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Abstract

In this paper, we explore the role of network topology on maintaining the extensive property

of entropy. We study analytically and numerically how the topology contributes to maintain-

ing extensivity of entropy in multiplex networks, i.e. networks of subnetworks (layers), by

means of the sum of the positive Lyapunov exponents, HKS, a quantity related to entropy.

We show that extensivity relies not only on the interplay between the coupling strengths of

the dynamics associated to the intra (short-range) and inter (long-range) interactions, but

also on the sum of the intra-degrees of the nodes of the layers. For the analytically treated

networks of size N, among several other results, we show that if the sum of the intra-degrees

(and the sum of inter-degrees) scales as Nθ+1, θ > 0, extensivity can be maintained if the

intra-coupling (and the inter-coupling) strength scales as N −θ, when evolution is driven by

the maximisation of HKS. We then verify our analytical results by performing numerical simu-

lations in multiplex networks formed by electrically and chemically coupled neurons.

Introduction

Complex networks are ubiquitous in nature, studied in Physics and other disciplines. They are

composed of different components, which are connected between them in a non-trivial way.

They range from biological networks, such as neural to technological networks, to the internet,

power-grids and transportation, to social and affiliation networks, etc. [1]. A significant point

of interest is to understand the action of the type of coupling in the behaviour of the complex

network. For example, all-to-all coupled dissipative systems can exhibit collective chaotic

behaviour with macroscopic variables showing irregular behaviour due to the interplay of cor-

relations among the different components of the system. These noticeable properties make

them less well understood than systems with short-range interactions [2].

A key factor is the role of chaos, but equally important is the way the various components

of the system are connected between them, by short- or long-range interactions, or all-to-all

connections. It is well-accepted that systems with short-range interactions are characterised by

extensive chaotic behaviour, as conjectured in [3], namely by quantities that grow linearly with
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the increase of the system size N. The main argument is that a sufficiently large spatial domain

can be divided into small, independent subsystems with similar dynamical properties.

A well-established method of characterising chaotic behaviour is the calculation of Lyapu-

nov exponents (LEs), which quantify the rate of divergence of infinitesimally close trajectories

in phase-space [4]. As conjectured by Ruelle in 1982 [3], extensivity can be inferred by study-

ing the scaling properties of the curve of the LEs, λi, after they are ordered in descending order

(i.e. Lyapunov spectrum) and are plotted as a function of their normalised index i/N, with

respect to the system size N. If the curve of the Lyapunov spectrum (for a normalised index)

collapses onto a single asymptotic curve as N grows, then one talks about extensive chaos. This

is indeed true for several examples of systems, such as large, spatially extended dissipative sys-

tems, for generic models of spatiotemporal chaos in one dimensional spaces [5], for locally

coupled systems [6], and for dissipative systems in a random network topology with sparse

connectivity [7, 8].

In contrast to what was found in [5, 6], in higher dimensional spaces or for all-to-all coupled

systems, extensivity as a measure of how a network variable or behaviour scales linearly with the

size of the network, is questioned. It is well-known that for highly dimensional chaotic systems,

nontrivial collective behaviour (e.g. the mean field, or any other field) is observed to evolve peri-

odically, quasi-periodically, or even chaotically in time [5, 7, 9–11]. Since, collective modes are

by definition intensive quantities, i.e. they do not depend on the system size, it would imply that

systems with non-trivial behaviour can not be extensive [5], even though the dynamics of the

network is chaotic. To date, it is still elusive the general scenario of how extensivity appears in

complex networks. According to [2], for identical units submitted to the same self-consistent

forcing, the influence of a given unit on the mean field vanishes in the thermodynamic limit,

suggesting that LEs should become equal, what points to extensive behaviour. These results are

in contrast to the evidence provided by the same authors for LEs of finite-size globally all-to-all

coupled systems that are seen to become unequal, implying non-extensive chaotic behaviour. A

step forward in this subject was provided by the work in [7], where it is shown that the in-degree

(i.e. the number of incoming connections per node) in three classes of random networks with

all nodes possessing equal in-degrees plays an important role to the extensive character of

sparsely and densely connected networks, when the strength of the connection is constant.

