799 0.748 0.750 0.713 0.753 0.844
0.25 0.866 0.911 0.919 0.889 0.897 0.902 0.887 1.013
0.5 0.980 0.998 1.001 0.990 0.989 0.979 0.990 1.121
0.75 1.021 1.002 1.050 1.007 1.024 1.033 1.041 1.270
0.95 1.094 1.052 1.135 1.069 1.112 1.114 1.137 1.495

Horizon h = 4

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.765 0.758 0.784 0.774 0.766 0.703 0.783 0.858
0.25 0.871 0.888 0.908 0.885 0.884 0.885 0.870 1.014
0.5 0.961 0.979 0.991 0.975 0.980 0.970 0.978 1.111
0.75 1.012 1.001 1.054 1.009 1.030 1.025 1.051 1.279
0.95 1.129 1.057 1.163 1.102 1.166 1.159 1.197 1.574

Horizon h = 8

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.728 0.703 0.753 0.696 0.753 0.769 0.744 0.892
0.25 0.909 0.927 0.920 0.916 0.917 0.935 0.898 1.036
0.5 0.989 0.993 1.010 0.985 1.001 1.008 0.973 1.183
0.75 1.047 1.019 1.078 1.028 1.054 1.070 1.060 1.357
0.95 1.157 1.111 1.232 1.136 1.236 1.253 1.321 1.895

Notes: Entries are percentiles of distributions of relative RMSFEs over the 222 variables being forecasted, by
series, at the 1-, 2-, 4- and 8-quarter ahead forecast horizon. RMSFEs are relative to the AR(1) forecast RMSFE,
and are computed using an expanding window of in-sample observations (recursive). All forecasts are direct.
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Table 3: Multivariate weighted mean squared forecast error, for each estimator and forecast
horizon, all 222 series

h = 1 h = 2 h = 4 h = 8
SBL 0.986 0.980 0.905 0.992
SNS 0.998 0.996 1.032 0.986
LASSO 1.044 1.065 1.106 1.164
SSVS 1.000 1.002 1.076 1.179
BMA 1.034 1.045 1.058 1.133
BAG 1.019 1.046 1.155 0.987
DFM5 0.993 1.077 1.066 1.142
OLS 1.043 1.029 1.126 1.035

Notes: Entries in this table report the multivariate weighted mean squared forecast error of each method relative
to the AR(1); see Christoffersen and Diebold (1998) for more details.

Table 4: Two Measures of Similarity of Forecast Performance, h = 1: Correlation (lower left)
and Mean Absolute Difference of Forecasts (upper right), all 222 series

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
SBL 0.036 0.041 0.029 0.023 0.039 0.046 0.229
SNS 0.87 0.046 0.025 0.037 0.044 0.058 0.229
LASSO 0.90 0.86 0.047 0.038 0.038 0.052 0.202
SSVS 0.85 0.88 0.82 0.020 0.044 0.046 0.236
BMA 0.90 0.84 0.87 0.96 0.035 0.043 0.225
BAG 0.88 0.80 0.89 0.83 0.89 0.049 0.209
DFM5 0.24 0.06 0.29 0.17 0.28 0.47 0.209
OLS 0.44 0.32 0.43 0.48 0.51 0.54 0.59

Notes: Entries below the diagonal are the correlation between the RMSFEs for the row/column forecasting
methods, computed over the 222 series being forecasted. Entries above the diagonal are the mean absolute
difference between the row/column method RMSFEs, averaged across series.
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Table 5: Hit-rates of the eight estimators, all 222 series

Horizon h = 1

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 14.41 19.37 4.96 23.42 6.31 13.06 14.41 4.05
% of lowest RMSFE 15.32 22.07 5.41 16.67 8.56 13.51 14.41 4.05

Horizon h = 2

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 12.61 31.53 4.05 10.36 3.15 20.72 13.51 4.05
% of lowest RMSFE 11.71 26.13 3.15 11.26 6.76 15.77 20.72 4.50

Horizon h = 4

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 11.71 27.93 3.60 10.36 4.96 18.02 20.27 3.15
% of lowest RMSFE 11.26 26.13 5.41 10.36 4.96 13.96 23.87 4.05

Horizon h = 8

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 8.11 29.73 5.86 9.01 3.60 12.61 27.93 3.15
% of lowest RMSFE 9.91 24.32 7.21 7.21 1.80 13.06 33.78 2.70

Note: This table shows the proportion of times (over the 222 series being forecasted) that each estimator
achieved the lowest value of the MAFE and RMSFE statistics.

