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Resource Optimization in Multi-Tier HetNets
Exploiting Multi-Slope Path Loss Model

Hamnah Munir, Syed Ali Hassan, Haris Pervaiz, Qiang Ni, and Leila Musavian

Abstract—Current resource allocation techniques in cellular
networks are largely based on single-slope path loss model,
which falls short in accurately capturing the effect of physical
environment. The phenomenon of densification makes cell pat-
terns more irregular therefore the multi-slope path loss model
is more realistic to approximate the increased variations in
the links and interferences. In this paper, we investigate the
impacts of multi-slope path loss models, where different link
distances are characterized by different path loss exponents.
We propose a framework for joint user association, power and
subcarrier allocation on the downlink of a heterogeneous network
(HetNet). The proposed scheme is formulated as a weighted
sum rate maximization problem, ensuring the users’ quality-
of-service (QoS) requirements namely, users’ minimum rate,
and the base stations’ (BSs) maximum transmission power. We
then compare the performance of the proposed approach under
different path loss models to demonstrate the effectiveness of
dual-slope path loss model in comparison to single-slope path loss
model. Simulation results show that the dual-slope model leads to
significant improvement in network’s performance in comparison
to the standard single-slope model by accurately approximating
the path loss exponent dependence on the link distance. Moreover,
it improves the user offloading from macrocell BS to small cells
by connecting the users to nearby BSs with minimal attenuation.
It has been shown that the path loss exponents significantly
influence the user association lying across the critical radius in
case of the dual-slope path loss model.

Index Terms—Heterogeneous network, weighted sum-rate,
multi-slope path loss model, user association, load balancing,
resource optimization.

I. INTRODUCTION

To manage the exponential growth of wireless data traffic
[1] and to enable the high data rates, network densification
has drawn tremendous attention in the future fifth generation
(5G) networks [2]. Heterogeneous networks (HetNets) realize
densification by deploying low-powered BSs to complement
the conventional cellular network. HetNets have a great poten-
tial to cope with the proliferation of wireless data traffic by
allowing the fusion of technologies, frequency bands, diverse
cell sizes and network architectures [3], [4]. HetNets ensure
significant enhancement in the overall network performance
complemented with high data rates and expanded cell cov-
erage. Nevertheless, these advantages come along with new
technical challenges which include hardware expenses, user
association, interference management, radio resource manage-
ment and energy efficiency (EE) [5], [6]. In order to optimize
radio resources, some frameworks are proposed in [7], [8].
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The mixed deployment of macrocell and small cells has
potential to improve the performance of the network [9].
Numerous works have focused on maximizing the data rates
and EE of HetNets. In this regard, a framework for cell
association to maximize the sum rate of the downlink of a
HetNet is proposed in [10]. An upper bound on the sum rate
is derived by investigating load balancing and interference as a
tradeoff, using convex optimization. In [11], the downlink sum
capacity and fairness were analyzed to improve the offloading
in HetNets using inter-cell interference coordination and cell
range expansion. In [12], authors proposed a framework which
allows the femtocell BSs to maximize the data rates of their
home users by opting the frequency band either from the
mmWave and the sub-6 GHz followed by the energy efficient
macrocell user association. A low-complexity sub-optimal
resource allocation algorithm to maximize the EE for downlink
orthogonal frequency division multiple access (OFDMA) in
multiple radio access technology (RAT) networks is proposed
in [13]. The proposed scheme delivers the performance close
to an optimal method with less complexity. In [14], a separa-
tion architecture to reduce the power consumption in a two-
tier HetNet is evaluated, using stochastic geometric model. In
comparison to the conventional macrocell BS, the proposed
architecture reduces the energy consumption by more than
50% by separating coverage BSs and traffic BSs. A tradeoff
function is derived between spectrum efficiency and EE with
the known interference scenario, using bargaining co-operative
optimization framework in [15].

The main benefits of small cell deployment in a macrocell
include the improvements in data rates and EE of the network.
However, small cells with smaller coverage range, allow small
cell BSs to communicate at lower powers which limits the
fraction of users connected to them, resulting in congestion
at the macro-tier. Thus, load balancing is a challenging issue,
which needs to be addressed in order to realize the benefits
of HetNets in a best possible way. To manage the high user
density and to increase the capacity, it is desirable to shift the
traffic load from the macrocell to the small cells. Various load
balancing techniques are studied to offload the traffic from
macro-tier [16], [17]. One promising way to provide this is
through static cell biasing that allows users to offload to small
cells using a biased measured signal. This suboptimum of-
floading technique is known as cell range expansion. However,
the traffic demand in hot spots in the dense networks often
varies with time, which calls to dynamically adjust the biases,
resulting in enhanced load balancing gains [18], [19].

Most of the existing works on the performance analysis
of cellular networks, specially the ones using optimization
theory, use single-slope path loss model to characterize the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/81671651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

propagation environment [20]. However, the massive data
traffic and densification in the future wireless network lead
to increasing network irregularities, which, in turn, elevate
the variations in the links significantly [21]. In order to
cater for these variations, many physical factors including
link distances, ground reflections, scattering and interferences,
make path loss modeling a complex task in cellular networks.
The standard path loss models are easy to study and analyze
but they characterize all the links in a cell with a single
path loss exponent (PLE), which lacks precision in a dense
wireless network [22]. Performance degradation occurs as
this model does not capture the dependence of the PLE on
the link distance perfectly [23]. However, in the most recent
works, this trend is shifted towards dual-slope path loss model,
as presented in [24]–[26]. In [24], coverage probability and
network throughput have been analyzed under multi-slope path
loss model on the downlink of a cellular network. In [25], the
authors investigate the path loss model incorporating both LoS
and NLoS transmission in small cell networks and compare
it with standard path loss model. The paper further studies
the impact of dual-slope path loss model on the coverage
probability with varying small cell densities. This work was
extended to user association in HetNets using dual-slope path
loss model, in [26], which analyzed the effectiveness of biasing
and uplink/downlink decoupling with dual-slope model on user
association. This migration to dual-slope model is influenced
by network densification and millimeter wave (mmWave) com-
munications. The network densification causes more irregulari-
ties in cell patterns, which affects the interference composition
and thus, the links cannot be accurately approximated by a
single PLE [27], [28]. The use of mmWave spectrum, ranging
from 30-300 GHz, can improve the network performance but
faces many challenges including sensitivity to blocking due
to highly intermittent links [29]–[31]. Dual-slope path loss
model has a great potential to better approximate the line-of-
sight (LoS) and non line-of-sight (NLoS) links, in mmWave
systems, using different PLEs. Considering this simplest path
loss model does not provide the precise dependence between
the PLEs and the link distances, there is a need for more
accurate path loss model to improve the performance in dense
cellular networks, as discussed in [27].