In this paper, we explore the role of network topology on maintaining the extensive prop-

erty of entropy. We derive and study an analytical formula for the sum of positive LEs, HKS

(see Eq (12)), a quantity closely related to the entropy in bounded deterministic systems [12–

15], from which one can clearly see the network characteristic conditions for HKS to become

either an extensive, sub- or super-extensive thermodynamic quantity, assuming chaotic behav-

iour in the complex network. We consider networks evolving from an initial multiplex [16–

21] configuration, formed by two layers of nodes connected internally by short-range interac-

tions, to a final network, characterised by a mixture of short- and long-range interactions

interconnecting the two layers. We show that extensivity relies not only, as previously reported

in [5, 9–11], on the interplay between the coupling strengths of the dynamics associated to the

short- and long-range interactions or on the in-degree [7, 8], but also on quantities never

before associated to extensive behaviour: On the sum of the intra-degrees of the nodes of the

layers, or equivalently on the sum of the eigenvalues of the connecting Laplacian matrices of

the layers, and also on the sum of inter-degrees, or equivalently on the total number of inter-

connections. A consequence of our theoretical results is that for networks whose sum of intra-

and sum of inter-degrees both scale as Nθ+1, θ> 0, extensivity can be maintained if the intra-

and inter-coupling strengths scale as N −θ. This scaling was obtained by evolving the network

by a maximisation process for HKS, requiring that as the network grows in size, it preserves the

positiveness of all LEs.
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We then provide numerical evidence that shows that to maintain the extensive character of

entropy in a multiplex network of coupled Hindmarsh-Rose (HR) neurons [22], one needs to

evolve the network by a process that keeps the intra-coupling (electrical) strengths constant

whereas the sum of the intra-degrees of the nodes scales linearly with the number of nodes of

the network, a constrain that is expected from our analytical results from the multiplex net-

works of discrete maps. We consider several initial multiplex network configurations with dif-

ferent sizes composed of non-equal layers of neurons connected by short-range connections

with small-world intra-topologies [23], a structure inspired by the anatomical networks found

in the human brain [24]. For each multiplex network, the evolutionary process adds new,

long-range inter-connections between the layers and finds appropriate coupling strengths to

maximise HKS, maintaining the small-world topology.

Finally, we show for which network characteristics one should expect to find that extensiv-

ity in HKS implies the existence of an invariant curve for the ranked LEs (namely, for the Lya-

punov spectra). Whereas for single networks extensivity typically implies the existence of an

invariant curve for the Lyapunov spectra, in multiplex networks this correspondence can only

exist if certain network characteristics are maintained during network evolution. This result is

relevant since it shows that previous results from the literature (e.g., [3, 25]) for single networks

do not necessarily apply to multiplex networks.

Materials and methods

The calculation of lyapunov exponents

Given a multiplex network G formed by coupled maps with dimensionaity RN with a constant

Jacobian

J ¼ CI � L; ð1Þ

where L represents a Laplacian matrix, C a constant and I the identify matrix, the LEs are

given by

l ¼ log jjJjj; ð2Þ

where ||.|| denotes the absolute values of the eigenvalues μi of the argument, which therefore

implies that each LE can be calculated by

li ¼ log jC � mij; ð3Þ

where μi represents the eigenvalue i of L.

There is an alternative way to calculate the LEs of a map with a constant Jacobian if it pos-

sesses a synchronisation manifold. As shown in [26, 27], due to the fact that the synchronisa-

tion manifold exists and the dynamics in G has a constant Jacobian, the LEs of the

synchronisation manifold and its transversal directions (whose values can be calculated analyt-

ically) are equal to the LEs of the attractors appearing in the dynamics of the multiplex net-

work. Our interest is in the calculation of the LEs of these attractors.

For a linear system of differential equations in RN [28] such as

_~x ¼ C~x � L~x; ð4Þ

with the same Jacobian as in Eq (1), the LEs can be calculated by

li ¼ log ðeC� miÞ; ð5Þ

and therefore for a linear system of differential equations, the LEs are the eigenvalues of J.
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For a system of nonlinear differential equations, the spectrum of LEs is calculated in this

work using the numerical method in Ref. [29].

