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ABSTRACT

Ongoing and future imaging surveys represent significant improvements in depth, area, and seeing compared to
current data sets. These improvements offer the opportunity to discover up to three orders of magnitude more
galaxy–galaxy strong lenses than are currently known. In this work we forecast the number of lenses that will be
discoverable in forthcoming surveys and simulate their properties. We generate a population of statistically realistic
strong lenses and simulate observations of this population for the Dark Energy Survey (DES), the Large Synoptic
Survey Telescope (LSST), and Euclid surveys. We verify our model against the galaxy-scale lens search of the
Canada–France–Hawaii Telescope Legacy Survey, predicting 250 discoverable lenses compared to 220 found by
Gavazzi et al. The predicted Einstein radius distribution is also remarkably similar to that found by Sonnenfeld
et al. For future surveys we find that, assuming Poisson limited lens galaxy subtraction, searches of the DES,
LSST, and Euclid data sets should discover 2400, 120000, and 170000 galaxy–galaxy strong lenses, respectively.
Finders using blue-minus-red ( -g i) difference imaging for lens subtraction can discover 1300 and 62000 lenses
in DES and LSST. The uncertainties on the model are dominated by the high-redshift source population, which
typically gives fractional errors on the discoverable lens number at the level of tens of percent. We find that
doubling the signal-to-noise ratio required for a lens to be detectable approximately halves the number of
detectable lenses in each survey, indicating the importance of understanding the selection function and the
sensitivity of future lens finders in interpreting strong lens statistics. We make our population forecasting and
simulated observation codes publicly available so that the selection function of strong lens finders can easily be
calibrated.
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1. INTRODUCTION

Strong gravitational lensing by galaxies can be used to probe
both astrophysics and cosmology. To date several hundred
galaxy–galaxy strong lenses have been discovered in hetero-
geneous searches of photometric and spectroscopic survey data
(Myers et al. 2003; Bolton et al. 2006; Gavazzi et al. 2012;
Inada et al. 2012; Negrello et al. 2014). The sample has been
used to constrain the masses and density profiles of galaxies
(Auger et al. 2010; Barnabè et al. 2011), the dark sub-halo
population (Vegetti et al. 2014), cosmological parameters
(Oguri et al. 2012; Collett & Auger 2014; Suyu et al. 2014), the
high-redshift luminosity function (Barone-Nugent et al. 2015),
and the nature of high-redshift sources (e.g., Quider et al. 2009;
Newton et al. 2011). For many of these analyses the shortage of
suitable strong lenses is a major limiting factor.

Several ongoing and near-future wide and deep sky surveys
offer improved depth, area, and resolution compared to existing
data (Miyazaki et al. 2006; Ivezic et al. 2008; Laureijs
et al. 2011; Diehl et al. 2014). These surveys have the potential
to increase the current galaxy-scale lens sample by orders of
magnitude (Kuhlen et al. 2004; Marshall et al. 2005a). With a
large increase to the known strong lens population, current
work could be extended to new regimes; lower lens masses,
higher-redshift lenses, and intrinsically fainter sources. In turn
this will allow investigations into the luminosity and redshift
trends of lens and source properties. For example, investigating
trends in the mass-to-light ratio of galaxies, the distribution of
dark matter in galaxies and the dark-substructure population
will much more tightly constrain the nature of dark matter, the
initial mass function, and galaxy formation physics than is

currently possible (e.g., Sonnenfeld et al. 2013a; Vegetti
et al. 2014).
Future surveys also have the potential to discover a

population of exotic—and rare—strongly lensed systems. For
example, compound lenses are powerful probes of dark matter
(Sonnenfeld et al. 2012) and cosmological parameters (Collett
et al. 2012), as are strongly lensed supernovae (Refsdal 1964)
and strong lensing catastrophes (Orban de Xivry & Mar-
shall 2009), but only a handful of these systems are known
(Gavazzi et al. 2008; Quimby et al. 2014; Kelly et al. 2015),
which limits the precision of cosmological constraints achiev-
able with strong lensing (Collett & Auger 2014).
In addition to science using sub-samples of lenses, the size

and properties of the full ensemble of strong lenses is
dependent on both cosmological parameters and the source
and deflector populations (e.g., Oguri et al. 2012); future
surveys will provide a much more powerful sample for strong
lensing statistics.
Recent analytical work has forecast the number of lensed

point sources likely to be discovered in spectroscopic surveys
(Serjeant 2014) and in photometric surveys (Oguri &
Marshall 2010); however, making forecasts for lenses with
extended background sources requires one to move beyond
analytic analyses, due to differential magnification across the
source plane. Dobler et al. (2008) simulated lensing of spectral
line emission regions and then simulated observing such
objects with the Sloan Digital Sky Survey (SDSS)
spectrograph to model the selection function in the SLACS
survey. By changing the source population to galaxies (Ilbert
et al. 2009) and the transfer function to that of forthcoming
surveys (e.g., Chang et al. 2015) the methodology of Dobler
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et al. (2008) can be extended to predict galaxy–galaxy strong
lensing rates in forthcoming photometric surveys.