Multi-slope models apply different PLEs for different link
distances, which result in improved performance for dense
networks, as shown in [24]. This model considers different
slopes above and beyond the critical distance, which can be
used to approximate the two regimes of LOS and NLOS links.
The critical distance is the distance where the first Fresnel
zone becomes obstructed and below this distance all links
are LOS. This distance is also known as breakpoint distance
where the slope changes and it can be calculated as given in
[21], [32]. This distance is highly dependent on the antenna
height and the Fresnel clearance zone starts expanding with
the increase in the antenna height. This is because the increase
in the antenna height pushes the obstructions in the Fresnel
zone farther. In addition to the antenna height, this distance
is slightly dependent on the environment as well [33]. In
case of mmWave communication, this distance is environment

dependent random variable, which increases with low blocking
environment, but can be approximated by taking the average
LOS link distance [34]. The dual-slope model was first studied
for LOS environment for free space reference distance model
in [35] and for indoor scenario in [36]. In [37], a dual-slope
model has been proposed to reduce the root mean square
(RMS) error between the local mean path loss samples and
the path loss model, for NLOS environment.

According to the best of our knowledge, the resource
allocation technique in a HetNet exploiting dual-slope path
loss model has not presented previously and there is no work
in the literature that analyzes the network performance under
difference slopes in different tiers of a HetNet, simultaneously.
Most of the recent work on dual-slope path model have
considered single-tier networks [22], [24], [25], [38]. Different
from the existing works, this paper presents the analysis of
the proposed resource optimization framework under different
combinations of single-slope and dual-slope path loss models
in a two-tier network.

Highlighting the importance of using an accurate approxi-
mation of links in dense networks [24]–[27], this paper formu-
late a joint user association, subcarrier and power allocation
to maximize the weighted sum rate of a HetNet multi-tier
downlink, while satisfying constraints on the BSs’ transmis-
sion power and users’ quality-of-service (QoS) requirements.
The proposed framework utilizes both single-slope and dual-
slope path loss models. For better tractability, we transform the
weighted sum rate maximization problem into a minimization
problem using time sharing relaxation. We then prove that
the transformed optimization problem is convex with respect
to transmit power and subcarrier allocation variable using
Hessian matrix. The optimal solution to the proposed optimiza-
tion problem is derived by exploiting Karush–Kuhn–Tucker
(KKT) conditions. The main contributions of this paper can
be summarized as follows:

• We aim to maximize the weighted sum rate in the down-
link of a multi-tier HetNet while considering user QoS re-
quirement and maximum transmission power constraints.
In contrast to the existing works such as [24]–[27], which
highlight the importance of multi-slope model and ana-
lyze coverage probability, our objective is to propose and
analyze the QoS aware resource optimization framework
incorporating multi-slope path loss model in a multi-tier
HetNet.

• The proposed framework is evaluated under different path
loss models and we prove that dual-slope model improves
the sum rate and EE of the network in comparison to the
single-slope model. Since dual-slope model offloads the
users to the closest BSs due to minimal attenuation, which
increases the received signal strength, better data rate can
be achieved. As a result of better approximation of links
in dual-slope model, the power consumption reduces and
EE improves.

• The user association and load balancing is analyzed and
we show that when dual-slope path loss model is applied
on small cells, the users connect to the nearby small
cell BSs due to reduced attenuations and smaller PLE.
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Furthermore, we investigate the impact of PLEs on the
performance of the network exploiting dual-slope path
loss model and prove that the larger the NLoS PLE of
a tier, the larger the attenuation and more users, residing
outside the critical radius, offload to other tier. In essence,
we show that the dual-slope model is beneficial for load-
balancing in dense networks.

• The performance of a multi-tier HetNet using power
minimization and weighted EE maximization techniques
is also analyzed, under both single-slope and dual-slope
path loss models. We prove that the dual-slope model
performs better than standard single-slope model in all
approaches.

The rest of this paper is organized as follows. In Section
II, we present the system model of the proposed framework
and introduce the path loss models. In Section III, we formu-
late joint subcarrier and power allocation on the downlink of
a multi-tier HetNet as an objective function maximizing the
weighted sum rate. Section IV shows the simulation results to
demonstrate the performance of proposed scheme under single
and dual-slope path loss models and Section V generalizes
the conclusion drawn in the dual-slope case along with the
concluding remarks.

II. SYSTEM MODEL

Consider the downlink of a two-tier HetNet composed of
M − 1 picocell base stations (PBSs) overlaid on a macrocell.
The macrocell base station (MBS) is represented by mo

whereas the set of all the base stations (BSs) in the system

is given as M = {mo,m1, ...,mM−1}. Let N =
M−1⋃
m=0

Nm be

the set of all users deployed uniformly over the entire area
where Nm represents the set of users connected to the mth

BS. The bandwidth, B, is equally divided among K identical
subcarriers where K = {1, 2, 3, ...,K} be the set of all the
subcarriers.