Network models considered

We consider initially two non-connected layers G1 = (N1, E1) and G2 = (N2, E2), where (N1, N2)

is the set of nodes and (E1, E2) the set of edges. For simplicity, we suppose throughout the

paper, that all networks considered are undirected, i.e., each connection between two nodes is

bidirectional. The network resulting from these two non-connected layers is a new network

(N, E), where N, E are the number of nodes and edges respectively. For the latter network, we

then define l12 to be the number of undirected inter-connections between the two layers G1

and G2 with l12 � N2
1
, where N1 is the number of nodes in G1. We finally define G to be the

multiplex network formed by the two layers and their l12 inter-connections.

Following [27], our first network model we consider is a multiplex network G with dynam-

ics for its nodes described by the shift map

~xnþ1 ¼ 2~xn � L~xn; mod 1 ð6Þ

(discrete multiplex network), where n is the iterations subscript, L = � LB + γα LA with � being

the coupling strength of the intra-connections in G1 and G2, γ the coupling strength of the

inter-connections between G1 and G2, and α = l12/N1. LB ¼
B 0

0 B

 !

is the Laplacian of the

intra-connections and LA ¼
D1 � A

� AT D2

 !

the Laplacian of the inter-connections, where T

stands for the transpose. We consider two identical layers G1 and G2, connected by l12 inter-

connections. Each node in G1 makes an equal number of inter-connections to a corresponding

node in G2.

LB represents the Laplacian of the two uncoupled complex networks and their intra-con-

nections (the Laplacian B) and LA the Laplacian of the inter-connections between the layers.

D1 and D2 represent the identity degree matrices of the adjacency matrices A and AT, respec-

tively. Their components are defined as (D1)ii = ∑j Aij and ðD2Þii ¼
P

jA
T
ij , both with null off-

diagonal terms.

We will also consider continuous multiplex networks of Hindmarsh-Rose (HR) neurons,

G, whose equations of motion are given by

_pi ¼ qi � ap3
i þ bp2

i � ni þ Iext � �
XN

j¼1

LA
ijHðpjÞ � gðpi � VsynÞ

XN

j¼1

AijKðpjÞ;

_qi ¼ c � dp2
i � qi;

_ni ¼ r½sðpi � p0Þ � ni�; i ¼ 1; . . . ;N;

ð7Þ

where H(pi) = pi and KðpjÞ ¼
1

1þe� lðpj � ysynÞ [30]. We use a = 1, b = 3, c = 1, d = 5, s = 4, p0 = −1.6,

r = 0.005 and Iext = 3.25. For these values, each neuron can exhibit chaotic behaviour and the

solution for p exhibits typical multi-scale chaotic behaviour characterised by spiking and burst-

ing activity consistent with the membrane potential observed in experiments on single neu-

rons in vitro [22]. Thus, chaos not only allows the reproduction of behaviours empirically

observed in experiments with single neurons, but also allows the networks to process informa-

tion [31]. We also set θsyn = −0.25, λ = 10 and Vsyn = 2 to create excitatory post-synaptic cou-

plings. In Eq (7), γ is the coupling strength associated to the chemical inter-connections

between neurons of the two layers and � to the electrical intra-connections between neurons
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within G1 and G2. LA accounts for the way neurons are electrically (diffusively) coupled and it

is a Laplacian matrix as defined earlier and A represents the adjacency matrix of the inter-

connections.

Results

Extensivity in the discrete multiplex networks with only positive LEs

From [27] and from Eq (2), the LEs of the discrete dynamical system in Eq (6) are given by

li ¼ log j2 � mij; i ¼ 1; . . . ;N; ð8Þ

where μi are the eigenvalues of L.

Notice also that since map Eq (6) has a constant Jacobian, the quantities calculated in this

work are not affected by the mod function, and therefore, manipulating the trajectory to fall

into [0, 1], what is typically carried out in the study of map lattices, is not necessary here, since

the locations of the points of the trajectory do not affect the analytical derivations.