The goal of this work is to answer the question “How many
galaxy–galaxy lenses can forthcoming imaging surveys
potentially discover?” To answer this question we first build
a population of realistic strong lenses (Section 2) and then
simulate observations of these lenses (Section 3) for four recent
and forthcoming photometric surveys; the Canada–France–
Hawaii Telescope Legacy Survey (CFHTLS), the Dark Energy
Survey (DES), the Large Synoptic Survey Telescope (LSST),
and Euclid. Of course, actually discovering strong lenses in
these surveys will require the development of new methods and
algorithms (e.g., Brault & Gavazzi 2014; Gavazzi et al. 2014;
Küng et al. 2015), which is beyond the scope of this article, but
this work is intended to motivate such developments by
providing both realistic expectations for lens finders and
realistic simulations with which to test lens finders. We also
investigate how the features of lens finders can affect the
number of strong lenses that they can discover, paying attention
to how they alter the effective seeing and signal-to-noise of the
data. In Section 7 we discuss our results in the context of the
uncertainties inherent to how we have constructed the lens
population and how we have assumed future lens finders might
work. We summarize and conclude our results in Section 8.
Throughout this paper we assume a flat ΛCDM cosmology,
with W = 0.7M , and h= 0.7.

2. CREATING A POPULATION OF REALISTIC MOCK
GALAXY–GALAXY STRONG LENSES

Strong gravitational lensing occurs when a massive fore-
ground object is sufficiently well aligned with a background
source that the lens equation has multiple solutions and hence
multiple images of the source can form. The population of
strong lenses therefore depends on the population of massive
objects, background sources, and the geometry of the universe.
Once the lens population is known, individual strong lens
systems can be drawn from the population and simulated to
assess if strong lensing is detectable. Simulating individual
systems requires knowledge of the light profile of the lens and
source, the density profile of the source and the angular
diameter distances between observer, lens, and source.

2.1. The Foreground Deflector Population

Observations have shown that the mass profiles of elliptical
galaxies are well-approximated by isothermal mass distribu-
tions (e.g., Auger et al. 2010). In this work we will consider
only strong lensing by elliptical galaxies, which dominate the
galaxy–galaxy lensing cross section (Oguri & Marshall 2010),
and then assume that all of the foreground deflectors are
singular isothermal ellipsoids (SIEs). The density profile of an
SIE is given by
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We neglect the lensing contribution of matter along the line of
sight.
For the light profile of the deflector, we assume an elliptical

de Vaucolours profile that is concentric with and aligned with
the mass (e.g., as observed by Gavazzi et al. 2008; Kostrzewa-
Rutkowska et al. 2014). We make the approximation that the
effective radius, Re, of the deflector is the same in all observed
bands, but allow the absolute magnitude M in each band to
vary. For the colors of the lens we assume the rest-frame SED
of a passive galaxy whose star formation was a single burst 10
Gyrs ago.
Given these simplifying assumptions, our model for the

deflector is thus described by five parameters; the lensredshift,
sV , q, Re, and Mr. Rotational and translational symmetry allow
us to place the deflector at the center of the coordinate system
and align the semimajor and coordinate x-axes.
Choi et al. (2007) used SDSS (York et al. 2000) data to

derive the velocity dispersion function of elliptical galaxies in
the local universe, finding
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where
*

f = ´ - h8.0 10 3 3 Mpc−3, *s = 161km s−1,
α = 2.32, and β = 2.67. In our model we assume that neither
the shape nor the normalization of this function vary with
redshift; this is consistent with the observations of Bezanson
et al. (2011).
From Equation (3) we can draw a velocity dispersion for

each deflector to be simulated and a redshift from the
differential comoving volume function d dzVol . The other
parameters of our lens model, q, Re, and M, are covariant with
the redshift and velocity dispersion. The fundamental plane of
elliptical galaxies allows us to infer Re and M given sV ; we use
the functional form and scatter as derived in Hyde & Bernardi
(2009). The final parameter is the flattening, which is known to
correlate with sV ; more massive galaxies tend to be closer to
spherical than less massive ones. This trend is clearly seen in
the SDSS data, which we fit with a Rayleigh distribution,
where the Rayleigh scale parameter s is linear in sV
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The fit values are =A 0.38 and = ´ - - -B 5.7 10 km s4 1 1( ) ).
To exclude highly flattened mass profiles, we truncate the
Rayleigh distribution at q= 0.2.

2.2. The Background Source Population

For the lensed background sources we only need to know
their redshifts, light profiles, colors, and absolute magnitudes.
Since typical lensed sources are at high redshift, the light
profiles and spectroscopic redshifts of the unlensed source
population are often beyond the capability of current
telescopes. Neglecting intrinsically faint, highly magnified
sources could potentially cause us to significantly under-
estimate the detectable strong lens population; we therefore use
the sky catalogs simulated for the LSST collaboration by
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Connolly et al. (2010). The Connolly et al. (2010) catalog is
generated by ray-tracing through the Millennium dark matter
simulation (Springel et al. 2005), with galaxies added using the
semi-analytic prescription of De Lucia et al. (2006) adjusted to
mimic the luminosity and color distributions of low redshift
galaxies and the redshift and number-magnitude distributions
derived from deep imaging and spectroscopic surveys. The
final catalog comprises a 4.5× 4.5 square degree footprint on
the sky and samples halo masses down to 2.5× 109Me. Due to
the resolution limit of the simulations, this catalog is only
complete down to i∼ 27.5, which may be insufficiently deep to
perfectly reconstruct the faintest lens population of LSST but
sufficient for the other surveys that we investigate here.

For all sources, we assume that the light profile is given by
an elliptical exponential profile with ellipticity drawn from a
Rayleigh distribution with scale parameter s= 0.3, truncated at
q= 0.2. For the effective radius of the profile we assume
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where N 0.3( ) is a Gaussianly distributed random variable of
scatter 0.3. The relation and scatter are in line with the results
of Mosleh et al. (2012) and Huang et al. (2013), which both
show trends toward more compact sources at higher redshifts.

