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Abstract 

Infection and cardiovascular disease represent the two most important sources of 

mortality in ANCA associated vasculitis (AAV).  Expansions of CD4+CD28null T-cells that 

are only present in cytomegalovirus (CMV) positive individuals have previously been 

associated with increased infection and mortality in AAV, and cardiovascular disease in 

other inflammatory diseases. 

The work described in this thesis examines the hypothesis that subclinical CMV 

reactivation in AAV drives the expansion of CD4+CD28null T-cells thereby leading to 

the observed adverse outcomes.  To investigate this, a proof of concept clinical trial of 

6 months valaciclovir treatment or no additional therapy was designed and 

implemented in CMV seropositive AAV patients in remission. 

Valaciclovir treatment successfully blocked CMV reactivation and in turn this led to a 

reduction in the proportion of CD4+CD28null T-cells in the treated patients together 

with favourable changes in other associated CMV induced changes on the immune 

system.  CD4+CD28null T-cells in AAV were identified as Th1, proinflammatory 

cytotoxic T-cells, able to target endothelial cells and were independently associated 

with increased arterial stiffness, an established marker of cardiovascular risk. 

These findings implicate subclinical CMV reactivation as a potentially reversible cause 

of vascular pathology in inflammatory disease and open novel therapeutic 

opportunities.  
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Chapter 1 Introduction 

1.1 ANCA associated vasculitis 

1.1.1 Definitions and nomenclature 

The ANCA associated vasculitides (AAV) are a group of systemic, autoimmune 

inflammatory conditions.  They are primary small vessel vasculitides, and are 

characterised by the presence of circulating anti-neutrophil cytoplasm antibodies 

(ANCA) and a lack of immune complex deposition [1-3].  The AAV are typified by 

necrotising inflammation affecting small to medium blood vessels leading to end organ 

damage, commonly affecting the kidneys, lungs and upper airways [4] and include 

granulomatosis with polyangiitis (GPA; previously known as Wegener’s 

granulomatosis), microscopic polyangiitis (MPA), eosinophilic granulomatosis with 

polyangiitis (EGPA; previously known as Churg-Strauss) and renal limited vasculitis 

(RLV).   

 

The AAV were officially defined according to the first International Chapel Hill 

Consensus Conference on the Nomenclature of Systemic Vasculitides (CHCC1994)[5] 

that was recently updated in 2012[6].  The CHCC 2012 definitions for the AAV are given 

in Table 1.1.  
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Table 1.1 2012 Chapel Hill Consensus Conference: definitions of anti-neutrophil 

cytoplasm antibody associated vasculitis [6] 

ANCA-associated vasculitis 

(AAV) 

Necrotising vasculitis, with few or no immune deposits, 

predominantly affecting small vessels (i.e. capillaries, 

venules, arterioles, and small arteries), associated with 

MPO ANCA or PR3 ANCA.  Not all patients have ANCA.  

Add a prefix indicating ANCA reactivity, e.g., MPO-ANCA, 

PR3-ANCA, ANCA-negative 

Granulomatosis with 

polyangiitis (GPA; 

Wegener’s) 

Necrotising granulomatous inflammation usually 

involving the upper and lower respiratory tract, and 

necrotising vasculitis affecting predominantly small to 

medium vessels (e.g., capillaries, venules, arterioles, 

arteries and veins). Necrotising glomerulonephritis is 

common. 

Microscopic polyangiitis 

(MPA) 

Necrotising vasculitis, with few or no immune depositis, 

predominantly affecting small vessels (i.e., capillaries, 

venules or arterioles). Necrotising arteritis involving 

small and medium arteries may be present. Necrotising 

glomerulonephritis is very common. Pulmonary 

capillaritis often occurs. Granulomatous inflammation is 

absent. 

Eosinophilic granulomatosis 

with polyangiitis (EGPA; 

Churg Strauss) 

Eosinophil-rich and necrotising granulomatous 

inflammation often involving the respiratory tract, and 

necrotising vasculitis predominantly affecting small to 

medium vessels, and associated with asthma and 

eosinophilia.  ANCA is more frequent when 

glomerulonephritis is present. 

ANCA: Anti-neutrophil cytoplasm antibody; MPO: Myeloperoxidase; PR3: Proteinase 3 
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1.1.2 Epidemiology of AAV 

The annual incidence of AAV is approximately 20 per million with a point prevalence of 

130/million for GPA and 47.9/million for MPA in the United Kingdom[1, 7, 8].  The peak 

age of onset is 65-74 with an incidence of 65 per million per year for that age group 

although the disease can occur at any age [8, 9].  AAV is more common in men 

however women tend to develop the disease at a younger age [10].  GPA is more 

common in the northern hemisphere and in particular within Caucasian populations of 

Northern Europe and the United States, whilst MPA is more common in Southern 

Europe, India and the Far East[7, 10-12].  EGPA is the least common of the AAV [12].    

 

1.1.3 Clinical Features of AAV 

Clinical features in AAV depend on the extent of organ involvement as well as the 

disease subtype.  Many clinical features, particularly the non-specific inflammatory 

symptoms of malaise, fatigue, anorexia, weight loss, fever and joint and muscle aches 

often described as a ‘flu-like’ syndrome are common to all AAV [1, 4].  An array of 

other features exist (Figure 1.1) depending on the organs involved and the severity of 

the disease, with GPA more commonly affecting the ear, nose and throat and upper 

airways leading to symptoms such as epistaxis, nasal crusting, sinusitis, hearing loss 

and recurrent otitis media and MPA having a predilection for renal involvement 

frequently leading to rapidly progressing glomerulonephritis requiring renal 

replacement therapy [1, 4, 13-15].  Pulmonary manifestations range from focal 
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infiltrates and granulomas to life threatening pulmonary haemorrhage and 

haemoptysis, secondary to haemorrhagic alveolar capillaritis [4, 16].     

 

 

 

 

Figure 1.1 Clinical features in AAV 

Constitutional flu-like symptoms are common to all AAV whilst other features depend 

on the extent of organ involvement and severity.  * Indicate lesions that can be seen 

on chest radiography and computed tomography.  Reproduced from [1] with 

permission from BMJ Publishing Group Ltd.   
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1.1.4 AAV pathophysiology 

The last few decades have seen an abundance of studies investigating the 

pathophysiology of AAV.  Although EGPA is included in the umbrella term of AAV, its 

pathophysiology is significantly different from that of GPA and MPA and will not be 

discussed here. 

 

ANCA have been associated with AAV since their first description in 1985 [17].  ANCA 

are categorised as cytoplasmic (c-ANCA) or perinuclear (p-ANCA) depending on their 

staining pattern by indirect immunofluorescence.  The main antigenic targets of ANCA 

are proteinase 3 (PR3) and myeloperoxidase (MPO), located in the azurophilic granules 

of neutrophils and the peroxidase positive lysosomes of monocytes [18]. PR3 specific 

ANCA usually exhibit a cytoplasmic pattern and are preferentially seen in GPA whilst 

MPO specificity tends to be associated with a perinuclear pattern and MPA or RLV [19].  

Other antigen specificities such as human lysosomal membrane protein 2 have also 

been recently described [20, 21]. 

 

Initial evidence for the pathogenicity of ANCA came from in vitro studies where both 

PR3 and MPO ANCA were shown to be able to activate neutrophil activation leading to 

oxidative burst and degranulation.  This effect was dose dependent and was 

significantly enhanced following neutrophil priming with TNF- [22].  In vivo evidence 

for MPO-ANCA pathogenicity was provided by mouse experiments performed by Xiao 
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and colleagues where the transfer of murine MPO-ANCA to wild-type or recombinant 

activating gene 2-deficient (Rag2-/-) mice led to glomerulonephritis suggesting that 

even in the absence of T-cells and B-cells MPO-ANCA alone are sufficient to cause 

disease [23].  Studies utilising the MPO ANCA mouse model have shown that disease 

induction can be ameliorated via several ways including neutrophil depletion, 

inhibition of plasma cell function and blocking of proinflammatory cytokines such as 

TNF-.  Recently, complement has also been implicated in AAV pathogenicity with 

experiments showing that blocking the complement component C5 can ameliorate the 

disease process [23-30].  On the other hand, there is no convincing animal model to 

date that is able to replicate the granulomatous inflammation seen in PR3-ANCA 

mediated disease, suggesting that cellular effector mechanisms play a significant role 

in the development of GPA.   

 

In summary, our current model for tissue injury in AAV involves the binding of ANCA 

on surface expressed MPO and PR3 auto-antigens on circulating cytokine-primed 

neutrophils, resulting in neutrophil adhesion and transmigration on activated 

endothelial cells with ensuing neutrophil degranulation and endothelial tissue injury 

ultimately leading to necrotising vasculitis [31, 32].          
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1.1.4.1  Involvement of T-cell immunity in AAV pathophysiology 

As alluded to earlier, T-cells have also been shown to be implicated in AAV 

pathophysiology.  ANCA are class switched IgG antibodies, implying a requirement for 

T-cell help as well as a breach in self-tolerance giving rise to auto-reactive T-cells [33].  

Furthermore, a reduction in the proportion and functionality of regulatory T-cells has 

previously been found in AAV patients [34] whilst multiple studies have shown 

evidence of persistent activation of T-cells in patients with MPA and GPA as well as 

infiltrating T-cells in granulomatous lesions [35-38].  Finally, T-cell depleting agents 

such as anti-thymocyte globulin and the anti-CD52 antibody alemtuzumab can induce 

remission in refractory cases of AAV suggesting a significant role for T-cell mediated 

immunity in disease pathophysiology [39, 40]. 

 

Indeed, multiple lines of evidence have recently suggested involvement of T-cells in 

AAV pathophysiology.  T-helper cells (see also section 1.2) are aberrantly polarised in 

AAV with a predominance of a Th1 pattern seen in localised GPA and MPA and a 

mixture of Th1 and Th2 CD4-cell involvement in active generalised GPA [41-44].  IL-17 

secreting CD4 T-cells (Th17) have recently been shown to be a major pathogenic cell 

subset involved in the trigger of autoimmunity and the establishment of inflammation 

[45-47].  IL-17 promotes the release of proinflammatory cytokines essential for 

triggering the surface expression of MPO and PR3 on activated neutrophils and auto-

antigen specific Th17 cells are relatively increased in ANCA positive patients in 

comparison to ANCA negative patients and controls [46-51]. 
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Persistent T-cell activation has been observed in AAV and has been found to correlate 

with disease activity and severity [52].  Furthermore an expansion of a subset of CD4 T-

cells, known as effector memory CD4 T-cells (EM), has been described in AAV patients 

together with a reciprocal decrease in naïve CD4 T-cells [37].  Effector memory T-cells 

are found in increased numbers in AAV patients in remission compared to controls.  

Interestingly their proportion in peripheral blood has been shown to decline during 

active renal disease in patients with AAV in parallel with an increase in the presence of 

CD4 EM T-cells in the urinary sediment, suggesting migration towards target organs 

during episodes of disease activity [53].  

 

Finally, CD4 T-cells lacking the co-stimulatory molecule CD28 that comprise a cytotoxic 

TEM subset (CD4+CD28null T-cells; discussed in detail in Section 1.2) are also expanded 

in AAV patients [54].  These CD4+CD28null T-cells have been found in abundance in the 

granulomatous lesions of patients with GPA [35, 36].  They possess cytotoxic abilities 

reminiscent of natural killer cells and have been shown to express the activating C-type 

lectin-like homodimeric receptor NKG2D [55].  The ligand for NKG2D, major 

histocompatibility complex class-I chain-related molecule A (MICA), is in turn 

upregulated in glomerular epithelial cells in active renal AAV disease and is expressed 

in granulomatous lesions of GPA patients [56, 57].         
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1.1.5 Treatment of AAV 

The principles of treatment in AAV are to induce and maintain remission utilising the 

minimum necessary immunosuppression that is appropriate to disease severity.  

Induction of remission is achieved by the use of highly potent immunosuppressive 

agents that generally target T-cells or B-cells.  The European Vasculitis Study Group 

(EUVAS) provided a framework of disease severity in order to guide the development 

of clinical trials in the treatment of AAV and harmonise approaches to treatment 

(Table 1.2) [58].   

 

 

Table 1.2  European Vasculitis Study Group Disease Severity Categories [58] 

Localised Upper and / or lower respiratory tract disease without any other 

systemic involvement or constitutional symptoms. 

Early systemic Any system, without organ-threatening or life threatening disease. 

Generalised Renal or other organ-threatening disease, serum creatinine < 500 

mol/L. 

Severe Renal or other vital organ failure, serum creatinine > 500 mol/L. 

Refractory Progressive disease unresponsive to glucocorticoids and 

cyclophosphamide. 
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The majority of AAV clinical trials carried out to date have been based on the EUVAS 

classification of severity.  A brief account of some important studies that have shaped 

current treatment strategies in AAV follows.   

 

1.1.5.1  Induction of remission in AAV 

In early systemic disease, comparison of induction therapy with oral corticosteroids 

and either cyclophosphamide or methotrexate (Non-Renal Wegener’s Alternatively 

Treated with Methotrexate; NORAM) demonstrated methotrexate to be as effective as 

cyclophosphamide in inducing remission [59] although long-term follow up revealed 

that patients treated with methotrexate relapsed more quickly and were more likely to 

receive further immunosuppression [60].   

 

In generalised disease, use of pulsed cyclophosphamide therapy as opposed to daily 

oral cyclophosphamide in addition to oral corticosteroids was shown to be equivalent 

in terms of achieving remission (The Cyclophosphamide Daily Oral versus Pulsed 

(CYCLOPS) Trial) [61].  Patients in the pulsed cyclophosphamide arm received a lower 

cumulative dose of cyclophosphamide and had fewer episodes of leucopoenia; 

however long-term follow up revealed a higher risk of relapse in the pulsed group, 

although rates of renal failure and mortality were equivalent [62].   
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Two recent trials considered the monoclonal anti-CD20 antibody rituximab as an 

alternative to cyclophosphamide for induction of disease remission in patients with 

generalised or severe AAV.  RITUXVAS (An International, Randomised, Open-label, Trial 

Comparing a Rituximab Based Regimen with a Standard Cyclophosphamide / 

Azathioprine Regimen in the Treatment of Active, “Generalised” AAV) and RAVE 

(Rituximab in ANCA-Associated Vasculitis) had important differences in their 

methodology, however both trials concluded that rituximab was at least as effective as 

cyclophosphamide in achieving remission whilst the rate of adverse events including 

infection were comparable between rituximab and cyclophosphamide treated patients 

[63, 64].   

 

Given that in vitro studies have revealed a role for tumour necrosis factor-alpha (TNF-

) in activating neutrophils in AAV pathophysiology [24], anti-TNF monoclonal 

antibodies such as infliximab, adalimumab and etanercept have also been utilised for 

induction of remission in AAV [65-68].  The addition of infliximab to standard therapy 

with corticosteroids and cyclophosphamide was shown not to lead to additional 

benefit [67] whilst adalimumab and etanercept demonstrated some improvement in 

disease activity scores and some limited evidence of reduced corticosteroid exposure 

[66, 68].  Due to the open-label, non-randomised nature of these studies as well as 

their mixed results, TNF blockade is reserved for cases of refractory disease where 

patients have not responded to conventional therapy.   
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In the management of severe life-threatening disease, the Methylprednisolone Versus 

Plasma Exchange as Additional Therapy for Severe ANCA-Associated 

Glomerulonephritis (MEPEX) trial, randomised patients with serum creatinine > 500 

mol/L to receive either three 1 g infusions of methylprednisolone on consecutive 

days or seven 60 mL/kg treatments of plasma exchange within 14 days.  All patients 

also received high dose oral corticosteroids and daily oral cyclophosphamide for 

induction of remission followed by azathioprine for maintenance of remission [69].  

Patients randomised to the plasma exchange arm exhibited better renal recovery and 

this difference was maintained at 12 months although subsequent long-term follow up 

has shown no difference between the two arms in terms of survival or renal function 

at a median follow-up of 3.95 years [70].   

 

The Plasma Exchange and Glucocorticoid Dosing in the Treatment of AAV: an 

International Randomised Controlled Trial (PEXIVAS; ClinicalTrials.gov Identifier: 

NCT00987389) is an ongoing multi-centre trial that aims to further clarify the efficacy 

of plasma exchange in improving renal recovery in patients with glomerulonephritis 

secondary to AAV as well as determine whether a reduced corticosteroid dose is 

associated with similar efficacy to the conventional dose but an improved adverse 

even rate.  

 

A recent retrospective study showed that pulsed cyclophosphamide in addition to high 

dose corticosteroids and plasma exchange was associated with a favourable outcome 
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when compared to the MEPEX arm that received daily oral cyclophosphamide 

suggesting that pulsed cyclophosphamide is a viable alternative also in severe disease 

to reduce cumulative dose of cyclophosphamide and ensuing toxicity [71].  

 

1.1.5.2  Maintenance of remission in AAV 

AAV is associated with a high rate of relapse that is seen in 50% of patients within the 

first 5 years following diagnosis and commencement of therapy [72-75].  Long-term 

maintenance immunosuppression is therefore usually necessary to adequately 

suppress disease activity.  Choice of maintenance immunosuppression must be 

balanced with the toxicity of available agents.  Cyclophosphamide was initially used to 

induce as well as maintain remission for prolonged periods of time resulting in high 

rates of infection and malignancy, particularly urothelial cancer [76, 77].  The 

Cyclophosphamide Versus Azathioprine for Early Remission Phase of Vasculitis 

(CYCAZAREM) trial showed that switching to oral azathioprine for maintenance of 

remission after 3-6 months of oral cyclophosphamide treatment was associated with 

equal rates of relapse and adverse events compared to continuing oral 

cyclophosphamide until month 12 [78]. 

 

The effectiveness of mycophenolate mofetil as a remission maintenance agent was 

compared to azathioprine in the Mycophenolate Mofetil Versus Azathioprine for 

Maintenance Therapy in AAV (IMPROVE) trial that demonstrated mycophenolate 
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mofetil to be less effective than azathioprine with a significantly higher rate of relapse 

[79].  The preferred agent for maintaining remission is therefore azathioprine although 

mycophenolate mofetil remains an option for patients that are intolerant to 

azathioprine.  Finally, rituximab has been described as an effective agent to maintain 

remission in several large case series [80-84] and a clinical trial (Rituximab Vasculitis 

Maintenance Study; RITAZAREM; ClinicalTrials.gov Identifier: NCT01697267) is 

currently underway to evaluate the effectiveness of rituximab in maintaining remission 

compared to azathioprine.  

 

1.1.5.3  Treatment of refractory AAV disease 

Refractory disease that is unresponsive to conventional therapy remains a very difficult 

area in the treatment of AAV.  To date there has only been one randomised controlled 

trial that randomly assigned patients to receive either intravenous immunoglobulin 

(IVIG) or placebo infusions for 5 days and showed short term reduction in disease 

activity in the IVIG treated group [85].  Various agents such as rabbit anti-human 

thymocyte globulin (ATG) [40], the lymphocyte depleting antibody alemtuzumab (anti-

CD52) [86], the immunosuppressant 15-deoxyspergualin [87-89], infliximab [90] and 

rituximab [91] have been utilised in the treatment of refractory or frequently relapsing 

AAV disease with mixed results although a detailed discussion of these studies is 

beyond the scope of this thesis.       
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1.1.5.4  Current treatment recommendations for AAV 

Recently published guidelines by the British Society of Rheumatology / British Health 

Professionals in Rheumatology have suggested that all patients with AAV should be 

considered to have severe, potentially life-threatening or organ-threatening disease 

[92].  The proposed treatment algorithm (Figure 1.2) therefore suggests consideration 

of ‘stepping down’ induction therapy to methotrexate or mycophenolate mofetil in 

addition to corticosteroids instead of cyclophosphamide or rituximab and 

corticosteroids in cases of no organ threatening involvement and increasing the 

intensity of induction therapy by adding plasma exchange to high dose corticosteroids 

and cyclophosphamide or rituximab in the presence of vital organ or life-threatening 

involvement [92].    
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Figure 1.2  AAV treatment algorithm   

Following disease assessment, induction of remission is achieved by the use of 

glucocorticoids (GC) and cyclophosphamide (CYC) or rituximab (RTX).  Methotrexate 

(MTX) or mycophenolate mofetil (MMF) can be considered in place of CYC or RTX in 

cases of no organ threatening involvement whilst plasma exchange (PLEX) should be 

added in cases of vital organ / life threatening features.  Maintenance is with 

azathioprine (AZA), MTX or RTX and gradual tapering of GC.  Reproduced from [92] 

with permission from Oxford University Press on behalf of the British Society for 

Rheumatology. 
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1.1.6 Morbidity and mortality in AAV 

1.1.6.1  Prognosis 

Prior to the use of treatment regimens that employ cyclophosphamide and high dose 

corticosteroids, AAV was almost universally fatal with 2-year survival rates of less than 

20% [74].  Current 5-year survival for AAV is approximately 80% [93] and although the 

disease remains life-threatening and potentially fatal if left untreated, modern 

therapeutic strategies as described in the previous section have transformed AAV into 

a chronic inflammatory condition with a relapsing-remitting course. 

 

1.1.6.2  Infection and cardiovascular disease in AAV 

Nevertheless, following induction of remission, AAV patients have a mortality ratio of 

2.6 compared to an age and gender matched general population [93].  Furthermore, 

although survival has greatly improved, one of the most significant challenges facing 

clinicians treating AAV patients at present is reducing treatment associated morbidity 

and mortality, particularly related to infection.  Indeed, a recent study that examined 

long-term prognosis in 535 patients with AAV that participated in four EUVAS clinical 

trials between 1995 and 2002 found that active disease was the cause of death in 19% 

of cases whereas infection accounted for 48% of deaths amongst patients who died 

within the first year after enrolment.  Following the first year, patients died mainly due 

to cardiovascular disease (26%), malignancy (22%) and again infection (20%).  As such, 
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infection and cardiovascular disease (CVD) represent the two most importance sources 

of morbidity and mortality in AAV.   

 

A matched pair cohort study has further highlighted the importance of CVD as a 

significant cause of morbidity and mortality in AAV [94].  In this study patients with 

AAV had a significantly higher incidence of cardiovascular events, with a hazard ratio of 

2.23, compared to matched patients with non-inflammatory chronic kidney disease 

(CKD), a group of patients already at an increased risk of CVD compared to the general 

population [95-97].   

 

Other studies have shown that patients with AAV display enhanced atherosclerosis 

[98] with increased surrogate markers of CVD such as endothelial dysfunction [99-101], 

arterial stiffness [102], carotid artery intima-media thickness [103] and a high 

frequency of arterial plaques [104], whilst further observational studies have observed 

increased morbidity from ischaemic heart disease in patients with AAV [98, 105].  The 

inflammatory nature of atherosclerosis, the underlying lesion in CVD, is becoming 

increasingly appreciated and excess mortality associated with other systemic 

inflammatory disorders such as rheumatoid arthritis and systemic lupus erythematosus 

has been attributed to accelerated atherogenesis leading to CVD [106-111].         
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Some of the clinical trials and studies discussed in the previous section have aimed to 

address the challenge of treatment related morbidity, particularly in relation to 

infection, for example by utilising pulsed cyclophosphamide rather than continuous 

daily cyclophosphamide [61, 71] in an effort to reduce overall dosage and toxicity, 

whilst other ongoing trials such as PEXIVAS aim to address whether it is possible to use 

lower doses of corticosteroids.   

 

Nevertheless there exists a significant unmet need to reduce the burden of infection 

and cardiovascular disease, two of the leading causes of death in patients with AAV.   

 

1.1.6.3  Dysregulated T-cell immunity contributes to AAV morbidity 

Aberrant T-cell immunity is relevant in the pathophysiology of disease related 

morbidity in AAV.  Indeed, Morgan et al. showed that in patients with AAV the size of 

the effector memory CD4+CD28null T-cell subset (discussed in detail in the next 

section) was correlated with an increased risk of infection, reduced renal function and 

increased mortality [112].  Importantly, expansion of CD4+CD28null T-cells in that 

study was not confined to AAV patients as both patients and controls exhibited similar 

proportions of CD4+CD28null T-cells.  CD4+CD28null T-cells however, were specific for 

Cytomegalovirus (CMV) seropositivity as only CMV seropositive AAV patients and CMV 

seropositive healthy controls exhibited significant expansions of CD4+CD28null T-cells.  

As such, dysregulation of T-cell immunity in AAV significantly impacts prognosis.      
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1.2 CD4+CD28null T-cells 

1.2.1 Organisation of the immune system 

The human immune system consists of an innate system that constitutes the first line 

of defence against foreign invading pathogens [113] and an acquired adaptive part 

that develops in response to infection, is able to recognise small differences in foreign 

molecules, recognise and eliminate foreign pathogens as well as develop 

immunological memory in order to provide an effective response upon re-challenge 

[114].  The lymphocyte population of the immune system is predominantly comprised 

of natural killer cells (NK) of the innate system and T-cells and B-cells that form part of 

the adaptive system.  In addition, other less common cell types such as NK T cells and 

 T cells have been described [115-117]. 

 

T-cells derive their prefix T from the fact that they mature in the thymus as opposed to 

B-cells that mature in the bone marrow [118].  T-cells are involved in cellular immunity 

where foreign antigens are recognised and suppressed by a cellular immune response, 

as well as in the generation and maintenance of self-tolerance.  Three main types of T-

cells have been characterised to date, cytotoxic T-cells (TC), helper T-cells (TH) and 

regulatory T-cells (TREG).  Cytotoxic and helper T-cells can be distinguished by the 

presence of CD8 and CD4 membrane glycoproteins on their surface, with CD4 T-cells 

generally functioning as helper T-cells [119].  The ratio of CD4+ to CD8+ T-cells is 

normally approximately 2:1 although this can be altered in various disease states [120, 

121] as discussed further in Section 1.3.4.   
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1.2.2 CD4 T-cells and their subsets 

Following activation CD4 T-helper cells, the key regulators of the immune system, are 

able to differentiate into various TH cell lineages with distinct biological functions 

(Figure 1.3).   

 

1.2.2.1  T-cell activation 

The traditional model of T-cell activation requires two signals for optimal activation of 

CD4 T-cells.  The first signal is provided by the interaction of the antigen with the major 

histocompatibility complex (MHC) and the T-cell receptor (TCR) whilst the second 

signal involves co-stimulatory cell surface molecule interaction on the antigen 

presenting cell (APC) with stimulatory receptors on the surface of the CD4 T-cell [122] 

(Figure 1.3).  The best characterised co-stimulatory pathway is the CD80/CD86 – 

CD28/CTLA-4 pathway where CD80 and CD86 represent ligands on the APC and CD28 

and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) represent stimulatory and 

inhibitory receptors on the surface of CD4 T-cells that orchestrate the responses of 

naïve, memory and effector cells [122-125].  In the absence of appropriate co-

stimulatory signals T-cells are thought to enter a state of anergy where proliferation 

and effector functions can be inhibited [126].  However, recently other alternative 

pathways of T-cell stimulation and inhibition including new members of the B7-CD28 

superfamily such as ICOS (inducible T-cell co-stimulator) and PD-1 (programmed death 

1) have been described [127, 128] and it is now accepted that other receptor ligand 
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interactions can support T cell proliferation and development of effector functions 

[129-131].      

 

 

Figure 1.3 CD4 T-helper subsets   

Following interaction with antigen presenting cells and depending on the nature of 

antigen stimulation signal received naïve CD4 T-cells differentiate into distinct T-cell 

subsets.  This process is enabled by recognised cytokines that provide the relevant 

‘polarising milieu’ and different CD4 T-cell subsets in turn are associated with secretion 

of key cytokines and distinct functions.   

Treg = T regulatory; ThF = T follicular 

Adapted from [132] under a Creative Commons Attribution Licence. 



CMV Modulation of the Immune System in AAV 24 
 

1.2.2.2  CD4 T-cell memory differentiation 

As alluded to CD4 T-cells can differentiate into distinct subtypes (Figure 1.3).  For some 

of these subtypes unique patterns of chemokine receptor expression have been 

described as a way of identification.  For example Th1 cells have recently been 

described to express the chemokine receptor CXCR3 (C-X-C motif chemokine receptor 

type 3) but lack expression of CCR6 (C-C motif chemokine receptor type 6) and CCR4 

(C-C motif chemokine receptor type 4) whereas Th2 cells express CCR4 but lack CXCR3 

and CCR6 expression whilst Th17 cells express both CCR4 and CCR6 but not CXCR3 

[133].   

 

Th1 cells produce the type 1 cytokines interferon gamma (IFN-), tumour necrosis 

factor alpha (TNF-) and interleukin 2 (IL-2) and are crucial in activating macrophages 

and enabling cell mediated immunity against intracellular pathogens [134].  Recently 

the role of Th1 cells in the development and exacerbation of inflammation in 

autoimmune disease as already discussed as well as in vascular pathology is 

increasingly being recognised [135, 136].      