From the LEs, we can calculate

HKS ¼
X

li>0

li: ð9Þ

Following [17], μi are related to the eigenvalues ωi of the Laplacian B of the subnetwork by

m2i� 1 ¼ �oi;

m2i ¼ �oi þ 2ga;
ð10Þ

where i = 1, . . ., N1.

For a given initial multiplex network G0 with N0 nodes and ~N 0 positive LEs (where

N0 � ~N 0), one way to maintain extensivity in HKS is by keeping constant during evolution the

ratio N0= ~N 0. This necessary requirement is a constrain imposed to the network and maintains

the nature of the Lyapunov spectra. As this network then grows to a network G1 with N1 nodes

(with N1 > N0), we require that N0= ~N 0 ¼ N1= ~N 1, where ~N 1 is the number of positive LEs for

network G1.

Our first analysis will be done considering networks that have only positive LEs, a process

leading to the maximisation of HKS. This network has nodes that are fully de-coherent and

asynchronous, even thought the synchronisation manifold exists. Thus, a natural choice is to

set N0 ¼ ~N 0 and N1 ¼ ~N 1, leading to networks that maintain all LEs positive. Consequently,

as the network grows, � must decrease accordingly so that all LEs of the network are positive.

This choice also allows us to expand log j1 � � oi
2
j and log j1 � � oi

2
� gaj in Taylor expansions,

keeping only up to the first order terms, to obtain Eqs (11) and (12).

To develop understanding about how topology promotes extensivity, sub- or super-exten-

sivity, we start by analysing an isolated network given by one of the two layers, meaning that γ
= 0 and N = N1. In the following, we notice that [32]

XN1

i¼1

oi ¼
XN1

i¼1

di � S;

where di is the intra-degree of node i in G1 or G2. In such a case,

HKS � N1 log ð2Þ �
�

2
S; ð11Þ
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by combining Eqs (8), (9) and (10). In an all-to-all network, S / N2
1

and extensivity in HKS can

be maintained if and � is rescaled by � / 1

N1
. This rescaling is obtained by imposing a number

of N1 positive LEs (which in turn prevents the onset of full synchronisation), which can be

achieved for � > 1

oN1

¼ 1

N1
, according to Eq (8).

Let us consider a circulant graph G now, where every node is connected to k nodes in a reg-

ular way. In this case, S = kN1/ N1, which can be seen as a rough model of a small-world net-

work. In order to maintain extensivity in HKS, � must be kept constant. Moreover, we also

require that � be sufficiently small for the Taylor expansions to be valid. Since the largest eigen-

values of this network scale as 2k [33], and assuming that k is sufficiently large, to maintain all

LEs positive, we require that � > 1

oN1

, or � > 1

2k, regardless of the value of N1.

The choice of �/ N1 would lead to a super-extensive HKS. In this case, the number of posi-

tive LEs is equal to N1, but their intensity is enlarged. Generalising, if we now assume that

S / Nyþ1
1

, θ> 0, extensivity can be maintained if � / N � y
1

(or, in the thermodynamic limit, if

� / N � y� 1
1

, so �S is constant and therefore, limN!1HKS/N is a constant). Thus, supposing

that the growing process imposes that SðN1Þ / Nyþ1
1

, extensivity can be maintained by requir-

ing that �ðN1Þ / N � y
1

. A surprising consequence of our results is that the topology of a network

is not the most important factor to determine extensivity, but rather S, i.e. the sum of intra-

degrees. For example, both regular graphs and Erdős-Rényi random graphs whose S scales as

N, can provide extensive networks if the intra-coupling strengths are made constant. As a con-

sequence, if random networks whose nodes have equal degrees and constant coupling

strengths are considered, as in [7], our work suggests that extensivity could appear in these net-

works if the coupling strength is inversely proportional to the in-degree. Taking as an example

the numerical results shown in Fig 1 of [7], extensivity is found when the coupling strength

g = 0.1 and for in-degree satisfying K> 60, which agrees with our predictions since they would

suggest that extensivity is found for K > b 1

0:1
, where β represents a proportionality constant.

We now study how topology is related to extensivity in multiplex networks. Combining Eqs

(8), (9) and (10), we get

HKS≊N log ð2Þ �
�

2
S0 � gl12; ð12Þ

where S0 = 2S and represents the sum of the degrees of all nodes in the multiplex network. This

makes Eq (12) an implicit function of N that can capture better the characteristics of our simu-

lations on the evolving neural networks.