2.3. The Properties of the Realistic Lens Systems, before
Observing with a Telescope

Given the lens and source populations generated in
Sections 2.1 and 2.2, we can project the lensing cross section
back onto the source population, giving the expected distribu-
tion of lens and source properties for an idealized survey. Our
ideal model predicts 11 million lenses on the whole sky, with a
lens velocity dispersion of s > 100V km s−1 and a background
source with i< 27. The Einstein radius distribution, deflector
velocity dispersion distribution, and the source and lens-
redshift distributions are shown in Figure 1. The model predicts
that the population of strong lenses is dominated by galaxies
with s » 200V km s−1 and the distribution is well-approxi-
mated by a Gaussian with a mean of 210 km s−1 and a one
sigma width of 54 km s−1. The majority of lenses have Einstein
radii around 0.5 arcsec and sources close to the completeness
limit of the source catalog. Even after strong lensing
magnification most sources are too faint to be detectable by
Euclid, and the Einstein radii are too small to be resolvable
with LSST.

3. SIMULATED OBSERVATIONS OF STRONG LENSES
WITH SURVEY TELESCOPES

In practice it is impossible to observe the idealized noiseless,
unconvolved lenses produced by our model; real observations
of strong lenses will involve the convolution with a point-
spread function and various sources of noise. To investigate the
discoverable lens population in future surveys, we must
therefore include the transfer function of each survey telescope.
We simulate observations by CFHTLS, DES, LSST, and
Euclid.
Our prescription for the transfer function is a simple one, but

it encapsulates all of the significant features relevant to lens
finding. For each survey, the ideal lenses are evaluated on a
pixellated grid with a pixel-scale equal to the detector pixel-
scale,1 then convolved with the circularly symmetric PSF
discretized to the sample pixel-scale. We then simulate the
noise assuming Poisson noise from the lens, the source, and a
uniform sky background, and a constant read-noise for each
exposure. We neglect cosmic rays, artifacts, and ghosts. For
complete and ongoing surveys, the seeing, sky-brightness,
zero-points, exposure-times, number of exposures, pixel-scale,
read-noise, filter set and survey area are taken from the existing
observations. For future surveys we use the LSST observation
simulator (Connolly et al. 2010) and the Euclid design
parameters. The assumed survey parameters are summarized
in Table 1.
The seeing and sky-brightness are stochastic parameters that

vary significantly over the course of a survey, hence for each
simulated exposure we draw from the real (or expected)
distribution of seeing and sky-brightness observed in each filter
set. This point is significant to the expected number of
discoverable strong lenses for two reasons. First, survey
strategies are optimized to take bluer-band data in moonless
skies and redder-band data when the moon is up. Second,
survey strategies are often optimized for specific science goals;
for example, DES preferentially takes r- and i-band data in
good seeing to improve the weak lensing analysis (Diehl
et al. 2014). Survey strategies therefore lead to seeing and sky-
brightness distributions that are often strongly correlated, and
not random draws from the seeing and sky-brightness
distributions of the telescope site. The most significant feature
for lens finding is the strategy used for allocating good and bad
seeing time. Since the majority of background sources are blue
(Gavazzi et al. 2014) and the Einstein radius distribution of our

Figure 1. Properties of the ideal lens sample, i.e., all galaxy–galaxy lenses in the universe with a deflector with s > 100V km s−1 and a source with unlensed <i 27.
The left panel shows

q
nlogd

d E
( ). The middle panel shows the distribution of lens redshifts as the solid line and the distribution of source redshifts as the dashed line.

The right panel shows the number of lenses in each sV bin of width 10 km s−1 and the dashed line shows a Gaussian fit to this distribution, with a mean of 210 and a
width of 54 km s−1.

1 We subsample the pixel grid by a factor of 25 in regions where the source
profile varies quickly.
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lenses peaks at ∼0.5 arcsec, strategies that penalize g-band
seeing are likely to limit the potential for discovering strong
lenses.

In Figure 2 we show an example of a simulated lens as
would be observed with each of CFHT, DES, LSST, and
Euclid.

4. DEFINING A DETECTABLE LENS

Having generated a population of strong lenses and
simulated observations of them, we have ∼109 exposures.
While each exposure contains a simulated strong lens, not all of
them can plausibly be detectable as a strong lenses. Systems
with very low signal-to-noise or where the Einstein radius is
much less than the seeing are unlikely to be distinguishable as
strong lenses. Robotic strong lens finders already exist (e.g.,
Marshall et al. 2005b), but require a large amount of survey
specific tuning and a realistic training set. Most imaging-based
strong lens searches require at least some level of human input.