 

CD4 T-cells can also phenotypically be described with regards to their differentiation 

status from naïve to effector and memory lymphocytes.  Naïve T-cells express the 

CD45RA isoform of CD45 as opposed to memory T-cells that express the CD45RO 

isoform and are generally negative for CD45RA expression [137].  In addition, naïve T-
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cells express the cell adhesion molecule L-selectin (CD62L) and the chemokine receptor 

CCR7 (C-C chemokine receptor type 7) and are able to circulate between peripheral 

blood and lymphoid tissue [138].  Following activation, naïve T-cells differentiate into 

effector cells.  Following clearance of the antigen, a large contraction phase ensues 

with some survivors differentiating to become memory cells that can confer long term 

protection and give rise to an enhanced response upon secondary antigenic challenge 

[139, 140].   

 

Memory T-cells are CD45RA negative and can be further sub-divided into central (CM) 

and effector memory (EM) subsets.  Central memory T-cells maintain expression of 

CD62L and CCR7 and are able to migrate into lymph nodes to mount secondary 

proliferative responses but lack effector functions [141].  Effector memory T-cells on 

the other hand exhibit heterogeneous expression of CD62L and have lost expression of 

CCR7.  They express characteristic sets of chemokine receptors and adhesion 

molecules, home into inflamed tissues and display immediate effector function [141, 

142].  Effector memory T-cells were originally described within the CD8 compartment 

but recently the existence of CD4 EM T-cells is increasingly being recognised [143, 

144].  As EM T-cells differentiate further they lose expression of CD27 and CD28 and 

gain expression of CD57 with a concomitant increase in cytolytic activity reflected by 

the ability to produce cytotoxic molecules like perforin, granzyme A and granzyme B 

[145].  Revertant EM T-cells are highly differentiated cells that have re-expressed 

CD45RA (EMRA) and show features of senescence and terminal differentiation [142].            
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1.2.3 CD28 expression and downregulation 

CD28 is constitutively expressed on the surface of CD4 and CD8 T-cells [122].  It is 

essential for optimal activation of T-cells and deletion of the CD28 gene in mice results 

in severe immunocompromise with reduced T-helper activity and impaired production 

of immunoglobulins [146], although the generation of T-cell cytotoxicity in these 

experiments was not affected suggesting the presence of alternate co-stimulatory 

pathways that can induce cytokine production [129, 146].  CD28 expression can be 

down-regulated leading to CD4 and CD8 T-cells that lack expression of CD28 

(CD4+CD28null; CD8+CD28null) that are now commonly seen with increasing age in 

healthy individuals as well as in the presence of chronic infection [147-151].  

CD4+CD28null T-cells lack CD28 mRNA indicating that CD28 downregulation occurs via 

transcriptional silencing that is reversible with IL-12 administration [147, 152].    

 

1.2.4 Characteristics of CD4+CD28null T-cells 

CD4+CD28null T-cells were first described in patients with rheumatoid arthritis (RA) 

[153, 154] but have since then been described in association with a multitude of 

inflammatory disorders [54, 155-167], viral infections [150, 168-170], cardiovascular 

disease [171-181] and in the context of an ageing immune system where they have 

been found to represent as much as 50% of the total CD4 compartment [149, 151, 

182].   
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They exhibit important differences compared to their CD4+CD28+ counterparts in that 

they are oligoclonal with limited TCR diversity [153, 154, 183], the loss of CD28 and 

oligoclonality both suggestive of repeated exposure to a persistent antigen [184].  

Furthermore, they show evidence of an increased replicative history as they have been 

found to contain significantly shortened telomeres [185, 186].  Despite that, 

CD4+CD28null T-cells are relatively resistant to apoptosis and are long lived [129, 182, 

185, 187].  They exhibit cytotoxic properties with the ability to produce Th1 type 

cytokines IFN- and TNF- as well as cytolytic enzymes such as granzyme B and 

perforin [167, 188-191].  They express the chemokine receptor CXCR3 and in that 

respect, resemble the chemokine receptor expression pattern of Th1 cells suggesting 

that they can be classified as cytotoxic Th1 type cells [184, 192].   

 

In addition, CD4+CD28null T-cells have been shown to express molecules that are 

usually found on the surface of cells of the innate immune system as well as an array 

of surface adhesion molecules.  CD4+CD28null T-cells express receptor molecules 

typically found on NK cells such as CD57 and CD11b [184], the latter being important in 

regulating leukocyte endothelial adhesion and inflammation [193], although they do 

not express the NK specific molecule CD16.  Furthermore, they do not express the 

invariant TCR -chain and therefore cannot be characterised as NK T cells [194].  

NKG2D receptors have been shown to be expressed by CD4+CD28null T-cells in RA, 

giant cell arteritis, polymyalgia rheumatica and AAV [55, 195-197] while other killer cell 

immunoregulatory inhibitory receptors (KIR) such as KIR2DS2 have been found on 
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CD4+CD28null T-cells from acute coronary syndrome (ACS), chronic kidney disease and 

RA patients [196, 198-200].  In RA the presence of KIR2DS2 is considered a risk factor 

for the development of vasculitis but not synovitis [184].           

 

As mentioned earlier, CD4+CD28null T-cells express CXCR3, the ligand of which, IP-10 

(interferon gamma-induced protein 10), has been implicated together with CXCR3 in 

the pathophysiology of inflammatory arthritis and atherosclerosis [201].  However, 

differential expression of CXCR3 has been observed in certain patient groups with 

psoriasis patients exhibiting a decreased proportion of CXCR3 expressing 

CD4+CD28null T-cells in the periphery [202].  Similarly, although CD4+CD28null T-cells 

from RA patients have been found to express CCR5 (C-C chemokine receptor type 5) 

thereby being able to traffic to the inflamed synovium [203], CCR5 expression has been 

shown to be very low in CD4+CD28null T-cells of ankylosing spondylitis patients [167] 

suggesting differential expression of chemokine receptors by CD4+CD28null T-cells in 

different inflammatory conditions.  Patients with RA and multiple sclerosis (MS) have 

also been shown to express the VLA-4 (Very Late Antigen-4) and LFA-1 (Lymphocyte 

Function Associated Antigen 1) receptors whose ligands VCAM-1 (Vascular Cell 

Adhesion Molecule-1) and ICAM-1 (Intercellular Adhesion Molecule 1) are found on 

endothelial cells as well as in soluble form and on APC (ICAM-1) [184]. 

     

Another important chemokine receptor expressed by CD4+CD28null T-cells is the 

receptor for fractalkine, CX3CR1 (CX3C chemokine receptor 1).  Fractalkine, or CX3CL1, 
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exists in a soluble as well as a membrane bound form and functions as both a 

chemoattractant (soluble form) and an adhesion molecule (membrane bound form) 

promoting shear resistant adhesion of CX3CR1 expressing leukocytes [204].  The role of 

fractalkine is increasingly being recognised in inflammatory pathology including 

atherosclerosis and renal disease [205-207] and membrane bound fractalkine can be 

induced on endothelial cells via activation by Th1 type inflammatory cytokines such as 

IFN- and TNF-.  CX3CR1 is expressed on CD4+CD28null T-cells from RA and MS 

patients.  In RA, activated synoviocytes express fractalkine [209-211], whereas in MS 

the chemokine gradient of soluble fractalkine induces migration of CD4+CD28null T-

cells in inflamed brain lesions [163].   

 

1.2.5 CD4+CD28null T-cells are associated with inflammation 

Given the characteristics of CD4+CD28null T-cells discussed above these cells are 

thought to represent a proinflammatory cytotoxic subset.  Furthermore, it has been 

shown that an inflammatory milieu contributes to the expansion of CD4+CD28null T-

cells explaining the association between this cell subset and chronic inflammatory 

conditions as well as with advancing age owing to the increase in proinflammatory 

cytokines that is known to occur with age [212-214].  In RA, Bryl et al. have shown that 

TNF- induces downregulation of surface expressed CD28 through transcriptional 

repression by inhibiting the binding of nuclear protein complexes that recognise 

regulatory sequences [212].  On the other hand, treatment with the anti-TNF- 
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monoclonal antibody infliximab in RA as well as in unstable angina patients leads to 

partial reappearance of the CD28 molecule on the CD4+ cell surface [175, 215-217].     

 

1.2.5.1  CD4+CD28null T-cell expansion in inflammatory disease states 

Following the original description of CD4+CD28null T-cells in RA [153, 154], expansions 

of these cells have been reported in a multitude of inflammatory conditions.  Recently 

they have been implicated in the pathogenesis of primary sclerosing cholangitis (PSC) 

where CX3CR1 expressing CD4+CD28null T-cells were found in higher frequencies in 

liver tissue from PSC patients compared to primary biliary cirrhosis or non-alcoholic 

steatohepatitis [218].  In the same study, TNF- was found in abundance in PSC liver 

tissue and TNF- downregulated the expression of CD28 in vitro, an effect that was 

prevented by administration of 1,25(OH)2D3 vitamin D.  CD4+CD28null T-cells have 

been shown to induce muscle cell death in vitro via secretion of granzyme B and 

perforin in experiments utilising cells from patients with polymyositis [219].   

 

CD28 downregulation on CD4 T-cells is associated with poor prognosis in patients with 

pulmonary fibrosis [220], extra-articular disease such as rheumatoid nodules and 

vasculitis in RA [221] and in vitro experiments have shown that CD4+CD28null T-cells 

may be implicated in the pathophysiology of MS, an effect that is augmented by IL-15 

[162, 163].  The frequencies of CD4+CD28null T-cells in RA and healthy individuals 

follow a bimodal distribution, defining carriers and non-carriers [221].  Given the 
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extensive association with inflammatory and autoimmune disease it has been 

postulated that CD4+CD28null T-cells are autoreactive in nature.  However, studies 

have failed to show auto-reactivity of these cells to RA or MS autoantigens and thus 

CD4+CD28null T-cells are more likely to cause pathology via indirect ways [159].      

       

1.2.5.2  CD4+CD28null T-cells in AAV 

Expansions of CD4+CD28null T-cells have been repeatedly observed in the peripheral 

blood of AAV patients and have been found in abundance in bronchoalveolar lavage 

fluid and within granulomas of patients with GPA [35, 36, 54, 222, 223].  The degree of 

expansion of CD4+CD28null T-cells has been shown to be proportional to the 

cumulative number of involved organs and hence disease severity across time but not 

with severity of acute disease or treatment [54].  These findings were confirmed in a 

recent study that showed no difference in the proportion of CD4+CD28null T-cells 

between AAV patients with active disease versus AAV patients in remission [224].  On 

the other hand, as already alluded to earlier, CD4+CD28null T-cell expansions in AAV 

patients have been associated with reduced kidney function, increased risk of infection 

and increased mortality [112].    

 

1.2.5.3  CD4+CD28null T-cells in renal disease 

Expansions of CD4+CD28null T-cells have also been described in patients with other 

immune mediated renal disease, chronic kidney disease (CKD) and end-stage renal 
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disease (ESRD).  In systemic lupus erythematosus (SLE), CD4+CD28null T-cells have 

been found to be independently associated with disease damage [155] echoing the 

findings in AAV.   

 

Yadav et al. found that amongst ESRD dialysis patients CD4+CD28null T-cells were 

cytotoxic as judged by their ability to produce granzyme B and perforin and were 

significantly expanded compared to healthy volunteers.  Furthermore, a greater 

proportion of CD4+CD28null T-cells from dialysis patients expressed granzyme B and 

perforin compared to healthy individuals [177].  Further studies have found 

CD4+CD28null T-cells to be associated with an increased risk of an atherosclerotic 

event shortly after renal transplantation [174], as well as increased early 

atherosclerotic damage defined as impaired flow-mediated vasodilatation and 

increased intima-media thickness in the carotid artery [173, 176, 178-181].  

Interestingly, in one study the size of the CD4+CD28null T-cell expansion was 

negatively correlated with serum vitamin D levels in agreement with the findings of 

Liaskou et al. in PSC patients [176, 218].   

 

Finally, in renal transplant recipients CD4+CD28null T-cells were associated with 

delayed graft function and reduced renal function, were found to express CX3CR1, 

NKG2D and cytolytic molecules and were capable of inducing glomerular endothelial 

cell apoptosis in vitro in an NKG2D dependent fashion [225]. 
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1.2.5.4  CD4+CD28null T-cells in cardiovascular disease 

The relevance of CD4+CD28null T-cells in cardiovascular disease was first noted in 1999 

when Liuzzo et al. compared cytokine production by T lymphocytes in patients with 

unstable angina versus stable angina.  They found a persistent increase in the 

proportion of CD4 and CD8 T-cells that produced IFN- in response to phorbol 

myristate acetate (PMA) and ionomycin and that this increased production of IFN- 

was attributed to an expansion of CD4+CD28null T-cells in patients with unstable 

angina [226].  The same investigators then showed that CD4+CD28null T-cells are 

preferentially found in unstable rather than stable atherosclerotic plaques suggesting a 

direct involvement of this cytotoxic subset in plaque disruption.  They also found that 

CD4+CD28null were highly oligoclonal and that clonotypes of different patients shared 

T-cell receptor sequences implicating chronic stimulation by a common antigen [227].  

In addition, CD4+CD28null T-cells were shown to possess the ability to lyse human 

umbilical vein endothelial cells (HUVECs) in in vitro cytotoxicity assays where cytolysis 

was dependent on granule exocytosis and augmented by pre-treatment of HUVECs 

with C-reactive protein (CRP) [228].  Since then several researchers have reported on 

associations between CD4+CD28null T-cell expansions and increased cardiovascular 

disease in the context of inflammatory disorders, diabetes and established ischaemic 

heart disease as already discussed [171, 173-175, 179, 180, 184, 205, 229] whilst 

CX3CR1 expressing CD4+CD28null T-cells linked to atherosclerotic damage have been 

described in RA and CKD patients [179, 230].   
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1.2.6 Origin of CD4+CD28null T-cells 

There is no current consensus in the literature as to the exact origin of CD4+CD28null 

T-cells [171, 184].  The oligoclonal nature of CD4+CD28null T-cells points to a 

persistent antigen as the driver behind their expansion and accumulating evidence 

now suggests that the bimodal distribution of CD4+CD28null T-cells can be explained 

by previous infection with CMV.  In a cohort of RA patients CD4+CD28null T-cells were 

only expanded in CMV seropositive patients [168, 231].  These findings were confirmed 

in MS patients [159] and renal transplant recipients [225].  Similarly in AAV significant 

expansions of CD4+CD28null T-cells are only found in CMV seropositive patients [112, 

224].  Furthermore, Morgan et al. showed that once CMV seropositivity was taken into 

account there was no difference in CD4+CD28null T-cell percentage between AAV 

patients and age-matched healthy volunteers [112]. 

 

Further support for CMV as the driver behind CD4+CD28null T-cells came from a study 

of renal transplant recipients where following primary CMV infection CD4+CD28null T-

cells capable of producing granzyme B and perforin emerged after cessation of the 

viral load indicating that CMV triggers their formation [232].  However it remains 

unclear as to what mechanisms are responsible for the maintenance and / or 

expansion of CD4+CD28null T-cells following primary CMV infection and during 

latency.      
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An intriguing alternative hypothesis for CD4+CD28null T-cell reactivity has also been 

proposed.  Zal et al. showed that CD4+CD28null T-cells from patients with acute 

coronary syndrome (ACS), but not from stable angina or healthy volunteers, 

recognised heat shock protein 60 (HSP60) as an antigen [200].  This association was 

confirmed in another study that found increased expression of IFN-, granzyme B and 

perforin when CD4+CD28null T-cells from CKD patients were incubated with HSP60 or 

HSP70 whilst again there was no reactivity in CD4+CD28null T-cells from healthy 

volunteers to these antigens [178]. 

 

Heat shock proteins can be expressed by all cells under certain conditions of stress 

such as oxidative stress or inflammation including exposure to proinflammatory 

mediators such as IFN- and TNF- potentially explaining this association.  

Furthermore, although there is some evidence for HSP60 being involved in 

atherogenesis in that high levels of autoantibodies specific for HSP60 have been 

associated with cardiovascular disease [234], the presence of high levels of HSP70 in 

serum is associated with protection against cardiovascular disease rather increased 

risk [233, 235].  Interestingly, an HSP60 epitope has recently been found to display 

homology with two human CMV-encoded proteins, UL122 and US28 [236].  In that 

study, patients with coronary artery disease were found to have circulating antibodies 

specific for this HSP60 epitope as well as the two homologous CMV proteins whereas 

healthy volunteers did not.  In addition, US28 is a chemokine receptor homologue 

encoded by CMV that has been established as a key mediator of CMV mediated 
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vascular pathology through its binding to several human chemokines including 

fractalkine [237].  As such, infection with CMV may lead to the induction of a cascade 

of immune responses leading to endothelial damage partly through molecular mimicry 

involving HSP60 [233] potentially explaining the observed reactivity of CD4+CD28null 

T-cells to heat shock proteins.     
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1.3 Cytomegalovirus 

1.3.1 CMV epidemiology 

Human cytomegalovirus (CMV) is a common double stranded DNA beta herpes virus 

that has co-evolved with its human host over millennia.  Approximately 60-90% of the 

population worldwide is infected with CMV [238-241].  CMV is almost ubiquitous in 

developing countries in South America, Africa and Asia whereas in Western Europe 

and the United States the prevalence of infection increases with age with 

approximately 90% of individuals older than 90 years being infected compared to 40-

60% amongst middle aged people and is also significantly influenced by 

socioeconomical status [242-246].  Viral spread occurs through bodily fluids or vertical 

transmission and CMV remains a leading cause of congenital infections associated with 

a significant risk of developmental birth defects [243].  Furthermore, CMV is an 

important cause of opportunistic infection in immunocompromised individuals such as 

bone marrow and solid organ recipients and AIDS patients [247].           

 

1.3.2 CMV infection and the host response 

Following primary infection CMV establishes lifelong persistence through a latency 

phase from where the virus can be reactivated [246].  During acute infection the main 

target cells for CMV are epithelial and endothelial cells.  CMV can cause lytic infection 

in any cell type, in this way leading to organ specific symptoms and disease.  Latency 

however is mainly established in bone marrow and peripheral immature cells of 



CMV Modulation of the Immune System in AAV 38 
 

myeloid lineage [243, 248-252].  Acute CMV infection can be due to primary infection 

or reactivation, is characterised by constitutional symptoms and is usually subclinical 

although organ specific signs and symptoms can occur such as hepatitis, colitis, 

pancytopenia, retinitis or pneumonitis particularly in immunocompromised individuals 

[253].   

 

The host response to CMV involves both innate and adaptive immune mechanisms 

[254].  NK cells have an important role in the immediate control of acute CMV 

infection [255].  Humoural and cellular mechanisms are subsequently triggered in 

order to control primary CMV infection [256].  Viral replication is mostly controlled in 

an immunocompetent host although CMV reactivation has been documented in 

certain circumstances particularly associated with increasing age [257-259].   

 

The cell mediated response to CMV, primarily by CD8, but also CD4 T-cells, is crucial for 

successful immune surveillance and control of viral replication, as evidenced by a high 

rate of reactivation leading to severe clinical sequelae in patients with profound 

cellular immunodeficiency [260].  Patients receiving allogeneic bone marrow stem cell 

transplant grafts for the treatment of haematological malignancy are at a particularly 

increased risk of life threatening CMV reactivation.  This is especially the case when a 

CMV seropositive patient receives a graft that has been T-cell depleted or a graft from 

a CMV seronegative donor resulting in both cases in lack of specific anti-CMV immunity 

[261].  Adoptive immunotherapy has been performed by transferring donor derived 
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CMV-specific CD8+ clones [262, 263] or purified CMV-specific CD8+ T-cells by HLA-

peptide tetramer staining followed by selection with magnetic beads [261, 264].  

Transfer of virus specific CD8+ T-cells in these studies has been shown to lead to 

reconstitution of viral immunity, reduction in viral reactivation rates and in a recent 

clinical trial, clearance of infection refractory to anti-viral therapy [261].  Furthermore, 

the presence of CD4+ CMV-specific T-cells has been shown to be important for the 

persistence of transferred CD8+ T-cells [263].    

 

1.3.3 CMV leads to systemic dysregulation of the immune system 

CMV is increasingly been recognized as the most immunodominant infection 

encountered by the human immune system with up to 10% of the CD4 and 40% of the 

CD8 compartments being comprised of CMV specific T-cells [265].  In states of 

immunosuppression this is further increased [112] and may indeed reflect increased 

episodes of CMV reactivation.     

 

CMV infection in healthy individuals substantially modulates the peripheral lymphoid 

cell pool leading to the accumulation of effector memory (EM) (CD45RA- CCR7- CD28-) 

and late-stage differentiated (CD45RA+ CCR7- CD28-) CD8 and CD4 T-cells at the 

expense of a reduction in naïve T-cells (CD45RA+ CCR7+ CD28+) [266], a phenomenon 

that has been termed ‘memory inflation’ [267, 268].  The presence of large numbers of 

EM CMV-specific T-cells suggests recent encounter with viral antigen.  The highly 
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differentiated EM T-cells that accumulate following CMV infection are potent 

producers of proinflammatory cytokines such as TNF-.  Interestingly, it has 

recently been shown that TNF- can reverse the transcriptional silencing that keeps 

CMV in latency thereby forcing the virus out of latency into the lytic phase leading to 

reactivation [270].  CMV driven expansion of proinflammatory T-cells may therefore in 

this way lead to a positive feedback loop of further CMV reactivation although this is 

currently unclear.        

 

1.3.4 CMV is associated with inflammation and vascular pathology 

CMV has been repeatedly associated with an augmented inflammatory response [271-

273].  In a study of ESRD patients, CMV seropositivity was associated with 

inflammation, lower haemoglobin levels and a demand for a higher erythropoietin 

dosage that was also correlated to the size of the CD4+CD28null T-cell expansion [274].   

 

Several studies have suggested a link between CMV exposure and vascular pathology 

including cardiac allograft vasculopathy [275], increased mortality due to CVD in the 

context of renal transplantation [276, 277], atherosclerosis [278] and CVD in the 

general population [279].  In addition, CMV has been implicated in the development of 

hypertension [280, 281].  
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A study examining atherosclerotic plaques from 105 coronary artery bypass grafting 

(CABG) surgical patients found that the presence of CMV replication in plaques was 

linked to a 4-fold increase in the history of previous acute coronary syndrome after 

adjustment for other risk factors [282].  CMV may also contribute to a higher risk of 

atherosclerotic events following renal transplantation where pre-transplantation CMV 

exposure has been shown to be an independent risk factor for cardiovascular episodes 

in the post-transplantation period.  Furthermore the presence of actual CMV 

replication following transplantation further increases this risk [283].   

 

High CMV IgG antibody titres have been independently associated with systolic as well 

as diastolic blood pressure elevation and flow mediated vasodilation in young Finnish 

men [284] suggesting that latent CMV infection may lead to adverse vascular changes 

from a young age and may be linked to the development of arterial stiffness, an 

established surrogate marker of CVD risk.  Indeed a recent study from Birmingham has 

shown an association between CMV seropositivity and increased arterial stiffness in 

patients with chronic kidney disease [285].   

 

Furthermore, it has been shown that the host inflammatory response to chronic CMV 

infection is linked to immune-pathological pathways leading to vascular and 

endothelial injury.  Specifically the CD4 T-cell response to CMV can drive the 

expression of fractalkine on endothelial cells that are then susceptible to attack by 

monocytes and NK cells bearing the fractalkine receptor CX3CR1 [286].  Furthermore 
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CD4+CD28null CMV specific T-cells have been found to express high levels of CX3CR1 

and CXCR3 and in vitro and are able to migrate in a fractalkine and IP-10 dependent 

fashion towards activated endothelial cells inducing endothelial cell apoptosis [287], 

implicating CMV as the driving force behind the observed association between 

CD4+CD28null T-cells and cardiovascular disease.  Further confirmatory evidence has 

come from a recent study in octogenarians that found CMV seropositivity as well as 

expansions of CD4+CD28null T-cells to be associated with overall cardiovascular 

mortality as well as death from myocardial infarction and stroke [279].    

 

1.3.5 CMV is associated with immunosenescence 

Recent epidemiological evidence has linked CMV infection to an increased risk of 

morbidity and mortality in the elderly [267, 288-294].  CMV is thought to contribute to 

immunosenescence [288] and constitutes part of the ‘immune risk profile’ (IRP) 

comprised of an inverted CD4 to CD8 ratio of < 1, expansion of CD8 T-cells with a late-

stage differentiation phenotype, a low frequency of naïve T-cells, poor proliferative T-

cell responses, an increase in proinflammatory cytokines and CMV seropositivity [291].  

CMV seropositivity is associated with a CD4:CD8 ratio of < 1, poor cognition and 

functional disability in older adults [295].    

 

Abnormalities of the CD4 T-cell compartment are also increasingly noted with an 

increase in CD4 CMV-specific cells with age, leading to an expansion of CD4+CD28null 
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T-cells and a reduction in CD4 naïve T-cells [265, 296].  Furthermore, CMV infection 

may impair the body’s ability to fight heterologous infections such as Epstein Barr virus 

(EBV) [297], herpes simplex [298] and herpes zoster [299] and leads to decreased 

antibody responses following influenza vaccination [300]. 

 

Several studies have now linked chronic CMV infection to reduced responsiveness to 

the influenza vaccine.  In these studies a higher degree of inflammation (increased 

concentration of IL-6 and TNF-) amongst CMV seropositive patients as well as higher 

levels of anti-CMV IgG correlated with poor vaccine responses.  Importantly high 

frequencies of terminally differentiated CD4+CD28null T-cells were persistently 

associated with reduced vaccine-induced antibody responses [300-302]. 

 

1.3.5.1  CMV and immunological functional exhaustion 

In addition to memory inflation, functional exhaustion of CMV-specific cells may 

contribute to CMV driven immunosenescence by modulation of cytokine production 

over time leading to loss of function.  Following repeated antigen stimulation with 

viruses, such as HIV, cytokine production is progressively reduced in a hierarchical 

manner.  IL-2 production and cellular proliferative capacity is lost first, followed by 

TNF-α and finally IFN-γ production [303].  In a study of elderly CMV seropositive 

patients, up to 50% of CMV-specific CD4 T-cells were unable to produce IL-2 and only 

capable of IFN-γ production [304].  Furthermore, loss of IL-2 production by CMV-
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specific CD4 T-cells is associated with an increased risk of CMV end-organ disease in 

CMV seropositive individuals infected with HIV [305].  

 

Associated with cytokine modulation is an increase in the expression of inhibitory 

receptors cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 

(PD-1), T-cell immunoglobulin domain and mucin domain 3 (TIM-3) and lymphocyte 

activation gene 3 (LAG-3), as well as up-regulation of the transcription factor PR 

domain zinc finger protein 1 (BLIMP-1), thereby leading to attenuation of virus specific 

T-cell function [303].  In HIV seropositive patients [306] and in transplant patients with 

CMV viraemia [307], inhibitory receptors are expressed on CD4 CMV-specific cells, 

particularly CD4+CD28null T-cells, although to a lesser extent than found on CD4 HIV-

specific T-cells [306].  These findings were confirmed during primary CMV infection in 

pregnant women where CMV specific T-cells were found to have a reduced capacity 

for proliferation, decreased production of IL-2 and increased expression of PD-1 [308].    

 

On the other hand, recent studies have suggested that in younger people, CMV may 

confer immune protection against other pathogens.  For instance, CMV has been 

shown to augment immune responses to heterologous pathogens in young mice 

whereas it impairs immunity to other viruses in older mice [309-313].  CMV 

seropositive young adults exhibit enhanced antibody responses to influenza 

vaccination compared to CMV seronegative individuals [314] and in a study of 

Gambian infants, CMV infection was shown to enhance some immune responses in 
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infancy despite inducing an expansion of CD8 and CD4 late differentiated cells [315].  

Finally, Pera et al. have recently suggested that in young individuals (18-35 years old), 

CMV induces the expansion of a polyfunctional subset of CD4 T-cells co-expressing 

CD57 and CD154.   

 

The potential advantage conferred by past CMV infection in dealing with heterologous 

antigens during early life makes logical sense from an evolutionary perspective.  

Nevertheless, although the CMV induced expansion of proinflammatory T-cells may be 

protective to begin with, with advancing age and in the setting of inflammatory 

pathology, it is possible that inflammation drives a vicious circle of persistent CMV 

reactivation followed by further expansion of proinflammatory T-cells leading to the 

observed association between CMV and inflammatory pathology including 

cardiovascular disease.   

 

In terms of the role of CMV in immunosenescence, recent studies have continued to 

support the notion that CMV has a negative impact on cellular immunity to 

heterologous infection such as respiratory viral infections and influenza in older 

individuals [316, 317].  Furthermore in the study by Pera and colleagues the proportion 

of CD4+CD28null T-cells in CMV seropositive patients was inversely associated with the 

percentage of polyfunctional CD4+CD57+ T-cells even in young age [309] highlighting 

the complexities of the footprint of CMV infection on the immune system and 

suggesting a possible association between proinflammatory CMV specific T-cells and 
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immunosenescence even early on in life.  Finally, genetic factors are likely to also play 

a significant role in the observed variability of the impact of CMV on T-cell phenotypes 

[318].                