The previous analysis made for single networks that resulted in Eq (11) remains valid for mul-

tiplex networks (see Eq (12)), with the additional contribution from the inter-couplings, given by

l12 in Eq (12). If � is set to maintain extensivity (i.e. � / N
S0) and the network is growing under the

constrain that l12 / zN1 /
zN
2

, with z/ Nθ (noticing that z< N1) and thus l12/Nθ+1, then exten-

sivity in HKS can be maintained if γz is constant, leading to γ/ N − θ. Sub-extensivity occurs if

γz/ Nθ with θ< 0 and super-extensivity if γz/ Nθ with θ> 0. However, HKS remains super- or

sub-extensive for only a finite and small number of evolution iterations, since the eigenvalues in

Eq (10) are only valid for multiplex network-configurations for which the total number of inter-

connections is smaller than N2
1
, since l12 < N2

1
, resulting therefore to 1< Nθ< N1.

Extensivity in the discrete multiplex networks with positive and negative

LEs

We now consider the case in which the multiplex network of Eq (6) has positive as well as neg-

ative LEs. In particular, we study the case where there is a number u of negative exponents and

Maintaining extensivity in evolutionary multiplex networks
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that the inter-coupling strength γ is responsible for the change in the sign of LEs, i.e., log|2 −
�ωi|> 0 and log|2 − �ωi − 2γα|> 0 (log|2 − �ωi − 2γα|� 0) for i� N1 − u (for i> N1 − u). We

also assume as before that �ωi is small so that we can expand log(1 − �ωi)ffi −�ω, as done previ-

ously in our derivations. However, now we need to assume that the inter-coupling strength is

not arbitrarily small in order to produce negative LEs. Therefore, we use the expansion

log 1 �
�oi
2
� ga

� �
ffi log ð1 � gaÞ �

�oi
2ð1� gaÞ

. We obtain that

HKS≊ ðN � uÞ log ð2Þ �
�

2
S �

�

2ð1 � gaÞ

XN1 � u

i¼1

oi þ ðN1 � uÞ log ð1 � gaÞ; ð13Þ

assuming u is constant. The conclusion is that if the network is evolved by preserving the num-

ber u of negative LEs, then previous arguments for extensivity extend to this type of network if
PN1 � u

i¼1
oi / N. If u is not constant, extensivity can be maintained by evolving the network in

such a way to make u a linear function of N, and therefore, the number of negative LEs must

scale linearly with the size of the multiplex network. The last right-hand term of Eq (13) would

be given by
PN1 � u

i¼1
log ð1 � gaÞ for a non-constant u.

Extensivity in the continuous HR multiplex network

In our analytical derivations from Sec. “Extensivity in the discrete multiplex networks”, we can

control the number of positive LEs of the discrete multiplex network. The same though cannot

be done for our numerical analysis of the multiplex network of HR neurons. However, in our

further numerical simulations, we search for electrical and chemical coupling parameters in

the HR system that maximise the sum of positive LEs.

To check whether a neural network that evolves by a process that maximises HKS remains

extensive, we performed detailed numerical simulations considering two evolving intercon-

nected small-world [23] layers G1 and G2 with Hindmarsh-Rose (HR) dynamics [22] for their

nodes. During evolution, we add, in a random fashion, and retain in G new inter-connections

if they lead to an increase in HKS compared to its value before the addition.

We evolve the dynamics of Eq (7) and calculate all LEs λi, i = 1, . . ., (3N) [34, 35] sorted in

descending order. In more details, following [36], we consider a starting multiplex network G
composed of two layers G1 and G2, connected initially with a single chemical inter-connection.