Human classifications introduce a stochastic element (e.g.,
Gavazzi et al. 2014), but a human expert tends to look for
defining features when assessing the probability of strong
lensing. The patterns a human lens finder looks for are typically
arc-like features, the presence of a similar-color counter image
on the opposite side of the lens, features that are a different
color (typically bluer) to the putative lens galaxy, and a
morphology that is plausible fit by a strong lens model.
Systems that meet all of these criteria are typically classified as
A-grade strong lens candidates; B-grade candidates often show
arc-like features without an obvious counter-image, or multiple
same-color sources that are too small to show tangential
shearing. The final confirmation of strong lensing typically
requires either spectroscopic confirmation of the source
redshift, or a compelling lens model. While spectroscopy is
expensive, we optimistically assume that any system obviously
featuring detectable arcs is a discoverable strong lens, given
that all of our systems can be fitted with a strong lens model.
For an SIS strong lens, the centers of the counter-images are

separated by twice the Einstein radius, and the magnification is
purely tangential (Schneider et al. 1992). Thus the quadrature
sum of the seeing and twice the source size must be less than
twice the Einstein radius, or counter-images will be unresolved.
For tangential shearing to be observable the source must be
resolved in the tangential direction, i.e., the product of the
source size and the magnification must be greater than the
seeing; additionally the magnification must be sufficiently large
that the source is noticeably sheared. Based on visual
inspection of lensed galaxy subtracted residuals we assume
that a magnification of at least three and a signal-to-noise of at
least 20 is required to unambiguously recognize arcs. By
definition our strong lenses show a morphology consistent with
strong lensing, but we do not insist that the source and lens be
significantly different colors as color information may not be
required for future lens finders (e.g., Joseph et al. 2014).
Our criteria for a detectable strong lens are that the center of

the source is multiply imaged

q > +x y , 6s sE
2 2 2 ( )

where qE is the Einstein radius and x y,s s( ) are the unlensed
source position. The image and counter-image must be

Table 1
Properties of Large Area Imaging Surveys Considered in This Work

Survey Ω Collecting Areaa Filters Seeingb Skyb Exposure Time Pixel-scale
(deg2) (m2) (arcsec) (s) (arcsec)

CFHTLS 150 8.8 {g r i, , c} {0.83, 0.79, 0.69} {21.7, 20.8, 19.7} {3500, 5500, 5500} 0.187
DES 5000 9.6 {g r i, , c} {1.24, 1.05, 0.96} {21.7, 20.6, 19.4} {900, 900, 900} 0.263
LSST 20000 35 {g r i, , c} {0.81, 0.77, 0.75} {21.7, 21.1, 20.0} {3000, 6000, 6000} 0.18
Euclid 15000 1.0 {VISd} {0.18} {22.2e} {1610e} 0.1

Notes. These are fiducial numbers based on assumptions that we describe in the text; given are survey area Ω, effective collecting area, filter set, median seeing in each
filter (FWHM), median sky-brightness in each filter, total exposure time per filter, and pixel-scale.
a We do not directly use the collecting area in our analysis; we instead use the instrumental zero-points for each survey for CFHT (Boulade et al. 2003) and DES
(Diehl et al. 2008), for LSST we rescale the DES zero-points by the ratio of collecting areas. For Euclid we assume a zero-point of 25.5 AB (S. Niemi 2015, private
communication).
b Median quantities shown.
c We only include these filters in our strong lensing model. We approximate g r, , and i filters with their SDSS counterparts.
d We approximate VIS magnitudes as = + +VIS r i z 3( ) (S. Niemi 2015, private communication).
e There is some variation in sky-brightness due to zodiacal and scattered light, but we adopt 22.2 as the VIS sky-brightness for all Euclid pointings. We also neglect the
fact that half of the Euclid area will have 2150 s total exposure time due to the dithering pattern. (S. Niemi 2015, private communication.)

Table 2
The Predicted Number of Discoverable Lenses Using the Model Described in

This Work Applied to Current and Future Large Area Surveys

Survey Full Stack Best Epoch Optimal Stack

Criteriaa g,r or i a-g i g,r or i a-g i g,r or i a-g i

DES 1400 800 800 340 2400 1300
LSSTb 39000 16000 17000 3000 120000 62000
Euclidc 170000 0d L L L L

Notes.
a The detectability criteria applied for the first column is that discoverable
systems must satisfy Equations (6) through (9) in at least one band assuming
Poisson noise-limited galaxy subtraction, while for the second column the
criteria must be satisfied in the a-g i difference image with the PSF of the g
and i images matched to have the same seeing. The true number of lenses that
forthcoming surveys will discover is likely to be between these two values.
b Our source population is insufficiently deep to include high magnification
lenses with intrinsically ultra-faint ( >i 27) sources. The numbers in the full
and optimal stack columns may therefore be underestimates—see Section 7.3.
c Since we assume all Euclid exposures have the same PSF and background,
stacking all of the exposures gives maximal signal-to-noise.
d Since Euclid has only one visible-light filter, constructing an optical blue-
minus-red image will not be possible.
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resolved

q > +r s 2 , 7sE
2 2 2( ) ( )

where s is the seeing and r x y, ,s s s( ) is the unlensed source size.
Tangential shearing of the arcs must be detectable;

m m> >r s, 3, 8sTOT TOT ( )

where mTOT is the total magnification of the source. We also
require that the source be detected with sufficient signal-to-
noise for a human to recognize that Equations (6)–(8) are
satisfied.

>SN 20, 9TOT ( )

where SNTOT is the total signal-to-noise of the lensed residual.