A snapshot of a two-tier HetNet consisting of picocells
overlaid on a macrocell, with users uniformly scattered over
the entire area, is shown in Fig. 1. Fig. 1(a) shows the scenario
where all BSs use single-slope path loss model. On the other
hand, Fig. 1(b) shows the scenario where MBS operates on
single-slope path loss model, whereas all PBSs operate on a
dual-slope path loss model. Fig. 1(c) shows the scenario where
MBS operates on dual-slope path loss model, whereas all PBSs
operate on single-slope path loss model. Fig. 1(d) shows the
scenario where all BSs use dual-slope path loss model. These
path loss models are explained in detail in Section II-A.

To maintain the QoS requirements of the users, a con-
straint on the minimum achievable rate is applied. We assume
that the minimum required rate is identical for all users and
is equal to Rmin. Let ρn,m[k] ε {0, 1} denote the subcarrier
allocation. If the subcarrier k of the mth BS is assigned
to the nth user, ρn,m[k] = 1, otherwise ρn,m[k] = 0. The
instantaneous achievable data rate (b/s/Hz) of the nth user
associated with BS m on each subcarrier k is given as

rn,m[k] = ρn,m[k]log2(1 + γn,m[k]pn,m[k]), (1)

Macro BS

Pico BS

(a) Single-slope model in both macro-tier and
pico-tier

Macro BS

Critical radius (Pico cell)

Pico BS

(b) Single-slope model in macro-tier and dual-
slope model in pico-tier

Macro BS

Critical radius (Macrocell)

Pico BS

(c) Dual-slope model in macro-tier and single-
slope model in pico-tier

Macro BS

Critical radius (Macrocell)

Critical radius (Pico cell)

Pico BS

(d) Dual-slope model in both macro-tier and pico-
tier

Figure 1: A two-tier heterogeneous cellular network.

where pn,m[k] represents the power allocated to the kth

subcarrier for the user n at the BS m. Here, γn,m[k] is the
channel-to-noise ratio (CNR) of the nth user associated with
the mth BS on the subcarrier k and is defined as

γn,m[k] =
|hn,m[k]|2

N0L(dn,m)
, (2)

where hn,m[k] represents the channel gain of the nth user
from the mth BS on the subcarrier k and L(dn,m) is the path
loss between user n and BS m.
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If user n is associated with BS m, then the total achiev-
able rate of the user n over all the allocated subcarriers is
given as

Rn =
∑
m∈M

∑
k∈K

rn,m[k]. (3)

A. Propagation Models

In this section, we present different path loss models to
characterize the large scale fading in a network.

Definition 1 - Single-slope Path Loss Model: The
single-slope path loss model, L1(d), is given as

L1(d)[dB] = 20 log

(
4π

λc

)
+ 10α log(d) + ξ, (4)

where d is the distance in meters, λc corresponds to the carrier
wavelength and α is the PLE. In (4), ξ is a Gaussian random
variable (RV) with zero mean and σ2 variance representing
shadow fading. The single-slope path loss model generally
falls short in accurately capturing the PLE dependence on the
physical environment in dense and millimeter wave capable
networks. These limitations lead to the consideration of dual-
slope path loss model, which is described below.

Definition 2 - Dual-slope Path Loss Model: The dual-
slope path loss model is given by [26], [35]

L2(d)[dB] =


β + 10α0 log10(d) + ξ d ≤ rc

β + 10α0 log10(rc)

+10α1 log
(
d
rc

)
+ ξ d > rc

, (5)

where rc is the critical radius of a cell, in meters. β represents
the floating intercept, α0 and α1 are the PLEs for below and
beyond rc.

Definition 3 - N-slope Path Loss Model: The N -slope
path loss model is given as [24]

L(d)[dB] =



l1(d) = β + 10α0 log10(d) + ξ 0 < d ≤ r(1)
c

l2

(
r

(1)
c , d

)
= l1

(
r

(1)
c

)
+

10α1 log
(

d

r
(1)
c

)
r

(1)
c < d ≤ r(2)

c

l3

(
r

(1)
c , r

(2)
c , d

)
= l2

(
r

(1)
c , r

(2)
c

)
+10α2 log

(
d

r
(2)
c

)
r

(2)
c < d ≤ r(3)

c

...
...

lN

(
r

(1)
c , r

(2)
c , . . . , r

(n)
c , d

)
=

lN−1

(
r

(1)
c , r

(2)
c , . . . , r

(n)
c

)
+

10αn log
(

d

r
(n)
c

)
d > r

(n)
c

,

(6)
where αn, n = {0, 1, .., N−1}, is the PLE such that 0 ≤ α0 ≤
α1 ≤ ... ≤ αN−1. The critical distance is denoted as rc(n),
n = {0, 1, .., N − 1}, such that rc(0) ≤ rc(1) ≤ ... ≤ rc(N−1).
This model can be reduced to dual-slope path loss model with
N = 2.

Table I: The notations for different parameters used in this
study.

Parameter Symbols
Set of Tiers I
Set of BSs M

Set of Users N
Set of Users associated with mth BS Nm

Index Set of Sub-carriers K
Distance between nth user and mth BS dn,m

Transmit Power pn,m[k]

Channel Gain hn,m[k]

Channel-to-noise Ratio γn,m[k]

Subcarrier Allocation Indicator ρn,m[k]

nth User Weight ωn
ith tier Biasing Factor θi

Critical Radius rc
Path Loss Exponent (Single-Slope) α

Path Loss Exponents (Dual-Slope) [α0, α1]

Path Loss Exponents (N-Slope) [α0, ..., αN−1]

Floating intercept β

Minimum Rate Threshold Rmin

mth BS Power Budget Pmax
m

III. PROPOSED WEIGHTED SUM RATE MAXIMIZATION
SCHEME: AN OPTIMIZATION APPROACH

In this section, we propose a joint user association,
subcarrier and power allocation scheme to maximize the
weighted sum rate on the downlink of a two-tier HetNet. In
this approach, we formulate weighted sum rate maximization
as a single objective optimization problem (SOP) subject to the
BSs’ maximum transmission power consumption and users’
minimum achievable rate. The performance of the proposed
approach is then evaluated under different path loss models.
The SOP is given as follows

max
ρ,p

∑
m∈M

∑
n∈N

ωn
∑
k∈K

ρn,m[k]log2(1 + γn,m[k]pn,m[k]),

s.t. C1 :
∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k] ≤ Pmax
m , ∀m.