 

1.3.6 CMV replication in latency and pharmacological suppression 

The observed expansion of CMV specific EM cells including CD4+CD28null T-cells in 

inflammatory conditions and with advancing age suggests repeated exposure to CMV 

antigen.  There are no studies that have specifically assessed the extent of subclinical 

CMV reactivation in AAV.  However, a cross-sectional study of 18 patients with 

inflammatory connective tissue diseases such as SLE and RA on similar 

immunosuppressive therapy used in AAV, detected CMV reactivation in up to 41% of 

patients [319].  Furthermore, another study has detected CMV DNA in the urine of 90% 

of elderly individuals over a 6-month period supporting frequent sub-clinical CMV 

reactivation with advancing age [257].        

 

Valaciclovir, the prodrug of aciclovir, inhibits viral DNA polymerase and is incorporated 

in viral DNA leading to chain termination.  It has activity against several human viruses 

including CMV. Clinical trials in AIDS, bone marrow transplantation and solid organ 

transplantation have demonstrated that valaciclovir treatment leads to reduced viral 

load in blood and urine in AIDS patients [320, 321] and reduced episodes of clinical 

CMV disease in transplantation [322].  Prophylactic valaciclovir treatment for 3 months 
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in kidney transplant patients has been demonstrated to suppress viral replication 

leading to much lower rates of detectable CMV DNA in the blood compared to control 

patients [323].  In addition, treatment of CMV viraemia reduces PD-1 expression and 

increases IL-2 production in renal transplant recipients [307].  

 

To date there have not been any human interventional studies to determine whether 

treatment with an anti-viral agent can reduce subclinical CMV reactivation and 

whether this can ameliorate the negative effects of CMV on the immune system.  

Beswick et al. however have recently shown that valaciclovir therapy can potentially 

reverse the development of immunosenescence in elderly mice seropositive for 

murine CMV [324].  In this study, valaciclovir treatment for up to 12 months reduced 

the magnitude and differentiation of CMV-specific CD8 T-cells, increased the 

proportion of naïve CD8 T-cells and led to a reduction in influenza A virus loads 

following an influenza challenge.       

 

 

 

 

 

 



CMV Modulation of the Immune System in AAV 48 
 

1.4 Summary and hypothesis 

Expansions of proinflammatory CD4+CD28null T-cells have been repeatedly reported in 

inflammatory conditions including AAV as well as in patients with ischaemic heart 

disease and older individuals.  Significant expansions of CD4+CD28null T-cells are only 

seen in CMV seropositive individuals, and in AAV, CD4+CD28null T-cells are associated 

with increased infection and higher mortality.   

 

In addition, CMV seropositivity and its association with an expansion of EM T-cells, 

including CD4+CD28null T-cells, is linked to immunosenescence and vascular 

pathology.  This is highly relevant in AAV where the two leading causes of morbidity 

and mortality are infection and cardiovascular disease.  However, the phenotype of 

CD4+CD28null T-cells in AAV has not been adequately described and it is currently 

unknown as to whether expansions of CD4+CD28null T-cells contribute to CVD risk in 

AAV.    

 

The mechanisms that drive the expansion of CD4+CD28null T-cells in CMV seropositive 

individuals are currently unclear.  It is also not known as to whether such CMV induced 

modulation of the immune system in inflammatory diseases can be reversed.  

Furthermore, there is some controversy in the literature in that alternative antigens 

have been postulated to be responsible for the expansion of CD4+CD28null T-cells.   
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In addition, the cytokine production and inhibitory receptor profile of CMV specific 

CD4+CD28null T-cells in patients with expansions of this subset have not yet been 

addressed.  Finally, the relationship between these features and control of CMV 

replication in vivo is also unknown.  

 

 

The hypothesis of the research presented here is that subclinical CMV reactivation in 

AAV drives the expansion of proinflammatory CD4+CD28null T-cells giving rise to 

adverse modulation of the immune system that progressively leads to vascular damage 

and immunosenescence thereby explaining the observed increase in infection and 

mortality seen in association with increased expansions of CD4+CD28null T-cells in AAV 

and that blocking subclinical CMV reactivation with valaciclovir will reduce expansion 

of this subset.  
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1.4.1 Thesis aims and objectives 

The aims of this thesis were to characterise the ways in which CMV negatively impacts 

on the immune system in inflammatory conditions and determine whether this 

adverse modulation can be reversed using AAV as a model of inflammatory disease. 

 

The specific objectives of the research conducted were to: 

 Determine the phenotype of CD4+CD28null T-cells in AAV and compare this to 

age matched healthy volunteers 

 Investigate whether CMV specific CD4+CD28null T-cells in AAV are functionally 

exhausted by characterising their cytokine and inhibitory receptor expression 

and explore whether this has a bearing on the control of subclinical CMV 

reactivation  

 Determine the impact of CD4+CD28null T-cells on CVD risk in AAV by assessing 

their relationship to arterial stiffness, an established marker of CVD risk 

 Determine whether subclinical CMV reactivation drives the expansion of 

CD4+CD28null T-cells by conducting a proof of concept randomised controlled 

clinical trial in AAV patients, and finally 

 Explore whether pharmacological therapy can halt or reverse the adverse 

modulation of CMV on the immune system by blocking subclinical CMV 

reactivation in AAV patients. 
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Chapter 2 Methods 

2.1  Study Design Overview 

The aims and objectives of this research study were discussed in Chapter 1.  Central to 

the work undertaken during this PhD was the design and implementation of a proof of 

concept randomised controlled clinical trial.  The aim of the clinical trial was to test 

whether treatment with an oral anti-viral agent, valaciclovir, over 6 months can control 

subclinical CMV reactivation in AAV and in turn whether this can ameliorate CMV 

induced changes on the immune system.  The main objective of the clinical trial was to 

test the hypothesis that subclinical CMV reactivation leads to expansion of 

CD4+CD28null T-cells and that by blocking subclinical CMV reactivation the expansion 

of this cell subset can be halted or reduced.  The clinical trial arm of the study aimed to 

randomise 50 CMV seropositive AAV patients in disease remission, in an open label 

design to valaciclovir treatment for 6 months, versus no additional therapy.  In order to 

fully address the rest of the research study objectives, a cross-sectional study arm was 

also set up where additional AAV patients meeting the clinical trial eligibility criteria 

but that did not want to participate in the clinical trial, could be recruited for a one-off 

visit and undergo the same assessments and investigations that were performed on 

the clinical trial patients at their baseline visit.  Furthermore, the cross-sectional arm of 

the study aimed to recruit a total of 30 CMV seropositive healthy volunteers for an 

identical one-off visit in order to compare CMV induced changes on the immune 

system between AAV patients and healthy volunteers (Figure 2.1). 
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2.2  Clinical Trial Arm Design and Implementation 

The study protocol (Version 1.1) was approved by the Research Ethics Committee 

(REC) of Yorkshire & The Humber – Leeds West (REC reference 12/YH/0377) on the 21st 

of August 2012.  Approval was also gained by the University Hospital Birmingham 

(UHB) Research Governance Office (RnD) (Project reference RRK 4456) and the 

Medicines and Healthcare Products Regulatory Agency (MHRA) on the 20th of 

November 2012 (Eudract Number: 2012-001970-28).  

 

 

Figure 2.1 Study design diagram  

Clinical Trial Arm is shown on the left and the Cross-Sectional Arm of the study on the 

right side. 
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A total of six substantial amendments to the study protocol were submitted and 

approved by the REC, UHB Governance Office and the MHRA where appropriate.  The 

clinical trial was registered with ClinicalTrials.gov (Identifier NCT01633476).  The 

following section describes the clinical trial protocol and is based on the final version of 

the study protocol (Version 3.0; Appendix 2).  Section 2.3 is an excerpt of the trial 

protocol paper as published by Trials Journal [325] with minor formatting and 

explanatory modifications.  The author of this thesis was the first author in this paper 

and was extensively involved in the study design, applications for REC, MHRA and NHS 

Research and Development approvals and amendment approvals, study coordination, 

patient recruitment and drafting and final submission of the manuscript. 
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2.3 Valaciclovir to prevent Cytomegalovirus (CMV) mediated adverse 

modulation of the immune system in ANCA associated VASculitis 

(CANVAS): Study protocol for a randomised controlled clinical trial   

 

2.3.1 Design 

This was a single-centre, open label, proof of concept, randomised controlled trial of 

oral valaciclovir treatment (2g four times a day; reduced appropriately depending on 

renal function) for 6 months versus no additional treatment, in CMV seropositive AAV 

patients in remission, followed by a 6 month follow up period.  No placebo was used.   

 

The primary outcome was the proportion of patients with CMV reactivation, as 

assessed by measurable viral load on quantitative blood and urine CMV polymerase 

chain reaction (PCR).  The secondary outcomes were safety, as defined by adverse 

events sufficient to stop treatment with valaciclovir, change in the proportion of CD4+ 

CMV specific T-cell population (defined for the purposes of the clinical trial as 

CD4+CD28null cells) and change in soluble markers of inflammation from baseline to 6 

months (Table 2.1).  Further tertiary and exploratory outcomes are listed in Table 2.1 

and included persistence of the effect of valaciclovir on the proportion of 

CD4+CD28null cells at 6 months post completion of treatment, change in the immune 

phenotype of CD4+ T-cells, change in CMV IgG titre and change in blood pressure and 

arterial stiffness parameters from baseline to 6 months. 
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Table 2.1 Clinical Trial Endpoints 

  Description Specific measurement variable 

Primary 
outcome 

    

  Proportion of patients with 
CMV reactivation 

Quantification of viral DNA copies in blood and urine by 
quantitative polymerase chain reaction (qPCR) 

Secondary 
outcomes 

    

  Safety Number of adverse events and incidence of events by system 
organ class 

Adverse events sufficient to stop treatment with study drug 

  Change in the proportion of 
CD4+CD28null cells from 
baseline to 6 months 

Proportion of CD3+CD4+CD28null T cells in peripheral blood 

  Change in the 
concentration of soluble 
markers of inflammation 
from baseline to 6 months 

Concentration of IL-2, tumour necrosis factor alpha (TNF-α), 
IFN-γ, IL-6, IL-10, IL-17 and highly sensitive C-reactive protein 
(CRP) in peripheral blood 

Tertiary 
outcome 

    

  Persistence of valaciclovir 
effect on the proportion of 
CD4+CD28null cells from 6 
months to 12 months 

Proportion of CD3+CD4+CD28- T cells in peripheral blood 

Exploratory 
outcomes 

    

 Change in the absolute 
count of CD4+CD28null T-
cells from baseline to 6 
months 

Absolute count of CD3+CD4+CD28null T-cells 

  Change in other associated 
T-cell subsets from baseline 
to 6 months 

Proportion of CD4+CD28null cells secreting IFN-γ in response 
to CMV lysate stimulation 

Proportion of CD3+CD4(-)CD28null T cells in peripheral blood 

 Change in CMV IgG 
antibody titre 

CMV IgG titre 

  Change in soluble markers 
of endothelial damage from 
baseline to 6 months 

Concentration of fractalkine, IP-10, regulated on activation, 
normal T cell expressed and secreted (RANTES), P-selectin, E-
selectin, monocyte chemoattractant protein-1 (MCP-1), 
soluble vascular cell adhesion molecule 1 (sVCAM-1) and 
soluble intracellular cell adhesion molecule 1 (sICAM-1) in 
peripheral blood  

  Change in arterial stiffness 
baseline to 6 months 

Carotid to femoral pulse wave velocity 

 

 



CMV Modulation of the Immune System in AAV 57 
 

The trial sponsor was the University of Birmingham and the study was delivered 

through the National Institute for Health Research (NIHR) / Wellcome Trust (WT) 

Clinical Research Facility (CRF) at the University Hospital Birmingham (UHB) NHS 

Foundation Trust that also hosts the UHB Vasculitis Clinic.  The trial was funded by the 

Wellcome Trust and Vasculitis UK.  The trial was coordinated by the Trial Management 

Group (Table 2.2) according to the current guidelines for Good Clinical Practice (GCP) 

and ensuring protection of patients’ rights as detailed in the Declaration of Helsinki.  

All laboratory assays were carried out in laboratories that fulfil the principles of Good 

Laboratory Practice and assays informing the primary and secondary outcomes were 

fully validated prior to study commencement (see Section 2.7).  The protocol was 

designed based on the SPIRIT guidelines [326-328].  
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Table 2.2 Trial Management Group (TMG) 

 Role Institution 

Professor Lorraine Harper Principal Investigator Institute of Clinical 
Sciences, University of 
Birmingham 

Dr Dimitrios Chanouzas Co-Investigator 

Analytical Project Manager 

Institute of Inflammation 
and Ageing, University of 
Birmingham 

Dr Matthew Morgan Co-Investigator Institute of Clinical 
Sciences, University of 
Birmingham 

Professor Paul Moss Co-Investigator Institute of Immunology 
and Immunotherapy, 
University of Birmingham 

Dr Peter Nightingale Statistical Advisor Wolfson Computer 
Laboratories, University 
Hospital Birmingham 

Sister Linda Coughlan Research Nurse NIHR Clinical Research 
Facility, University Hospital 
Birmingham 

Sister Annabel Grinbergs Research Nurse NIHR Clinical Research 
Facility, University Hospital 
Birmingham 

 

 

 

2.3.2  Participants 

CMV seropositive patients with AAV in stable remission for 6 months or longer and on 

a maximum of two immunosuppressant agents were recruited from the Vasculitis 

Clinic at UHB NHS Foundation Trust.  Recruitment took place over 15 months.  Patients 

were approached at routine clinic visits.  Patients could also be contacted via post by 

sending them a copy of the Patient Information Sheet (PIS; Appendix 3).  Patients were 
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allowed a minimum of 24 hours to reflect on the content of the PIS before informed 

written consent was obtained by completion and signing of the study specific informed 

consent form (ICF; Appendix 3).   

 

A full list of study inclusion and exclusion criteria is given in Table 2.3.  In addition, 

patients on TNF inhibitors or subcutaneous immunoglobulin (Ig) therapy were not 

eligible for inclusion into the trial as TNF inhibitors can lead to re-expression of CD28 

on CD4+CD28null T-cells [215] and subcutaneous Ig treatment can interfere with the 

production and relative concentration of anti-CMV IgG antibodies [329].  Subjects were 

withdrawn from the trial if they chose not to continue or the investigators felt that 

continued participation in the trial was inappropriate.  Subjects who withdrew from 

the intervention were asked if they would be prepared to continue to attend follow up 

clinics.  The study’s primary and main secondary outcomes were based on objective 

laboratory assays, therefore minimising the risk of performance bias in this open-label 

design.  Furthermore, treatment and medical management other than valaciclovir was 

identical between the treated and control patients.   
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Table 2.3 Clinical Trial Inclusion and Exclusion Criteria 

Inclusion 

criteria 

  

  Documented diagnosis of granulomatosis with polyangiitis (Wegener’s), 

microscopic polyangiitis or renal limited vasculitis according to Chapel Hill 

Consensus Conference Criteria 

  In stable remission (no documented clinical disease activity) for at least 6 

months prior to study entry 

  On maintenance immunosuppression with prednisolone, mycophenolate 

mofetil or azathioprine alone or in combination (maximum two agents) 

  Documented past evidence (any time point) of CMV infection (CMV-specific 

immunoglobulin G detected in peripheral blood) 

  Documentation that female patients of child-bearing potential are not 

pregnant and are using an appropriate form of contraception 

  Written informed consent for study participation 

Exclusion 

criteria 

  

  Stage 5 CKD (estimated glomerular filtration rate (eGFR) <15 mL minute-1 

1.73 m-2); tests performed within 6 months of pre-baseline visit can be used 

for this assessment 

  Other significant chronic infection (HIV, hepatitis B, hepatitis C or 

tuberculosis) 

  B-cell depleting therapy within 12 months or T-cell depleting therapy within 

6 months 

 Treatment with TNF inhibitors or treatment with intravenous or 

subcutaneous immunoglobulin within 6 months 

  Treatment with anti-CMV therapies in the last month 

  Underlying medical conditions, which in the opinion of the investigator 

place the patient at unacceptably high risk for participating in the study 

  Inability to participate fully or appropriately in the study 

 

2.3.3 Schedule of Assessments 

Patients attended for a total of 14 visits over a period of just over 12 months (Figure 

2.2).  Evaluation of CMV reactivation by deoxyribonucleic acid (DNA) PCR of blood and 
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urine was done monthly.  Evaluation of the tolerability of the drug and adverse events 

occurred monthly.  Immune assessments as detailed below and in Table 2.1 were 

performed at entry, 6 months and 12 months (Figure 2.2).   

 

Figure 2.2 SPIRIT figure showing study’s schedule of enrolment, intervention and 

assessment.   

M0: baseline visit; M1 to M12: month 1 to month 12; qPCR: quantitative polymerase 

chain reaction.  * Safety blood tests were only performed on treatment group. 

Following informed written consent patients underwent an initial pre-baseline visit.  

During this visit a 5mL blood sample was drawn that was used to determine the 
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percentage of CD4+CD28null cells.  This value was utilised in the stratification of 

patients as explained below. 

 

At the baseline, 6 month and 12 month visits, a total of 50mL of blood sample was 

drawn in addition to a 50mL sample of urine.  The samples were used to determine 

CMV viral copies by DNA PCR in blood and urine (primary outcome), the proportion of 

CD4+CD28null cells in peripheral blood by flow cytometry (secondary outcome), the 

concentration of soluble markers of inflammation (Table 2.1) in peripheral blood 

(secondary outcome) and immune assessments and T-cell phenotyping as detailed in 

the exploratory outcomes (Table 2.1).  Excess sample was stored appropriately.  Blood 

pressure and arterial stiffness measurements were also carried out at the baseline, 6 

month and 12 month visits as detailed below. 

 

During the remainder of the monthly visits, a 10mL blood sample was drawn in 

addition to a 50mL sample of urine used to determine CMV viral copies by DNA PCR in 

blood and urine (primary outcome).  Excess sample was again stored appropriately. 

 

In addition, safety blood tests as defined below were performed monthly for the 

duration of treatment for those patients randomised to receive the drug. 
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Appointments were scheduled on a monthly basis with an allowance of 10 days either 

side of the estimated due date of the monthly appointment in order to allow for 

patient convenience and flexibility.  The overall treatment period (or control period) of 

6 months was also subject to the same 10 day rule in order to avoid excessive 

movement of the length of treatment. 

 

2.3.4 Study Assessments 

Enumeration of CMV DNA copies for the determination of the primary outcome (CMV 

reactivation) was carried out by PCR of plasma and urine.  This assessment was 

performed by the UHB Virology Laboratory using an existing validated assay utilised for 

clinical samples. 

 

Whole blood was stained with fluorochrome conjugated monoclonal antibodies to 

CD3, CD4 and CD28 and analysed via flow cytometry (LSR II Flow Cytometer, DIVA 

Software; BD) in order to determine the proportion of CD4+CD28null cells in peripheral 

blood.  Plasma was assessed via luminex technology for the determination of soluble 

markers of inflammation (Table 2.1).  These assays were validated for precision and 

reproducibility prior to commencement of the trial (Section 2.7).   

 

Blood pressure and arterial stiffness determination were conducted using the Vicorder 

system (Skidmore, Bristol, UK) [330, 331].  Carotid to femoral pulse wave velocity 
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(cfPWV) was used to estimate arterial stiffness (see Appendix 4 for detailed Work 

Instruction used).  The Vicorder system provides a non-invasive non-operator 

dependent method of obtaining cfPWV using a volume displacement method.  Patients 

were rested in a supine 30 degrees head tilt position for 5 minutes prior to inflating a 

100 mm wide blood pressure cuff on the non-dominant arm to determine peripheral 

blood pressure.    A 30 mm wide partial cuff was placed on the neck at the level of the 

carotid artery and a 100 mm wide blood pressure cuff placed around the proximal 

thigh.  The distance between the mid-clavicular point and the mid-point of the thigh 

cuff was measured and entered in the Vicorder instrument as the aortic path length.  

The neck and thigh cuffs were inflated to 60mm Hg and the Vicorder instrument 

utilised the resultant oscillometric signal to extract the pulse waveforms and pulse 

transit time to calculate cfPWV.  The mean value of three consistent recordings was 

used for subsequent analysis.  Inconsistent values were re-analysed by a senior 

independent examiner not involved in taking the measurements to determine the 

validity of each measurement.      

 

2.3.5 Randomisation 

Randomisation was performed using the University of Birmingham Primary Care 

Clinical Research and Trials Unit’s (PC-CRTU, fully accredited by the NIHR as a trials 

unit) independent telephone based randomisation system. Block randomisation by 

CD4+CD28null cell percentage stratification was used (cut off 40%).  The randomisation 
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used mixed blocks of random size (two, four or six), not known to the research team, 

therefore, minimising any risk of selection bias.   

 

2.3.6 Treatment 

Patients randomised to the treatment arm received valaciclovir orally at 2g four times 

a day.  The dose was reduced appropriately depending on renal function (Table 2.4).  

The study was open label and valaciclovir was used ‘off the shelf’ with no modifications 

to the packaging or labelling of the product.  Patients were asked to return unused 

tablets at each monthly visit in order to monitor compliance with medication.  Patients 

randomised to the control arm received no additional treatment.  Safety blood tests 

were conducted monthly for the duration of treatment for the patients randomised to 

valaciclovir and comprised of full blood count (FBC), urea and electrolytes (U+E) and 

liver function tests (LFT).  In the event of toxicity (scored using the NCI Common 

Terminology Criteria for Adverse Events (CTCAE) version 4.0) of grade 2 or less, the 

adverse event was discussed with one of the Investigators to determine whether drug 

administration should be temporarily withdrawn or the dose reduced.  In the event of 

toxicity of grade 3 or more, the adverse event was discussed with the Principal 

Investigator (PI).  In such a case the expectation was to withdraw drug administration 

for one week unless the adverse event was judged by the PI to be unrelated to the 

study drug.  Re-introduction of the drug was based on clinical review.  The collection 

and reporting of data on adverse events and serious adverse events was in accordance 

with EU Directive 2001/20/EC and UK Legislation.   



CMV Modulation of the Immune System in AAV 66 
 

Table 2.4 Dose modification of valaciclovir according to creatinine clearance 

Creatinine clearance (CrCl mL/min)a  Valaciclovir dose 

>75 2 g four times a day 

51–75 1.5 g four times a day 

26–50 1.5 g three times a day 

10–25 1.5 g two times a day 

aTests performed within 6 months of the pre-baseline visit could be used for this 

assessment 

 

 

2.3.7 Sample Size Calculation and Planned Statistical Analyses 

In an immunocompetent elderly population CMV reactivation occurred in 90% at 6 

months [257].  It was expected that CMV reactivation would be at least that in the AAV 

population as they are significantly immunosuppressed.  Information for dosing 

regimens using antiviral prophylaxis in renal transplant recipients has demonstrated 

over 90% suppression of CMV reactivation [323].  The trial sample size assumed 90% 

reactivation in the control limb and a conservative estimate of 50% reactivation in the 

treated group.  The estimated sample size was 50 patients, 25 patients in each arm, 

based on 80% power at a significance level of p<0.05 (two tailed test).  The UHB 

tertiary referral vasculitis clinic has more than 200 patients under long-term follow up.  

Approximately 90% of patients are in remission at any one time and 70% are 

seropositive for CMV.  CMV status is checked routinely on the first patient attendance 

in clinic.    It was anticipated that 125 patients attending the clinic would be eligible for 
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the study.  Recruitment of 40% would achieve the target of 50 patients.  This was a 

conservative rate given previous experience with patient recruitment at the UHB 

vasculitis clinic.     

 

All analyses were performed using the intention to treat principle.  Baseline covariates 

were compared between the two arms to observe balance and the success of 

randomisation.  The primary analysis tested the hypothesis that there was no 

difference in the proportion of patients with CMV reactivation between those 

receiving antiviral prophylaxis compared with those receiving usual treatment.    For 

secondary outcomes comparisons were made between groups using absolute 

measures of immune function and change between data at entry and end of treatment 

within groups.  Missing data were dealt with by simple imputation if missing randomly.   

 

A safety analysis was performed on all treated patients.  The number of events and 

incidence of adverse events by system organ class were summarised and relationship 

to treatment noted. 

 

2.3.8 Trial Management and Monitoring 

The trial was coordinated by the Trial Management Group (Table 2.2) and facilitated by 

the infrastructure provided by the NIHR / WT CRF.  A Trial Steering Committee (TSC) 

that included the TMG as well as two Independent Consultant Nephrologists not 
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involved in the study or regular review of patients recruited in the trial provided the 

overall supervision of the trial.  The TSC oversaw trial progress, protocol compliance, 

patient safety and review of updated information.  Part of the role of the TSC was to 

review safety data after the first 10 patients completed treatment in order to ensure 

that the rate and severity of adverse events was not disproportionate to what would 

be expected with valaciclovir treatment.  As this was a small proof of concept study 

with a short follow-up, no data monitoring committee was formed, as agreed with the 

sponsor.  Any protocol amendments were submitted to the sponsor and relevant 

regulatory bodies for approval prior to implementation and trial participants were 

informed of any protocol modifications.      

 

The University of Birmingham conducted regular monitoring visits in its capacity as the 

trial sponsor to ensure compliance with the protocol and adherence to GCP and 

regulations.   

 

The integrity of data entry was ensured using a trial-specific Data Input Quality Control 

standard operating procedure (Appendix 5).  Samples were anonymised and all 

analyses were undertaken on anonymised datasets with study identifiers replacing 

personal data.  All personal details were kept on NHS secure password-protected 

servers within UHB NHS Trust.  Anonymised data was transferred to password-

protected servers in the University of Birmingham for analysis.   
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2.3.9  Funding Declaration 

The majority of this study was funded by the Wellcome Trust following a competitive 

peer review process as part of a Research Training Fellowship Grant (097962/Z/11/Z).  

The cost of the study drug was funded by Vasculitis UK.  The study was carried out at 

the National Institute for Health Research (NIHR) / Wellcome Trust Birmingham Clinical 

Research Facility.  The views expressed are those of the author and not necessarily 

those of the NHS, the NIHR or the Department of Health. 

 

2.3.10 Sponsor 

The CANVAS study was sponsored by the University of Birmingham (Dr Sean Jennings, 

Research Governance and Ethics Manager, Research Support Group, University of 

Birmingham, Edgbaston, Birmingham, B15 2TT, UK).  The University of Birmingham 

holds public liability (negligent harm) and clinical trial (negligent harm) insurance 

policies, which applied to this trial. 
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2.4 Clinical Trial Sample Flow and Analysis 

The collection and processing of clinical trial samples is shown in detail in Figure 2.3 

(see also Laboratory Manual in Appendix 6).  Briefly, monthly samples were used to 

measure the CMV viral copy load in plasma and urine (primary outcome; section 2.6.1) 

via quantitative polymerase chain reaction (qPCR), as well as estimate the CMV IgG 

titre in plasma (exploratory outcome; section 2.6.8).  Whole blood from the baseline, 6 

month and 12 month visits was used to determine the proportion of CD3+CD4+CD28- 

T-cells (secondary outcome; section 2.6.2), enumerate CD45+CD3+CD4+ T-cells and 

characterize expression of chemokine receptors and memory markers in a subset of 

patients via polychromatic flow cytometry.  Plasma sample from the baseline and 6 

month visits was used to measure soluble cytokines and inflammatory markers using 

Luminex technology (secondary outcome; section 2.6.3).  Peripheral blood 

mononuclear cells (PBMC) were isolated monthly and cryopreserved in liquid nitrogen 

(section 2.6.4).  This enabled the tracking of the CD4+CD28null T-cell percentage over 

the 12 month study period in a subset of clinical trial control patients that reactivated 

CMV during the study (section 2.6.7).  Furthermore, at the baseline, 6 month and 12 

month visits, following isolation, fresh PBMC were stimulated overnight with CMV 

lysate or staphylococcal enterotoxin B (SEB) in order to interrogate the phenotype of 

CMV specific T-cells via flow cytometry with respect to cytokine production and 

inhibitory receptor expression (exploratory outcome; section 2.6.5).   
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Figure 2.3 Clinical Trial Sample Flow and Planned Analyses 

EDTA: Ethylenediamine tetra-acetic acid; LH: Lithium Heparin; UHB: 

University Hospital Birmingham 

 

 

 

2.5  Cross-Sectional Arm Design 

As alluded to earlier, the cross-sectional arm of the study was designed to be 

comprised of a maximum of 65 CMV seropositive AAV patients in remission and 30 

CMV seropositive healthy volunteers.  The AAV patient group within the cross-
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sectional arm was comprised of the clinical trial participants as well as an additional 

cohort of 15 patients that attended for a single visit.  Importantly, the additional AAV 

patients recruited into the cross-sectional arm fulfilled the same eligibility criteria as 

the clinical trial patients (Table 2.3).  In recruiting the healthy volunteers all efforts 

were made to match the overall age and gender of the AAV patient and healthy 

volunteer groups.   