Nodes in both layers are only electrically connected. Each subnetwork is equipped with a

small-world structure [23], having although different internal connectivities. For us to be able

to compare our numerical results with the analytical one in Eq (12), we consider that both lay-

ers have the same number of nodes. However, to place realism in our simulations, we con-

struct them so that they have different small-world structures. Having a network with a given

total number of nodes N, we fix the values of the inter- and intra-coupling strengths, and then

evolve the starting network G by adding new chemical excitatory inter-connections linking a

node in G1 to a node in G2. The electrical connections in both layers, their topologies and, val-

ues of γ and � are kept fixed and independent of N during evolution. We only increase the

number of inter-connections and thus α. The criterion to whether add a new chemical inter-

connection is based on whether the newly added connection will lead to an increase in HKS

prior to the addition of the inter-connection. If an added inter-connection does not contribute

to an increase in HKS, then the new edge is deleted in G, and the search for another one starts

in an iterative manner, terminating when the maximum number of possible pairs of nodes is

reached. The pairs of nodes in G1 and G2 are chosen randomly, and are equiprobable. We

repeat this evolution process considering the same initial network, for different pairs of cou-

pling strengths � and γ. We then evolve several such initial configurations, i.e. a network with
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fixed N for several coupling strengths and pick the network whose final evolution, starting

with size N and for the specified pair of coupling strengths, renders HKS maximal.

We present the results of this study in Fig 1. The first panel shows an example of the param-

eter space (γ, �) for N = 48 neurons, which are equally arranged in the two small-world layers,

G1 and G2. Point X denotes the coupling pair for which HKS becomes maximal in this space,

after the end of the evolution process. For similar pairs of couplings and for six multiplex net-

works of increasing size N, we then computed their Lyapunov spectra at the end of the evolu-

tion processes, and present them in the second panel of the figure. The second and many of

the larger LEs are seen to be positive, pointing to chaotic behaviour in the considered complex

networks. It is also evident that all Lyapunov spectra start increasing from zero for about the

Fig 1. Extensivity in neural network evolution by maximising HKS. Panel a): An example of the parameter space of chemical γ and electrical coupling

� for N = 48 neurons arranged in two equally-sized small-world layers. The X point corresponds to the coupling pair for which HKS is maximal in the

parameter space. Panel b): Plot of the Lyapunov spectra for different network sizes N and Panel c): The linear relation between HKS and network size N,

where σ is the slope of the linear fitting to the data.

https://doi.org/10.1371/journal.pone.0175389.g001
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same normalised index i/N. Using the values of these LEs we have then computed the corre-

sponding HKS values presented in the third panel of the figure. We note that, irrespectively of

the network size N in our simulations, we found out that HKS becomes maximal for a roughly

constant electrical coupling strength, as expected by our analytical results, since the initial net-

work topologies have sum of degrees that scale linearly with N (see Fig 2). It is also worth not-

ing that �� γ, a result that points out the crucial role played by the nonlinear chemical inter-

connections as opposed to the linear (electrical) ones for the maximisation of HKS. The chemi-

cal connections have a crucial role in the increase of chaos and consequently on the network

entropy. The third panel shows the extensive character of HKS, scaling linearly with N, with a

slope σ� 0.107±0.002 obtained from the linear fitting to the data. Our results indicate that as

long as the layers have node-degrees that sum up linearly with the size of the network, the evo-

lutionary process finds the appropriate inter-connections to maintain the extensive character

of HKS.

The extensive character of the neural networks implies that the sum of the degrees, S, of the

multiplex network G grows linearly with N, initially as well as after the end of the evolution

process. Indeed, this is what is happening and we present in Fig 2, where we show that the sum

of the degrees of the initial Sin and finally Sfn evolved multiplex networks grow linearly with

the system size N. According to Eq (12), if S0 and N1 l12 scale linearly with N, then the sum of

the node-degrees, S0+N1 l12, should also scale linearly with N.

Panel b) of Fig 1 shows that the Lyapunov spectra do not approach an invariant curve.