4.3 Further results and discussion

In the Appendix I provide additional results that help solidify the conclusions drawn from

the main results. First, I consider the results only on 14 series that are possibly the most

important indicators that macroeconomists and analysts look at. These are real GDP, personal

consumption expenditures, industrial production (total), employment, unemployment rate,

GDP price deflator, consumer price index (total), producer price index (commodities), federal

funds rate, 10-year Treasury bond rate, real M1 money stock, GBP/USD exchange rate, and

S&P500 stock prices. There are, of course, several leading indicators that one could also follow

(hours worked, consumer confidence, mortgage rates etc), nevertheless these 14 series roughly

describe the variables of interest (target variables) for policy-makers and central banks. The

main argument of doing this exercise is that, when evaluating 222 series, it might be the

case that GAMP is performing really well on series which are higher level disaggregates (and

possibly not so interesting), while performing poorly on variables that matter. Tables C.1 to
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C4 show that this is not the case.

Qualitatively similar conclusions can be drawn when considering rolling forecasts, that

is, forecasts with in-sample estimation of coefficients in a fixed window of observations.

Such an approach takes into account evident structural breaks in macroeconomic time series

(see Bauwens, Koop, Korobilis and Rombouts, 2015). I follow Stock and Watson (2012)

and consider a rolling window of 100 observations, using the same evaluation period for all

forecasts. Doing so, means that all shrinkage estimators should “work harder” to find suitable

restrictions on regression coefficients and save valuable degrees of freedom, and for that reason

parsimonious approaches (the AR(1) and DFM5) are expected to have a possible advantage

a-priori. Nevertheless, results are favourable for all shrinkage estimators with SBL and SNS

leading the course.

Considering rolling forecasts is a simple approach to control for structural breaks, but choice

of the rolling window is subjective. One can consider, instead, specifications that explicitly

account for changing volatility, which has been shown to be an extremely important feature

of macroeconomic data; see Clark and Ravazzollo (2015). In the Technical Appendix I show

different ways to combine the GAMP shrinkage estimators with stochastic volatility. I do not,

however, evaluate forecasts from such a specification because it is beyond the scope of this

paper, whose focus is on regressions with many predictors. Finally, note that other extensions

of GAMP are readily available. In a vector autoregressive (VAR) setting for example, if we

consider the decomposition in Carrierro, Clark and Marcellino (2016) that allows for equation-

by-equation estimation of the VAR, then application of GAMP is trivial. Similar adaptations

to factor models and other popular multivariate specifications are also possible, and they would

be an interesting direction for future research in applied econometrics.

5 Conclusions

This paper evaluates a new methodology for performing Bayesian inference in high-dimensional

regression models. The proposed Generalized Approximate Message Passing (GAMP) is a
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fast algorithm for approximating iteratively the first two moments of the marginal posterior

distribution of high-dimensional coefficients. It is established how effortlessly GAMP can be

combined with two popular classes of shrinkage priors, and extensive evaluations in synthetic

and real data demonstrate the advantages of using GAMP. In particular, GAMP is at least as

precise as a wide class of alternative shrinkage methods, at a fraction of the computing time

and with minimal user input. While the kind of application considered in this paper is typical

in macroeconomics, it is far from being a truly “Big Data” application. Nevertheless, GAMP

will accommodate regression models with thousands or, possibly, millions of predictors before

it hits a computational bottleneck. This paper, thus, attempts to make the point that GAMP

should become a valuable tool for applied economists and policy-makers who wish to monitor

high-dimensional datasets, and that, despite its approximate nature, this fast algorithm is an

investment for future generations of macroeconomists who might be faced with a daunting

amount of available information to process.
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B Technical Appendix