 

Healthy volunteers were identified from non-interventional studies at the NIHR / WT 

Clinical Research Facility (CRF), friends and family of AAV patients or the research team 

and the 1000 Elders Cohort (courtesy of Professor J. Lord, Institute of Inflammation 

and Ageing, University of Birmingham).  Past or current systemic inflammatory or auto-

immune disease as well as treatment with immunosuppression therapy was an 

exclusion criterion for HV.  Anti-hypertensive medication and asthma steroid inhalers 

were permissible.   

 

2.5.1 Schedule of assessments 

Healthy volunteers were screened in an initial visit where blood was drawn in a lithium 

heparin tube and plasma assayed for the presence of IgG antibodies to CMV (section 

2.6.7).  Subsequently, CMV seropositive healthy volunteers and CMV seropositive AAV 

patients that were recruited directly into the cross-sectional arm of the study attended 

for a single visit.  During this visit the assessments performed were the same as those 
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performed on the clinical trial patients during their baseline visit (sections 2.3.3, 2.3.4 

and 2.4) with the exception that CMV viral load was not measured as preliminary 

clinical trial data had revealed a relatively low level of CMV reactivation.  Blood 

pressure and arterial stiffness parameters were also assessed as described in section 

2.3.4.  The data points from the baseline visit of the clinical trial patients were 

employed for all analyses undertaken within the cross-sectional arm of the study and 

together with the data points from the additional AAV patients recruited directly into 

the cross-sectional arm constituted the AAV patient cohort within this arm of the 

study.   

 

2.6  Laboratory Assays  

This section describes the experimental details of the assays employed in the study.  

All assays that were used to inform the primary and secondary outcomes of the clinical 

trial arm of the study were formally validated as detailed in section 2.7.  All cell culture 

experiments and flow cytometry staining were performed in 5mL FACS tubes.  

Centrifuges used were GS-6R (Beckman) and Prism Microcentrifuge (Labnet). 

 

2.6.1 Viral load quantitation 

Measurement of CMV viral copies in plasma and urine constituted the primary 

outcome of the clinical trial arm of the study.  For this assay blood was drawn in an 

EDTA tube and urine was collected in a universal container and sent to the UHB 
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Virology Laboratory for processing in exactly the same way as clinical samples.  There 

the blood was centrifuged immediately at room temperature for 5 minutes at 3000 

rpm (Thermo Megafuge) to isolate the plasma fraction.  No additional processing was 

performed on the urine samples.  Samples were then stored at 4oC upright for a 

maximum of 72 hours before proceeding to determining the number of viral copies per 

millilitre using a well validated for clinical use qPCR assay (RealTime CMV, Abbot) that 

the UHB Virology Laboratory employs for all clinical samples. 

 

The Abbott RealTime CMV assay targets 2 short sequences within the UL34 and UL80.5 

genes of the CMV genome.  These regions are specific for CMV and are highly 

conserved based on analysis of published CMV sequences [332-334].  The assay is 

standardised against the 1st World Health Organisation (WHO) International Standard 

for Human Cytomegalovirus for Nucleic Acid Amplification Techniques (NIBSC 09/162) 

[335].  Results are reported in this thesis in viral copies / mL.  The lower limit for 

reporting positive results at the UHB virology laboratory is 200 viral copies / mL and 

therefore this was the lower limit of quantitation used for all primary analyses in this 

thesis.  However the RealTime CMV assay can quantitate down to a lower limit of 20 

viral copies / mL and therefore this threshold was utilised in secondary analyses.  

 

The Abbott RealTime CMV assay at the UHB virology laboratory is fully automated 

using the Abbott m2000sp and Abbott m2000rt instruments.  The assay combines PCR 

technology with homogeneous real time fluorescent detection for the quantitation of 
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CMV DNA.  An unrelated DNA sequence is also introduced into each specimen during 

sample preparation.  This sequence is amplified at the same time as any potential 

existing CMV sequence and functions as an internal control in order to verify that the 

assay has been completed successfully for each sample.  A positive and a negative 

control are also included with each assay run.   

 

Briefly, the virions are lysed in a step that includes proteinase K to digest proteins 

associated with the sample.  The nucleic acids are then extracted, concentrated and 

purified from the sample by the m2000sp automated instrument with the use of 

magnetic microparticles.  The bound nucleic acids are automatically eluted and 

transferred to a 96 well plate ready for amplification at which point the internal 

control is also introduced into the sample.  The CMV amplification reagent 

components (CMV Amplification Reagent that contains specific sets of amplification 

primers for CMV and the internal control, DNA polymerase, and Activation Reagent) 

are dispensed into the 96 well optical reaction plate along with aliquots of the nucleic 

acid samples already prepared and following manual application of the optical seal the 

plate is transferred to the Abbott m2000rt instrument.   

 

There the target DNA is amplified in the presence of deoxynucleotide triphosphates 

(dNTPs) and magnesium.  During each round of PCR amplification, if a suitable target is 

present the fluorescent probes anneal to the amplified target DNA.  Any CMV and 

internal control amplified sequences are distinguished from each other as their 
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respective probes are labelled with different fluorescent molecules.  The amplification 

cycle at which fluorescent signal is detected by the Abbott m2000rt is inversely 

proportional to the log of the CMV DNA concentration present in the original sample.  

Figure 2.4 shows an example of a positive and a negative for CMV viral copies assay 

run.   
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Figure 2.4 Quantitation of CMV DNA in plasma and urine 

Quantitation of CMV viral copies in plasma and urine samples for determination of the 

primary outcome was carried out by the UHB Virology Laboratory using the Abbott 

RealTime CMV assay.  The top panel shows the result of a positive run where CMV 

target has been detected at PCR amplification cycle 25.03 equating to a CMV viral copy 

number of 3,840 copies / mL whereas the bottom panel shows the results from an 

assay run where CMV target was not detected.  In both runs the internal control was 

successfully detected. 

 

 

CMV Target Internal Control 

Threshold 

Threshold 

Internal Control 

CMV Target 
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2.6.2 Whole blood surface staining of lymphocytes 

Whole blood surface staining was used to estimate proportions of CD3+CD4+CD28- T-

cells, enumerate CD4 T-cells directly and assess the T helper and memory phenotype 

of CD4+CD28- T-cells in a proportion of patients.  Blood was drawn in lithium heparin 

(LH) tubes, left upright on the bench at room temperature, and used within a 

maximum of 5 hours of the draw.  Briefly, 100 L of whole blood, or 50 L of Cytofix 

CD4 positive control (see Section 2.7.2), was aliquoted and stained with a freshly 

prepared monoclonal antibody mix conjugated to appropriate fluorochromes (Table 

2.5) for 30 minutes at 4oC prior to incubating for 15 minutes at room temperature with 

2 mL of ready to use Red Blood Cell Lysis Buffer (eBioscience).  The sample was then 

centrifuged at 584g for 5 minutes to pellet the cells, the supernatant was decanted 

and 2 mL MACS buffer (phosphate buffered saline (PBS), 2mM EDTA, 0.5% bovine 

serum albumin (BSA)) was added to wash the cells.  After centrifugation at 584g the 

cells were re-suspended in 200 L MACS buffer.   

 

A fluorescence minus one (FMO) control was assayed with each experimental run as an 

aid for CD28 gating, where the FMO was stained with CD3, CD4 and an isotype control 

conjugated to the same fluorochrome as the CD28 monoclonal antibody (Table 2.5).  

As this assay was used to inform one of the secondary outcomes of the clinical trial it 

was formally validated before use as described in section 2.7.  For all flow cytometry 

experiments described, single stain compensation tubes were used to automatically 

set compensation values prior to running the experimental tubes (Table 2.6) and 
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events were acquired on a BD LSR II Flow Cytometer (default laser and filter 

configuration) and analysed using FACS DIVA Software Version 8.0 (BD).  

Compensation was manually checked off-line for accuracy and corrected where 

necessary.  The photomultiplier tube (PMT) voltages were set at the optimisation stage 

for each panel and kept constant throughout the experiments with only minor 

modifications where necessary.   

 

In a proportion of AAV patients and healthy volunteers 100 L of whole blood was also 

stained with a different antibody mix (Table 2.7) in order to phenotype CD4+CD28- T-

cells for T helper sub-type according to the expression of chemokines CXCR3, CCR6 and 

CCR4.   

 

In order to directly determine the absolute count of CD4 T-cells, 50 L of whole blood 

was aliquoted and stained with a freshly prepared monoclonal antibody mix 

conjugated to appropriate fluorochromes (Table 2.8) for 30 minutes at 4oC prior to 

incubating for 15 minutes at room temperature with 450 L of 1 x Red Blood Cell Lysis 

Buffer (Biolegend) (10 x Red Blood Cell Lysis Buffer was diluted 1:10 with distilled 

water).  Without washing, 50 L of counting beads (CytoCountTM, Dako) was added to 

the sample prior to acquiring events on the flow cytometer.   
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In order to calculate the cell number of a gated population, the number of events 

counted for the cells of interest was divided by the number of counting beads counted 

and multiplied by the concentration of the lot of CytoCountTM beads used in the 

experiment.    

 

 

Table 2.5 Antibodies used in the whole blood surface staining assay to determine 

CD4+CD28- proportions (secondary outcome) 

Marker Fluorochrome Isotype Clone Concentration  

L / test 

Company 

CD3 Brilliant Violet 
650 

Mouse 

IgG2a,  

OKT3 12 g/mL 

2 L 

Biolegend 

CD4 Brilliant Violet 
605 

Mouse 

IgG2b,  

OKT4 100 g/mL 

2 L 

Biolegend 

CD28 eFluor 450 Mouse 

IgG1,  

CD28.2 25 g/mL 

3 L 

eBioscience 

Isotype 
Control 

eFluor 450 Mouse 

IgG1,  

P3.6.2.8.
1 

0.2 mg/mL 

0.5 L 

eBioscience 
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Table 2.6 List of flow cytometry antibodies used for single stain compensation  

 

 

 

 

 

 

Marker Channel Fluorochrome Isotype Clone Concentration 

L / test 

Company 

CD4 FITC FITC Mouse, IgG1, 

 

RPA-T4 200 g/mL 

3 L 

eBioscience 

CD4 PE PE Mouse, IgG1, 

 

RPA-T4 100 g/mL 

3 L 

eBioscience 

CD4 PE-Texas 
Red 

PE-CF594 Mouse, IgG1, 

 

RPA-T4  

3 L 

BD 

CD4 PE-Cy5 PE-Cy5 Mouse, IgG1, 

 

RPA-T4  

15 L 

BD 

CD3 PerCP 
Cy5.5 

PerCP eFluor 
710 

Mouse, IgG1, 

 

SK7 12 g/mL 

3 L 

eBioscience 

CD4 PE-Cy7 PE-Cy7 Mouse, IgG1, 

 

SK3 12 g/mL 

3 L 

eBioscience 

CD4 Pacific 
Blue 

eFluor450 Mouse, IgG1, 

 

SK3 25 g/mL 

3 L 

eBioscience 

CD4 AmCyan V500 Mouse, IgG1, 

 

RPA-T4  

3 L 

BD 

CD4 Qdot 605 Brilliant Violet 
605 

Mouse, IgG2b, 

 

OKT4 100 g/mL 

3 L 

Biolegend 

CD3 Qdot 655 Brilliant Violet 
650 

Mouse, IgG2a, 

 

OKT3 12 g/mL 

3 L 

Biolegend 

CD3 APC APC Mouse, IgG1, 

 

SK7 25 g/mL 

3 L 

eBioscience 

CD4 Alexa 
Fluor 700 

Alexa Fluor 700 Mouse, IgG1, 

 

RPA-T4 50 g/mL 

3 L 

eBioscience 

CD4 APC-Cy7 APC-Cy7 Mouse, IgG2b, 

 

OKT4 200 g/mL 

3 L 

Biolegend 
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Table 2.7 Antibodies used in a selection of whole blood surface staining 

experiments to determine T helper and memory sub-type 

Marker Fluorochrome Isotype Clone Concentration 

L / test 

Company 

CD3 Brilliant Violet 
650 

Mouse 

IgG2a,  

OKT3 12 g/mL 

3 L 

Biolegend 

CD4 Brilliant Violet 
605 

Mouse 

IgG2b,  

OKT4 100 g/mL 

3 L 

Biolegend 

CD28 eFluor 450 Mouse IgG1, 

 

CD28.2 25 g/mL 

4 L 

eBioscience 

CXCR3 PE-Dazzle 594 Mouse IgG1, 

 

G025H7 150 g/mL 

3 L 

Biolegend 

CCR4 PE-Cy7 Mouse IgG1, 

 

L291H4 200 g/mL 

5 L 

Biolegend 

CCR6 PerCP-Cy5.5 Mouse 

IgG2b,  

G034E3 100 g/mL 

5 L 

Biolegend 

 

 

 

Table 2.8 Antibodies used in the whole blood surface staining assay to directly 

measure CD4 T-cells 

Marker Fluorochrome Isotype Clone Concentration 

L / test 

Company 

CD3 Brilliant Violet 
650 

Mouse 

IgG2a,  

OKT3 12 g/mL 

3 L 

Biolegend 

CD4 Brilliant Violet 
605 

Mouse 

IgG2b,  

OKT4 100 g/mL 

3 L 

Biolegend 

CD45 FITC Mouse IgG1, 

 

2D1 200 g/mL 

5 L 

Biolegend 
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2.6.3 Measuring soluble markers of inflammation and endothelial damage 

Soluble markers of inflammation and endothelial damage were measured in plasma.  

Blood was drawn in an EDTA tube and centrifuged within 30 minutes at 4oC, 3000 rpm 

for 10 minutes.  Plasma was aliquoted in 4 tubes and cryopreserved at -80oC.  For the 

luminex assay, analytes were plexed on a 96-well plate as per the manufacturer’s 

instructions.  Each plate contained patient samples and healthy volunteer samples.  In 

the case of clinical trial patient samples, both baseline and 6 month samples from a 

given patient were run on the same plate in order to avoid inter-assay variability.  All 

samples were run in duplicate.  Analytes were purchased from eBioscience and plexed 

as shown in Table 2.9.  Validation details for the analytes used to inform one of the 

secondary outcomes of the clinical trial arm are described in section 2.7.   

 

The wash buffer and antigen standards were prepared as per the manufacturer’s 

instructions.  Next, a 4 fold serial dilution of the antigen standards was prepared.  To 

do this, 200 L of the reconstituted standard was placed in the first tube and 150 L of 

Universal Assay Buffer in the rest of the tubes.  50 L of standard was transferred to 

tube 2, mixed, and 50 L sequentially transferred to the rest of the tubes in order to 

obtain a 7-point standard curve for the assay panel.  The detection antibody mixture 

was then prepared by combining the detection antibody concentrates of each simplex 

kit according to the manufacturer’s instructions.  The 96-well flat bottomed plate was 

then prepared with the use of a hand held magnetic washer.  The antibody magnetic 

beads for each panel (Table 2.9) were combined, vortexed and an appropriate volume 
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was added to each well.  The beads were allowed 2 minutes to accumulate at the 

bottom of the plate, then the liquid was removed by rapidly inverting the hand held 

magnetic plate washer and plate assembly over a waste container, followed by blotting 

the inverted assembly to remove any residual solution.  The antibody magnetic beads 

were then washed with 150 L of wash buffer in each well. 

 

Samples were thawed at 37oC and centrifuged at 5000 rpm for 5 minutes in order to 

remove any debris and fibrin.  The supernatant was aspirated and placed in a new tube 

and the sample vortexed before use.  For panels 2, 3 and 4, an appropriate dilution of 

the samples was made up (Table 2.9).  Standards and samples were added onto the 

plate by adding 25 L of Universal Assay Buffer into each well followed by 25 L of the 

standard or sample as appropriate.  The plate was sealed and light protected and 

shaken at 500 rpm for 2 hours at room temperature.  Following this incubation step, 

the plate was washed twice before adding 25 L of the working detection antibody 

mixture into each well.  The plate was sealed, light protected and incubated at 500 

rpm for 30 minutes at room temperature before being washed twice.  Streptavidin – 

PE was added (50 l) into each well followed by a 30 minute incubation step at 500 

rpm, room temperature and 2 further washes.  120 L reading buffer was added in 

each well prior to incubating at 500 rpm for 5 minutes at room temperature and 

reading the samples on a Biorad Luminex 200 Instrument.  Data was analysed using 

ProcartaPlex Analyst 1.0 Software (eBioscience).  Duplicate values were averaged 

during analysis.  Where samples were measured as below the level of detection a value 
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of 0.01 pg/mL was assigned.  For CRP samples measured as above the level of 

detection a value of 9 x 107 pg/mL was assigned. 

 

 

Table 2.9 List of simplex analytes plexed for the determination of soluble markers 

of inflammation and endothelial damage in plasma 

Analyte Panel 
Number 

Dilution Sensitivity Standard Curve Range 

Fractalkine 1 None 0.5 pg/mL 2.08 – 8500 pg/mL 

IFN- 1 None 0.2 pg/mL 12.21 – 50000 pg/mL 

TNF- 1 None 0.4 pg/mL 8.54 – 35000 pg/mL 

IL-2 1 None 0.8 pg/mL 4.88 – 20000 pg/mL 

IL-6 1 None 0.4 pg/mL 9.77 – 40000 pg/mL 

IL-10 1 None 0.1 pg/mL 2.44 – 10000 pg/mL 

IL-12p70 1 None 0.04 pg/mL 6.84 – 28000 pg/mL 

IL-17A 1 None 0.1 pg/mL 2.44 – 10000 pg/mL 

IP-10 1 None 0.3 pg/mL 1.95 – 8000 pg/mL 

MCP-1 1 None 0.6 pg/mL 1.22 – 5000 pg/mL 

E-Selectin 1 None 555.3 pg/mL 292.97 – 1200000 pg/mL 

P-Selectin 1 None 95.4 pg/mL 1464.84 – 6000000 pg/mL 

RANTES 2 1:50 0.2 pg/mL 0.61 – 2500 pg/mL 

VCAM 3 1:200 6.7 pg/mL 11.47 – 47000 pg/mL 

ICAM 3 1:200 76.3 pg/mL 151.85 – 622000 pg/mL 

CRP 4 1:500 0.291 pg/mL 4 – 18000 pg/mL 
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2.6.4 Peripheral blood mononuclear cell isolation 

Blood was drawn in LH tubes and left upright on the bench at room temperature for a 

maximum of 5 hours before being processed to isolate the peripheral blood 

mononuclear cell (PBMC) fraction. 

 

Prior to isolating the PBMC fraction, one LH tube from each sample was centrifuged at 

584g for 10 minutes in order to isolate plasma.  The supernatant was carefully 

aspirated, aliquoted in 4 tubes in 250 L aliquots and cryopreserved.  Plasma derived 

from LH blood tubes was used to determine the CMV IgG titre of samples (section 

2.6.8).  Next, the tube was inverted to re-suspend the whole blood sample and blood 

was diluted 1:1 with RPMI (Sigma) medium pre-warmed to 37oC.  The diluted blood 

sample was carefully layered over 15 mL Ficoll Paque Plus (GE Healthcare; Endotoxin 

tested <0.12 EU/mL) in a 50 mL tube.  The layered blood was centrifuged at 584 g for 

30 minutes at room temperature with the brake off.  The lymphocyte layer was then 

carefully harvested using a Pasteur pipette into a fresh 50 mL tube and warm RPMI 

medium added to make up the volume to 40 mL before centrifuging at 912 g for 7 

minutes.  The supernatant was carefully discarded and the cell pellet gently re-

suspended.  Next, 20 mL RPMI was added, the sample was mixed, and a 20 l aliquot 

was placed in a haemocytometer counting slide.  The sample was centrifuged again at 

584 g for 7 minutes.  In order to count the cells the average of 2 4x4 squares on the 

haemocytometer slide was multiplied by 10,000 and the volume of the sample.  The 

supernatant was then carefully discarded and the cell pellet gently re-suspended to a 
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concentration of 1 x 106 cells / mL with supplemented warm RPMI medium (RPMI, 10% 

foetal calf serum (FCS; sterile filtered and heat inactivated at 56oC for 30 minutes; 

Sigma), 1% penicillin / streptomycin (P/S; Gibco)).  Cells were then used for culture 

experiments as appropriate (section 2.6.5).   

 

To cryopreserve, the cells were centrifuged at 584 g for 7 minutes and re-suspended in 

Freezing Solution A (60% FCS, 40% RPMI) at 20 x 106 cells / mL.  An equal volume of 

Freezing Solution B (20% dimethyl sulphoxide (DMSO, Sigma), 80% FCS) was then 

added in a dropwise fashion with gentle agitation of the tube to achieve a final 

concentration of 10 x 106 cells / mL.  Cells were transferred to cryovials and placed in a 

Mr Frosty (Thermo Scientific) freezing container half filled with 2-propanol (Sigma) for 

a minimum of 4 hours at -80oC.  They were transferred to liquid nitrogen within a 

maximum of 7 days.              

    

2.6.5 Peripheral blood mononuclear cell stimulation 

PBMC were stimulated overnight for 16 hours (+/- 2 hours) at 37oC, 5% CO2, with CMV 

lysate (see section 2.6.6).  This time period was chosen for practical purposes and 

based on previous experience of this duration of stimulation with CMV lysate in 

Professor Moss’s lab.  For each sample, an unstimulated tube (negative control), an 

SEB (staphylococcal enterotoxin B; Sigma) stimulated tube (positive control; 200 

g/mL) and 2 CMV lysate stimulated tubes (1:100) (Panel A and Panel B, Table 10) 
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were set up.  Cultures contained 5 x 105 – 1 x 106 freshly isolated PBMC, monensin 

(1:1000) to trap cytokines intracellularly, 5 L CD154 monoclonal antibody (100 

g/mL) conjugated to PE (eBioscience) in order to identify CMV specific cells, and 

stimulant as appropriate, in a total volume of 500 L made up with supplemented 

RPMI.  In later experiments the CMV Lysate Panel A tube did not contain CD154 

antibody conjugated to PE in order to accommodate staining with an NKG2D 

monoclonal antibody conjugated to PE as shown in Table 2.10.   

 

The following day cells were washed twice in 2 mL of PBS before staining with the 

eFluor506 fixable viability dye (eBioscience).  The viability dye was used as a 1:10 

dilution with PBS at 2 l per sample and cells were incubated for 30 minutes at 4oC, 

protected from light, before washing once with PBS and once with MACS buffer.  All 

centrifugation steps were performed at 584 g for 5 minutes at room temperature.  

Next, the appropriate surface antibody mix was added to the cells (Table 2.10) and 

cells were gently re-suspended and incubated for 30 minutes at 4oC, protected from 

light.  Following a wash step in 2 mL of MACS buffer, the cells were vortexed to 

completely re-suspend the pellet and fixed and permeabilised using the FoxP3 one-

step fixation and permeabilisation kit (eBioscience).  Briefly, cells were incubated in 1 

mL of working solution for 30 minutes at 4oC before adding 2 mL of permeabilisation 

wash buffer and centrifuging for 5 minutes at 584 g.  The supernatant was carefully 

decanted, the cells gently re-suspended and the cells stained with the appropriate 

intracellular antibody mix (Table 2.10) for 30 minutes at 4oC, protected from light.  
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Following a final wash in MACS buffer, cells were re-suspended in 200 l MACS buffer 

and events were acquired on the flow cytometer.  The unstimulated sample was used 

as a guide to gate for cytokine expression.      

Table 2.10 Antibodies used to stain PBMC following overnight stimulation with 

CMV lysate or SEB 

Marker Fluorochrome Isotype Clone Concentration  

L / test 

Panel
* 

Company 

Viability eFluor 506   2 L ALL eBioscience 

       
Surface       

CD3 Brilliant Violet 
650 

Mouse 

IgG2a,  

OKT3 12 g/mL 

3 L 

ALL Biolegend 

CD4 Brilliant Violet 
605 

Mouse 

IgG2b,  

OKT4 100 g/mL 

3 L 

ALL Biolegend 

CD28 eFluor 450 Mouse IgG1, 

 

CD28.2 25 g/mL 

4 L 

ALL eBioscience 

NKG2D PE Mouse IgG1, 

 

1D11 200 g/mL 

5 L 

A Biolegend 

PD-1 APC-Cy7 Mouse IgG1, 

 

EH12.2H
7 

200 g/mL 

5 L 

B Biolegend 

TIM-3 PE-Cy7 Mouse IgG1, 

 

F38-2E2 200 g/mL 

5 L 

B Biolegend 

LAG-3 Fluorescein Goat IgG 
(polyclonal) 

Leu23-
Leu450 

 

10 L 

B R&D 

       
Intracellular       

IFN- PE-CF594 Mouse IgG1, 

 

B27  

3 L 

ALL BD 

TNF- Alexa Fluor 700 Mouse IgG1, 

 

MAb11 50 g/mL 

3 L 

ALL eBioscience 

IL-2 PerCP eFLuor 
710 

Mouse 

IgG2a,  

MQ1-
17H12 

12 g/mL 

3 L 

ALL eBioscience 

IL-10 PE-Cy7 Rat IgG1,  JES3-9D7 20 g/mL 

5 L 

U, SEB, 
A 

Biolegend 

IL-5 APC Rat IgG1,  TRFK5 0.2 mg/mL 

5 L 

U, SEB, 
A 

Biolegend 

T-bet FITC Mouse IgG1, 

 

4B10 0.5 mg/mL 

2 L 

U, SEB, 
A 

Biolegend 

BLIMP-1 APC Mouse IgG1, 

 

646702 10 L B R&D 

CTLA-4 PE-Cy5 Mouse 

IgG2a,  

BNI3 20 L B BD 

*
 U: unstimulated; SEB: SEB stimulated; A: CMV Lysate Panel A; B: CMV Lysate Panel B 
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2.6.6  CMV lysate production 

To prepare CMV lysate, foetal human foreskin fibroblasts (HFFF) were cultured in 20 

mL supplemented Dulbecco’s modified eagle medium (DMEM; Sigma) (10% FCS, 1% 

P/S) in 150 cm2 tissue culture flasks (37°C, 5% CO2) and allowed to become 70-80% 

confluent over a period of 5 days.   

 

The cells were then split into three 150 cm2 flasks and incubated for a further 5 days as 

above by aspirating the culture medium, gently washing with 8 mL PBS twice, treating 

with trypsin to detach the HFFF (2 mL TryPLE Express (Sigma) added and cells 

incubated at 37°C, 5% CO2 for 5 minutes)), adding culture medium and splitting.  The 

process was repeated until 15 flasks with cultured HFFF were generated. 

 

Ten of the 15 flasks were then infected with CMV AD169 strain (stock solution - titre 3 

x 107 PFu / mL) at a multiplicity of infection (MOI) of 0.05 (50 L of CMV AD169 stock 

solution was mixed with 50 mL culture medium and 10 mL was added to each flask 

having aspirated the existing culture medium first) whilst 5 flasks were kept to produce 

mock lysate.  Flasks were incubated at 37°C, 5% CO2 for 4 hours with gentle rocking 

every 4 hours after which time the supernatant was aspirated and flasks were 

replenished with 20 mL of fresh culture medium.  
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Once the HFFF displayed cytopathic changes under the microscope (5-10 days) the 

supernatant was harvested 3 times (each time 3 days apart) by carefully removing the 

supernatant and replenishing with fresh culture medium.  The harvested supernatant 

was centrifuged at 2000 rpm for 10 minutes and the ensuing supernatant combined 

into sterile Sorvall pots and frozen at -80°C whilst the pellets were combined and also 

frozen at -80°C.   

 

On the final harvest the HFFF cells were scraped off and centrifuged together with the 

supernatant at 2000 rpm for 10 minutes.  The supernatant was then added to the 

thawed Sorvall pots and the cell pellets combined with the thawed pellets from the 

previous harvests.  The combined infected cell pellet preparation was centrifuged at 

2000 rpm for 10 minutes, re-suspended to a final volume of 1 mL with RPMI and 

freeze-thawed 5 times in liquid nitrogen.  Meanwhile the Sorvall pots were centrifuged 

at 12000 rpm for 2 hours at room temperature.  The supernatant from the Sorvall pots 

was appropriately discarded and the pellets resuspended at a final volume of 6 mL 

RPMI and combined with the freeze-thawed infected cell pellet.  The final infected 

virus pellet was sonicated 5 times for 20 seconds at a time, aliquoted and stored at -

80°C.   

 

For the mock lysate, following collection of the supernatant and cell scrapings, the 

suspension was centrifuged at 2000 rpm for 10 minutes, the supernatant appropriately 

discarded and the uninfected cell pellet made up to a total volume of 3 mL, freeze-
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thawed, sonicated, aliquoted and stored as above.  The same batch of CMV and mock 

lysate were used throughout all experiments in the study in order to avoid variability 

between different lysate batches. 