From our results considering the networks of maps, we have obtained that in order to main-

tain extensivity and to have invariant Lyapunov spectra, it is required that the average intra-

degree �bðN1Þ, the ratio
�dðN1Þ

oN1
ðN1Þ

and the largest eigenvalue of the subnetworks, ωN1
(N1) remain all

invariant during the evolution process. As shown in S1 File, these quantities do remain roughly

invariant, however, have weak dependence on N, which could explain the non-invariance of

the curve of the Lyapunov spectrum. Another factor that can contribute to the non-conver-

gence of the curve of the Lyapunov spectrum is the finite nature of the studied networks. The

Fig 2. Sums of the degrees of the multiplex network grows linearly with the network size. Sin is the sum

of the degrees of the adjacency matrices of the starting networks and Sfn the sum of the degrees of the

adjacency matrices of the finally evolved multiplex networks of the evolution process.

https://doi.org/10.1371/journal.pone.0175389.g002
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study of even larger multiplex networks would allow one to point the source for the apparent

non-invariance of the Lyapunov spectra curve.

Our analytical derivation for HKS in Eq (12) are based on the discrete multiplex network of

coupled maps in Eq (6), whereas the analysis for the HR multiplex neural network are based

on numerical calculations. The correspondence between analytical (from the discrete multi-

plex network) and numerical results (from the continuous multiplex network) lays in that in

both analyses we obtain that networks can grow by maintaining its extensivity character and

that a relevant criteria to obtain extensivity is that the sum of the intra-degree of the layers of

the multiplex network must be a linear function of the size of the network.

Extensivity and the curve of lyapunov exponents

In Ref. [3] it has been shown that an essential signature of extensive chaos is that the curve of

the LEs, λi, after they are ordered in descending order (i.e. Lyapunov spectrum) and are plotted

as a function of their normalised index i/N, with respect to the system size N, collapses to a uni-

versal curve as the size of the system N increases. This property has been verified in all extensive

systems observed so far as well as in spatially extended systems with diffusive coupling [25].

This approach is appropriate when an equation for the LEs as a function of ordered numbers

such as the eigenvalues of the Jacobian A of the dynamics is unknown. However, if such an

equation is known, as in this work, we can instead consider a more natural measure, the proba-

bility density ρ(ωj) of the eigenvalues of A. Besides, working with probability densities allows us

to access the properties of the invariance of the Lyapunov spectrum based on space averages,

which are easier to be tackled analytically. We will demonstrate in the following (more details

can be found in S1 File) that even though extensivity can also be typically observed in our stud-

ied multiplex networks, depending on how topology and coupling strengths are altered as the

network grows, the existence of an invariant Lyapunov spectrum may not be observed. On the

contrary, and supporting previous works [25], extensivity of a single network, represented by

the sum of the positive LEs, typically implies that the probability density of Lyapunov spectrum

collapse to a universal curve, which in turn implies its invariance.

To this goal, we study how the topology is related to extensivity, when inter-connections

are modified (in the strength and topology) between subnetworks G1 and G2 forming the mul-

tiplex network to maximise the sum of LEs given by

HKS≊N log ð2Þ � �ðN1ÞS � gl12;

where Eq (14) differs from Eq (12) in that we consider S instead of S0, which thus allows us to

do the analysis not only for the multiplex network but also for a single layer.

Extensivity in the multiplex network is achieved if HKS is a linear function of N, and this

leads to the requirement that �(N1)S+γl12 = σN, which using that
PN1

i¼1
oi ¼

PN1

i¼1
di � S can

be written as

�ðN1Þ
XN1

i¼1

oi þ gl12 ¼ sN þ n; ð14Þ

where ν is a constant.

Eq (14) can be further developed to

1

N1

XN1

i¼1

C1ðL;N1Þ
oi

oN1

þ 1 � C1ðL;N1Þ

 !

¼ C1ðL;N1Þ
�d

oN1

� 1

 !

þ 1 ¼

C1ðL;N1Þ½CðL;N1Þ � 1� þ 1 ¼ C2;

ð15Þ
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where �d ¼ 1

N1

PN1

i¼1
oi ¼

1

N1

PN1

i¼1
di represents the average intra-degree, and

CðL;N1Þ ¼
�d

oN1

; ð16Þ

C1ðL;N1Þ ¼ m2N1 � 1 ¼ �ðN1ÞoN1
; ð17Þ

and

1

N1

XN1

i¼1

�ðN1Þoi þ 2gað Þ ¼ C2;

with C and C2 being constants for the network to be extensive.