Figure 2. Simulated lens as would be observed by forthcoming telescopes. From left to right, the top row shows a gri color composite image for the full-depth co-add
of CFHT, DES, and LSST. The top right shows the Euclid image. From left to right the second row shows the a-g i difference image corresponding to the color
composite above. Since Euclid has only one optical band, the second row on the far right shows the VIS residual assuming the galaxy can be subtracted perfectly
(although the noise on the galaxy light remains). From left to right, the third row shows the gri composites for the best single-epoch DES imaging, the optimally
stacked DES imaging, the best single-epoch LSST imaging, and the optimally stacked LSST imaging. The fourth row shows the a-g i difference image
corresponding to the color composite above. Our signal-to-noise detectability criteria are satisfied in all images, but we do not consider the lens to be detectable in the
CFHT, DES, and LSST full co-adds as the arcs are not resolved. The CFHT full stack only marginally fails the resolution criteria, while the optimally stacked LSST
image only marginally satisfies it.
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We insist that all detectable lenses obey Equation (6) and
that Equations (7) through (9) be satisfied in at least one
imaging band. This is more constrictive than the simplest
definition of a strong lens (multiple imaging of some part of the
source); however, we would be surprised if future lens finders
can discover a significant population of galaxy–galaxy lenses
that do not pass our selection cuts. The one class of galaxy–
galaxy lenses that will be discoverable but does not pass our
criteria are systems with an unresolved source whose image
morphology is still sufficient to detect lensing, i.e., quadruple
image systems with sufficiently large Einstein radii and a
sufficiently blue source to resolve the images from the lens
galaxy; this population is likely to be small.

5. CFHTLS: TESTING THE MODEL AGAINST A WELL-
STUDIED LENS SAMPLE

The CFHTLS has been extensively searched for strong
lenses, both visually (More et al. 2015) and semi-automatically
(More et al. 2012; Gavazzi et al. 2014), yielding approximately
a hundred confirmed lenses ranging from galaxy to group
scales. Our simulations generate the types of lenses that form
the SL2S galaxy-scale sample of Sonnenfeld et al. (2013a),
discovered by Gavazzi et al. (2014) using the
RINGFINDER algorithm. Applying RINGFINDER to the real data
yielded 401 candidates, of which 49 are spectroscopically
confirmed. Based on incomplete follow-up, Gavazzi et al.
(2014) predicts 220 discoverable lenses in CFHT. Applying our
detectability criteria to our simulated CFHTLS co-adds, we
forecast 800 discoverable strong lenses. However, after
applying the PSF cross-convolution and a-g i difference
imaging approach of Gavazzi et al. (2014) we would only
classify 290 of our candidates as still discoverable. Roughly
half of the lost systems are due to the poorer seeing in the

a-g i difference image and the other half are lost due to the
degraded signal-to-noise. After applying the lens galaxy cuts of
Gavazzi et al. (2014), the number of detectable lenses decreases
to 230 systems, in good agreement with the results of Gavazzi
et al. (2014). We should not expect our forecast and the CFHT
results to agree this well; RINGFINDER can find lenses with μ< 3
if the source is intrinsically tangential to the lens, and does not
have strict criteria on total signal-to-noise or on the seeing, both
potentially increasing the discoverable lens population. Con-
versely, some of our simulated lenses that a human would
consider obvious candidates are missed by the automated part
of RINGFINDER. This was found by Gavazzi et al. (2014) where
77 serendipitously discovered probable lenses during the
development of RINGFINDER that were not part of the final
statistical sample of 330 candidates.

In Figure 3 we compare the Einstein radii of the forecast 200
lenses with the values inferred by Sonnenfeld et al. (2013a)
from modeling the SL2S sample and show that the distribution
of Einstein radii are similar, thus our seeing criteria
(Equations (7) and (8)) are reasonably representative of what
is achievable with an automatic ring-finder.

Given the similarity of both the number of discoverable
lenses and the Einstein radius distribution with that found in
Sonnenfeld et al. (2013a) and Gavazzi et al. (2014) we are
confident that our lens population and detectability criteria are
good representations of what is discoverable in the real
universe. In the rest of this work we will report the number
of lenses detectable in one band assuming Poisson limited
galaxy subtraction (800 in the CFHTLS co-adds) as a target for

future lens finders. We will also report the number of lenses
discoverable in the a-g i difference image, although we will
not apply the RINGFINDER cuts to lens redshift and i-band
magnitude, and assume that the PSF of the difference image
can be set to the worst of the g- or i-band PSFs rather than
cross-convolving the PSFs. These seem to be plausible
upgrades to RINGFINDER and give a forecast of 480 lenses
discoverable in the CFHT co-adds. This forecast represents a
more pessimistic (but more achievable) view of where lens
finding is likely to be in the next decade.

6. DES, LSST, AND EUCLID: ONGOING AND FUTURE
LENS SURVEYS

We now consider the number of detectable lenses in the
DES, LSST, and Euclid wide surveys. In the final co-added
images of each survey we forecast that DES can discover 1400
lenses, LSST can discover 39000 lenses, and Euclid can
discover 170000 lenses (Table 2). Requiring that the lenses be
discoverable in the a-g i image decreases these numbers to
800 and 16000 for DES and LSST, respectively. Since Euclid
has only one visible filter it is not possible to construct an
optical blue-minus-red image so no lenses can be found this
way; it may be possible to use the near infrared channels,
although they have decreased depth and resolution, or to use
lower resolution multi-band optical data to add color informa-
tion to the VIS imaging (e.g., Loncan et al. 2015), but we have
not investigated these possibilities.