C2 : Rn ≥ Rmin, ∀n.

C3 :
∑
n∈N

ρn,m[k] ≤ 1, ∀k,m.

C4 : ρn,m[k] ∈ {0, 1}, ∀n, k,m.

(7)
where ωn represents the weight of the nth user such that
0 ≤ ωn ≤ 1. Here, C1 limits the maximum transmission
power of each BS to Pmax

m . The Constraint C2 ensures that each
user gets at least the minimum required rate, i.e, Rmin. The
constraints C3 and C4 ensure exclusive subcarrier allocation
at each BS such that each subcarrier can only be assigned to
one user at each BS. This above problem can be reduced to
rate maximization problem by using ωn = 1.
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The maximization problem in (7) is a mixed integer
programming (MIP) problem due to binary and continuous
variables and is generally NP-hard. This optimization problem
is also not convex with respect to (ρn,m[k], pn,m[k]). In order
to achieve the convexity, we reformulate the optimization prob-
lem, as in [39], by replacing xlog2(1 + y) with xlog2(1 + y

x ),
which is now convex in (x, y). The optimization problem in
(7) becomes convex minimization problem and given as

min
ρ,p

−
∑
m∈M

∑
n∈N

ωn
∑
k∈K

ρn,m[k]log2

(
1 +

γn,m[k]pn,m[k]

ρn,m[k]

)
,

s.t. C1 :
∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k] ≤ Pmax
m , ∀m.

C2 : Rn ≥ Rmin, ∀n.

C3 :
∑
n∈N

ρn,m[k] ≤ 1, ∀k,m.

C4 : ρn,m[k] ∈ [0, 1], ∀n, k,m.

(8)

Here, the constraint C4 is relatively relaxed as the vari-
ables are now continuous i.e., ρn,m[k] ∈ [0, 1] by using time
sharing and hence the optimization problem is convex. The
convexity of the objective function with respect to optimiza-
tion variables ρn,m[k] and pn,m[k] is proved. The proof of
convexity is given in detail in Appendix A. The Lagrangian
of the objective function in (8) can be written as

L = −
∑
m∈M

∑
n∈N

ωn
∑
k∈K

ρn,m[k]log2

(
1 +

γn,m[k]pn,m[k]

ρn,m[k]

)
+
∑
m∈M

λm

(∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k]− Pmax
m

)
+
∑
n∈N

ηn (Rmin −Rn) +

∑
m∈M

∑
k∈K

αm,k

(∑
n∈N

ρn,m[k]− 1

)
+
∑
m∈M

∑
n∈N

∑
k∈K

µn,m,k

(0− ρn,m[k]) +
∑
m∈M

∑
n∈N

∑
k∈K

νn,m,k(ρn,m[k]− 1),

(9)
where ~λ = {λ0, λ1, ..., λM−1} and ~η = {η1, η2, ..., ηN} are
the Lagrange multiplier vectors associated with the maxi-
mum transmit power and minimum required rate constraints,
respectively. The parameters ~α = {α1,1, α1,2, ..., αM−1,K},
~µ = {µ1,1,1, ..., µN,M−1,K} and ~ν = {ν1,1,1, ..., νN,M−1,K}
are the Lagrange multiplier vectors associated with the exclu-
sive subcarrier allocation at each BS. The above equation can
be written, after few mathematical manipulation, as

L = −
∑
m∈M

∑
k∈K

ρn,m[k]

[∑
n∈N

ωnlog2

(
1 +

γn,m[k]pn,m[k]

ρn,m[k]

)
+

ηnlog2 (1 + γn,m[k]pn,m[k])

]
+
∑
m∈M

∑
n∈N

∑
k∈K

λmpn,m[k]ρn,m[k]+

∑
m∈M

λmP
max
m +

∑
n∈N

ηnRmin +
∑
m∈M

∑
k∈K

αm,k

( ∑
n∈Nm

ρn,m[k]− 1

)
+
∑
m∈M

∑
n∈Nm

∑
k∈K

µn,m,k(0− ρn,m[k]) +
∑
m∈M

∑
n∈N

∑
k∈K

νn,m,k

(ρn,m[k]− 1)
(10)

The optimal solution must satisfy the KKT conditions
[40]. By taking the derivative of (10) w.r.t ρn,m[k], we have

∇ρn,m[k]L = −ωn
[

log2

(
1 +

γn,m[k]pn,m[k]

ρn,m[k]

)
−

γn,m[k]pn,m[k]

ln2 (ρn,m[k] + γn,m[k]pn,m[k])

]
− ηnlog2(1 + γn,m[k]

pn,m[k]) + λmpn,m[k] +
(
αm,k − µn,m,k + νn,m,k

)
= 0,

(11)

Now, by taking the derivative of (10) with respect to
Lagrange multipliers associated with subcarrier assignment,
we get

αm,k∇αm,k
L = αm,k

(∑
n∈N

ρn,m[k]− 1

)
= 0, (12)

µn,m,k∇µn,m,k
L = µn,m,k(0− ρn,m[k]) = 0, (13)

νn,m,k∇νn,m,k
L = νn,m,k(ρn,m[k]− 1) = 0. (14)

Eq. (11) can be rewritten as

ζn,m[k] = ωn

[
log2

(
1 +

γn,m[k]pn,m[k]

ρn,m[k]

)
−

γn,m[k]pn,m[k]

ln2 (ρn,m[k] + γn,m[k]pn,m[k])

]
+ ηnlog2(1 + γn,m[k]

pn,m[k])− λmpn,m[k] = αm,k − µn,m,k + νn,m,k.
(15)

Using (13) and (14), we can say that the kth subcarrier
is assigned to the nth user by the mth BS when ρn,m[k] = 1,
giving µn,m,k = 0 and νn,m,k ≥ 0. Whereas, ρn,m[k] < 1
shows that the subcarrier k is not assigned to the nth user,
therefore µn,m,k = 0 and νn,m,k = 0. Thus,

ζn,m[k]− αm,k =

{
≥ 0 ρn,m[k] = 1,
= 0 ρn,m[k] < 1.