B.1 Generalized Approximate Message Passing for Bayesian regression

Consider the regression model

yt = Xtβ + εt,

where εt ∼ N
(
0, σ2

)
, yt is scalar, Xt is 1 × p vector, and consider the prior distribution

β ∼ Np (0, V ). Initialize µ
(1)
β = 0, τ

(1)
β = V , set s(0) = 0 and define S = X � X, where

� denotes the Hadamard (element-wise) product (also below we use the symbol � to denote

element-wise division of matrices/vectors). The Generalized Approximate Message Passing

(GAMP) algorithm iterates through the following steps (see also Rangan, Schniter, Riegler,

Fletcher and Cevher, 2016)

Generalized Approximate Message Passing Algorithm

for r=1:R

τ
(r)
c = Sτ

(r)
β

c(r) = Xµ
(r)
β − s

(r−1) � τ (r)c

z(r) = E
(
z| c(r), τ (r)c

)
τ
(r)
z = var

(
z| c(r), τ (r)c

)
s(r) =

(
z(r) − c(r)

)
� τ (r)c

τ
(r)
s =

(
1− τ (r)z � τ (r)c

)
� τ (r)c

τ
(r)
q = 1�

(
Sτ

(r)
s

)
q(r) = µ

(r)
β + τ

(r)
q �X ′s(r)

µ
(r+1)
β = E

(
β|q(r), τ (r)q

)
τ
(r+1)
β = var

(
β|q(r), τ (r)q

)
end

The algorithm above involves only multiplications and additions which require a total of

O(Tp) operations. We have written the algorithm above in a form that requires element-wise

operations, thus, taking advantage of modern matrix programming languages. Depending on

the dimension of the problem, the algorithm above can be written (with “for” loops, which

are trivial to parallelize) using multiplications and additions of scalar quantities. The reason
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is the assumption of posterior independence of p
(
βi|β(−i)

)
= p (βi), ∀i = 1, ..., p.

The algorithm converges when ‖µ(r+1)
β − µ(r)β ‖ → 0. In this case the posterior of β is

β|D∼ N
(
µ
(r+1)
β , τ

(r+1)
β

)
, (B.1)

where D denotes the conditioning information (data y). Assuming σ2 is known, derivation

of the mean and variance of z|c(r), τ (r)c and β|q(r), τ (r)q in the GAMP algorithm is based on

the assumption of posterior independence. In particular, conditional on σ2 (and the prior

hyperparameters β, V β), GAMP assumes posterior independence among the latent parameters

βi, i = 1, ..., p and approximates the true marginal posterior distribution p (βi|D) by

p (βi|D, qi, τq,i) =
p (βi)N (βi|qi, τq,i)∫
β p (βi)N (βi|qi, τq,i)

(B.2)

where qi, τq,i are the ith elements of the vectors q, τ q, respectively, which are updated iteratively

in the GAMP algorithm above. Given that we have defined p (β) ∼ Np (0, V ) above, we can

derive p (βi|D, qi, τq,i) to be a Normal distribution with location and scale parameters

E (βi|qi, τq,i) =
qi

1 + τq,iV ii

, (B.3)

var (βi|qi, τq,i) =
τq,i

1 + τq,iV ii

. (B.4)

Similarly, GAMP assumes posterior independence among zt = Xtβ, that is, the true marginal

posterior p (zt|D) by

p
(
zt|D, ct, τc,t, σ2

)
=

p
(
yt|zt, σ2

)
N (zt|ct, τc,t)∫

z p (yt|zt, σ2)N (zt|ct, τc,t)
, (B.5)

where ct, τc,t are the tth element of the vectors c, τc, respectively, in the algorithm above.

The function p
(
yt|zt, σ2

)
is simply the likelihood N

(
yt|Xtβ, σ

2
)
. In this case, the marginal
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posterior of p
(
zt|D, ct, τc,t, σ2

)
is a Normal distribution with location and scale parameters

E (zt|ct, τc,t) =
τc,tytσ

2 + ct
1 + τc,tσ2

, (B.6)

var (zt|ct, τc,t) =
τc,t

1 + τc,tσ2
. (B.7)

B.2 Algorithms for joint estimation of parameters

The previous subsection outlined the GAMP algorithm for estimation of the regression

coefficients β, conditional on knowledge of the variance parameter σ2. In practical situations σ2

will be a parameter to be estimated. In the case where interest lies on hierarchical Bayes priors