 

The volume of CMV lysate required for overnight stimulation was titrated in initial 

experiments (Figure 2.5) and 5 l of CMV lysate (1:100) used in all subsequent 

experiments.  The specificity of the CMV lysate was also tested in initial experiments 

that showed IFN- production by CD4 cells only in CMV seropositive individuals in 

response to CMV lysate and no IFN- production when cells from a CMV seropositive 

individual were stimulated with mock lysate (Figure 2.6). 
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Figure 2.5 CMV lysate titration 

Initial titrating experiments showed that 5 L of CMV lysate in culture used at 1:100 

produced a good response 
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Figure 2.6 Flow cytometry data showing specificity of CMV lysate stimulation 

A, unstimulated PBMC from a CMV seropositive donor.  B, mock lysate stimulated 

PBMC from a CMV seropositive donor.  C, CMV lysate stimulated PBMC from a 

seropositive donor.  D, CMV lysate stimulated PBMC from a seronegative donor.  

 

 

2.6.7 CD4+CD28null percentage tracking experiments 

The CD4+CD28- T-cell percentage over a 12 month period was tracked for a subset of 

patients that took part as controls in the clinical trial and had significant CMV 

reactivation documented in order to determine whether CMV reactivation led to a 

change in the CD4+CD28null T-cell percentage.  For these experiments PBMC were 

thawed at 37oC before adding warm supplemented RPMI medium to the cryovial 

containing the PBMC in dropwise fashion.  The PBMC were gently mixed and slowly 

added to a 50 mL tube containing 20 mL of warm supplemented RPMI.  The cells were 

then centrifuged for 7 minutes at 584 g room temperature, the supernatant carefully 

decanted and the pellet gently re-suspended with 20 mL warm supplemented RPMI 

medium before counting on a haemocytometer slide (section 2.6.4).  Following 



CMV Modulation of the Immune System in AAV 94 
 

another centrifugation step, cells were re-suspended at 1 x 106 cells / mL with warm 

supplemented RPMI medium.   

 

Cells from all time points from one patient were thawed and batch analysed in a single 

experiment in order to avoid inter-assay variability.  For each time point, 5 x 105 – 1 x 

106 cells, depending on cell numbers, were first washed in PBS and stained with 

viability dye as described in section 2.6.5 before staining with the surface marker panel 

detailed in Table 2.11, washing in MACS buffer, and acquiring on the flow cytometer.   

 

Table 2.11 Antibodies used to stain cells in CD4+CD28null T-cell tracking 

experiments 

Marker Fluorochrome Isotype Clone Concentration 

L / test 

Company 

Viability eFluor 506   2 L eBioscience 

CD3 Brilliant Violet 
650 

Mouse 

IgG2a,  

OKT3 12 g/mL 

3 L 

Biolegend 

CD4 Brilliant Violet 
605 

Mouse 

IgG2b,  

OKT4 100 g/mL 

3 L 

Biolegend 

CD28 eFluor 450 Mouse 

IgG1,  

CD28.2 25 g/mL 

4 L 

eBioscience 
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2.6.8 Estimation of CMV IgG titre 

Plasma sample collected in LH tubes (section 2.6.4) was used to determine CMV IgG 

titres across the clinical trial period.  A CMV IgG ELISA assay developed at the 

University of Birmingham by Professor Paul Moss’s group was used.  All time points 

from a given patient were run on the same plate in order to avoid inter-assay 

variability.  A sample from a known CMV seropositive donor (positive control) and a 

known CMV seronegative donor (negative control) for which multiple aliquots were 

frozen was run with every single plate in order to document assay precision and 

reproducibility.  All samples were run in duplicate in CMV lysate coated wells, as well 

as mock lysate coated wells, and the average absorbance value seen in the mock lysate 

coated wells (background non-specific binding) was subtracted from the average 

absorbance value in the CMV lysate coated plate.  Clinical trial samples assayed for 

CMV IgG titre were processed with the help of Dr Michael Sagmeister as part of a mini-

project during Dr Sagmeister’s renal medicine academic block that was jointly 

supervised by the author of this thesis and Professor Lorraine Harper. 

  

Briefly, a MaxiSorp flat-bottom 96 well plate (Nunc) was coated with inactivated CMV 

lysate and mock lysate.  The same batch of lysate was used for all experiments in order 

to minimise inter-assay variability.  Coating buffer was made up by dissolving one 

carbonate-bicarbonate capsule (Sigma) in 25 mL of distilled water.  Lysate was used in 

a 1:4000 dilution and wells were coated with 50 L of CMV lysate or mock lysate as 
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shown in Figure 2.7 and incubated overnight at 4oC, protected from light, for 16 hours 

(+/- 1 hour). 

 

 

 

Figure 2.7 Determination of CMV IgG titre  

To determine CMV IgG titre a 96 well flat bottomed plate was coated with CMV and 

mock lysate as shown and incubated overnight.  

 

 

The following morning the plate was washed 3 times with 200 L per well of wash 

buffer (PBS, 0.05% Tween 20; Sigma).  The samples and standards were prepared by 

thawing at 37oC and centrifuging at 5000 rpm for 5 minutes in a microcentrifuge to 

pellet debris and fibrin in order to avoid background non-specific binding.  The 
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supernatant was aliquoted in a fresh tube and vortexed before use.  Standards were 

made up from a 1:1:1 mix of 3 donors that remained constant throughout all 

experiments.  A 3-fold dilution of the standard was produced by adding 18 L of the 

standard to 72 L of dilution buffer (wash buffer, 1% bovine serum albumin (BSA); 

Sigma), mixing, transferring 30 L to the next well that contained 60 L dilution buffer 

and repeating this process to achieve a 7 point standard curve preparation in both the 

CMV lysate and mock lysate coated wells.  The last well was left blank.   

 

Sample, positive and negative controls were used at a 1:3000 dilution in dilution 

buffer.  Once standards, samples and controls were added to the wells they were 

incubated for 1 hour at room temperature before washing 3 times and adding 100 L 

per well of goat anti-human IgG conjugated to horse radish peroxidase (HRP) 

(Southern Biotech) at a 1:8000 dilution.  Following incubation for 1 hour at room 

temperature, the plate was washed 3 times before adding 100 L per well of the 

detection agent (Tetramethyl Benzidine (TMB) One Component HRP Microwell 

Substrate; Tebu-Bio) and incubating for 15 minutes at room temperature in the dark.  

The reaction was stopped by adding 100 L per well of a 1M solution of hydrochloric 

acid and the plate read at 450 nm absorbance.   

 

To calculate the CMV IgG titre the average absorbance values of the mock lysate 

duplicates were subtracted from the average absorbance values of the CMV lysate 
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duplicates for each sample and for the standard curve.  The values were then log 

transformed and a non-linear regression sigmoidal dose response curve was fitted 

(Figure 2.8) in order to interpolate the sample values based on the standard curve.   
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Figure 2.8 CMV IgG ELISA standard curve   

Example standard curve for the CMV IgG titre ELISA assay following log transformation 

of the absorbance values for the 7-point standard curve samples. 

 

The interpolated values were then exponentially transformed to yield the CMV IgG 

titre.  A value of greater than 10 units indicated a positive result in terms of CMV 

serological status based on previous validation studies by Professor Paul Moss’s group.     

          

2.7 Formal Assay Validation Analyses 

The assays used to inform the primary and secondary outcomes of the clinical trial arm 

of the study were formally validated as per MHRA requirements prior to the 

commencement of the study.  The qPCR assay used to determine the primary outcome 
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has been formally validated for clinical use by UHB Virology Laboratories and was 

therefore not further validated for the purposes of this clinical trial.  The whole blood 

surface staining assay used to determine the proportion of CD3+CD4+CD28- cells and 

the Luminex assay used to determine plasma concentration of soluble markers of 

inflammation were formally validated.  Excerpts of the validation analyses are 

presented here whilst the full validation plans and analyses can be found in Appendix 

7.   

 

2.7.1 Surface Staining of CD3 CD4 CD28 in Whole Blood – Validation Analysis 

Part 1 

2.7.1.1  Objective 

The aim of this validation study was to establish that the performance characteristics 

of the assay that would be used to surface stain lymphocytes in whole blood for CD3, 

CD4 and CD28, met the analytical requirements of the CANVAS trial. 

 

 

2.7.1.2  Validation Parameters  

In order to examine whether the period of time blood is left at room temperature prior 

to processing affects the proportion of CD3+CD4+CD28- cells within the CD4 

compartment, blood was drawn from healthy volunteers and left at room temperature 

for 1 hour, 3 hours and 5 hours before being stained (flow cytometry panel as detailed 
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in Table 2.5) and analysed as previously described.  This experiment was repeated 

three times (Figure 2.9).  The one-sample Wilcoxon signed rank test was used to 

determine whether the median CD3+CD4+CD28- proportion at 3 hours and 5 hours 

was statistically different to that at 1 hour.  In order to test intra-assay variability all 

experiments were carried out in duplicate and the coefficient of variation was 

calculated. 

 

 

 
 

Figure 2.9 CD3 CD4 CD28 staining validation 

Effect of time elapsed from venepuncture to staining on the CD3+CD4+CD28- 

proportion within the CD4 compartment (y-axes).  Three separate experiments 

(different donors) are shown where staining was performed in duplicate after resting 

whole blood at room temperature for 1, 3 and 5 hours.  Coefficients of variation were 

< 20% for all duplicate runs.  There was no statistically significant difference between 

the mean CD3+CD4+CD28- % at 3 hours and 5 hours versus 1 hour in all experiments.    
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2.7.1.3  Acceptance Criteria 

There was no statistically significant difference between the mean CD3+CD4+CD28- % 

at 3 hours and 5 hours versus 1 hour at all experiments (also see full Validation 

Analysis Report in Appendix 7).  Therefore it was decided that following collection, 

blood samples could be left at room temperature for up to a maximum of 5 hours 

before processing. 

 

The coefficient of variation was acceptable throughout the validation analysis study.  

However it was decided that a positive control with a pre-defined acceptance range of 

CD3+CD4+CD28+ cells was necessary in order to properly validate the various 

components of the assay in terms of intra-assay and inter-assay variability and also 

allow running of an aliquot of the positive control with each experimental run for 

quality control purposes. 

 

 

2.7.2 Surface Staining of CD3 CD4 CD28 in Whole Blood – Validation Analysis 

Part 2 

2.7.2.1  Precision and Reproducibility 

The precision and reproducibility of the whole blood staining assay was further 

validated using a commercially available positive control (Cytofix CD4 Normal Range 

Positive Control; Cytomark, Caltag MedSystems).  Cytofix CD4 controls are a stabilised 
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preparation of whole human blood for use as a positive control when evaluating CD4 

enumeration techniques.  They provide verification of monoclonal antibody reagents 

and red blood cell lysis as well as validation of instrument performance and operator 

technique.  Each lot of Cytofix CD4 positive control is provided with a quality control 

statement inclusive of the expected range of CD3+CD4+ lymphocytes within each lot. 

 

Positive controls from the first lot purchased were initially assayed in triplicate on five 

separate experiments as previously described (Section 2.6.2; flow cytometry panel as 

detailed in Table 2.5) in order to define intra-assay (Figure 2.10) and inter-assay 

variability as well as acceptance criteria for the assay based on the positive control 

CD3+CD4+CD28+ range (Table 2.12).  The acceptance range for each marker was 

calculated as the mean value across the five triplicate runs +/- 2 standard deviations.  

As the coefficient of variation in terms of intra-assay variability was very low (Figure 

2.10), it was decided that experimental samples and controls could be run singly for 

the purposes of the clinical trial.   
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Figure 2.10 CD3 CD4 CD28 staining validation  

Cytofix CD4 Positive Control was stained in triplicate (a, b, c) in 5 separate experiments 

(1-5).  Top panel shows the percentage of CD3+ cells, middle panel the percentage of 

CD3+CD4+ cells and bottom panel the percentage of CD3+CD4+CD28+ cells.  The intra-

assay coefficient of variation (%) is shown in the light grey bars (right sided y-axes).   
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An aliquot of the Cytofix CD4 positive control was planned to be run alongside each 

experimental run to ensure that the relevant cell populations within the positive 

control fell within the validated accepted ranges therefore providing on-going quality 

assurance of the precision of this assay.   

 

Initial experiments showed that the CD28 expression in CD4 cells of the Cytofix CD4 

positive control altered significantly with time.  This made the setting of an acceptance 

range for CD28 expression in the positive control not possible as this value constantly 

changed during the 1-month shelf life of the product after opening the vial (Appendix 

7).  Furthermore it was noted that most of the change occurred by 1-2 weeks after the 

preparation of a new lot of the Cytofix CD4 positive control.  It was therefore decided 

that an acceptance range would be set for CD3 and CD4 expression in the Cytofix CD4 

positive control but not for CD28.  For every new lot of Cytofix CD4 control used, the 

expected CD3+CD4+ range for the purposes of its use in the secondary outcome assay 

acceptance criteria was re-validated by running a sample from the new lot in triplicate.  

In order to maintain quality assurance of CD28 staining in the experimental samples, 

an FMO control was assayed with every experimental sample in order to guide CD28 

gating. 
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 Table 2.12 Inter-assay variability and initial acceptance ranges for positive control 

used in the whole blood surface staining assay 

 

 

2.7.3 Measurement of soluble markers of inflammation – Validation Analysis 

2.7.3.1  Objective 

The aim of this validation study was to establish that the performance characteristics 

of the assay that was used to determine the plasma concentration of IL-2, TNF-, IFN-

, IL-6, IL-10, IL-17 and highly sensitive C-reactive protein (hsCRP) at baseline and at 6 

months (secondary outcome), met the analytical requirements of the CANVAS trial. 

 

2.7.3.2  Precision and Reproducibility 

The Luminex assay permitted the plasma concentration of IL-2, TNF-, IFN-, IL-6, IL-

10, IL-17 and hsCRP to be measured in a multiplex immunoassay.  The Luminex 

 Inter-assay CV 
(%) 

Mean (%) Acceptance Range 

CD3+ within 
lymphocyte gate 

0.9 71.2 70.0 – 72.4 

CD3+CD4+ within 
lymphocyte gate 

1.2 45.5 44.4 – 46.6 

CD28+ within 
CD3+CD4+ gate 

0.2 98.2 97.7 – 98.7 
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multiplex immunoassay has excellent precision and reproducibility as evidenced by low 

coefficient of variation (CV) values with regards to intra-assay and inter-assay 

variability (Table 2.13).  This was a commercial assay that has been rigorously validated 

by the company.  Hence no further validation was planned. 

 

 

Table 2.13 Coefficient of variation (CV) values for intra-assay and inter-assay 

variability for analytes used to inform the clinical trial secondary outcome 

 

Source: eBioscience 

 

 

 

 

Analyte Intra-Assay Variability CV 

(%) 

Inter-Assay Variability CV 

(%) 

IFN- 3.6 5.5 

TNF- 7.2 6.1 

IL-2 6.2 5.1 

IL-6 6.2 4.5 

IL-10 3.1 2.3 

IL-17 6.5 6.0 

hsCRP 6.6 9.6 
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2.8 Data Collection and Quality Control 

Sample collection and processing was evidenced on appropriate worksheets (see Blood 

Sample Receipt and Processing Record in Laboratory Manual; Appendix 6).  Similarly, 

experimental detail for assays employed within the clinical trial was documented in 

real time (see Whole Blood / Positive Control Surface Staining Work Instruction in 

Laboratory Manual; Appendix 6).  These records are filed in the CANVAS Study 

Laboratory Folder and archived at the University of Birmingham.  Detailed work 

instructions for laboratory assays can also be found in the CANVAS Laboratory Manual 

(Appendix 6).   

 

Source data relating to clinical trial participants was documented in the Case Report 

Form (Appendix 8).  In order to maintain data integrity a standard operating procedure 

was designed around maintaining quality control of data input (Appendix 5).  To that 

effect, prior to any analysis being undertaken, the accuracy of data transcription was 

checked for data relating to primary and secondary outcomes of the clinical trial.  

Serious adverse events (SAE) were documented (Appendix 2; SAE form in Protocol) and 

reported to the sponsor yearly in the Development Safety Update Report (DSUR) 

(Appendix 9).     
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2.9 Data Presentation and Statistical Analysis 

For the purposes of statistical analysis, SPSS Statistics Version 21 (IBM) and Prism 

Version 5 and 6 (GraphPad) were used.  Data was assessed for normality using the 

D’Agostino & Pearson omnibus normality test and aided by visual inspection of 

graphical representation (histogram and Q-Q plots) of the data and skewness values in 

borderline cases.  Non-parametric data was transformed when necessary using square 

root or logarithmic transformations and re-tested for normality as above.  Parametric 

data is reported as mean with standard deviation (SD) and non-parametric data as 

median and interquartile range (IQR).  Non parametric data is graphically depicted in 

the form of Tukey boxplots or scatter dot plots with median and interquartile range 

shown.  Parametric data is depicted with mean and standard error of the mean shown.   

 

All statistical analyses were two-tailed.  Unpaired parametric and non-parametric data 

were analysed using the student’s t test (with Welch’s correction for unequal variances 

if appropriate) or the Mann Whitney U test respectively.  Paired data was analysed 

using the paired t test or the Wilcoxon-matched pairs signed rank test for parametric 

and non-parametric data respectively.  Categorical data was analysed using the chi 

square test or Fisher’s exact test where appropriate.  Correlations were assessed with 

Spearman’s rank test for non-parametric data and Pearson’s correlation for parametric 

variables.  A p value < 0.05 was considered statistically significant for all analyses.   
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2.9.1 Clinical Trial data presentation and statistical analysis 

All clinical trial analyses were carried out following the intention to treat principle as 

pre-specified in the published clinical trial protocol [325] unless explicitly stated within 

the text.  A secondary per protocol analysis that excluded patients randomised to the 

treatment arm that stopped the drug within 1 month from starting the trial was 

additionally performed on the clinical trial primary outcome data.  The primary analysis 

on the primary outcome was carried out utilising the UHB virology laboratory cut-off of 

>200 CMV viral DNA copies / mL to define CMV reactivation.  Additional secondary 

analyses were carried using a >20 CMV viral DNA copies / mL threshold.  Kaplan-Meier 

curves were drawn to analyse the primary outcome and the curves were compared 

using the Gehan-Breslow-Wilcoxon test.  As the primary and secondary analyses for 

the primary outcome only considered time to 1st episode of CMV reactivation, a 

sensitivity analysis was also carried out for the primary outcome to consider multiple 

episodes of CMV reactivation in the same patient.     

 

The secondary, tertiary and exploratory outcomes of the clinical trial were comprised 

of paired data (e.g. CD4+CD28null % at month 0 and month 6).  For such paired data 

the paired t test was utilised.  As the ratios of paired values were expected to be more 

consistent than the differences between paired values, paired ratio t tests were 

employed for such outcome data.  In order to achieve this, data was log transformed 

and a two-tailed t test (or Wilcoxon matched-pairs signed rank test for non-parametric 

data) was carried out on the transformed values.  The antilog of the results was then 
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taken to derive the geometric mean of the ratios with 95% confidence intervals.  This 

was performed separately for the treatment and control groups.   

 

Where outcome variables were assayed on more than two time-points, repeated 

measures ANOVA was carried out.  To account for multiple comparisons between the 

different time points examined in the tertiary outcome, post hoc analysis was carried 

out using Dunnett’s multiple comparisons test.  For the change in CMV IgG titre 

exploratory analysis, a post hoc analysis for linear trend was carried out to determine 

whether there was a change in titre over the study period.   
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CHAPTER 3 

THE PHENOTYPE OF CD4+CD28null T-CELLS IN 

ANCA ASSOCIATED VASCULITIS  
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Chapter 3 The Phenotype of CD4+CD28null T-cells in AAV  

3.1 Introduction 

Increased expansions of CD4+CD28null T-cells have been described in numerous 

inflammatory disorders including ANCA associated vasculitis (AAV) as well as in 

cardiovascular disease and in association with advancing age [112, 153, 159, 175, 188, 

212, 221].  CD4+CD28null T-cells are believed to be a pro-inflammatory subset [184].  

Although significant expansions of CD4+CD28null T-cells are only present in CMV 

seropositive individuals [112, 168, 224], the origin of this subset continues to be 

debated in the literature [171, 184, 200].  Furthermore, there is a lack of consensus as 

to whether functional exhaustion exists within this subset and whether this may 

predispose to increased and more frequent cycles of subclinical CMV reactivation 

thereby resulting in increased expansion of CD4+CD28null T-cells.  Finally, although 

CD4+CD28null T-cells have been linked to increased mortality, reduced renal function 

and increased risk of infection in AAV, their phenotype in AAV CMV seropositive 

patients has not been adequately defined. 

 

The work undertaken in this chapter aimed to: 

 Determine the cytokine production of CD4+CD28null T-cells following 

stimulation with CMV lysate in AAV and compare this to their CD4+CD28+ 

counterparts and age matched healthy volunteers 

 Identify the factors associated with CD4+CD28null T-cell expansion in AAV  
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 Determine the inhibitory receptor expression profile of CMV specific 

CD4+CD28null T-cells in AAV and explore how this relates to their ability to 

produce multiple cytokines  

 Characterise CD4+CD28null T-cells in AAV in terms of their T helper subtype 

and compare this to age matched healthy volunteers 

 

3.2 Cohort Characteristics 

In order to phenotype CD4+CD28null T-cells in AAV, 53 patients with stable disease 

and evidence of past infection with CMV (as evidenced by the presence of anti-CMV 

IgG antibodies in serum) were recruited from the University Hospital Birmingham 

(UHB) vasculitis clinic for a single visit in this cross-sectional part of the study.  Thirty-

eight of those patients were also consented to participate in the clinical trial part of 

the thesis (Chapter 5).  In order to preserve homogeneity, the remaining 15 patients 

recruited purely into the cross-sectional element of the study fulfilled the same 

eligibility criteria as the clinical trial participants (Chapter 2, Table 2.3).   

 

Thirty CMV seropositive healthy volunteers (HV) were recruited in order to compare 

and contrast the phenotype of CD4+CD28null T-cells in AAV and in the absence of 

immunosuppression or an inflammatory condition.   
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Table 3.1 describes the characteristics of the AAV patients and HV recruited into the 

cross sectional part of the study.  There were no statistically significant differences 

between AAV patients and HV in age or gender.  AAV patients had a median duration 

of disease of 71.5 months, mean eGFR of 53 mL / min / 1.73 m2 and low levels of 

proteinuria.  The majority of AAV patients were on immunosuppressant medication 

with a combination of prednisolone and azathioprine or mycophenolate mofetil.   

 

Table 3.1 Cohort characteristics for cross-sectional element of study 

 AAV 
(n=53) 

HV 
(n=30) 

p value 

Age (years) 69.0 [62.8 -  
75.3] 

70.5 [66.8 - 
74.0] 

0.557 

Gender (M:F) 35:18 14:16 0.085 
ANCA specificity 

(PR3:MPO) 
27:10 -- -- 

AAV disease 
chronicity 
(months) 

71.5 [38.0 - 
144.0] 

-- -- 

Renal function 
eGFR 

(mL/min/1.73m2) 

53 [21] -- -- 

Urine albumin 
creatinine ratio 

(uACR) 

4.4 [1.4 - 9.9] -- -- 

 Steroids [n (%)] 39 (73.6) -- -- 
 MMF [n (%)] 14 (26.4) -- -- 

Azathioprine [n 
(%)] 

19 (35.8) -- -- 

No treatment [n 
(%)] 

4 (7.5) -- -- 

Data is displayed as median [interquartile range] apart from renal 
function that is displayed as mean [standard deviation]. 
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3.3 CD4+CD28null T-cell proportion and absolute count 

In order to assess the proportion of CD4+CD28null T-cells within the CD4 

compartment, whole blood was stained with CD3, CD4 and CD28 antibodies as 

described in Chapter 2.  The gating strategy is shown in Figure 3.1.  A fluorescence-

minus-one (FMO) control was used for all experiments in order to assist with gating.  

CD3+CD4- T-cells were assessed as a surrogate marker of CD8+ T-cells and shall be 

referred to as CD8 for the remainder of the thesis. 

 

 

3.3.1 AAV patients display a higher proportion of CD4+CD28null T-cells 

compared to HV 

AAV patients displayed a significantly higher percentage of CD4+CD28null T-cells 

compared to HV (median 11.3 [IQR 3.7 - 19.7] vs. 6.7 [2.4 - 8.8]; p=0.022) (Figure 3.1).  

However there was no difference in CD4+CD28null absolute cell count between AAV 

and HV (Figure 3.2, Panel D).  There was no statistically significant difference in the 

percentage of CD8CD28null T-cells between AAV patients and HV (60.0 [41.0 - 73.6] vs. 

50.7 [40.5 - 62.9]; p=0.121).    
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Figure 3.1 CD4+CD28null and CD8CD28null T-cell expression in AAV and HV 

Whole blood was stained with CD3, CD4 and CD28 or isotype control monoclonal 

antibodies and CD4+CD28null and CD8CD28null T-cells were identified as shown here in a 

representative patient sample:  forward and side scatter was used to gate on lymphocytes 

(panel A); single cells were gated based on forward scatter height and area parameters 

(panel B); CD3+CD4+ and CD3+CD4- (CD8) cells were next identified (panel C); an FMO 

control was used to assist with CD28 gating as shown in panel D where the top panel has 

been stained with an isotype control and the bottom panel with CD28.  Panel E: AAV 

patients (n=53) (white boxes) have a statistically significant higher proportion of 

CD4+CD28null (left y axis) but not CD8CD28null T-cells (right y axis) compared to HV (n=30) 

(shaded boxes) (Mann-Whitney U test).  Median and Tukey boxplots are shown. 

19.8% 

40.9% 
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3.3.2 AAV patients have an inverted CD4:CD8 ratio compared to HV 

CD4 and CD8 T-cells were enumerated in whole blood (Figure 3.2).  AAV patients had a 

significantly lower CD4 count compared to HV, as previously reported [336], in keeping 

with an immunosuppressed state (430.4 cells / L [274.6 - 680.9] vs. 774.9 [590.4 - 

1126.3]; p<0.001).  Although AAV patients also displayed a lower CD8 count compared 

to HV (292.8 cells / L [179.7 - 548.1] vs. 426.8 [298.8 - 599.7]; p=0.019), the CD4:CD8 

ratio in AAV patients was inverted and significantly lower in AAV compared to HV (1.3 

[0.9 - 1.7] vs. 1.8 [1.6 - 2.0]; p=0.008).  The percentage of CD4+CD28null T-cells was 

negatively correlated to the CD4:CD8 ratio (Figure 3.2), suggesting that the CD4:CD8 

ratio, a marker of the immune risk profile [288], which has been associated with CMV 

past infection and frailty in the elderly [294], is adversely affected by the size of the 

CD4+CD28null T-cell expansion. 
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Figure 3.2 CD4 count and CD4:CD8 ratio in AAV patients versus HV 

Whole blood was stained with CD45, CD3 and CD4 monoclonal antibodies prior to the 

addition of counting beads.  Panels A, B and C display the gating strategy in a 

representative patient sample.  Panel D shows that AAV patients (n=53) (white boxes) 

had a statistically significant lower CD4 count compared to HV (n=30) (shaded boxes) 

(left y axis).  There was no difference in CD4+CD28null absolute cell count (right y axis).  

In Panel E, the CD4:CD8 ratio in AAV patients (white boxes) and HV (shaded boxes) is 

displayed.  The dotted line represents a CD4:CD8 ratio of 1.  In Panel F, the 

CD4+CD28null T-cell proportion is negatively correlated to the CD4:CD8 ratio (n=83). 
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3.4 CD4+CD28null T-cell phenotype and relationship to the CD4 CMV 

response 

In order to identify CMV responsive CD4+ T-cells and determine the cytokine secreting 

potential of CD4+CD28null T-cells, peripheral blood mononuclear cells (PBMC) were 

stimulated with CMV lysate in an overnight (16 hour) culture in the presence of 

monensin as detailed in Chapter 2. 

 

CD4+CD28null T-cells were identified as CMV responsive by the presence of IFN- 

staining following CMV lysate stimulation.  The specificity of this technique for CMV 

has been discussed in Section 2.6.6 (Figure 2.6).   

 

A significantly greater percentage of CD4+CD28null than CD4+CD28+ T-cells responded 

to CMV lysate (Figure 3.3).  There was no statistically significant difference between 

AAV and HV in the percentage of CD4+CD28null T-cells that responded to CMV lysate 

(AAV: 21.2 [IQR 8.3 - 35.9]; HV: 15.2 [6.0 - 42.6]; p=0.776).  The proportion of 

CD4+CD28null T-cells that were able to respond to CMV by IFN- production increased 

as the size of the CD4+CD28null T-cell compartment expanded indicating that 

individuals with greater expansions of CD4+CD28null have a greater proportion of 

CD4+CD28null T-cells able to respond to CMV and suggesting that CD4+CD28null T-cell 

expansion is not associated with loss of IFN- production (Figure 3.3, Panels C and D).   
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Figure 3.3 CD4+CD28null T-cell responsiveness to CMV lysate 

Panel A: Gating strategy shown in a representative patient sample.  PBMC were 

cultured overnight in the presence of CMV lysate (bottom row) or in culture medium 

alone (top row).  CD4+CD28null T-cells are displayed in purple and CD4+CD28+ T-cells 

in grey colour.  Panel B: A higher proportion of CD4+CD28null T-cells produced IFN- in 

response to CMV lysate compared to CD4+CD28+ T-cells (AAV (n=53) white boxes, HV 

(n=30) shaded boxes).  Median and Tukey boxplots are shown; Wilcoxon matched pairs 

signed rank test employed for statistical comparisons.  Panels C and D display the 

correlation between the size of the CD4+CD28null T-cell compartment and the 

proportion of CD4+CD28null T-cells that responded to CMV lysate by IFN- production 

after overnight culture (Spearman’s rank test) in HV and AAV respectively.     