(16)

From (12) and (16), it can be concluded that αm,k is
a constant for kth subcarrier at the mth BS and the kth

subcarrier must be assigned to the nth user associated with
the mth BS, which maximizes

nm = arg max
n

{ζn,m[k]− αm,k}, ∀n ∈ N. (17)

For ρn,m[k] = 1, (17) becomes similar as solving

nm = arg max
n

{
ωn [log2(1 + γn,m[k]pn,m[k])]

}
, (18)

where rn,m[k] = log2(1 + γn,m[k]pn,m[k]) when the value of
ρn,m[k] = 1.

Thus, from (18), the subcarrier assignment can be deter-
mined as

ρn,m[k] =

{
1, nm = arg max

n
{ωn(rn,m[k])}

0, otherwise.
(19)
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Now, by taking the derivative of (10) w.r.t pn,m[k] gives

∇pn,m[k]L = −γn,m[k]

ln2

[
ωn

1 +
γn,m[k]pn,m[k]

ρn,m[k]

+

ηn
(1 + γn,m[k]pn,m[k])

]
+ λmρn,m[k] = 0,

(20)

Using (20), the optimal power for the nth user on the kth

subcarrier associated with the mth BS , for a given subcarrier
allocation, is given as

pn,m[k] =


(
ωn + ηn

ln2
(
λm
) − 1

γn,m[k]

)+

, if(ρn,m[k] = 1)

0, otherwise,
(21)

where [x]+ = max(0, x).
The expression for optimal power allocation on each

subcarrier has a semi-closed form in terms of Lagrangian
multipliers. From (21), we can say the given power allocation
is a modified water filling solution, where γn,m[k] is the
channel gain and water level are determined by Lagrangian
multipliers. These multipliers must satisfy KKT conditions.

The Lagrangian multipliers can be updated according to

λm(i+ 1) =

[
λm(i)− s1√

i

(∑
n∈N

∑
k∈K

pn,m[k]− Pmax
m

)]+

,

(22)

ηn(i+ 1) =

[
ηn(i)− s2√

i
(Rmin −Rn)

]+

, (23)

where i is the iteration number and sj = 0.1√
i
, j ∈ {1, 2}.

This process of computing optimal power and subcarrier
allocation along with Lagrangian multipliers are updated until
convergence is achieved, guaranteeing optimal solution.

The complexity of the proposed approach to solve
(8) is O(M × K × N) and with the accuracy re-
quirement of δ = 10−3, the complexity becomes
O
(
I ×M ×K ×N × log2( 1

δ )
)

where I is the number of
iterations required until the algorithm converges. We observe
that the proposed scheme has polynomial time complexity.
The complexity of the proposed scheme is low in comparison
to the complexity of the exhaustive search over all possible
combinations.

A. Power Minimization Approach

For power minimization approach, the minimum achiev-
able rate constraint for each user is met with equality, i.e.,
Rn = Rmin. The optimal water level (inverse) for achieving
Rmin can be computed, using water filling equations, as

ηn =

2−Rmin
∏

k∈|Kn|

γn,m[k]

 1
|Kn|

, (24)

where |Kn| = {k ∈ K : γn,m[k] > ηn} is the subset of active
subcarriers for user n. More details about calculating ηn can

Table II: Simulation Parameters.

Parameter Value Parameter Value
α0(Pico-tier) 2 α1(Pico-tier) 3

α0(Macro-tier) 2.7 α1(Macro-tier) 3.9

α 3 β 38.45 dB
σξ 6.9 dB fc 2 GHz

be found in Appendix B. The power allocation can be done
using water level (inverse) ηn as

pn,m[k] =

[
1

ηn
− 1

γn,m[k]

]+

. (25)

For a given subcarrier assignment, the optimal power can
be calculated as

p∗n,m[k] = min{pn,m[k], pn,m[k]}, (26)

where pn,m[k] is given by (21).

B. Weighted EE Maximization Approach

In this approach, the water level (inverse), when weighted
EE is maximized without minimum rate constraint, is given
as

η
m

=
W (xm.e

ym−1)

xm
, (27)

where W (.) represents the Lambert function [41]. The proof is
given in Appendix C. Using the above water level, the power
allocation can be computed as

p
n,m

[k] =

[
ωn
η
m

− 1

γn,m[k]

]+

. (28)

The optimal power, for a given subcarrier allocation,
becomes

p∗n,m[k] = max
(

min
(
pn,m[k], p

n,m
[k]
)
, pn,m[k]

)
. (29)

IV. SIMULATION RESULTS

We consider a two-tier HetNet where a single macrocell
is located at the center and M − 1 picocells are uniformly
deployed over an area of 1000 × 1000 square meters. The
users are also uniformly scattered over the entire area. The
maximum transmit power of MBS and PBS is set to 46
dBm and 30 dBm, respectively, whereas, the circuit power
is considered to be 0.4 W and 0.1 W for MBS and PBS,
respectively. The minimum acceptable data rate, Rmin, for each
user is 4 b/s/Hz, whereas the power spectral density of noise
is −174 dBm/Hz. The weight of each user is set fixed to 1/N ,
where N is the total number of users. The parameters for path
loss models are listed in Table II [38], unless stated otherwise.