(such as the ones proposed in the main body of this paper), then we face additional parameters

which (from a Bayesian perspective) are random variables that need to be estimated. Given

that the approximations involved in the iterated GAMP algorithm result in vast computational

benefits compared to existing MCMC methods for parameter estimation, it would be redundant

to combine GAMP with MCMC for joint estimation of parameters in a regression. In this case,

and given the iterative nature of GAMP, it is easier to rely on the EM algorithm. Given some

additional parameters (i.e. other than β) and hyperparameters, which we can denote by θ, a

generic EM-augmented GAMP algorithm is as follows

EM-GAMP algorithm for joint estimation

Initialize θ(0)

for r=1:R

E-step: Update β(r)|D, θ(r−1) ∼ N
(
µ
(r+1)
β , τ

(r+1)
β

)
using the GAMP algorithm

M-step: Update θr|D, β(r) by maximizing the associated Q-function
end

While the E-step of the algorithm above is provided by the GAMP iterations, finding the

Q-function and obtaining its maximum in the M-step, sounds quite demanding. However, for

many parameters and hyperparameters of interest (such as σ2) derivation of the M-step of

the EM algorithm can heavily resemble existing derivations for MCMC algorithms (that is,

conditional posterior means used in popular Gibbs sampler algorithms). I make this point
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clear with the following two examples:

1. Algorithm for Normal-Gamma prior (Sparse Bayesian Learning, SBL): I

assume the following prior structure

p (βi|αi) ∼ N (0, αi) , (B.8)

p
(
α−1i

)
∼ Gamma (a, b) , (B.9)

p
(
σ−2

)
∼ Gamma (c1, c2) , (B.10)

such that β ∼ Np (0, V ) with V = diag(α1, α2, ..., αp). Optimizing with respect to α

means finding the maximum of the following Q-function

α(r+1) = arg max
α

Q
(
α|α(r)

)
≡ Eα(r)

[
log p

(
α|y, β(r)

)]
. (B.11)

Taking the derivative of the Q-function w.r.t. αi and setting it to zero gives the usual

formula from MCMC-based updates of α

α
(r+1)
i =

2a− 1

2b+
(
µ
(r)
i,β

)2 . (B.12)

where recall that µ
(r)
i,β = E

(
βi|q(r), τ (r)q

)
is output of the algorithm outlined in the

previous subsection. Following a similar procedure for σ−2 gives

(
σ−2

)(r+1)
= arg max

σ−2
Eβ(r)

[
log p

(
y|X,β(r),

(
σ−2

)(r))
p
(
σ2
)]

(B.13)

=
T + 2c1 − 2

2c2 +
∑T

t=1

(
yt −Xtµ

(r)
β

)2 . (B.14)

In this case, the M-step for this case consists of the updating equations (B.12) -

(B.14), and then conditional on these steps one can update β(r+1), conditional on

α(r+1),
(
σ−2

)(r+1)
, using the GAMP iterations of the previous section.
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2. Algorithm for spike and slab prior (SNS): We assume the following prior structure

p (βi|π0, α) ∼ (1− π0)δ0 + π0N (0, α) , (B.15)

p
(
σ−2

)
∼ Gamma (c1, c2) . (B.16)

Derivation of the EM algorithm can be found in Vila and Schniter (2011,2013). The

posterior of βi is of the form

p (βi|y, π0) = (1− πi)δ0 + πiN
(
µ
(r)
β,i, τ

(r)
β,i

)
, (B.17)

where we define τ
(r)
β,i =

(
α−1 +

(
τ
(r)
q,i

)−1)−1
, µ

(r)
β,i = τ

(r)
β,i ×

(
q
(r)
i /τ

(r)
q,i

)
and

π
(r)
i =

1

1 +

(
1−π(r−1)

0

)
N(0|q(r)

i ,τ
(r)
q,i )

π0N(0|−q(r)
i ,α(r−1)+τ

(r)
q,i

)

, (B.18)

is the posterior probability of inclusion of predictor i in the regression model, πi ∈ [0, 1].