Eq (15) can also be written for convenienceas

�ðN1Þ
�d
N
2
þ

N
4
ð1 � �ðN1ÞoN1

Þ ¼ sN þ n: ð18Þ

In the following we analyse one case for multiplex networks and one for a single network,

whereas several other cases can be seen in S1 File.

From Eq (17), let us choose C1ðL;N1Þ ¼
oN1

N such that �ðN1Þ ¼
1

N and increase the average

degree, �d , linearly with N as the network grows, i.e. �d ¼ aN þ x. Eq (18) can be rewritten as

N
4
�

oN1

4
þ

aN þ x

2
¼ sN þ n;

and the network will be extensive with s ¼ 1

4
�

oN1

4N þ
a

2
. Both CðL;N1Þ ¼

aNþx

oN1

and C2(Λ, N1)

will not be constant, and therefore no invariant Lyapunov spectrum. The set of LEs in the limit

of N1!1 is given by l2i ¼ log 2 � 1

N ðoi � oN1
Þ � 1

� �
, i.e. the set of LEs that produce the

non-invariant Lyapunov spectrum, and l2i� 1 ¼ log 2 �
oi
N

� �
. Here, it becomes clear that the

density of the difference (ωi − ωN1
) is crucial for the invariance (or not) of the curve for the

Lyapunov spectrum. For a finite N, the spectrum of LEs receives a significant contribution

from the constant term ξ, resulting in an apparent non-invariant curve for the Lyapunov

spectrum.

For a single network, if � in Eq (11) is chosen to make the network extensive, i.e. HKS/ N,

it would imply that � ¼
C1

oN1

, with C1 < 1 being a constant. This choice would also make the

curve for the Lyapunov spectrum invariant. If the inter-coupling strengths and topology

described by γl12 of the multiplex network is modified by an evolutionary process that main-

tains the positiveness of all LEs (which contributes to maintaining extensivity as well), and if

� is chosen to maintain extensivity, i.e. �ðN1Þ ¼
C1ðN1Þ

oN1

, where C1(N1)<1 is a function of the

subnetwork topology, then, the invariance of the curve of the Lyapunov spectrum can only

be granted if CðN1Þ ¼
�d

oN1

, where �d is the average degree and, C1(N1) and C2(N1) =

C1(N1)[C(N1) − 1] + 1 are all invariant with respect to N or N1.

Discussion

In the theory of information, there are two main quantities involved. The information gener-

ated (or lost) and the information exchanged (or shared). This paper deals with the former

quantity, whereas the work in [27] is dedicated to the study of the latter quantity. It is worth

mentioning that the optimal topologies for the transfer of information found in [27] deviate
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from the topologies shown to provide extensivity in this work. An extensive network

exchanges little information between its layers.

Our analytical and numerical results elucidate the importance of the properties of the struc-

ture of complex networks and of the interaction strengths among their constituent parts for

extensivity to hold. We show that extensivity can be maintained in an evolving multiplex net-

work by scaling coupling strengths of the dynamics associated to the short- and long-range

interactions as to maximise the sum of the positive LEs. For the analytically treated multiplex

networks whose both the sum of intra-degrees and sum of inter-degrees scale as Nθ+1, θ> 0,

extensivity can be maintained if the intra- and inter-coupling strengths scale as N −θ. Our

results for the considered small-world neural networks studied here show that the sum of the

positive LEs can be an extensive quantity. It is, of course, an open question whether actual

brain networks, which have small-world properties [24], also evolve by rewiring their connec-

tivity in order to promote an extensive increase in the production of information rate. Since

extensivity was achieved here by a non-generic rewiring procedure, one might still conclude

that generically an evolving network will not exhibit extensivity.

In order for a network with extensive dynamics to have an invariant curve for the Lyapunov

spectrum, it is required that certain network quantities remain invariant during evolution.

Even networks evolved by changing their network class, can still be classified as networks with

extensive dynamics and with invariant Lyapunov spectra if these quantities remain invariant

during evolution. These quantities are related to the average intra-degree, to the largest eigen-

value of the subnetworks that form the network, and to a ratio of these two quantities.

Concluding, this paper provides a clear message and rigorous results that demonstrate that

complex networks do have extensive quantities and therefore, their behaviour can indeed

depend on their sizes.
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