CD4+CD28null: 13.6% 

CD4+CD28+: 1.1% 
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3.4.1 The size of CD4+CD28null T-cell expansions is closely linked to the 

overall CMV response in the CD4 compartment 

Given the fact that the origin of CD4+CD28null T-cells remains a subject of controversy 

in the literature [171, 184], measured variables including demographic parameters, 

renal function, the total CMV response in the CD4 compartment, CMV IgG titre and 

plasma levels of soluble markers of inflammation and endothelial dysfunction were 

related to the percentage of CD4+CD28null T-cells.  On univariable analysis, age, the 

percentage of CD8CD28null T-cells, plasma IP-10 (the ligand for CXCR3) and the overall 

CMV response in the CD4 compartment (proportion of IFN- positive CD4 T-cells 

following overnight culture with CMV lysate) were significantly associated with the size 

of the CD4+CD28null T-cell expansion (Table 3.2).    
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Table 3.2 Univariable analysis of factors associated with the size of the 

CD4+CD28null T-cell expansion in AAV patients (n=53) 

Variable R value p value 

Age 0.346 0.011 

Gender 0.164 0.241 

eGFR 0.009 0.951 

Creatinine -0.069 0.625 

uACR -0.107 0.445 

Total CMV response in CD4 compartment 

(Percentage of IFN- + cells)* 

0.791 <0.001 

CD4 count -0.209 0.134 

CD4 : CD8 ratio -0.263 0.057 

CD8CD28null % 0.525 <0.001 

CMV IgG titre
a
 0.072 0.608 

CRP
a
 -0.024 0.868 

sICAM-1
a
 -0.162 0.251 

sVCAM-1
a
 -0.157 0.265 

Fractalkine
a
 0.132 0.353 

IP-10
a
 0.380 0.005 

RANTES
a
 0.061 0.665 

E-Selectin
a
 0.125 0.379 

P-Selectin
a
 0.226 0.107 

IFN-
a
 0.044 0.759 

TNF-
a
 0.017 0.905 

IL-2
a
 -0.041 0.771 

MCP-1
a
 0.169 0.232 

IL-6
a
 0.040 0.780 

IL-12
a
 0.122 0.387 

IL-17
a
 0.030 0.834 

IL-10
a
 0.043 0.764 

* Following overnight culture with CMV lysate; 
a 

Measured in plasma 
uACR: urinary albumin creatinine ratio 
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A multivariable linear regression model was designed in order to determine which 

variables were independently associated with the size of the CD4+CD28null T-cell 

expansion in AAV patients after controlling for relevant covariates.  All variables with a 

p value ≤ 0.1 on univariable analysis were entered in a multivariable linear regression 

model (Table 3.3).  The size of the CD4 CMV specific compartment, plasma IP-10 and 

the proportion of CD8CD28null T-cells remained independently associated with the 

size of the CD4+CD28null T-cell expansion after controlling for possible confounders 

whilst age was not significant (Table 3.3).  Graphical representation revealed a close 

linear relationship between CD4+CD28null T-cells proportion and the proportion of 

IFN- positive CD4 T-cells following CMV lysate stimulation (Figure 3.4) suggesting, 

together with the multivariable analysis results, that the size of the CD4+CD28null T-

cell expansion is largely determined by the size of the overall CMV response in the CD4 

compartment supporting the existing link in the literature between CMV infection and 

CD4+CD28null T-cell expansion.   
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Table 3.3 Multivariable analysis of factors associated with the size of the 

CD4+CD28null T-cell expansion in AAV patients 

Variable Univariable analysis Multivariable analysis 

p value B value [95% CI] p value 

IFN- + % in CD4 compartment* <0.001 1.03 [0.73, 1.32] < 0.001 

Age 0.011 0.18 [-0.05, 0.41] 0.120 

CD4 : CD8 ratio 0.057 -0.98 [-2.68, 0.72] 0.253 

CD8CD28null % <0.001 0.15 [0.03, 0.28] 0.014 

Plasma IP-10 0.005 0.01 [0.001, 0.01] 0.021 

* Following overnight culture with CMV lysate 
Multivariable model included all variables with a p value ≤ 0.1 on univariable analysis. 
R value: 0.861 
R Square: 0.742 

 

 

Figure 3.4 Correlation of CD4+CD28null T-cell proportion with the overall CD4 CMV 

response in AAV  

The size of the overall CD4 CMV specific compartment identified by IFN- production 

following overnight culture in the presence of CMV lysate and monensin, closely 

correlated with the proportion of CD4+CD28null T-cells in the CD4 compartment 

(Spearman’s rank test) (n=53). 
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3.4.2 Cytokine production by CD4+CD28null T-cells 

The cytokine secreting potential of CD4+CD28null T-cells in response to CMV lysate 

was assessed following overnight culture in the presence of monensin followed by 

fixation / permeabilisation and intracellular staining for IFN-, TNF-, IL-2, IL-5 and IL-

10 as detailed in Section 2.6.5.  An anti-CD154 monoclonal antibody conjugated to PE 

was also added in the overnight culture in order to identify activated T-cells.  Staining 

from a representative patient sample is shown in Figure 3.5 including appropriate 

positive and negative controls.   

 

 



CMV Modulation of the Immune System in AAV 126 
 

 
Figure 3.5 Cytokine expression in CD4+CD28null T-cells – representative staining  

Staining from a representative patient sample for IFN-, TNF-, IL-2, IL-5, IL-10 and the activation 
marker CD154 following overnight culture in medium alone (1st column), CMV lysate (2nd column) 
or SEB as a positive control (3rd column).  Plots gated on CD4+CD28null T-cells.  The IL-10 positive 
control was LPS instead of SEB as indicated and all CD4 T-cells are shown for that sample. 

0% 46.6% 14.4% 

0% 15.8% 6.4% 

0% 1.1% 1.2% 

0.4% 0.9% 0.6% 

0% 0.3% 1.3% 

0.8% 26.6% 13.8% 
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CD4+CD28null T-cells from AAV patients produced mainly IFN- and TNF- following 

stimulation with CMV lysate (IFN-: 21.2 % [IQR 8.2 - 36.9]; TNF-: 7.0 [2.5 - 12.9]).  On 

the contrary, a much lower percentage was capable of IL-2 (0.4 [0.1 - 1.1]), IL-5 (0.6 

[0.3 - 1.2]) and IL-10 (0.2 [0.1 - 0.5]) production.  Interestingly, CD154 was detected on 

fewer cells than IFN- suggesting loss of CD154 during overnight culture.  There was no 

difference between AAV and HC in the profile of the cytokines produced by 

CD4+CD28null T-cells (Figure 3.6). 

 
 
 

 

Figure 3.6 Cytokine expression in CD4+CD28null T-cells in AAV and HV   

The proportion of CD4+CD28null T-cells expressing IFN-, TNF-, IL-2, IL-5, IL-10 and 

the activation marker CD154 in AAV patients (n=53) (white boxes) and HV (n=30) 

(shaded boxes) after overnight co-culture with monensin, CD154 monoclonal antibody 

conjugated to PE and CMV lysate stimulation is shown. 
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3.4.3 Polyfunctionality of CD4+CD28null T-cells 

Polyfunctionality of CD4+CD28null T-cells was assessed by quantifying the percentage 

of CMV responsive CD4+CD28null T-cells, identified by expression of IFN-, that were 

also capable of producing TNF- and IL-2 following overnight stimulation with CMV 

lysate and comparing that to the functionality of CD4+CD28+ T-cells.  The 

CD4+CD28null T-cell compartment contained significantly less polyfunctional cells 

within the IFN- positive CMV responsive compartment compared to CD4+CD28+ T-

cells (AAV: CD4+CD28null 0.96 [IQR 0.16 - 2.31] versus CD4+CD28+ 5.19 [2.69 - 9.34]; 

p<0.001) (Figure 3.7).  Therefore although a much greater proportion of CD4+CD28null 

T-cells were CMV responsive compared to their CD4+CD28+ counterparts, the 

CD4+CD28+ T-cell compartment contained a much higher proportion of polyfunctional 

CMV responsive T-cells as judged by their ability to secrete TNF- and IL-2 in addition 

to IFN-suggesting that CD4+CD28+ CMV specific T-cells may confer a more robust 

immune response in the control of CMV infection.  There was no difference in the 

proportions of polyfunctional CD4+CD28null or CD4+CD28+ T-cells between AAV 

patients and HV.    
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Figure 3.7 Polyfunctionality of CMV responsive CD4+CD28null T-cells 

Polyfunctionality of CMV responsive CD4+CD28null T-cells was assessed by stimulating 

PBMC with CMV lysate in an overnight culture in the presence of monensin.  CMV 

responsive CD4 T-cells were identified by IFN- expression.  The proportion of T-cells 

also capable of expressing TNF- and IL-2 within the CMV responsive compartment as 

shown in a representative patient sample in Panel A was determined for CD4+CD28null 

(purple) and CD4+CD28+ T-cells (grey).  In Panel B, the proportions of polyfunctional 

CMV responsive T-cells within the CD4+CD28null and CD4+CD28+ compartments were 

compared (Wilcoxon matched pairs signed rank test) in AAV patients (n=53) (white 

boxes) and HV (n=30) (shaded boxes).  

 

 

 

 

 

CD4+CD28null: 46.6% 

CD4+CD28+: 1.3% 

CD4+CD28null: 2.4% 
CD4+CD28+: 18.9% 
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3.4.4 Inhibitory receptor expression by CD4+CD28null T-cells 

Expression of the inhibitory receptors PD-1, TIM-3, LAG-3 and CTLA-4 has been 

associated with T-cell functional exhaustion and sequential loss of cytokine production 

[303, 337].  In order to further explore the functionality of CD4+CD28null T-cells, the 

expression of these inhibitory receptors was assessed following overnight culture of 

PBMC in the presence of CMV lysate.  The proportion of CD4+CD28null T-cells 

expressing each of these receptors was compared to that of CD4+CD28+ T-cells in both 

AAV patients and HV.  Isotype controls were used to guide gating (Figure 3.8). 
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Figure 3.8 Inhibitory receptor expression in CD4+CD28null T-cells – representative 

plots   

PBMC were stimulated overnight with CMV lysate and stained with surface and 

intracellular markers the next day in order to identify expression of the inhibitory 

receptors PD-1, TIM-3, LAG-3 and CTLA-4 on CD4+CD28null (purple) and CD4+CD28+ 

(grey) T-cells.  Fluorescence minus one (FMO) experiments were also carried out 

where an isotype control was employed in place of the target antibody in order to 

assist with gating.  The corresponding FMO experiment for each marker is shown in 

the top plot. 

   

 

A significantly higher percentage of AAV CD4+CD28null T-cells compared to 

CD4+CD28+ T-cells expressed the inhibitory receptors PD-1 (9.5 [IQR 4.2 - 28.8] vs. 3.8 

[2.8 - 7.1]; p<0.001) and TIM-3 (1.3 [0.9 - 2.5] vs. 0.6 [0.4 - 0.8]; p<0.001).  There was 

no difference in the percentage of CD4+CD28null and CD4+CD28+ T-cells expressing 

CD4+CD28+: 4.3% CD4+CD28+: 0.6% CD4+CD28+: 19.0% CD4+CD28+: 18.8% 

CD4+CD28null: 22.9% CD4+CD28null: 2.6% CD4+CD28null: 17.9% CD4+CD28null: 3.9% 
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LAG-3 (14.4 [7.1 - 24.2] vs. 16.2 [9.2 - 22.2]; p=0.685) whereas a lower percentage of 

CD4+CD28null T-cells expressed CTLA-4 compared to CD4+CD28+ T-cells (9.4 [5.3 - 

17.4] vs. 20.1 [15.5 - 25.7]; p<0.001).  This pattern did not differ between AAV and HV.  

However, AAV patients overall tended to possess more CD4 T-cells expressing 

inhibitory receptors compared to HV (Figure 3.9). 

 

 

Figure 3.9 Inhibitory receptor expression in CD4+CD28null T-cells  

The inhibitory receptor expression of PD-1 (Panel A), TIM-3 (Panel B), LAG-3 (Panel C) 

and CTLA-4 (Panel D) was compared between CD4+CD28null T-cells and CD4+CD28+ T-

cells (Wilcoxon matched pairs signed rank test) and AAV (n=53) (white boxes) and HV 

(n=30) (shaded boxes) (Mann-Whitney U test).  
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Given the fact that CD4+CD28null T-cells displayed a lower degree of polyfunctionality 

and were more likely to express PD-1 and TIM-3 compared to their CD4+CD28+ 

counterparts, the expression of PD-1 and TIM-3 was compared between polyfunctional 

CD4+CD28null CMV specific T-cells and CD4+CD28null CMV specific T-cells capable of 

IFN-production only.  Polyfunctional CMV specific CD4+CD28null T-cells were less 

likely to express TIM-3 compared to less functional CD4+CD28null T-cells whereas 

there was no difference in PD-1 expression (Figure 3.10), suggesting that expression of 

TIM-3 but not PD-1 on CD4+CD28null T-cells is associated with reduced 

polyfunctionality.    

 

 

Figure 3.10 Expression of inhibitory receptors and polyfunctionality  

The expression of the inhibitory receptors PD-1 and TIM-3 was compared between 

polyfunctional CD4+CD28null T-cells, identified as IFN- positive T-cells capable of TNF-

and IL-2 production, and CD4+CD28null T-cells capable only of IFN- production 

(Wilcoxon matched pairs signed rank test).  Scatter dot plots with medians and IQR are 

shown. 
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3.4.5 T helper phenotype 

The phenotype of CD4+CD28null T-cells was further explored by comparing the 

expression of the Th1 transcription factor T-bet in CD4+CD28null and CD4+CD28+ T-

cells.  In parallel, expression of the transcription factor BLIMP-1 was assessed (Figure 

3.11).  In chronic infections high expression of BLIMP-1 in CD8 T-cells has been shown 

to promote expression of inhibitory receptors and exhaustion whereas T-bet 

expression promotes functional effector responses [337].    

 

Figure 3.11 Expression of T-bet and BLIMP-1 – representative sample 

Following overnight culture and stimulation with CMV lysate the expression of 

transcription factors T-bet and BLIMP-1 was assessed in CD4+CD28null (purple) and 

CD4+CD28+ (grey) T-cells as shown in this representative patient sample.  FMO 

controls were employed to aid gating as shown in the top row.  In addition, a myeloma 

cell line (U266), shown in the 3rd column, was stained with BLIMP-1 or isotype control 

as a positive control as myeloma cells constitutively express BLIMP-1.  CD138 was used 

to identify plasma cells shown in green. 

CD4+CD28+: 8.5% CD4+CD28+: 0.5% 

CD4+CD28null: 84.6% CD4+CD28null: 0.5% 
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A large proportion of CD4+CD28null T-cells from both AAV patients and HV expressed 

T-bet compared to a relatively small percentage of CD4+CD28+ T-cells (Figure 3.12, 

Panel A).  In AAV patients, 71.1 % of CD4+CD28null T-cells [IQR 53.4 - 81.4] expressed 

T-bet compared to 4.0 % of CD4+CD28+ T-cells [2.6 - 9.2] (p<0.001).  Furthermore, the 

proportion of CD4+CD28null T-cells expressing T-bet was correlated to the size of the 

CD4+CD28null T-cell expansion (r=0.773, p<0.001) in an exponential relationship 

(Figure 3.12, Panel B) suggesting that expression of T-bet on CD4+CD28null T-cells 

increases as this subset expands.  Conversely, BLIMP-1 expression was minimal in 

comparison to T-bet expression, although CD4 T-cells from AAV patients had a slightly 

higher expression of BLIMP-1 compared to HV (Figure 3.12, Panel A) mirroring the 

increased expression of inhibitory receptors seen in AAV patients in comparison to HV 

(Figure 3.9). 

 

 

 

 



CMV Modulation of the Immune System in AAV 136 
 

 

Figure 3.12  Expression of T-bet and BLIMP-1 – summary results  

The proportion of CD4+CD28null and CD4+CD28+ T-cells expressing T-bet or BLIMP-1 

was assessed in AAV patients (n=53) (white boxes) and HV (n=30) (grey boxes) (Panel 

A).  A greater proportion of CD4+CD28null T-cells expressed T-bet compared to 

CD4+CD28+ T-cells in AAV and HV.  CD4+CD28null T-cells were more likely to express 

T-bet than BLIMP-1 in both AAV and HV.  CD4 T-cells from AAV patients were more 

likely to express BLIMP-1 compared to HV.  Comparisons within AAV patients and 

within HV were performed using Wilcoxon matched pairs signed rank test whilst 

comparisons across AAV patients and HV were performed using the Mann-Whitney U 

test.  In panel B, as the size of the CD4+CD28null T-cell expansion increased 

CD4+CD28null T-cells were more likely to express T-bet (n=83). 
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Given the fact that a high proportion of CD4+CD28null T-cells were found to express 

the Th1 transcription factor T-bet, the T helper subtype of CD4+CD28null T-cells was 

confirmed in a subset of AAV patients (n=17) and HV (n=6).  Whole blood was stained 

for CXCR3, CCR4 and CCR6 (Figure 3.13) in order to identify Th1 (CXCR3+ CCR6-), Th17 

(CCR4+ CCR6+), Th1Th17 (CXCR3+ CCR6+) and Th2 (CCR4+CCR6-) T-cells [338].   

 

In keeping with T-bet expression, CD4+CD28null T-cells exhibited a Th1 type signature 

as identified by CXCR3 expression and minimal expression of CCR6 and CCR4.  

CD4+CD28null T-cells were significantly more likely to exhibit a Th1 pattern compared 

to CD4+CD28+ T-cells whereas the opposite was true for Th1Th17, Th17 and Th2 

signatures (Figure 3.13).  There was no difference in this pattern between AAV patients 

and HV.  The high expression of CXCR3 by CD4+CD28null T-cells was in agreement with 

the plasma level of IP-10, the ligand for CXCR3, that was found to be independently 

associated with the size of the CD4+CD28null T-cell expansion on multivariable analysis 

(Table 3.3). 
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Figure 3.13 T helper phenotype of CD4+CD28null T-cells  

Whole blood was stained with CXCR3, CCR4 and CCR6 antibodies in order to identify Th1, 

Th1Th17, Th17 and Th2 signatures in CD4+CD28null (purple) and CD4+CD28+ (grey) T-cells 

as seen in a representative patient sample in Panel A where the top row plots are gated on 

CD4+CD28null T-cells (purple) and the bottom row plots on CD4+CD28+ (grey) T-cells.  

Panel B shows summary results in AAV patients (n=17) (white boxes) and HV (n=6) (shaded 

boxes).   

94.9% 

25.1% 

0.4% 

21.5% 

0.2% 

11.1% 

0.5% 

8.2% 
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3.5 Discussion 

CD4+CD28null T-cells in AAV patients were found to mainly produce IFN- and TNF- in 

response to CMV lysate, in keeping with a Th1 subtype and in agreement with a 

previous report that described CD4+CD28null T-cells to be major sources of IFN- and 

TNF- within granulomas in patients with GPA [35].  In contrast, these cells produced 

relatively small amounts of IL-2 and negligible IL-5 and IL-10.  The Th1 phenotype of 

CD4+CD28null T-cells was further confirmed by staining for the chemokine receptor 

CXCR3 and the Th1 transcription factor T-bet that were present in the majority of 

CD4+CD28null T-cells.  Furthermore CD4+CD28null T-cells did not express CCR4 or 

CCR6 seen in Th2 (CXCR3-CCR4+CCR6-) and Th17 cells (CXCR3-CCR4+CCR6+) 

respectively.    

 

The proportion of CMV responsive T-cells amongst CD4+CD28null T-cells increased as 

the CD4+CD28null T-cell compartment expanded.  Moreover, the magnitude of the 

CD4 CMV response displayed a very close linear correlation to the CD4+CD28null T-cell 

percentage and on multivariable analysis was the best independent determinant of the 

size of the CD4+CD28null T-cell expansion in AAV patients in disease remission.   

 

Several studies have highlighted that the bimodal ‘carrier’ pattern of CD4+CD28null T-

cells can be explained by past infection with CMV.  In that respect Hooper et al. 

showed that in rheumatoid arthritis patients, CD4+CD28null T-cell expansions were 
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only present in CMV seropositive individuals [168].  Similarly, Morgan et al. described 

that significant expansions of CD4+CD28null T-cells were only present in CMV 

seropositive AAV patients [112].   

 

CD4+CD28null T-cells expand with age and as CMV seroprevalence also increases with 

age it can often be difficult to disentangle the two from each other [184].  

Furthermore, other researchers have suggested alternate antigens that may be 

responsible for the generation of CD4+CD28null T-cells such as heat shock proteins 

(HSP) [178, 200].  In these experiments, CD4+CD28null T-cells from patients with 

unstable angina, reacted to HSP60 but not CMV by upregulation of IFN- and perforin 

mRNA, casting doubt on the antigen specificity of these cells [200].   

 

The data presented here lend strong support to the existing evidence in the literature 

that suggests CMV infection is the driving force behind CD4+CD28null T-cell expansion.  

Interestingly, age was not associated with the size of the CD4+CD28null T-cell 

compartment after controlling for relevant confounders suggesting that the total CMV 

CD4 response defines the CD4+CD28null T-cell expansion independently from age and 

is more important than age itself in that respect, at least in an immunosuppressed 

patient population with an inflammatory disease.   
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A limitation of this study in terms of defining the CMV specificity of CD4+CD28null T-

cells is that only CMV seropositive patients were included.  This however was 

deliberate as significant CD4+CD28null T-cell expansions greater than 2% of the CD4 

compartment are only present in the setting of CMV seropositivity [112] and the 

primary objective of this chapter was to phenotype this cell type in AAV rather than 

prove that they are CMV specific.  For this reason CD4+CD28null cells were also not 

challenged with alternative antigens during the course of this work.   

 

Previous experiments have shown that CD4+CD28null T-cells proliferate in response to 

CMV antigens but not in response to other antigens like varicella zoster, tetanus toxoid 

and tuberculin purified protein derivative [112, 184], although as mentioned earlier 

reactivity to HSP60 has been demonstrated [200].  Bason and colleagues have shown 

that a short sequence of HSP60 shares homology with two CMV encoded proteins and 

that CMV infection induces antibodies that are able to bind HSP60 and cause 

endothelial damage [236].  It would be interesting to determine whether CMV specific 

CD4+CD28null T-cells are also able to recognise both CMV antigens and HSP60 and 

whether dual recognition is associated with increased cytotoxicity.      

 

The phenotype of CD4+CD28null T-cells was similar in AAV patients in remission and 

age matched healthy volunteers.  AAV patients had a significantly higher proportion of 

CD4+CD28null T-cells within their CD4 compartment although there was no difference 

in the absolute count as AAV patients were lymphopoenic, as expected.  AAV patients 
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are heavily immunosuppressed and therefore it is possible that subclinical CMV 

reactivation is more frequent in these patients compared to healthy people thereby 

leading to an exaggerated proportionate expansion of CD4+CD28null T-cells. 

 

In order to determine whether CD4+CD28null T-cells possess aspects of functionally 

exhausted cells, their capacity to produce multiple cytokines was assessed.  A lower 

proportion of CD4+CD28null T-cell CMV specific cells were polyfunctional as judged by 

production of all three IFN-, TNF- and IL-2 cytokines compared to their CD4+CD28+ 

CMV specific counterparts.  In a bone marrow transplantation study patients that 

possessed polyfunctional CD8 T-cells were protected from CMV reactivation [339].  

CD4 T-cells capable of producing multiple cytokines are thought to be more effective 

than single-cytokine producing cells [304] in part due to their ability to sustain CD8 

responses by IL-2 secretion [340].  Although much less is known about the importance 

of polyfunctional CD4 T-cells in the control of CMV reactivation, recently it has been 

shown that following lung transplantation CMV specific CD4 T-cells able to co-produce 

IFN-, TNF- and IL-2 conferred protection from subsequent CMV viraemia whereas 

single producers of IFN- were detrimental [341].  Taken together with the current 

findings this suggests that the balance between CD4+CD28+ and CD4+CD28null CMV 

specific T-cells may be important in the control of CMV reactivation.  There is currently 

no information in the literature on the effect of polyfunctional responses on subclinical 

CMV reactivation and hence this was further explored in the studies described in 

Chapter 5. 
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In an effort to explore potential functional exhaustion in CD4+CD28null T-cells further, 

their expression of inhibitory receptors and the transcription factor BLIMP-1 that are 

implicated in functional exhaustion was evaluated and compared to their CD4+CD28+ 

counterparts.  A greater proportion of CD4+CD28null T-cells expressed PD-1 and TIM-3 

compared to CD4+CD28+ cells although the expression of CTLA-4 was noted to be 

higher on CD4+CD28+ T-cells.  There was no difference in the expression of LAG-3 or 

BLIMP-1 between CD28null and CD28+ cells and it is noteworthy that the expression of 

BLIMP-1 in CD4+CD28null T-cells was negligible.  The transcriptional pathways that 

regulate functional exhaustion in CD4 T-cells are incompletely understood and it is 

likely that substantial heterogeneity exists amongst potentially exhausted CD4 T-cells 

[342].  Given that CD4+CD28null T-cells were more likely to express PD-1 and TIM-3 

and exhibited reduced polyfunctionality compared to CD4+CD28+ cells, the proportion 

of polyfunctional CMV specific CD4+CD28null that expressed PD-1 or TIM-3 was 

compared to that of IFN- only producing CD4+CD28null T-cells.  Single producers of 

IFN- were more likely to express the inhibitory receptor TIM-3 compared to 

polyfunctional CD4+CD28null T-cells whereas no difference was noted in PD-1 

expression.  This indicates that the expression of TIM-3 but not PD-1 on CD4+CD28null 

T-cells is associated with reduced functionality and identifies a subset of potentially 

exhausted less functional T-cells within the CD4+CD28null T-cell compartment.   

 

TIM-3 has been linked to functional exhaustion and reduced functionality of T-cells in 

cancer [343] and hepatitis B infection [344] but has not been previously identified as a 



CMV Modulation of the Immune System in AAV 144 
 

marker of reduced function on CMV specific T-cells.  This is of potential clinical 

importance both in the context of CMV reactivation and as expansions of 

CD4+CD28null T-cells have been previously linked to increased infections in patients 

with AAV [112] and reduced responsiveness to the influenza vaccine [300, 317].  

However, it should be noted that the proportion of TIM-3 expressing CD4+CD28null T-

cells was very low casting uncertainty onto the biological significance of this molecule 

in the control of functional anti-CMV responses.  Indeed, expression of TIM-3 as well as 

other inhibitory receptors such as PD-1 may alternatively reflect recent lymphocytic 

activation by way of recent encounter with CMV antigens.   

 

 

In summary, the work presented in this chapter has confirmed that CD4+CD28null T-

cells in AAV represent a CMV responsive, Th1 proinflammatory subset.  The data here 

has strengthened the association between CMV infection and CD4+CD28null T-cells by 

showing that the size of the CMV CD4 response determines the magnitude of the 

CD4+CD28null T-cell expansion in AAV patients and has indicated that CMV specific 

CD4+CD28+ T-cells are more polyfunctional compared to CMV specific CD4+CD28null 

T-cells.  Finally, for the first time, TIM-3 expression on the surface of CMV specific 

CD4+CD28null T-cells has been identified as a marker of a functionally exhausted 

subset of CD4+CD28null T-cells.  
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Chapter 4 Association between CD4+CD28null T-cell expansions and 

cardiovascular disease risk in AAV 

4.1 Introduction 

CD4+CD28null T-cells have been persistently implicated in cardiovascular disease 

(CVD).  They have been found to preferentially infiltrate unstable plaques [227], are 

present in higher proportions in unstable compared to stable angina patients and are 

thought to be involved in the pathophysiology of endothelial damage due to their 

potent production of IFN-[226].  In vitro, they have been shown to exhibit perforin 

dependent cytotoxic activity against human umbilical vein endothelial cells [228].  In 

addition, CD4+CD28null T-cells have been shown to be associated with endothelial 

dysfunction, identified by flow mediated vasodilatation, in rheumatoid arthritis (RA) 

patients [175] and have also been implicated in early atherosclerotic damage, 

identified by increased carotid artery intima-media thickness, in RA [175], chronic 

kidney disease (CKD) [179, 180] and haemodialysis patients [181]. 