For the update step of the variance parameter σ2 one can follow the derivations of Vila

and Schniter in order to obtain an EM update. However, based on extensive experiments

I have found that an estimate of the variance based on an approximation to the posterior

mode works best

(
σ2
)(r)

=

(
2c2 +

T∑
i=1

(yi − z(r)i )2

)
/ (2c1 + T ) . (B.19)

Finally, remaining parameters can also be updated online (in each iteration) based on

EM algorithm derivations:

π
(r)
0 =

1

p

p∑
i=1

π
(r)
i , (B.20)

α(r) =
1

π
(r)
0

× 1

p

p∑
i=1

π
(r)
i

(
µ
(r)
β,i

)2
+ τ

(r)
β,i . (B.21)
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B.3 Incorporating stochastic volatility in GAMP

The main model specification has followed closely research on forecasting with many predictors;

see Stock and Watson (2012) and references therein. However, it is well documented that

macroeconomic volatility is such an important modelling assumption, that should hardly

be ignored from any forecasting or structural model; see for example Clark and Ravazzollo

(2015) and the arguments in Clark (2011). In many Bayesian macroeconomic applications

involving MCMC-based estimation it is typical to consider a stochastic volatility specification

for log-variances, since the additional computation involved in doing so is trivial (just a run

of a univariate Kalman filter). However, since this paper is all about how to implement fast

computation of shrinkage estimators in high-dimensions, it would be superfluous to combine

GAMP with an MCMC or sequential Monte Carlo update for stochastic volatility. Additionally,

it is not straightforward to derive a GAMP-based approximations to the estimation of the

stochastic volatility volatility specification 9.

Therefore, here I follow a simpler strategy in order to allow for changing variances.

Estimation is based on Exponential Weighted Moving Average (EWMA) filters. One approach

would be to apply the typical EWMA formula

σ2t = κσ2t−1 + (1− κ)ε2t , (B.22)

where 0 < κ < 1 is a decay factor controlling the (exponentially decaying) effective window

of observations used in estimation of σ2t . It is well-known that such a model approximates

an integrated GARCH(1,1) specification, and has been very successful in finance for many

decades. Algorithmically, because of the iterative nature of GAMP, one could run the first

iteration conditional on a fixed volatility estimate (e.g. fix σ2t = 1 ∀t ∈ [1, T ]), but from the

second iteration onward update σ2t with the residuals from the previous iteration,
(
ε
(r−1)
t

)2
,

plugged in the formula above.

9As an example of how complicated Belief Propagation and GAMP would become in a dynamic setting, see
for instance Ziniel and Schniter (2013) and Ziniel, Potter and Schniter (2010). The algorithms proposed in these
papers involve several approximations and many tedious steps that lack the simplicity and numerical stability
of the GAMP algorithms proposed so far.
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Alternatively, one can follow West and Harisson (1997) and specify a Beta evolution process

of the form

σ−2t = γtσ
−2
t−1/δ, γt ∼ Beta (κnt−1/2, (1− κ)nt−1/2) , (B.23)

where nt are the time t degrees of freedom of the process, and κ is also a decay factor. Following

results in West and Harrison (1997), it is straightforward to show that given the random

initial condition σ−20 ∼ Gamma (n0/2, d0/2), then σ−2t is distirbuted Gamma (or equivalently,

σ20 follows the inverse Gamma). This specification is essentially quite similar to the EWMA

specification above, but the main difference is that it provides a full posterior for σ2t instead of

a point estimate.

Note that evaluating forecasts from regressions with many predictors AND stochastic

volatility is beyond the scope of this paper.
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B.4 Details of competing MCMC-based algorithms

In the main body of the paper, both in the Monte Carlo study and the empirical exercise,

the Bayesian lasso and the stochastic search variable selection (SSVS) have been used

as benchmarks. This subsection describes these two priors and the choice of relevant

hyperparameters

B.4.1 The Bayesian lasso

The full hierarchical representation of the lasso prior is

p
(
β|σ2, τ21 , ..., τ2p

)
∼ N

(
0, σ2V

)
, (B.24a)

p
(
τ2j
)
∼ Exponential

(
λ2

2

)
, for j = 1, ..., p, (B.24b)

p
(
λ2
)
∼ Gamma (r, δ) , (B.24c)

p
(
σ2
)
∝ 1/σ2, (B.24d)

where V = diag
{
τ21 , ..., τ

2
p

}
. I follow the recommendations in Park and Casella (2008) and I

choose r = 1 and δ = 3.