6.1. Alternative Strategies for Combining Multiple Exposures

Each object in these surveys will be imaged many times;
individual exposures can be combined to make a deeper,
stacked image; however, for ground-based images the
exposures will not have comparable seeing, with some
exposures having much higher resolution than others. Since
our detection criterion requires the seeing to be less than the
Einstein radius, adding poor seeing images to the stack can
decrease the discoverable lens population. Therefore for DES
and LSST we investigate alternative stacking strategies. A
trivial alternative strategy to co-addition is to discard all

Figure 3. Einstein radius of the SL2S galaxy-scale lens sample, as fit by
Sonnenfeld et al. (2013a) shown in the gray bars and the Einstein radii
distribution forecast by our model shown by the black dashed line, assuming a
RINGFINDER-like search of our simulated SL2S survey. The area under the black
dashed line corresponds to 230 lenses. The red bars have been scaled to have a
total weight of 220 systems, equally up-weighting each of the 52 lenses
modeled by Sonnenfeld et al. (2013a) to match the predictions of Gavazzi
et al. (2014).
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exposures except the image with the best seeing in each filter,
in effect trading signal-to-noise for resolution. This strategy
yields 800 (17000) detectable lenses for DES (LSST) of which
340 (3000) are still discoverable in the difference image. Fewer
lenses are discoverable in the best seeing images than the co-
adds, but they are not the same lenses, as Figure 4 shows; the
co-add imaging finds the higher-mass lenses while the best
single-epoch imaging discovers the systems with the brightest
lensed sources.

Given our detection criteria, an optimal stacking exists that
only includes exposures where the seeing is sufficiently good
for q > +r s 2sE

2 2 2( ) and m >r ss to be satisfied. Since the
source size and Einstein radius are not known a priori,
performing this optimal stacking on a real data set is
impossible, but is still physically meaningful: applying a lens
finder to all possible stacks (ordered by seeing) only increases
the search effort by a factor of the number of exposures per
filter and naturally includes the optimal stack. Alternatively, a
lens finder that can simultaneously model all of the individual
exposures without any stacking, could potentially outperform
even this stacking strategy. With optimal stacking and perfect
galaxy subtraction DES (LSST) can discover 2400 (120000)
lenses; 1300 (60000) are still detectable in the a-g i
difference imaging. For LSST, 70000—more than half—of
the 120000 lenses that are discoverable in the filtered stack will
not be discoverable in either the best single-epoch imaging or
the final co-add.

6.2. The Properties of the Lens Populations

Our model allows us to forecast more than the total number
of discoverable strong lenses; it also allows us to forecast the
properties of the population. This allows us to predict if
forthcoming surveys will open up new regimes of strong lens
science. A priori, we expect that the high-resolution imaging of
Euclid opens up the possibility of discovering a large number
of low-mass strong lenses and the large area and depth but
comparatively poorer seeing of DES and LSST will make them
efficient at finding massive lenses. We see both of these
expected effects in Figure 5, where we plot the predicted
velocity dispersion function distribution of each survey.

Figure 6 shows the source and the lens redshift distributions
of discoverable lenses in each of the surveys. There is no

significant variation in the distribution of source redshifts
between the surveys, although this is possibly due to the fact
that our model only includes the g r, , and i-band filters for
CFHT, DES, and LSST which precludes large numbers of

Figure 4. Einstein Radius distribution for lenses discoverable in DES (left panel) and LSST (right panel). The red distributions show the Einstein radius distribution of
the lenses discoverable in the full stack of the final survey, while the blue distributions show the population discoverable in the best single-epoch imaging. The gray
distribution shows the Einstein radius distribution of the lenses that can be discovered if one searches for lenses in all possible (seeing-ordered) stacks for each survey.
The dashed black line in the right panel shows the Einstein radius distribution for galaxy–galaxy lenses discoverable in Euclid.

Figure 5. Velocity dispersion distribution for the lenses discoverable in
forthcoming wide area surveys. Black shows Euclid, green shows CFHT, blue
shows LSST, and red shows DES. Surveys with better seeing are able to
discover lenses with lower Einstein radii and hence probe intrinsically less
massive objects.

Figure 6. Redshift dispersion distribution for the lenses discoverable in
forthcoming wide area surveys. The lens redshifts are shown by the solid lines
and the source redshifts are shown by the dashed lines. Black shows Euclid,
green shows CFHT, blue shows LSST, and red shows DES.

7

The Astrophysical Journal, 811:20 (10pp), 2015 September 20 Collett



high-redshift sources and Euclidʼs shallowness will also
preclude finding a high-redshift source population without
extreme magnification. An analysis of the discoverable infrared
lens population, may see a more significant variation of source
redshift with imaging depth. Despite being the shallowest
survey considered, we find that Euclid finds the highest fraction
of high-redshift lenses (Figure 6). For an isothermal lens, the
Einstein radius is proportional to D Dls s, hence at fixed source
redshift, higher-redshift lenses have a smaller Einstein radii,
making them harder to resolve in ground-based imaging.
However, since the highest-redshift lenses currently known are
at z∼ 1.6 (van der Wel et al. 2013; Wong et al. 2014), Figure 6
suggests that both DES and LSST are also capable of
discovering higher-redshift lenses than currently known.

7. DISCUSSION: ERRORS ON FORECAST NUMBERS

Our forecasts are based on a well-motivated prescription for
generating a deflector and source population, lensing the
background source, simulated observations of the lens, and
criteria that define a detectable lens. All of these stages have
required simplifying assumptions that have the potential to
systematically bias the lens number. In this section we
investigate how small perturbations to the model can affect
the forecast number of resolved lenses discoverable in the
optimally filtered a-g i filtered stacks of the mock DES
survey.