 

Cardiovascular disease is a leading cause of mortality in AAV [93] and CD4+CD28null T-

cells have previously been linked with increased mortality in this patient group [112].  

In addition, CMV seropositivity has been associated with increased arterial stiffness, an 

established marker of CVD risk, in patients with CKD [285].    
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The data presented in Chapter 3 confirmed that expansions of CD4+CD28null T-cells in 

AAV patients are CMV responsive and exhibit a Th1, pro-inflammatory phenotype.  The 

work presented in this chapter aimed to: 

 

 Determine the impact of CD4+CD28null T-cells on CVD risk in AAV by assessing 

their relationship to arterial stiffness and blood pressure parameters and 

 Explore the mechanisms via which CD4+CD28null T-cells may contribute to 

CVD in inflammatory disease by assessing their expression of endothelial 

receptors and markers of cytotoxicity in patients with AAV 

 

Blood pressure and arterial stiffness parameters were measured on 53 CMV 

seropositive patients with stable AAV in remission.  CD4+CD28null T-cells were 

enumerated on the same day by whole blood staining as detailed in Chapter 2.  The 

AAV cohort characteristics have been discussed in Chapter 3 (Table 3.1). 
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4.2 CD4+CD28null T-cell expansions correlate with increased systolic blood 

pressure and pulse pressure 

The size of the CD4+CD28null T- cell expansion was significantly correlated to systolic 

blood pressure measured peripherally and centrally (Figure 4.1, Panels A and C). No 

correlation was seen between CD4+CD28null T-cell percentage and diastolic blood 

pressure or mean arterial pressure (MAP) (Figure 4.1, Panels B and D). 

 

Figure 4.1 CD4+CD28null T-cell expansions and blood pressure parameters.  Correlations 

(Spearman rank test) are shown between the size of the CD4+CD28null T-cell expansion in 

CMV seropositive AAV patients in remission (n=53) and peripheral systolic blood pressure (A), 

peripheral diastolic blood pressure (B), aortic systolic pressure (C) and mean arterial pressure 

(D). 
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Pulse pressure, the difference between systolic and diastolic blood pressure, is a 

surrogate marker of arterial stiffness and is increased in atherosclerosis and 

arteriosclerosis.  It is has been shown to be a better predictor of cardiovascular 

outcomes compared to mean arterial pressure and diastolic blood pressure [345, 346].  

The percentage of CD4+CD28null T-cells in AAV was significantly correlated with both 

peripheral and central pulse pressure in that patients with larger expansions of 

CD4+CD28null T-cells exhibited a higher pulse pressure (Figure 4.2). 

 

 

Figure 4.2 CD4+CD28null T-cells and pulse pressure   

Correlations (Spearman rank test) are shown for CD4+CD28null T-cells from CMV 

seropositive AAV patients in remission (n=53) and peripheral (left) and central (right) 

pulse pressure. 
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4.3 The CD4+CD28null T-cell percentage is independently associated with 

increased arterial stiffness 

Next, the percentage of CD4+CD28null T-cells in AAV patients was related to the gold 

standard measure of arterial stiffness, pulse wave velocity (PWV).  Aortic PWV is a 

powerful independent predictor of all-cause mortality and cardiovascular events in 

ESRD, hypertensive subjects, diabetic patients and the general population [347, 348].  

Carotid to femoral aortic PWV was measured as described in Chapter 2.  In keeping 

with the observed relationship between CD4+CD28null T-cells and pulse pressure, the 

size of the CD4+CD28null T-cell expansion was found to be correlated with increased 

PWV (Figure 4.3). 

 

 

Figure 4.2 CD4+CD28null T-cells and pulse wave velocity   

Correlation (Spearman rank test) is shown for CD4+CD28null T-cells from CMV 

seropositive AAV patients in remission (n=53) and pulse wave velocity. 
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Univariable analysis revealed that PWV was associated with several other factors that 

could potentially confound the observed association with CD4+CD28null T-cell 

percentage (Table 4.1).   

 

Table 4.1 Factors associated with PWV on univariable analysis (n=53) 

Variable Univariable analysis 

R 
Square 

B value [95% CI] p value 

Age (years) 0.183 0.131 [0.053, 0.208] 0.001 

Gender 0.004 0.393 [-1.313, 2.100] 0.645 

Creatinine mol/L 0.021 0.008 [-0.008, 0.025] 0.305 

eGFR (mL/min/1.73m2) 0.026 -0.023 [-0.062, 0.017] 0.252 

Urinary Albumin Creatinine Ratio 
(ACR) 

0.056 0.019 [-0.003, 0.041] 0.088 

Peripheral Pulse Pressure (mmHg) 0.163 0.084 [0.030, 0.137] 0.003 
Central Pulse Pressure (mmHg) 0.126 0.077 [0.019, 0.135] 0.010 
Mean Arterial Pressure (mmHg) 0.102 0.088 [0.015, 0.161] 0.020 
Systolic Blood Pressure (mmHg) 0.191 0.079 [0.033, 0.124] 0.001 
Diastolic Blood Pressure (mmHg) 0.027 0.056 [-0.039, 0.150] 0.243 
Aortic Systolic Pressure (mmHg) 0.162 0.074 [0.026, 0.122] 0.003 
CD4+CD28null T-cell proportion 
(%) 

0.182 0.091 [0.037, 0.146] 0.001 

C-reactive protein 0.008 1.169 x 10-7 [0.000, 0.000] 0.520 
RANTES 0.004 -2.048 x 10-5 [0.000, 0.000] 0.676 
sICAM-1 0.005 5.27 x 10-7 [0.000, 0.000] 0.625 
sVCAM-1 0.004 1.18 x 10-6 [0.000, 0.000] 0.638 
IL-2 0.066 0.007 [0.000, 0.015] 0.065 
MCP-1 0.016 -0.002 [-0.007, 0.003] 0.366 
Fractalkine 0.009 0.020 [-0.039, 0.078] 0.5060 
E-selectin 0.001 3.34 x 10-6 [0.000, 0.000] 0.866 

IFN- 0.036 -0.004 [-0.010, 0.002] 0.179 

IL-10 0.025 0.089 [-0.068, 0.245] 0.260 
IL-6 0.004 0.002 [-0.007, 0.011] 0.649 

TNF- 0.083 0.015 [0.001, 0.029] 0.039 

IP-10 0.006 -0.001 [-0.002, 0.001] 0.586 
P-selectin 0.015 9.66 x 10-6 [0.000, 0.000] 0.395 
IL-17 0.015 -0.003 [-0.011, 0.004] 0.389 
IL-12 0.001 0.008 [-0.059, 0.074] 0.818 
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In order to determine whether the size of the CD4+CD28null T-cell expansion was 

independently associated with increased PWV, variables linked to PWV with a p value 

less than or equal to 0.1 on univariable analysis were entered in a multivariable linear 

regression model (Table 4.2).  The CD4+CD28null T-cell percentage was independently 

associated with PWV after controlling for relevant confounders. The only other factor 

that remained significantly associated with PWV was age.   

 

In order to avoid collinearity, only one blood pressure parameter was added at each 

iteration of the model.  Table 4.2 shows the final model with MAP.  The CD4+CD28null 

T-cell percentage remained independently associated with PWV with minimal changes 

in the overall R square, B values and p values when peripheral pulse pressure, central 

pulse pressure, peripheral systolic blood pressure or central aortic blood pressure 

were substituted for MAP.  Similarly, the final model shown in Table 4.2 includes TNF-

 but not IL-2 in order to avoid significant collinearity.  There was no change when 

TNF- was substituted for IL-2 and the size of the CD4+CD28null T-cell expansion 

remained independently associated with PWV. 
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Table 4.2 Multivariable model analysis of CD4+CD28null T-cell expansion and 

PWV 

Variable Univariable 
analysis 

Multivariable analysis 

p value B value [95% CI] p value 

CD4+CD28null T-cell 
proportion 

0.001 0.066 [0.013, 0.119] 0.016 

Age 0.001 0.080 [0.006, 0.155] 0.035 

Urinary ACR 0.088 0.013 [-0.007, 0.033] 0.196 

Mean arterial pressure 
(MAP) 

0.020 0.053 [-0.016, 0.122] 0.128 

TNF- 0.039 0.010 [-0.002, 0.022] 0.086 

Multivariable model included all variables with a p value ≤ 0.1 on univariable analysis. 

R value: 0.635 
R Square: 0.404 
 

 

 

4.4 CD4+CD28null T-cell expression of endothelial receptors and markers 

of cytotoxicity 

Given the observed association between CD4+CD28null T-cell percentage and 

increased arterial stiffness, the expression of the endothelial receptors CX3CR1 

(receptor for fractalkine), CD49d (receptor for VCAM-1) and CD11b (receptor for ICAM-

1) was assessed on CD4+CD28null T-cells and compared to the expression of these 

receptors on CD4+CD28+ T-cells.  In parallel, the expression of the intracellular 
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cytotoxic molecules granzyme B and perforin was assessed as a marker of cytotoxic 

potential.  These experiments were performed on cryopreserved PBMC in a random 

subset of AAV patients (n=10).   

 

A large percentage of CD4+CD28null T-cells expressed all three endothelial receptor 

molecules compared to CD4+CD28+ T-cells (51.6 [IQR 42.7 - 64.4] vs. 5.0 [1.7 - 6.3]; 

p=0.006).  Similarly, the majority of CD4+CD28null T-cells were cytotoxic, as defined by 

the expression of both granzyme B and perforin, compared to a very low proportion of 

CD4+CD28+ T-cells (74.5 [63.5 - 92.7] vs. 2.9 [1.8 - 5.4]; p=0.016; Wilcoxon matched 

pairs signed rank test) (Figure 4.3).     
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Figure 4.3 Expression of endothelial receptors and markers of cytotoxicity   

Cryopreserved PBMC from 10 AAV patients were thawed and stained for expression of 

the endothelial receptors CX3CR1, CD49d and CD11b as well as the intracellular 

cytotoxic molecules granzyme B and perforin.  Panel A shows staining from a 

representative patient sample where CD4+CD28null T-cells are shown in purple and 

CD4+CD28+ T-cells in grey.  In Panel B the proportion of CD4+CD28null T-cells 

expressing all 3 endothelial receptors and in Panel C the proportion expressing both 

granzyme B and perforin were compared to those of CD4+CD28+ T-cells. 

 

 

 

CD4+CD28+: 2.8% 

CD4+CD28null: 82.3% 

CD4+CD28null: 86.1% 
CD4+CD28+: 1.4% 
 

CD4+CD28null: 83.9% 
CD4+CD28+: 5.4% 
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Next, the expression of the activating natural killer cell receptor NKG2D on 

CD4+CD28null T-cells and its co-expression with CX3CR1, CD49d, CD11b and the 

cytotoxic molecules granzyme B and perforin was assessed as NKG2D has previously 

been implicated in endothelial cytotoxicity [225].  This again was performed in a 

random subset of AAV patients (n=10). 

 

A much higher percentage of CD4+CD28null T-cells expressed NKG2D compared to 

their CD4+CD28+ counterparts (27.4 [IQR 12.8 - 44.9] vs. 2.8 [0.8 - 5.1]; p=0.002) 

(Figure 4.4).  In addition, the majority of the NKG2D positive CD4+CD28null T-cell 

compartment expressed CX3CR1 (82.7% [75.0 - 90.4]) and pre-formed cytotoxic 

molecules granzyme B and perforin (85.7 [68.8 - 97.2]).  A large percentage of NKG2D+ 

CD4+CD28null T-cells were dual positive for CD49d and CD11b expression (38.2 [20.8 - 

51.9]).   
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Figure 4.4 NKG2D staining in CD4+CD28null T-cells  

Cryopreserved PBMC from 10 AAV patients were thawed and stained with surface and 

intracellular markers to identify NKG2D positive cells within the CD4+CD28null T-cell 

compartment and investigate their phenotype in terms of CX3CR1 expression (Panel 

B), CD49d CD11b double expression (Panel C) and granzyme B perforin double 

expression (Panel D).  CD4+CD28null T-cells are depicted in purple, CD4+CD28+ cells in 

grey and NKG2D+ CD4+CD28null cells in red (Panels A-D).  Panel E shows summary 

results comparing the proportion of CD4+CD28null T-cells and CD4+CD28+ T-cells 

expressing NKG2D and proportions of NKG2D+ CD4+CD28null T-cells co-expressing 

CX3CR1, CD49d and CD11b as well as granzyme B and perforin.   

 

    

 

CD4+CD28null: 
40.1% 

CD4+CD28+: 1.6% 84.6% 

51.4% 97.9% 
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4.5  Discussion  

Having shown that CD4+CD28null T-cells in AAV are CMV responsive, pro-inflammatory 

T-cells, work presented in this chapter aimed to characterise these cells further in 

terms of their cytotoxic potential and expression of endothelial homing receptors and 

investigate their relevance in contributing to cardiovascular risk in patients with AAV 

where cardiovascular disease (CVD) is a major source of morbidity and mortality.   

 

The size of the CD4+CD28null T-cell expansion in AAV patients in remission was shown 

to be correlated with multiple measures of blood pressure and arterial stiffness.  In 

addition, after controlling for relevant confounding variables such as age, mean arterial 

pressure, proteinuria and levels of systemic inflammation, the CD4+CD28null T-cell 

percentage was independently associated with carotid to femoral PWV, the gold 

standard measure of arterial stiffness and a well-established surrogate marker of 

cardiovascular outcomes. 

 

The data presented in Chapter 3 showed that CD4+CD28null T-cells in AAV patients are 

Th1 proinflammatory cells by virtue of their abundant secretion of IFN- and TNF- 

and expression of T-bet and CXCR3.  These observations are extended here to show 

that the majority of CD4+CD28null T-cells possess the endothelial homing receptors 

CX3CR1, CD49d and CD11b on their surface.  Furthermore, the majority of 
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CD4+CD28null T-cells were found to contain the pre-formed cytotoxic molecules 

granzyme B and perforin.   

 

The chemokine receptor CXCR3 is known to be responsible for the specific recruitment 

of Th1 cells to inflammatory sites [349].  In addition, its ligand, IP-10 and the CX3CR1 

ligand, fractalkine, are expressed by activated endothelial cells and in vitro 

experiments have shown that following stimulation with CMV antigens, CMV effector 

cells are able to produce soluble factors that induce endothelial activation and 

production of IP-10 and fractalkine, migrate in an IP-10 / fractalkine dependent fashion 

and induce endothelial cell lysis [287].  The endothelium is a target tissue for CMV 

infection [350, 351] and therefore endothelial receptors on CMV specific cells may 

serve to target them to areas of potential reactivation.    

 

Taken together, the data presented here suggests that expression of CXCR3, CX3CR1, 

CD49d and CD11b enables CD4+CD28null T-cells to target areas of inflamed 

endothelium through their respective ligands IP-10, fractalkine, VCAM-1 and ICAM-1 

leading to perforin and granzyme B mediated endothelial cell lysis and vascular 

damage.  Interestingly, the plasma concentration of IP-10 was found to be 

independently associated with the size of the CD4+CD28null T-cell expansion during 

the studies presented in Chapter 3 in keeping with possible endothelial upregulation of 

IP-10 in the setting of large CD4+CD28null T-cell expansions.     
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In addition, CD4+CD28null T-cells in AAV patients were found to express NKG2D an 

activating receptor usually found in natural killer cells as well as activated CD8 and CD4 

T-cells and implicated in the targeting and lysis of glomerular endothelial cells [225].  

NKG2D positive CD4+CD28null T-cells in turn were almost all CX3CR1 positive and 

almost always contained pre-formed granzyme B and perforin cytotoxic molecules.   

 

Data presented in the previous chapter showed that in AAV patients, both the 

proportion of T-bet expressing and IFN- producing CD4+CD28null T-cells increase as 

the size of the CD4+CD28null T-cell expansion increases.  This is also likely to be 

relevant in the mediation of vascular damage by this T-cell subset as T-bet deficient 

mice display a lack of infiltration at pathologic sites and are protected from a wide 

range of inflammatory diseases [352, 353] whilst both T-bet and IFN- are essential in 

the generation of angiotensin II mediated vascular dysfunction [354].   

 

CD4+CD28null T-cell expansions have been linked with measures of early 

atherosclerotic damage such as increased carotid artery intima media thickness and 

endothelial dysfunction in patients with CKD and RA [175, 180, 181].  To date there has 

only been one study evaluating the contribution of CD4+CD28null T-cells to arterial 

stiffness in HIV infected women where the proportion of CD4+CD28null T-cells was 

shown to correlate with decreased carotid artery distensibility as assessed by B-mode 

ultrasound [355].  CMV seropositivity on the other hand has previously been 
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associated with increased arterial stiffness in CKD patients [285] but the way in which 

this effect is mediated is not clear. 

 

The data presented in this thesis so far show that in CMV seropositive patients with an 

inflammatory disease CD4+CD28null T-cell expansions are comprised of CMV 

responsive, proinflammatory T-cells that possess multiple endothelial homing 

receptors and markers of cytotoxicity and have the capacity to potentially target and 

lyse endothelial cells by the production of granzyme B and perforin.  Furthermore in 

the same cohort of patients, large expansions of these cells are independently linked 

to increased arterial stiffness likely accounting for the increased mortality seen in 

patients with AAV that possess increased expansions of CD4+CD28null T-cells.  This 

implicates CMV in the exacerbation of vascular damage in inflammatory disease 

mediated by CD4+CD28null T-cells and opens new therapeutic opportunities not only 

in AAV but also in other inflammatory conditions such as CKD and RA where similar 

associations with CD4+CD28null T-cells and CVD have been observed. 
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CHAPTER 5 

 

THE POTENTIAL FOR VALACICLOVIR TO PREVENT CMV 

MEDIATED ADVERSE MODULATION OF THE IMMUNE 

SYSTEM IN ANCA ASSOCIATED VASCULITIS (CANVAS) 

-- 

A RANDOMISED CONTROLLED OPEN LABEL PROOF OF 

CONCEPT CLINICAL TRIAL 
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Chapter 5 The potential for valaciclovir to prevent CMV mediated 

adverse modulation of the immune system in ANCA 

Associated VASculitis (CANVAS): a randomised controlled 

open label proof of concept clinical trial 

5.1 Introduction 

Multiple lines of evidence suggest that chronic CMV infection, and its association with 

an expanded population of CD4+CD28null T-cells, is linked to negative outcomes in 

several inflammatory conditions such as ANCA associated vasculitis (AAV), rheumatoid 

arthritis (RA), systemic lupus erythematosus  (SLE), chronic kidney disease (CKD) as 

well as in cardiovascular disease and older individuals [112, 171, 173-175, 191, 287, 

356].  Central to the rationale for the present study is the hypothesis that this is 

achieved, at least in part, by subclinical reactivation of the virus from latency resulting 

in a CMV mediated expansion of CD4+CD28null T-cells.  The data presented in the 

previous chapters have shown that CD4+CD28null T-cells in AAV are largely CMV 

specific, Th-1, proinflammatory cells, that possess receptors which can target the 

endothelium and that the size of their expansion directly correlates with increased 

arterial stiffness, an established marker of cardiovascular risk.  It is therefore important 

and clinically relevant to determine whether anti-CMV therapy has the potential to 

control possible subclinical CMV reactivation in latency and ameliorate these CMV 

induced changes on the immune system. 
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Utilising AAV as a model for inflammatory disease, the CANVAS proof of concept 

clinical trial (EudraCT 2012-001970-28, NCT01633476) presented here aimed to test 

the hypothesis that episodes of subclinical CMV reactivation in inflammatory 

conditions lead to an expansion of the CD4+CD28null T-cell compartment.  To that end, 

the trial was designed to test whether a 6 month treatment with oral valaciclovir in 

CMV seropositive AAV patients in disease remission, can control subclinical CMV 

reactivation and whether by controlling subclinical CMV reactivation the size of the 

CD4+CD28null T-cell expansion can be ameliorated as well as whether this can lead to 

an improvement in other associated CMV driven changes to the immune system. 

 

The trial protocol was approved by the relevant regulatory bodies and is outlined in 

Section 2.3.  Patients were randomised to 2g QDS of oral valaciclovir (dose was 

reduced according to renal function, Table 2.4) or no additional treatment in an open 

label fashion for 6 months followed by an additional follow-up period of 6 months.                  

 

5.2 Recruitment and patient flow 

The CONSORT flow diagram (Figure 5.1) shows the flow of patients within the clinical 

trial from assessment of eligibility to randomisation.  In summary, 200 AAV patients 

were assessed for eligibility.  Seventy-nine patients were initially deemed eligible for 

inclusion into the clinical trial.  One of the main reasons for the lower number of 

eligible patients, compared to the estimated number of 125 prior to commencement 
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of the trial, was an increase in the use of annual or 6-monthly rituximab for 

maintenance of clinical remission that precluded inclusion into the trial as patients 

could not have had rituximab within the last 12 months (see exclusion criteria in Table 

2.3).  A substantial amendment was successfully submitted to the REC and MHRA to 

reduce the length of time from treatment with the T-cell depleting agent 

cyclophosphamide to inclusion in the trial, from 12 months to 6 months, as previous 

data in SLE had shown return of lymphocyte counts to pre-treatment values as early as 

6 months following cyclophosphamide treatment [357].  An additional nine eligible 

patients were identified following this change. 

 

Forty-nine patients declined to participate in the clinical trial although a number of 

those agreed to participate in the cross-sectional element of the study that involved a 

single visit (Chapters 3 and 4).  The most common reason that patients did not want to 

participate was not wanting to take an extra tablet mainly due to apprehension of 

potential side effects and in particular fear of loss of kidney function as a result of the 

valaciclovir treatment.  The second most common reason was the number of visits 

associated with the clinical trial.  Thirty-nine patients were consented to participate in 

the clinical trial (44% of fully eligible patients).  However, one patient had a family 

emergency shortly after consenting and was therefore not randomised as they were 

unable to participate.  The remaining 38 patients were randomised to receive either 

valaciclovir or no additional therapy using the PC-CRTU independent telephone based 

randomisation system as described in Section 2.3.5. 
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Figure 5.1 CONSORT flow diagram for the CANVAS clinical trial 

 

 

5.3 Protocol compliance 

There was good adherence to the study protocol during the course of the trial.  There 

were no protocol breaches.  Out of a total of 494 study visits only 27 visits were missed 

by study participants (5.5%).  Two patients randomised to the control arm (CT022 and 

CT026) were only able to attend the baseline and month 6 visits.  These two patients 

200 patients assessed for eligibility 

79 eligible patients identified 

88 eligible patients identified 

Amendment to exclusion 
criteria 

49 patients declined 

39 patients consented 
1 patient excluded from 
randomisation 

38 patients randomised 

Treatment – 19 patients Control – 19 patients 
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were therefore not included in the analysis of the tertiary outcome (Section 5.7) and 

the change in CMV IgG titre exploratory outcome (Section 5.8.6) but were included in 

all other analyses.   

 

The dose of valaciclovir was adjusted according to creatinine clearance.  The median 

dose of valaciclovir prescribed was 6g / day (1.5g QDS) (range 3 – 8g / day; 1.5g BD – 

2g QDS).  Compliance with the prescribed trial medication was assessed in a random 

selection of 9 patients randomised to the treatment arm by counting the number of 

tablets returned at each month visit and comparing it to the number of tablets 

dispensed and the prescribed dose.  The median compliance with prescribed trial 

medication in this selection of patients assessed was 94.4% (IQR 88.0 – 95.8) across 

the duration of the treatment period.  This selection of patients included patients that 

might have had a temporary break in treatment. 

 

All patients randomised to the treatment arm completed the study in full.  However, 

one patient (CT035) elected to stop taking the tablet within 2 weeks of 

commencement whilst an additional patient (CT033) developed acute kidney injury, 

which led to discontinuation of the study drug within one month of commencement.  

Both patients completed subsequent trial visits fully although the study drug was not 

restarted.  One patient (CT006) elected to stop the trial medication for 2 weeks during 

an episode of a chest infection at month 3 of the study.  A further patient (CT031) had 

a 1-week break in treatment in month 2 due to a hospital admission unrelated to the 
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study drug and a 2-week break in treatment during month 4 associated with an 

episode of depression again unrelated to the study drug.  All primary analyses were 

carried out using the intention to treat principle as pre-specified in the published 

clinical trial protocol [325]. 

 

5.4 Patient characteristics 

All patients randomised to the clinical trial, in keeping with the eligibility criteria, were 

in disease remission with no documented relapses in the last 6 months.  All patients 

had received high dose corticosteroids and cyclophosphamide or rituximab (with or 

without plasma exchange) for induction of remission, followed by low dose 

corticosteroids, azathioprine, mycophenolate mofetil (MMF) or methotrexate as 

maintenance of remission therapy.  Three patients had discontinued 

immunosuppression at the time of commencing the trial (Table 5.1).   

 

There were no significant differences between treatment and control groups in terms 

of age, gender, ethnicity, immunosuppressant medication or duration of disease (Table 

5.1).  Control patients had a higher proportion of CD4+CD28null T-cells at the pre-

randomisation visit compared to patients randomised to treatment although this did 

not attain statistical significance.  This discrepancy was noted at an interim Trial 

Steering Committee (TSC) meeting. Given the potential bias this may have caused at 

the end of the study, statistical advice given by the TSC statistical advisor suggested 
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the analysis plan be designed to assess proportionate rather than absolute value 

reduction for secondary, tertiary and exploratory outcomes.      

   

 

Table 5.1 Characteristics of patients randomised to the clinical trial 

 Total study 
group (n=38) 

Treatment 
arm (n=19) 

Control arm 
(n=19) 

p value 
(treatment vs. 

control) 

Age (years) 67.4 (10.2) 66.0 (11.5) 68.8 (8.8) 0.412 
Gender (M:F) 25:13 12:7 13:6 0.732 
Ethnicity  
(% Caucasian) 

92.1 84.2 100.0 0.230 

ANCA specificity 
(PR3:MPO) 

27:10 12:6 15:4 0.476 

Disease chronicity 
(months)* 

71.5 (38.0 – 
144.0) 

87.0 (34.0 – 
138.5) 

70.0 (38.5 – 
136.5) 

0.930 

Renal function 
eGFR 
(mL/min/1.73m2) 

56 (20) 53 (22) 59 (18) 0.339 

Immunosuppression 
(% on steroids) 

73.7 68.4 78.9 0.714 

Immunosuppression 
(% on MMF) 

26.3 26.3 26.3 1.000 

Immunosuppression 
(% on azathioprine) 

36.8 31.6 42.1 0.501 

Immunosuppression 
(% on no treatment) 

7.9 10.5 5.3 1.000 

CD4+CD28- % at 
pre-randomisation 
visit* 

13.5 (3.6 – 
21.3) 

10.9 (2.5 – 
15.8) 

19.1 (7.5 – 
25.1) 

0.102 

Values presented as mean (SD) apart from * that is presented as median (IQR) 

 

Eleven patients had their immunosuppression modified during the clinical trial period 

(Table 5.2).  Such modifications were equally split between the two groups.  The 
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majority of those instances related to a reduction or cessation of immunosuppression 

due to immunosuppressive treatment related complications such as infection.  None of 

the participants had an episode of disease relapse during the trial.    

 

Table 5.2 Modifications to immunosuppression during clinical trial period 

ID Time 
point 

Immunosuppressive treatment 
modification 

Reason 

Treatment Group 
CT031 Month 2 MMF paused for 2 weeks Infection 
CT021 Month 5 

Month 9 
Patient initiated temporary 
increase in prednisolone dose 

Infection 

CT005 Month 8 Azathioprine changed to MMF To enable commencement 
of allopurinol for severe 
gout 

CT006 Month 8 Azathioprine paused for 3 months Shingles 
CT035 Month 8 Temporary increase in 

prednisolone dose 
Infection 

CT005 Month 10 Temporary increase in 
prednisolone dose 

Severe polyarticular gout 

CT027 Month 10 Azathioprine stopped Squamous cell carcinoma 
Control Group 

CT019 Month 2 Temporary course of prednisolone 
and MMF dose reduced 

Infection 

CT030 Month 3 Azathioprine dose reduced Maintenance therapy dose 
reduction 

CT028 Month 4 Azathioprine stopped Renal mass – under 
investigation 

CT026 Month 7 Temporary increase in 
prednisolone dose 

Infection 

CT034 Month 9 MMF dose reduced  Recurrent infections 

MMF=Mycophenolate mofetil, ID=Clinical Trial Patient Identification  
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5.5 Primary Outcome 

The primary outcome of the clinical trial was the proportion of patients with CMV 

reactivation in blood or urine as assessed by qPCR.  All primary analyses were 

performed using the UHB Virology Laboratory validated cut-off of 200 CMV viral DNA 

copies / mL.  Additional secondary analyses were performed with a cut-off of 20 viral 

copies / mL which is the lower limit of quantitation of the assay.  A sensitivity analysis 

was performed on the proportion of reactivation episodes amongst all samples 

assayed.  CMV reactivation episodes are shown in Table 5.3.  The remainder of 

patients not shown on the table did not have any detectable CMV reactivation 

episodes for the duration of the clinical trial.        