Given these priors, the posterior can be obtained by sampling recursively from the

conditional posteriors

β|σ2,
{
τ2j
}p
j=1

, y ∼ N
((
x′x+ V −1

)−1
x′y, σ2

(
x′x+ V −1

)−1)
, (B.25a)

1

τ2j
|β, σ2, y ∼ IG

(√
λ2σ2

β2j
, λ2

)
, for j = 1, ..., p, (B.25b)

λ2|β, σ2,
{
τ2j
}p
j=1

, y ∼ Gamma

(
p+ r,

1

2

∑p

j=1
τ2j + δ

)
, (B.25c)

σ2|β,
{
τ2j
}p
j=1

, y ∼ iGamma

(
T − 1

2
+
p

2
,
1

2
Ψ +

1

2
β′V −1β

)
, (B.25d)

where IG denotes the Inverse-Gaussian distribution.

42



B.4.2 Stochastic search variable selection

The full hierarchical representation of the SSVS prior is

p (βi|γi) ∼ (1− γi)N
(
0, τ20

)
+ γiN

(
0, τ21

)
, (B.26a)

p (γi|π) ∼ Bernoulli(πi), (B.26b)

where I set π = 0.5, and τ0 = 0.001 and τ1 = 4.

Given these priors, the posterior can be obtained by sampling recursively from the

conditional posteriors

β|σ2, γ, y ∼ N
((
x′x/σ2 + V −1

)−1
x′y/σ2,

(
x′x/σ2 + V −1

)−1)
, (B.27a)

γi|βi, π, y ∼ Bernoulli

(
N(0|βi, τ21 )(1− π)

N(0|βi, τ20 )π +N(0|βi, τ21 )(1− π)

)
, (B.27b)

σ2|β, y ∼ iGamma

(
T

2
,
1

2

T∑
t=1

(yt − xtβ)2

)
, (B.27c)

where V is a diagonal matrix with i-th element τ20 if γi = 0 or τ21 if γi = 1.
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C Additional Results

C.1 Results using only a subset of “important” variables

Table C1: Distributions of Relative Root Mean Squared Errors (RMSE), Relative to the AR(1)
Forecast, by Forecasting Method, 14 selected series

Horizon h = 1

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.751 0.847 0.779 0.724 0.729 0.830 0.746 0.957
0.25 0.888 0.909 0.901 0.877 0.921 0.909 0.922 1.073
0.5 0.963 0.993 1.002 0.968 0.970 0.980 0.966 1.166
0.075 1.007 1.001 1.032 1.000 1.013 1.026 1.036 1.338
0.95 1.092 1.051 1.145 1.049 1.067 1.155 1.143 1.624

Horizon h = 2

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.784 0.769 0.832 0.766 0.815 0.857 0.767 0.964
0.25 0.838 0.887 0.860 0.839 0.864 0.917 0.829 1.064
0.5 0.976 0.995 1.034 0.970 0.988 1.007 1.031 1.198
0.75 1.062 1.007 1.052 1.019 1.065 1.055 1.117 1.369
0.95 1.112 1.122 1.148 1.068 1.114 1.307 1.275 2.013

Horizon h = 4

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.806 0.769 0.830 0.766 0.785 0.865 0.782 0.979
0.25 0.875 0.888 0.880 0.870 0.857 0.936 0.827 1.053
0.5 0.937 0.971 0.931 0.956 0.948 0.974 0.965 1.149
0.75 1.069 1.000 1.105 1.021 1.109 1.097 1.075 1.492
0.95 1.171 1.017 1.187 1.114 1.230 1.165 1.248 1.680

Horizon h = 8

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.778 0.769 0.763 0.752 0.761 0.802 0.732 0.967
0.25 0.949 0.951 0.944 0.949 0.960 1.010 0.898 1.109
0.5 1.035 1.000 1.061 1.009 1.032 1.063 0.950 1.235
0.75 1.067 1.023 1.108 1.029 1.057 1.118 1.096 1.497
0.95 1.151 1.097 1.331 1.136 1.321 1.382 1.286 1.930