The relationship between the fraction of the users asso-
ciated with pico-tier and density of PBSs is demonstrated in
Fig. 2. As the density of PBSs increases, the offloading to
pico-tier increases because the distances between the users
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Figure 2: Fraction of users associated with pico-tier across
varying PBSs density, MBS density is held constant at 1
MBS/sq km. N = 30, K = 128, Rmin = 4 b/s/Hz,
rc(macrocell) = 375 m, rc(picocell) = 40 m and θ1 = θ2 = 0
dB.

Figure 3: Weighted sum rate across varying PBSs density
whereas, MBS density is held constant at 1 MBS/sq km.
N = 30, K = 128, Rmin = 4 b/s/Hz, rc(macrocell) = 375 m,
rc(picocell) = 40 m and θ1 = θ2 = 0 dB.

and the PBSs decreases and more users tend to choose PBSs
due to improved received power. This figure also compares the
offloading performance of the network while exploiting single-
slope and dual-slope path loss models. The figure shows that
the offloading to pico-tier is minimum when dual-slope model
is used in macro-tier only. This is because the users residing
within the critical radius of the macrocell prefer MBS over
PBSs because smaller PLE is used within the critical radius of
the macrocell, resulting in reduced attenuation. This offloading
becomes maximum when dual-slope model is applied only
on pico-tier, as more users are pushed toward nearby PBSs
with less attenuated coverage region. The user offloading to
pico-tier is comparatively small when the dual-slope model is
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Figure 4: Weighted sum rate and fraction of users associated to
pico-tier across varying critical radius of picocell for N = 25,
M = 6, K = 128, Rmin = 4 b/s/Hz, rc(macrocell) = 375 m
and θ1 = θ2 = 0 dB.

applied on both tiers as compared to the previous case. This
is because some users might come within the critical radius
of both picocell and macrocell at a time and prefer MBS over
PBS.

We can observe another advantage of dual-slope model
that it pushes the user to the closest BS so that it does not
have to be an edge user. Although, user can be at the edge
with respect to some BSs but for some other nearly located
small cell BS, it won'’t be an edge user. In essence, the dual-
slope model reduces the number of edge users in comparison
to the single-slope model by offloading the majority of users to
the closest BSs, and thus improves the network performance.

Fig. 3 represents the effect of PBS density on weighted
sum rate. The figure shows an increasing trend in the weighted
sum rate with the increase in the density of PBSs. This is
because of the fact that the increase in PBS density decreases
the distances of the users from the PBSs, which decreases
the path losses, thus resulting in the improved data rates. The
figure shows that the performance of the scheme exploiting
dual-slope model in both tiers and the scheme with dual-slope
model in pico-tier only is very close. The difference between
these schemes is the path loss model in macro-tier whereas,
both schemes have dual-slope model in pico-tier. We observe
that the effect of dual-slope model on macro-tier is negligible,
this is mostly due to the fact that the links are long and thus,
mostly links are NLoS. This, in turn, makes blocking effect
less severe in macro environment. On the other hand, the effect
of dual-slope model in pico-tier is significant due to short link
distances. As both schemes have dual-slope model in pico-tier,
which dominates the overall behaviour due to higher density
of PBSs relative to MBS and thus, both schemes show close
performance.

The impact of critical radius of the picocell on the
performance of the network for fixed number of users and
BSs is shown in Fig. 4. As the critical radius of the picocell
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Figure 5: Weighted sum rate and fraction of users associated to
pico-tier across varying critical radius of picocell for N = 50,
M = 8, K = 128, Rmin = 4 b/s/Hz, rc(macrocell) = 375 m
and θ1 = θ2 = 0 dB.

increases, more users start entering within the critical radius,
the attenuation decreases due to smaller PLE and the users
residing within rc prefer PBSs over MBS. As a result of
lower path losses and increased received power, the sum rate
increases with the increase in rc. However, the increasing
trend in the sum rate is sharp in the beginning and then
it starts slowing down with further increase in rc. This is
because of the fact that as rc increases, the user offloading to
pico-tier increases but the distance between the PBSs and the
users increases and the approximation of LoS links within the
critical radius of picocells start affecting. This figure further
reveals that the sum rate for the scheme with dual-slope
model only in pico-tier is better as more users are offloading
from macro-tier and the performance of the network improves.
However, after rc = 60 m, the sum rate of the scheme with
dual-slope model in pico tier only decreases as compared to
the scheme with dual-slope model in both tiers due to affected
link approximation in picocells.

Fig. 5 shows the significance of PLEs of the dual-slope
model in a network. This figure assumes dual-slope path
loss model in pico-tier and single-slope path loss model in
macro-tier. As can be seen from the figure that the case
where the PLEs of the pico-tier are smaller, rates are better.
This is because the smaller values of PLEs represent less
obstruction and attenuation, which decrease the path losses
and increase the received power which, in turn, increases the
rates. The fraction of users connected with pico-tier is higher
for smaller PLEs as they induce reduced attenuation in pico-
tier. The figure shows that the worst case happens when both
tiers experience approximately same PLEs. This is because
the links are approximated using same PLEs in both tiers
but both have different critical radii and these PLEs do not
perfectly characterize the network, which cause performance
degradation.

The user association across varying biasing factor of the
pico-tier is plotted in Fig. 6. Biasing effect is investigated by
varying the bias factor of the pico-tier, θ2, with no biasing for
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Figure 6: Fraction of users associated with pico-tier across
pico-tier biasing factor for N = 25, M = 6, K = 128, Rmin =
4 b/s/Hz, rc(macrocell) = 375 m, rc(picocell) = 60 m and
θ1 = 0 dB.
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Figure 7: Weighted sum rate across pico-tier biasing factor for
N = 25, M = 6, K = 128, Rmin = 4 b/s/Hz, rc(macrocell) =
375 m, rc(picocell) = 60 m and θ1 = 0 dB.

the macro-tier. An increasing trend in user offloading can be
observed with the increasing pico-tier bias factor as biasing
improves the received signal strength originating from PBSs.
The figure reveals that the biasing with both single and dual-
slope models is beneficial for offloading. However, with dual-
slope model in the picocell, this effect is more strong as signal
strength from PBSs is further enhanced due to less attenuated
links.