7.1. Deflector Population

We have assumed that there is no evolution in the comoving
number density of deflectors and that the velocity dispersion
function does not evolve with redshift. This is consistent with
the results of Bezanson et al. (2011) and Shu et al. (2012),
which show minimal evolution of the VDF out to z= 0.5.
Measuring velocity dispersions at higher redshifts is observa-
tionally challenging, but it is possible that there is evolution of
the massive galaxy population at higher redshifts. Mason et al.
(2015) investigated the evolution of the VDF using the stellar
mass as a tracer, fitting a model of the form

s s µ + b
= zlog 1z 0( ) ( ) and comoving number density evol-

ving as µ + az1( ) , and found a = 2.46 0.53 and
b = 0.20 0.07. For a b= =2.46, 0.2, the number of
lenses detectable in the DES a-g i difference images
increases by sixty percent. However, the magnitude of this
uncertainty is most likely overestimated, as the fits of Mason
et al. (2015) are skewed by evolution at high redshift where our
model already predicts no significant lens population. Given
the evidence for no significant evolution out to z∼ 1.5
(Bezanson et al. 2011; Shu et al. 2012) the no-evolution model
seems to be a much more realistic representation of the
universe. We also investigated how deflector ellipticity impacts
the number of detectable lenses, and saw no significant change
in the discoverable lens fraction when increasing the ellipticity
of all lenses by ten percent.

7.2. External Shear

Strong lenses do not tend to live in isolation; elliptical
galaxies tend to cluster, hence the tidal field of nearby masses
perturbs strong lens systems. Simulating the full environments
of strong lenses is beyond the scope of this work, but we can
investigate the significance of this effect by using a reasonable
toy model. Our toy model assumes that the two components of

the shear g g,1 2 are independently drawn from a Gaussian of
width s = 0.05; this effect is larger than would be expected for
random lines of sight (e.g., Pace et al. 2015) but is in
reasonable agreement with the external shears found by
modeling strong lenses (e.g., Wong et al. 2011). Applying this
toy model we find a five percent increase in the number of
detectable galaxy–galaxy strong lenses in the DES a-g i
difference images; this moderate shear effect on the selection
function implies that the comparatively large shears in
photometrically selected galaxy–galaxy strong lenses is typical
of the environment of elliptical galaxies rather than a
selection bias.

7.3. Source Population

Our LSST forecasts are underestimated, since our unlensed
source catalog is of comparable depth to the LSST co-add. In
Figure 7 we show that this is not a major effect; for most
discoverable lenses the sources are brighter than the complete-
ness limit of the source catalog. Given the luminosity function,
this result appears counterintuitive; however, faint sources are
also small, hence few intrinsically very faint galaxies can be
resolved in the LSST imaging. The source catalog has been
matched to the number counts of deep surveys, so the number
of potential background sources should be robust; however,
there is scope for small changes to the number of detectable
lenses, since the source population colors do not match the
observed population (De Lucia et al. 2006) and the redshift
distribution of sources fainter than > ~i 24 requires
extrapolation.
The COSMOS photometric redshift catalog (Ilbert

et al. 2009) is complete down to i = 25 and has multi-band
HST photometry; this catalog implicitly includes the complex
distribution of source colors and hence provides a more
realistic representation of the bright source population. Using
the COSMOS photometric redshift catalog, we predict 760
lenses discoverable in the DES a-g i difference images. The
original model had 840 lenses, with unlensed source magni-
tudes of <i 25. Redshift catalogs much deeper than i = 25 do

Figure 7. Distribution of unlensed source g-band magnitudes for strong lens
systems discoverable with LSST. The red histogram shows the population
discoverable in the full LSST stack, while the gray population are discoverable
if one searches for lenses in all possible (seeing-ordered) stacks. The shape of
the distribution of g-band magnitudes for the source catalog (Connolly
et al. 2010) is shown as the dashed black line. Most lenses discoverable with
LSST are intrinsically much brighter than the completeness limit of the source
catalog. There is therefore unlikely to be a large population of discoverable
strong lenses whose sources are too faint to be included in the Connolly et al.
(2010) catalog.
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not exist, hence the redshift distribution of faint sources is
poorly constrained; the uncertainty on the number of lenses
with intrinsically faint sources is likely to be larger than the ten
percent found for sources with <i 25, but we cannot precisely
quantify this.

The intrinsic sizes of the unlensed source population are a
key parameter for predicting the detectable lens population,
since they set the maximum magnification and the seeing
required to resolve that the source is arced. Most of our sources
are drawn from a high-redshift faint population that is poorly
understood. Shibuya et al. (2015) recently analyzed the median
sizes of galaxies in the HST from redshift 0–10, finding that it
is proportional to + -z1 1.12( ) ; if we use this result rather than
the µ + -r z1s

1.2( ) assumed in Equation (5), we find that this
makes sources somewhat larger at high redshift (9% at z = 2),
which decreases the DES detectable lens population by six
percent. An additional effect is related to the morphology of the
sources, which are likely highly irregular. Our assumption of an
elliptically symmetric exponential profile for the source is
overly simplistic and if most of their flux originates from high
density knots of star formation, their peak surface brightness
may be larger and hence they may be more easily detected than
our simple model predicts.

7.4. Definition of Detectability

While our detectability criteria are well-matched to the
CFHT lens sample, it is possible that lens finding in future
surveys will be more difficult; pushing lens finding to fainter
sources and smaller Einstein radii may introduce more false
positives, forcing future lens finders to be more selective about
what they consider to be a good lens candidate. We investigate
three possible tightenings of the detection criteria; changing the
total signal-to-noise threshold from 20 to 40, changing the
magnification threshold from 3 to 4 (i.e., requiring a more
curved source), and changing the resolution threshold from
q > +r s 2sE

2 2 2( ) to q > +r ssE
2 2 2 (i.e., requiring arcs and

counter-images to be better resolved from each other and the
lens). The number of lenses detectable in the DES a-g i
difference images halves (down to 600) for the change in
signal-to-noise, decreases by fifteen percent for the increased
magnification constraint, and decreases by forty percent when
requiring the lensed features to be more easily resolved. The
change in signal-to-noise has the most significant effect, but for
visual inspection of residuals, lensed features that are
tangentially resolved and detected at a signal-to-noise of
20 are already unambiguously strong lensing.