Notes: Entries are percentiles of distributions of relative RMSFEs over the 14 variables being forecasted, by
series, at the 1-, 2-, 4- and 8-quarter ahead forecast horizon. RMSFEs are relative to the AR(1) forecast RMSFE,
and are computed using an expanding window of in-sample observations (recursive). All forecasts are direct.
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Table C2: Multivariate weighted mean squared forecast error, for each estimator and forecast
horizon, 14 selected series

h = 1 h = 2 h = 4 h = 8
SBL 0.940 0.976 1.006 1.023
SNS 0.959 0.932 0.909 0.973
LASSO 0.987 1.038 1.035 1.110
SSVS 0.924 0.939 0.945 0.981
BMA 0.960 0.996 1.019 1.079
BAG 0.997 1.057 1.057 1.194
DFM5 0.964 1.027 1.011 0.999
OLS 1.555 1.624 1.594 1.897

Notes: Entries in this table report the multivariate weighted mean squared forecast error of each method relative
to the AR(1); see Christoffersen and Diebold (1998) for more details.

Table C3: Two Measures of Similarity of Forecast Performance, h = 1: Correlation (lower left)
and Mean Absolute Difference of Forecasts (upper right), 14 selected series

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
SBL 0.057 0.035 0.027 0.022 0.040 0.034 0.269
SNS 0.50 0.057 0.043 0.059 0.055 0.072 0.253
LASSO 0.90 0.65 0.049 0.040 0.028 0.043 0.241
SSVS 0.88 0.67 0.79 0.025 0.060 0.043 0.284
BMA 0.94 0.57 0.89 0.94 0.045 0.034 0.264
BAG 0.89 0.65 0.96 0.74 0.85 0.049 0.233
DFM5 0.69 0.52 0.88 0.49 0.69 0.88 0.250
OLS 0.86 0.36 0.81 0.71 0.76 0.81 0.67

Notes: Entries below the diagonal are the correlation between the RMSFEs for the row/column forecasting
methods, computed over the 14 series being forecasted. Entries above the diagonal are the mean absolute
difference between the row/column method RMSFEs, averaged across series.
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Table C4: Hit-rates of the eight estimators, 14 selected series

Horizon h = 1

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 0.00 7.14 14.29 42.86 7.14 7.14 21.43 0.00
% of lowest RMSFE 21.43 21.43 7.14 14.29 14.29 21.43 0.00 0.00

Horizon h = 2

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 28.57 42.86 7.14 14.29 0.00 0.00 7.14 0.00
% of lowest RMSFE 14.29 35.71 7.14 7.14 7.14 7.14 21.43 0.00

Horizon h = 4

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 7.14 35.71 7.14 14.29 7.14 0.00 28.57 0.00
% of lowest RMSFE 7.14 28.57 14.29 21.43 7.14 0.00 21.43 0.00

Horizon h = 8

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 7.14 28.57 7.14 14.29 0.00 0.00 42.86 0.00
% of lowest RMSFE 0.00 28.57 14.29 0.00 0.00 7.14 50.00 0.00

Note: This table shows the proportion of times (over the 14 series being forecasted) that each estimator achieved
the lowest value of the MAFE and RMSFE statistics.
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C.2 Results using rolling forecasts

Table C5: Distributions of Relative Root Mean Squared Errors (RMSE), Relative to the AR(1)
Forecast, by Forecasting Method, rolling forecasts, 222 selected series

Horizon h = 1

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.800 0.801 0.858 0.794 0.808 0.793 0.823 0.923
0.25 0.918 0.952 0.970 0.943 0.948 0.953 0.935 1.223
0.5 0.994 0.999 1.019 0.990 0.996 1.025 0.999 1.409
0.075 1.018 1.003 1.058 1.010 1.022 1.075 1.045 1.553
0.95 1.049 1.022 1.160 1.044 1.084 1.187 1.115 1.822

Horizon h = 2

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.785 0.794 0.871 0.801 0.804 0.768 0.835 0.895
0.25 0.904 0.934 0.962 0.916 0.926 0.925 0.918 1.202
0.5 0.985 0.997 1.019 0.991 0.998 1.007 0.995 1.395
0.75 1.018 1.005 1.077 1.012 1.037 1.086 1.049 1.570
0.95 1.073 1.034 1.166 1.063 1.108 1.156 1.131 1.872