From Fig. 7, we observe the effect of biasing factor
of pico-tier on the weighted sum rate of the network. The
weighted sum rate for the scheme where single-slope model
is used in both tiers is better than the scheme where dual-slope
model in applied on macro-tier only because of the better user
offloading in the former scheme. However, after θ2 = 20 dB,
the trend changes as the user density at PBSs increases more
than 80 % for the scheme where single-slope model is used
in both tiers. This is because the single slope model does not
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Figure 8: Weighted energy efficiency across pico-tier biasing
factor for N = 25, M = 6, K = 128, Rmin = 4 b/s/Hz,
rc(macrocell) = 375 m, rc(picocell) = 60 m and θ1 = 0 dB.
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Figure 9: Weighted EE across varying minimum rate threshold
for N = 30, M = 8, K = 128, rc(picocell) = 60 m,
rc(macrocell) = 375 m and θ1 = θ2 = 0 dB.

accurately approximate the high user density at PBSs and the
power budget at PBSs is limited as well and thus, we observe a
decreasing trend in weighted sum rate. The weighted sum rate
in case of other two schemes where dual-slope model is used
in pico-tier decreases with the increase in the biasing factor.
This is due to the fact that as the biasing factor increases,
for the fixed number of PBSs, almost all the users offload to
pico-tier, however, the power budget at PBS is small compared
to MBS, which decreases the received power. This decrease
in received power results in decreased data rates. However,
with the decrease in power consumption, the weighted energy
efficiency shows a huge improvement for these schemes, as
shown in Fig. 8.

Furthermore, we investigated the influence of dual-slope
path loss model on the HetNet, for weighted EE maximization
and power minimization approaches. In Fig. 9, the weighted
EE versus minimum rate threshold for the power minimization
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(a) Weighted sum rate across varying minimum rate threshold
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(b) Weighted EE across varying minimum rate threshold

Figure 10: EE Maximization Approach for N = 30, M = 8,
K = 128, rc(picocell) = 60 m, rc(macrocell) = 375 m and
θ1 = θ2 = 0 dB.

approach is shown. We compare two different schemes using
single-slope and dual-slope path loss models. The sum rate for
both schemes is same, i.e., K ×Rmin, fulfilling the minimum
rate requirement of all users. The weighted EE shows an
increasing trend for all schemes in the beginning, as weighted
sum rate increases with the increase in Rmin and then the trend
reverses. This is because the EE is a trade-off between sum
rate and power consumption and beyond a certain threshold
of Rmin, the effect of power consumption starts dominating
and we observe a decreasing trend in EE. However, the
dominating effect of power consumption arrives relatively late
when dual-slope model is applied. As dual-slope path loss
model better approximates the link compared to single-slope
model, the users associate with nearby BSs and experience
lower path losses. As a result of lower path losses with dual-
slope model, the BSs require less transmit power to fulfill
the fixed minimum rate threshold and power consumption is
relatively small.
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The weighted sum rate and weighted EE of the network
as the minimum rate requirement varies for weighted EE
maximization approach is shown in Fig. 10. We can see an
increasing trend in the weighted sum rate in Fig. 10(a). This is
because as the threshold increases, the achievable rate of each
user improves, which increases the overall sum rate. Figure
shows that the weighted sum rate is maximum when dual-
slope path loss model is applied on pico-tier only as the user
offloading is maximum in this case and users connect with the
nearby PBSs which decreases the distances between the users
and the BSs. This, in turn, increases the rates due to higher
received power. When dual-slope model is applied on both
tiers, the offloading to pico-tier is slightly less as compared to
the previous mentioned scheme and thus, there is a marginal
decrease in sum rate. The offloading to pico-tier is minimum
when dual-slope model is only applied on macro-tier as more
users prefer MBS over PBSs, thereby triggering the under-
utilization of PBSs and we witness a performance degradation
in terms of sum rate in comparison to other schemes.

Fig. 10(b) shows the weighted EE of the system for
weighted EE maximization approach. In the start, the scheme
with the maximum weighted sum rate shows the maximum
weighted EE and the scheme with the minimum weighted sum
rate shows the minimum weighted EE. This trend changes
at higher values of Rmin. As the minimum rate requirement
increases, the total power consumption increases and we
observe a downtrend in EE. This decline in EE comes later for
the scheme where dual-slope path loss model is used solely in
the network as compared to other schemes. This is mainly due
to the fact that the power consumption is less in dual-slope
model case due to lower path losses and better approximation
of links. Hence, at higher values of Rmin, the EE is maximum
with dual-slope model in both tiers as compared to the case
when dual-slope model is observed in pico-tier only.

V. CONCLUSION

In this paper, we analyzed the impact of dual-slope
path loss model on the performance of a downlink HetNet
where different PLEs are used for different ranges. In the
proposed approach, a joint user association, subcarrier and
power allocation is performed to maximize the weighted sum
rate. By analyzing the proposed scheme under different path
loss models, we observe that the dual-slope model shows
significant improvement in data rates and EE in comparison
to the single-slope model, which does not measure the PLE
dependence on the link distance accurately. The dual-slope
path loss model connects the users with the closest BS by
offloading them into the minimal attenuation region using
smaller PLE. The effect of PLEs were also studied and it
has been shown that the users lying within rc undergo lower
path losses with PLE, α0 < 3, in dual-slope model, as
compared to the PLE, α = 3, in single-slope model. We
also observe that the improvement in the performance of the
network is significant for rc ≤ 60 m in picocells due to better
LoS links approximation, whereas the effect of dual-slope
model in macro-tier is not very promising. This paper also
studied weighted EE maximization and power minimization

approaches under dual-slope path loss model. In future, this
analysis may be extended to include channel estimation, which
will be of significant importance in ultra-dense networks.