8. CONCLUSION

In this paper we have investigated the question “how many
galaxy–galaxy strong lenses can forthcoming surveys dis-
cover?” We have developed a realistic model for the lens and
source populations to build a population of lenses that is
representative of the strong lenses in the real universe. We have
then simulated the observations of forthcoming surveys, paying
particular attention to the seeing distributions in each observing
band—which we find to be a key variable in the number of
detectable strong lenses. We have then analyzed these
simulated observations to investigate which of the systems
are plausibly detectable, finding that in our most optimistic
scenario DES, LSST, and Euclid can discover 2300, 120000,
and 280000 lenses, respectively, but only if the lens galaxy can

be subtracted without degrading the resolution and signal-to-
noise of the sample. We have shown that the detectability of
lenses depends strongly on the search strategy adopted; despite
the fact that lensed sources are typically much bluer than the
lens, a-g i difference imaging such as that implemented in
Gavazzi et al. (2014) only finds around a quarter of the
optimistically discoverable lenses since it degrades both the
PSF and the signal-to-noise. If future lens searches still use

a-g i difference imaging but can match the PSFs to the worst
of g- or i-seeing this can potentially discover twice as many
lenses as the current foreground subtraction method imple-
mented in RINGFINDER; such a finder could potentially discover
1300 lenses in DES and 62000 in LSST. The absence of color
information will require the development of single band finders
(e.g., Joseph et al. 2014) to find lenses in Euclid. The forecasts
of our model show excellent agreement for the population of
lenses discovered in searches of the CFHTLS (Sonnenfeld et al.
2013a; Gavazzi et al. 2014) and extrapolations of the HST
archive to the full Euclid area (Pawase et al. 2014).
For LSST (and to a lesser extent DES) we found that the

majority of discoverable lenses can neither be discovered in the
full co-add nor the best single-epoch imaging; the interplay
between signal-to-noise and seeing means that all possible
(seeing-ordered) stacks must be searched to maximize the
number of discoverable lenses.
We have shown in Section 7 that the dominant source of

error is the definition of a detectable lens. In the future, our
definition of detectability can be recalibrated by running lens
finders on our simulated lenses; this will allow us to robustly
understand the selection effects of different lens finders.
Section 7 shows that the model itself appears to be accurate
to around a few parts in ten; given the uncertainty on defining
detectability, this is sufficient for the purpose of this work, but
going beyond this level of accuracy will need a significant
improvement in our understanding of the faint source
population and redshift distribution.
One major issue that we have not addressed here is the

question of false positives. The detectability criteria outlined in
Section 4 seem reasonable for current data sets but may prove
optimistic in the future if greater depth and improved seeing
reveal a large number of non-lenses that have morphologies
similar to lenses. In particular, we have not required the
detection of counter-images, which may be necessary to
achieve an acceptable sample purity. It may also be that some
regions of parameter space produce less pure lens samples than
others; for example, it is easier to recognize tangential shearing
in thinner arcs; lensed low-surface brightness sources may be
hard to distinguish from face-on spiral arms or tidal features of
a candidate lens galaxy. Spectroscopic confirmation of lens
candidates is expensive and robust lens modeling presents a
challenge in the face of large numbers (Brault & Gavazzi 2014);
future searches may require much higher purity than current
samples. The selection function of future lens finders may be
more conservative than we have assumed in this work.
We have made the code used in this work publicly

available2; future strong lens finding algorithms can therefore
be tested on these systems to assess which subset of the full
lens population they will discover. If—once the finders have
been run on the simulated lens sample—the properties of
discovered lens populations deviate significantly from those

2 The code is available at github.com/tcollett/LensPop
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predicted by our model it will provide evidence that some
aspect of the modelʼs deflector or source population is
incorrect. While strong lensing has already shed light on the
high- redshift source population (Newton et al. 2011), and the
mass distribution in strong lens galaxies (e.g., Auger
et al. 2010; Sonnenfeld et al. 2013b), these results may be
biased by the discoverable strong lens selection function. Given
enough lenses and computational power a model such as the
one presented in this work could plausibly be used to infer the
many parameters of Section 2. This would implicitly include
the strong lens selection function (e.g., Sonnenfeld et al. 2015)
and should give unbiased inference on the properties of the
deflector and source populations.

Over the next decade, surveys will have sufficient signal-to-
noise and resolution to discover hundreds of thousands of
galaxy–galaxy strong lenses; however, no one human can hope
to perform visual inspection on such a large sample. Since all
current lens finders need some level of human inspection, and
extracting scientific results from lenses requires human input in
the form of lens modeling, making full use of these hundreds of
thousands of lenses will require a huge improvement in
automation (Marshall et al. 2005b; Brault & Gavazzi 2014,
e.g.,) or crowd-sourcing (Küng et al. 2015; Marshall et al.
2015; More et al. 2015).

The simulated images and code used to generate them are
freely available upon request from the author and at github.
com/tcollett/LensPop.
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