Horizon h = 4

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.744 0.773 0.841 0.797 0.818 0.767 0.834 0.871
0.25 0.892 0.912 0.940 0.902 0.912 0.914 0.906 1.181
0.5 0.980 0.987 1.019 0.982 0.991 1.015 0.994 1.399
0.75 1.022 1.004 1.091 1.012 1.043 1.104 1.061 1.611
0.95 1.077 1.048 1.194 1.079 1.123 1.203 1.163 1.998

Horizon h = 8

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
0.05 0.621 0.601 0.789 0.732 0.749 0.774 0.790 0.966
0.25 0.911 0.927 0.937 0.909 0.910 0.942 0.910 1.185
0.5 0.986 0.989 1.050 0.988 1.008 1.055 0.997 1.396
0.75 1.048 1.014 1.117 1.038 1.075 1.145 1.088 1.658
0.95 1.130 1.079 1.236 1.133 1.179 1.274 1.234 2.123

Notes: Entries are percentiles of distributions of relative RMSFEs over the 14 variables being forecasted, by
series, at the 1-, 2-, 4- and 8-quarter ahead forecast horizon. RMSFEs are relative to the AR(1) forecast RMSFE,
and are computed using a fixed window of 100 in-sample observations (rolling). All forecasts are direct.
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Table C6: Multivariate weighted mean squared forecast error, for each estimator and forecast
horizon, rolling forecasts, 222 selected series

h = 1 h = 2 h = 4 h = 8
SBL 0.920 0.914 0.865 0.876
SNS 0.928 0.962 1.072 0.856
LASSO 0.993 1.039 1.192 1.174
SSVS 0.932 0.987 1.134 0.927
BMA 0.989 1.053 1.218 1.150
BAG 0.931 0.910 0.868 0.902
DFM5 0.932 0.892 0.911 0.837
OLS 1.074 1.067 1.248 1.511

Notes: Entries in this table report the multivariate weighted mean squared forecast error of each method relative
to the AR(1); see Christoffersen and Diebold (1998) for more details.

Table C7: Two Measures of Similarity of Forecast Performance, rolling forecasts, h = 1:
Correlation (lower left) and Mean Absolute Difference of Forecasts (upper right), 222 selected
series

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
SBL 0.026 0.054 0.024 0.027 0.092 0.046 0.418
SNS 0.93 0.050 0.028 0.034 0.091 0.054 0.412
LASSO 0.87 0.85 0.056 0.047 0.073 0.059 0.376
SSVS 0.87 0.87 0.81 0.017 0.096 0.042 0.419
BMA 0.86 0.83 0.84 0.97 0.086 0.038 0.408
BAG 0.61 0.51 0.66 0.52 0.59 0.088 0.377
DFM5 0.16 0.03 0.26 0.12 0.20 0.67 0.399
OLS 0.38 0.28 0.40 0.48 0.52 0.46 0.49

Notes: Entries below the diagonal are the correlation between the RMSFEs for the row/column forecasting
methods, computed over the 222 series being forecasted. Entries above the diagonal are the mean absolute
difference between the row/column method RMSFEs, averaged across series.
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Table C8: Hit-rates of the eight estimators, rolling forecasts, 222 selected series

Horizon h = 1

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 10.81 24.32 3.15 19.82 8.11 15.32 15.77 2.70
% of lowest RMSFE 10.36 23.42 1.80 16.22 9.01 15.32 20.72 3.15

Horizon h = 2

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 14.41 29.28 2.70 11.71 4.50 16.67 18.02 2.70
% of lowest RMSFE 14.41 28.83 1.80 12.16 4.05 15.77 19.82 3.15

Horizon h = 4

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 13.51 29.73 2.70 13.51 6.31 13.51 19.37 1.35
% of lowest RMSFE 14.41 28.38 3.60 11.26 4.96 8.11 26.58 2.70

Horizon h = 8

SBL SNS LASSO SSVS BMA BAG DFM5 OLS
% of lowest MAFE 14.87 28.83 2.25 9.91 2.25 9.46 31.98 0.45
% of lowest RMSFE 12.16 29.28 3.60 8.11 2.70 9.01 34.23 0.90

Note: This table shows the proportion of times (over the 222 series being forecasted) that each estimator
achieved the lowest value of the MAFE and RMSFE statistics.
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