APPENDIX A
PROOF OF CONVEXITY

Without loss of generality, the objective function in (8)
can be written as

f(ρn,m[k], pn,m[k]) = −ρn,m[k]log2

(
1 +

γn,m[k]pn,m[k]

ρn,m[k]

)
.

(30)

The gradient of (30) can be calculated as

∇f(ρn,m[k], pn,m[k]) = 1
ln2

[
γn,m[k]pn,m[k]

ρn,m[k]+γn,m[k]pn,m[k]

]
− ln

(
1 +

γn,m[k]pn,m[k]
ρn,m[k]

)
− 1

ln2

(
γn,m[k]pn,m[k]

ρn,m[k]+γn,m[k]pn,m[k]

)  .
(31)

The convexity of the objective function in (8) with
respect to the optimization variables pn,m[k] and ρn,m[k] can
be proved by finding the Hessian of f(ρn,m[k], pn,m[k]) as
follows

∇2f(ρn,m[k], pn,m[k]) =
γ2pn,m[k]

ln2 (ρn,m[k] + γn,m[k]pn,m[k])
2

×

[
pn,m[k]
ρn,m[k] −1

−1
ρn,m[k]
pn,m[k]

]
.

(32)

Here, ρn,m[k], pn,m[k] and γn,m[k] are the positive val-
ues, it can be shown that the eigenvalues are non-negative, thus
the Hessian of f(ρn,m[k], pn,m[k]) is positive semi-definite.
Therefore, the objective function is proved convex.

APPENDIX B
In case of power minimization approach given the mini-

mum rate threshold constraint with equality, i.e. Rn = Rmin,
the achievable rate for user n over all active subcarriers is
given as

Rmin =
∑
k∈|Kn|

log2

(
1 + γn,m[k]pn,m[k]

)
. (33)

Hence, considering pn,m[k] ≥ 0, the optimal power
allocation, using water filling criteria, is given as

pn,m[k] =

[
1

ηn
− 1

γn,m[k]

]+

. (34)

By putting (34) in (33), we get

Rmin =
∑
k∈|K|

log2

(
1 +

γn,m[k]

ηn
− 1

)
. (35)

2Rmin =
∏

k∈|Kn|

γn,m[k]

ηn
. (36)
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ηn =

2Rmin
∏

k∈|Kn|

γn,m[k]

 1
|Kn|

. (37)

Hence, the solution to the power minimization problem
is given by (26).

APPENDIX C
The weighted energy efficiency (b/J/Hz) can be defined

as

EE =

∑
m∈M

∑
n∈N

∑
k∈K ωnrn,m[k]

ε
∑
m∈M

∑
n∈Nm

∑
k∈K ρn,m[k]pn,m[k] + PC

, (38)

where ε is the inverse of power amplifier efficiency and PC is
the total circuit power in the network and is defined as

PC = Pm0
c +

M−1∑
i=1

Pmi
c . (39)

The optimal transmit power of the BS m over all subcar-
riers for an energy efficient system is given as

p∗m = arg max
pm∈Pm

φ(pm)

ϕ(pm)
, (40)

where

Pm =

{
pm ∈ R : ϕ(pm) ≤ Pmax

m ,
∑
k∈K

rn,m[k] ≥ Rmin

}
.

(41)

The function φ(pm) is given by,

φ(pm) =
∑
n∈N

∑
k∈K

ωnρn,m[k]ln
(

1 +
γn,m[k]pn,m[k]

Γ

)
,

(42)
where Γ is the SNR gap with respect to the Shannon capacity
[42]. Whereas, ϕ(pm) is defined as,

ϕ(pm) =
∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k] + PC . (43)

The optimization problem in (40) can be transformed into
an equivalent subtractive objective function and we have

U(η
n
) = max

pm

φ(pm)− η
m
ϕ(pm). (44)

Using (42) and (43), the solution of the optimization
problem in (40) can be computed as

∂φ(pm)
∂pn,m[k]

∣∣∣∣
pn,m[k]=p∗n,m[k]

− η
m

∂ϕ(pm)
∂pn,m[k]

∣∣∣∣
pn,m[k]=p∗n,m[k]

= 0,∀n, k.

(45)
ωnγn,m[k]

Γ

1 +
(
γn,m[k]p∗n,m[k]

Γ

) − η
m

= 0. (46)

Rearranging the above equation, we get

p∗n,m[k] =

[
ωn
η
m

− Γ

γn,m[k]

]+

, ∀ k ∈ K. (47)

After solving (44) and (45) simultaneously and putting
U(η

m
) = 0, the optimal water level is given as

−ln(η
m

) + ym −
∑
n∈N

∑
k∈K

ρn,m[k]ωn = η
m
xm, (48)

where x and y are given as

xm =
1

K

(
PC −

∑
n∈N

∑
k∈K

ρn,m[k]Γ

γn,m[k]

)
. (49)

ym =
1

K

∑
n∈N

∑
k∈K

ωnln
(
ρn,m[k]γn,m[k]ωn

Γ

)
. (50)

The closed form of (48) can be obtained by manipulating
it with (49) and (50). In order to achieve this, we define ξm =
η
m
xm, and (48) becomes

ξm = −ln(η
m

) + ym −
∑
n∈N

∑
k∈K

ρn,m[k]ωn. (51)

Rearranging the above equation, we get

η
m

= exp{−ξm}.exp

{
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn

}
. (52)

Thus, using (52), (48) can be rewritten as

ξmexp{ξm} = xm.exp

{
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn

}
. (53)

Now, using Lambert function W (.), we can write

ξm = W

(
xm.exp

{
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn

})
, (54)

η
m

= exp
{(

ym −
∑
n∈N

∑
k∈K

ρn,m[k]ωn

)
−W

(
xm.exp

{
ym−

∑
n∈N

∑
k∈K

ρn,m[k]ωn
})}

.

(55)
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