 

There were 12 reactivation episodes (>200 viral copies / mL) in 8 patients (21.1% of the 

study group) over the 12-month study period.  In all of these reactivations episodes 

CMV DNA was detected only in the urine and not in plasma.  An additional 27 

reactivation episodes of minimal intensity (between 20 and 200 viral copies / mL) in 

total were observed in 15 patients (39.5% of the study group).  CMV DNA was detected 

just in urine in 15 of these episodes, just in plasma in 10, and in both urine and plasma 

in 2 cases.  All patients who had a reactivation of > 200 viral copies / mL had further 

episodes of minimal intensity reactivation.  There was no correlation between CMV 

reactivation in the urine and renal function.  All episodes were asymptomatic.    
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Table 5.3 CMV viral copy numbers per millilitre in clinical trial patients that reactivated CMV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ID M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

Treatment Arm 
CT003 28

p 

ND
u 

ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 29
p 

ND
u 

26
p 

ND
u 

CT005 624
u 

ND
p 

ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 27
p 

ND
u 

ND
pu

 315
u 

ND
p 

27
p 

46
u 

25
u 

NS
p 

ND
pu

 

CT014 ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu 20

p 

ND
u 

ND
pu 3840

u 

ND
p 

ND
pu 

CT024 ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu 25
p 

ND
u 

CT031 ND
pu ND

pu ND
pu ND

pu ND
pu 29

u 

ND
p 

ND
pu ND

pu ND
pu ND

pu ND
pu 345

u 

ND
p 

NS
u 

ND
p 

CT033 61
u 

ND
p 

ND
pu ND

pu ND
pu ND

u 

NS
p 

ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu 

CT035 ND
pu 103

u 

ND
p 

ND
pu 38

u 

ND
p 

ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu 

CT038 ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu 164
u 

ND
p 

ND
pu ND

pu 

Control Arm 
CT002 229

u 

ND
p 

ND
pu 

ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 75
u 

ND
p 

CT009 ND
pu

 ND
pu

 ND
pu

 81
u 

ND
p 

ND
pu

 ND
pu

 ND
pu

 ND
pu

 ND
pu

 102
u 

ND
p 

ND
pu

 ND
pu

 ND
pu

 

CT012 ND
pu

 27
p 

195
u 

3382
u 

ND
p 

ND
pu ND

pu 21
p 

ND
u 

ND
pu ND

pu 81
u 

ND
p 

ND
pu ND

pu ND
pu ND

pu 

CT016 ND
pu ND

pu ND
pu ND

pu 24
u 

ND
p 

ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu 

CT019 ND
pu ND

pu 63
p 

ND
u 

ND
pu 32

u 

ND
p 

1106
u 

ND
p 

27
u 

ND
p 

ND
pu ND

pu ND
pu ND

pu ND
pu 47

p 

CT020 ND
pu ND

pu ND
pu 44

u 

ND
p 

ND
pu 211

u 

ND
p 

ND
pu ND

pu ND
pu ND

pu ND
pu ND

pu ND
pu 

CT037 ND
pu 

1448
u 

ND
p 

211
u 

ND
p 

23
u 

ND
p 

831
u 

ND
p 

ND
pu ND

pu 271
u 

ND
p 

ND
pu ND

pu ND
pu ND

pu ND
pu 

Key: 
 

p plasma, u urine, ND=not 
detected, NS=no sample 
available,  
 
M0=baseline visit, M1=month 1 
 
ID=Clinical Trial Patient 
Identification  
 
Reactivation episodes > 200 
copies / mL are in bold. 
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Primary analysis of CMV reactivation episodes (> 200 viral copies / mL) between month 

1 and month 6 (i.e. the duration of treatment), was consistent with valaciclovir 

treatment successfully blocking CMV reactivation completely in the treatment group 

with 4 patients reactivating in the control group (21.1%) and none in the treatment 

group (p=0.037).  During the 6 month follow up period after cessation of treatment, 

patients in the treatment group reactivated at similar rates to the control group and by 

the end of the 12-month period there was no difference in the overall proportion of 

patients with CMV reactivation in the control group (21.1%) versus the treatment 

group (15.8%)(p=0.449) (Figure 5.2). 

 

 

 

       

 

 

Figure 5.2 Kaplan-Meier curve analysis of the primary outcome showing time to 

reactivation (>200 viral copies / mL; primary analysis) in the treatment (n=19) (red line) 

and control (n=19) (black line) groups 

Curves were compared using the Gehan-Breslow-Wilcoxon statistic.  Panels A, B, C 

show the treatment period (Month 1 – Month 6), follow-up period after cessation of 

treatment only (Month 7 – Month 12) and overall study period (Month 1 – Month 12), 

respectively.  The gridline in panel C indicates the end of treatment.    

p=0.037 p=0.338 p=0.449 

C A B 
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A secondary analysis of the primary outcome was also performed in order to consider 

those CMV reactivation episodes of minimal intensity (20 – 200 viral copies / mL).  On 

an intention to treat analysis, more control patients reactivated (>20 viral copies / mL) 

compared to treatment patients during the treatment period (Month 1 – Month 6) 

(control 31.6% vs. treatment 10.5%; p=0.110), although this difference did not reach 

statistical significance.  However, two patients in the treatment group (CT035 and 

CT033) stopped taking the drug at 2 weeks and at 1 month respectively as mentioned 

earlier.  Indeed, two out of the three reactivation episodes in the treatment group 

during the treatment period occurred in patient CT035 following cessation of the study 

drug at 2 weeks.  The third episode occurred in patient CT031 who had a 2-week break 

in treatment during month 4 and reactivated at the month 5 time point.  On a per 

protocol analysis that did not include the 2 patients that had stopped treatment by 

month 1, there was a statistically significant difference in the proportion of patients 

reactivating CMV (>20 viral copies / mL) between the two groups during the treatment 

period (control 31.6% vs. treatment 5.3%; p=0.041).  In addition, the only episode of 

CMV reactivation in the treatment group occurred in patient CT031 following a 2 week 

break in treatment as described above (Figure 5.3).  As with the primary analysis, 

following the end of treatment at month 6, both groups reactivated CMV at similar 

rates. 
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Figure 5.3 Kaplan-Meier curve analysis of the primary outcome showing time to 

reactivation (>20 viral copies / mL; secondary analysis) in the treatment (n=19) (red 

line) and control (n=19) (black line) groups 

Curves were compared using the Gehan-Breslow-Wilcoxon statistic.  Panels A, B, C 

show the treatment period (Month 1 – Month 6), follow-up period after cessation of 

treatment only (Month 7 – Month 12) and overall study period (Month 1 – Month 12) 

respectively (all intention to treat).  The gridline in panel C indicates the end of 

treatment.  Panel D shows the results of the per protocol analysis during the treatment 

period (Month 1 – Month 6). 

 

 

 

A sensitivity analysis was also performed to consider the proportion of samples that 

were positive for CMV reactivation amongst all plasma and urine samples assayed 
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group was compared to the control group using the Fisher’s exact test (Table 5.4).  

Missing samples were taken into account by excluding them from the denominator.  

Utilising the 200 viral copies / mL threshold, there were 6 reactivation instances out of 

a possible of 205 in the control group and 0 instances out of a possible of 227 in the 

treatment group during the treatment period (p=0.011).  Considering all reactivation 

episodes greater than 20 viral copies / mL, the numbers were 16 out of 205 and 3 out 

of 227 for the control and treatment groups respectively (p=0.002).  This analysis was 

performed on an intention to treat basis and included all patients randomised to the 

treatment arm.  Finally, during the treatment period, taking into account all episodes 

>20 viral copies / mL, the median CMV viral DNA copy number was 741.5 copies / mL 

(IQR: 66.8 – 2791.0) in the control group compared to just 85.0 copies / mL (IQR: 29.0 – 

141.0) in the treated patients.  As mentioned earlier, it is important to note that the 3 

reactivation episodes of minimal intensity (20 – 200 viral copies / mL) that occurred in 

the treatment group during the treatment period all occurred either after cessation of 

treatment or following a break in treatment.  Taken together this data shows that 

valaciclovir treatment successfully blocked CMV reactivation during the treatment 

period.  Following cessation of therapy, CMV reactivation resumed at the same rate as 

that seen in the control arm.   
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Table 5.4 Contingency table showing number of reactivation episodes during the 

treatment period 

 Treatment Control 

Number of samples with > 200 viral copies / mL 0 6 

Number of samples with > 20 viral copies / mL 3 16 

Total number of samples assayed (plasma and 
urine) 

227 205 

Number of missing samples 1 23 

 

 

 

5.6 Secondary Outcomes  

Given the central role of CD4+CD28null T-cells as mediators of CMV driven 

inflammation and in order to test the hypothesis that subclinical CMV reactivation 

drives the expansion of CD4+CD28null T-cells, one of the main secondary outcomes of 

the clinical trial was change in the proportion of CD4+CD28null T-cells from baseline to 

6 months.  Other pre-specified secondary outcomes were change in the concentration 

of soluble markers of inflammation (CRP, IFN-, TNF-, IL-2, IL-6, IL-10, IL-17) from 

baseline to 6 months and safety.   
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5.6.1 Secondary Outcome – Change in the proportion of CD4+CD28null T-cells 

from baseline to 6 months 

The CD4+CD28null T-cell percentage within the CD4 compartment was measured via 

flow cytometry after staining whole blood with fluorochrome labelled monoclonal 

antibodies for CD3, CD4 and CD28 as detailed in Section 2.6.2.  A fluorescence minus 

one (FMO) control for CD28 staining was run with every experimental sample in order 

to aid gating.  The gating strategy has been discussed in Chapter 3 (Figure 3.1).   

 

The assay was validated for use in the clinical trial as detailed in Section 2.7.  An aliquot 

of Cytofix CD4 positive control with a known CD3+CD4+ expression was assayed with 

each experimental assay run to provide quality assurance and verify that each assay 

was completed successfully.   

 

The absolute values of CD4+CD28null T-cell percentages at the start (baseline) and at 

the end (month 6) of the treatment period for treated and control patients are shown 

in Figure 5.5.  These were analysed using paired ratio t tests as described in Section 

2.9.1, in order to test for statistically significant trends in the ratio of CD4+CD28null T-

cell percentage between month 6 and baseline in the treatment and control groups.  

Data is reported as geometric mean of ratios with 95% confidence intervals (CI), where 

a value of less than 1 denotes a reduction in the ratio of the percentage of 

CD4+CD28null T-cells (month 6 to baseline) and a value greater than 1 an increase.   
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There was a statistically significant reduction in the CD4+CD28null T-cell percentage 

month 6 to baseline ratio in treated patients, of 23.0 (geometric mean of ratios 0.770, 

95% CI [0.611 - 0.970], p=0.029).  In contrast, there was no statistically significant 

change in the CD4+CD28null T-cell percentage ratio in the control patients (0.946 

[0.814 - 1.110], p=0.449) indicating that blocking subclinical CMV reactivation in the 

treated patients was associated with a reduction in CD4+CD28null T-cell proportion. 

 

 

 

Figure 5.5 Secondary outcome – change in CD4+CD28null T-cell percentage during 

treatment period 

Panels A and B show absolute values of CD4+CD28null T-cell percentages at baseline 

(M0) and month 6 (M6) for treatment (n=19) and control (n=19) patients respectively.  

There was a significant proportionate reduction in CD4+CD28null T-cell percentage at 

the end of the treatment period in treated patients but not controls.   
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5.6.2 Secondary Outcome – Change in concentration of soluble markers of 

inflammation from baseline to 6 months 

In order to determine whether blocking subclinical CMV reactivation also led to an 

improvement in soluble markers of inflammation, plasma CRP, IFN-, TNF-, IL-2, IL-6, 

IL-10, and IL-17 were measured using Luminex technology at the start and end of 

treatment as detailed in Section 2.6.3.  Paired ratio t tests were used to detect 

statistically significant trends between the baseline and month 6 measurements in the 

treatment and control groups as previously described.   

 

There was a statistically significant reduction in the ratio of month 6 to baseline 

concentration of IL-2 in the treated patients, of 81.6% (geometric mean of ratios 0.184, 

95% CI [0.049 - 0.693], p=0.015), whereas no statistically significant change was 

observed in the control patients (0.831 [0.522 - 1.323], p=0.414).  There was also a 

reduction in the ratio of month 6 to baseline concentration of IFN- in the treated 

patients, of 81.6% (0.183 [0.033 - 1.011], p=0.051), whereas again no change was seen 

in control patients (1.166 [0.657 - 2.071], p=0.580) (Figure 5.6).  There were no 

statistically significant differences in the ratios of the month 6 to baseline 

concentration values for TNF-, IL-6, IL-10, IL-17 or CRP in either of the groups (Figure 

5.7).  Summary data of month 6 to baseline ratios for all plasma markers of 

inflammation measured as part of the secondary outcome are shown in Table 5.5.    
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Figure 5.6 Secondary outcome – change in plasma concentration of markers of 

inflammation  

Panels A and B show absolute values of IL-2 and panels C and D of IFN- concentration 

at baseline (M0) and month 6 (M6) for treatment (n=19) and control (n=19) patients 

respectively.  At the end of the treatment period there was a statistically significant 

proportionate reduction in the plasma level of IL-2, as well as a trend towards a 

reduction in the plasma level of IFN-, in the treated patients but not controls.  
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Table 5.5 Results of paired ratio t tests for soluble markers of inflammation 

assayed for the clinical trial secondary outcome 

 Treatment Control 

Marker Geometric 
mean of 

ratios 
(M6:M0) 

95% CI p value Geometric 
mean of 

ratios 
(M6:M0) 

95% CI p value 

IL-2 0.184 [0.049 - 
0.693] 

0.015 0.831 [0.522 - 
1.323] 

0.414 

IFN- 0.183 [0.033 - 
1.011] 

0.051 1.166 [0.657 - 
2.071] 

0.580 

TNF- 0.612 [0.343 - 
1.093] 

0.092 0.859 [0.501 - 
1.472] 

0.560 

IL-6 0.478 [0.187 -
1.220] 

0.115 0.914 [0.636 - 
1.314] 

0.610 

IL-10 0.682 [0.344 - 
1.354] 

0.256 0.811 [0.541 - 
1.214] 

0.290 

IL-17 0.339 [0.087 - 
1.327] 

0.113 0.405 [0.101 - 
1.622] 

0.188 

CRP 1.304 [0.632 – 
2.691] 

0.451 0.887 [0.465 – 
1.690] 

0.700 

M6 = month 6, M0 = baseline, CI = confidence intervals     
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Figure 5.7 Secondary outcome – change in plasma concentration of markers of inflammation.  Panels show absolute values for concentration of 

plasma markers at baseline (M0) and month 6 (M6).  Panels A, C, E, G and I show values for TNF-, IL-6, IL-10, IL-17 and CRP in the treated patients 

whilst panels B, D, F, H and J show absolute values for the concentration of the same markers at M0 and M6 for the control patients. 
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5.6.3 Safety 

5.6.3.1  Adverse events 

Adverse events (AE) were documented for both treatment and control patients for the 

duration of the study irrespective of assessed relatedness at the time of reporting 

(Table 5.6).  Overall, the study drug was well tolerated.  There was no difference in the 

number of observed episodes of infection during the clinical trial period between 

treated and control patients.  The majority of infections were either lower or upper 

respiratory tract infections.  In addition, there was one episode of shingles in a control 

patient who received a one week course of aciclovir by their GP during month 2 of the 

study.  There was also an episode of shingles in a treatment patient that developed 2 

months following cessation of the study drug.  This was also treated with a course of 

aciclovir treatment by the GP.        

 

There were significantly more gastrointestinal tract (GI) related AEs reported in the 

treatment group compared to control patients.  This is in keeping with the known side-

effect profile of valaciclovir.  The majority of GI related AEs were episodes of 

diarrhoea, nausea and vomiting, and to a lesser extent abdominal pain, dry mouth and 

weight loss.  All reported GI related events were mild in severity and short lived and 

did not lead to discontinuation of the study drug by the participants or the research 

team.  In addition, 14 out of the 36 GI related observed AEs in the treatment group 

occurred in 2 patients with a known long-standing history of chronic diarrhoea and 

were assessed as not being related to the study medication at the time of reporting. 
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Table 5.6 Adverse events reported during the clinical trial period 

 Total study 
group (n=38) 

Treatment 
arm (n=19) 

Control 
arm (n=19) 

p value (treatment 
vs. control) 

Total number of infections 84 43 41 0.827 
Total number of GI related AEs 49 36 13 0.002 
Total number of 
musculoskeletal AEs 

36 23 13 0.100 

Number of patients with new 
or worsening respiratory AEs 

22 11 11 1.000 

Number of patients with new 
or worsening cardiac AEs 

5 3 2 1.000 

Number of patients with new 
or worsening neuropsychiatric 
AEs 

14 8 6 0.501 

Number of patients 
experiencing bleeding or 
bruising 

9 4 5 1.000 

Number of patients reporting 
new or worsening lethargy 

12 6 6 1.000 

 Number of patients with new 
ocular / visual AEs 

6 3 3 1.000 

Number of patients with new 
ENT related AEs 

3 2 1 1.000 

Episodes of acute kidney injury 3 2 1 1.000 
Episodes of anaemia 3 2 1 1.000 
Liver dysfunction episodes 1 1 0 1.000 

GI = gastrointestinal tract  

 

 

One patient elected to stop the study drug after 2 weeks of treatment due to a 

perceived increase in long-standing breathlessness.  Although this episode was 

assessed as not related to the study drug, the study medication was not restarted as 

per the patient’s wishes.  There was no difference in the frequency of respiratory AEs 

between treatment and control patients.   
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Other AEs were equally split between the treatment and control patients (Table 6.6).  

Of note, a squamous cell carcinoma was diagnosed in a treatment patient and a renal 

mass was identified in a control patient during the study period. 

 

There were 3 episodes of acute kidney injury (AKI) in 3 patients during the study 

period.  One of those occurred in a treatment patient several months after cessation of 

the study drug in the context of a hospital admission for severe polyarticular gout and 

was assessed as not related to the study drug.  Another AKI episode occurred in a 

control patient in the context of a hospital admission associated with pulmonary 

emboli.  A further episode of AKI occurred in a treatment patient within 1 month of 

commencing the study drug.  Creatinine rose to a value of 176 mol/L (baseline 70 

mol/L).  This was associated with symptoms of neurotoxicity (drowsiness, 

unsteadiness and mild dysarthria) and anaemia in keeping with valaciclovir toxicity and 

the drug’s known side effect profile.  The study drug was promptly stopped on review 

at the month 1 visit.  All symptoms resolved following cessation of valaciclovir and 

renal function returned to baseline over the course of 2 weeks.  The episode was 

managed on an outpatient basis and the study drug was not restarted. 

 

One episode of mild derangement in liver function occurred in a patient randomised to 

the treatment arm during the treatment period.  Alanine transaminase (ALT) rose to a 

maximum value of 55 IU/L.  This occurred following commencement of cinnarizine for 

long-standing inner ear dysfunction.  The ALT level returned to normal following 
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discontinuation of cinnarizine without stopping the study drug.  The transient mild ALT 

rise was assessed as not related to the study medication. 

 

5.6.3.2  Transient rise in mean cell volume 

An incidental macrocytosis was consistently observed amongst the patients that 

received the study drug.  Mean cell volume (MCV) gradually increased in valaciclovir 

treated patients, reaching a plateau at month 5 (Figure 5.8).  Following cessation of the 

study drug at month 6, MCV gradually reduced and reached normal values by the end 

of the study period.  This pattern was not observed in the control patients.  The 

macrocytosis associated with the study drug was asymptomatic and not accompanied 

by any change in haemoglobin or other full blood count indices.  Upon recognition of 

this AE in the first few patients, vitamin B12, folic acid and thyroid function tests were 

routinely checked in all treatment patients that developed a macrocytosis.  There was 

no associated thyroid dysfunction, vitamin B12 or folate deficiency.  There was an 

inverse relationship between renal function and peak MCV (Figure 5.8, Panel B), 

although this observation was not statistically significant. 
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Figure 5.8 Transient macrocytosis in the treatment group 

Panel A shows mean MCV (mean cell volume) in treated (n=19) (red) and control 

(n=17) (black) patients.  Panel B shows a scatter plot of eGFR versus peak MCV 

observed in treated patients (linear regression line with 95% CI is shown). 

 

 

 

5.6.3.3  Serious adverse events 

A total of 12 serious adverse events (SAEs) were reported during the study period (see 

also DSUR in Appendix 9).  All SAEs were assessed as not related to the study drug and 

SAEs were evenly split between the treatment and control groups (Table 5.7).  One 

treatment patient had a total of 5 SAEs due to hospital admissions for recurrent 

infective exacerbations of bronchiectasis in keeping with their known past medical 

history and background frequency of infective exacerbations of bronchiectasis. 

 

 

0 20 40 60 80 100
90

100

110

120

130

140

eGFR at baseline

P
e
a
k
 M

C
V

 (
fL

)

r = - 0.346
p = 0.147

0 2 4 6 8 10 12
80

90

100

110

120

Month

M
e
a
n

 c
e
ll
 v

o
lu

m
e
 (

fL
)

B A 



CMV Modulation of the Immune System in AAV 189 
 

Table 5.7 Serious adverse events reported during the clinical trial period 

 Total study 
group (n=38) 

Treatment 
arm (n=19) 

Control 
arm 

(n=19) 

Respiratory infection 7 5 2 
Gastrointestinal tract 
infection 

1 0 1 

Arthritis 1 1 0 
Arrhythmia 1 0 1 
Epistaxis 1 0 1 
Pulmonary emboli 1 0 1 

 

 

 

5.7 Tertiary Outcome – Persistence of valaciclovir effect on the proportion 

of CD4+CD28null T-cells 

The persistence of the effect of blocking subclinical CMV reactivation on CD4+CD28null 

T-cell proportions was assessed by comparing the CD4+CD28null T-cell percentage 

within the CD4 compartment at 6 months and 12 months for treatment and control 

groups.  Data was transformed and analysed using paired ratio t tests as described 

above.  No statistically significant differences were detected in the month 12 to month 

6 ratios of CD4+CD28null T-cell percentage in either of the groups (Treatment: 

geometric mean of ratios 0.893, 95% CI [0.682 - 1.171], p=0.393; Control: 1.146 [0.930 

- 1.412], p=0.186). 
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In order to consider change in CD4+CD28null T-cell percentage across the duration of 

the study, a repeated measures ANOVA analysis was carried out with Dunnett’s 

multiple comparison test as a post-hoc analysis, comparing baseline to month 6 and 

month 6 to month 12 CD4+CD28null T-cell percentage ratios.  The absolute 

CD4+CD28null percentage values are shown in Figure 6.9 and the summary data in 

Table 5.8.  The only statistically significant comparison was a reduction in the 

CD4+CD28null T-cell percentage ratio in the treatment group between baseline and 

month 6 (treatment period) in keeping with the findings already presented for the 

secondary outcome and indicating that blocking subclinical CMV reactivation with 

valaciclovir led to a sustained reduction in the proportion of CD4+CD28null T-cells in 

the treated patients.       

 

 

 

Figure 5.9 Change in CD4+CD28null T-cell proportion across the study period 

Left and right panels show absolute values of CD4+CD28null T-cell percentages at 

baseline (M0), month 6 (M6) and month 12 (M12) for treatment (n=19) and control 

(n=17) patients respectively.    
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Table 5.8 Repeated measures ANOVA analysis for CD4+CD28null T-cell percentage 

change across study period 

 Treatment Control 

 Geometric 
mean of 

ratios 

95% CI Adjusted 
p value 

Geometric 
mean of 

ratios 

95% CI Adjusted 
p value 

Overall   0.065   0.267 
M6:M0 0.770 [0.599 - 

0.990] 
0.041 0.987 [0.827 - 

1.177]  
0.975 

M12:M6 0.893 [0.695 - 
1.149] 

0.489 1.146 [0.902 - 
1.455] 

0.309 

Adjusted p values based on Dunnett’s post-hoc multiple comparison test 

 

 

5.8 Exploratory Outcomes 

In order to determine whether blocking CMV reactivation with valaciclovir led to an 

improvement in other associated CMV driven changes to the immune system 

exploratory outcomes included change in CD8CD28null T-cells, CD4:CD8 ratio, soluble 

markers of endothelial dysfunction and CMV IgG titre.  Change in the absolute count of 

CD4+CD28null, CD8CD28null and IFN- producing CD4+CD28null T-cells following 

overnight stimulation with CMV lysate was also assessed.   

 

5.8.1 Change in CD4+CD28null T-cell counts from baseline to 6 months 

In keeping with the observed reduction in the proportion of CD4+CD28null T-cells in 

the treatment arm (secondary outcome), there was a reduction in the month 6 to 
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baseline ratio of the CD4+CD28null cell count of 27.0% in the treated patients 

(geometric mean of ratios 0.730, 95% CI [0.574 - 0.929], p=0.013), whereas no change 

was observed in the control patients (0.934 [0.7504 - 1.163], p=0.523) (Figure 5.10).   

 

 

Figure 5.10 Exploratory outcome – change in CD4+CD28null T-cell count during 

treatment period 

Panels A and B show absolute values of CD4+CD28null T-cell counts at baseline (M0) 

and month 6 (M6) for treatment (n=19) and control (n=19) patients respectively.  

There was a statistically significant proportionate reduction in the absolute 

CD4+CD28null T-cell count in treated patients but not in controls. 

 

 

5.8.2 Change in CD8CD28null T-cell percentage and absolute count from 

baseline to 6 months 

There was no significant change in the CD8CD28null T-cell percentage month 6 to 

baseline ratio in either of the two groups (Treatment: 0.921 [0.826 - 1.027], p=0.131; 
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Control: 0.984 [0.927 - 1.046], p=0.591) (Figure 5.11).  There was however a 

statistically significant reduction in the CD8CD28null cell count ratio in the treatment 

group of 20.7% (0.793 [0.642 - 0.979], p=0.033) with no observed change in control 

patients (0.987 [0.786 - 1.238], p=0.901) (Figure 5.11).   

 

 

 

Figure 5.11 Exploratory outcome – change in CD8CD28null T-cell proportion and 

absolute count during treatment period  

Panels A and B show absolute values of CD8CD28null percentages and panels C and D 

absolute values of CD8CD28null cell counts at baseline (M0) and month 6 (M6) for 

treatment (n=19) and control (n=19) patients respectively.  There was no change in the 

percentage of CD8CD28null T-cells in either treated or control patients.  In treated 

patients there was a proportionate reduction in the absolute count of CD8CD28null T-

cells across the treatment period that was not observed in controls.  
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5.8.3 Change in the CD4:CD8 ratio from baseline to 6 months 

An inverted CD4:CD8 ratio is one of the characteristics of the ‘immune risk profile’ 

(IRP) [288, 289, 291].  Given the fact that CMV is implicated in the development of the 

IRP [294] and the CD4+CD28null T-cell percentage was found to be associated with a 

reduced CD4:CD8 ratio in AAV patients (Chapter 3, Figure 3.2), change in the CD4:CD8 

ratio across the treatment period was assessed.  Blocking subclinical CMV reactivation 

with valaciclovir was associated with an improvement (i.e. an increase) in the CD4:CD8 

ratio in the treated patients of 0.256 (95% CI 0.001 – 0.511, p=0.050) with no change 

observed in control patients (- 0.162 [- 0.566 – 0.242], p=0.411) (Figure 5.12). 

 

 

Figure 5.12 Change in CD4:CD8 ratio during treatment period 

At the end of the 6 month treatment period there was an increase in the CD4:CD8 

ratio corresponding to an improvement in this marker of the IRP in the treated (n=19) 

patients whilst no change was observed in controls (n=19). 
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5.8.4 Change in CD4+CD28null CMV specific T-cells from baseline to 6 months 

Analysis of CD4+CD28null T-cells capable of producing IFN- following overnight 

stimulation with CMV lysate, revealed a statistically significant reduction in the 

CD4+CD28null IFN-+ percentage ratio between month 6 and baseline of 25.3% as well 

as a reduction in the CD4+CD28null IFN- cell count ratio of 45.0% in the treatment 

group (geometric mean of ratios 0.747 and 0.550, 95% CIs [0.565 - 0.989 and 0.358 - 

0.856], p value 0.043 and 0.010).  There was no significant change in the control 

patients (1.122 and 1.016, 95% CI [0.755 - 1.669] and [0.605 - 1.707], p value 0.548 and 

0.949) (Figure 5.13).  This was in agreement with the observed reduction in overall 

CD4+CD28null T-cell in the treated patients (secondary outcome) and indicated that 

blocking CMV reactivation with valaciclovir in the treated patients led to a targeted 

reduction in CMV specific CD4+CD28null T-cells.   
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Figure 5.13 Exploratory outcome – change in CMV specific CD4+CD28null T-cell 

proportion and absolute count during treatment period 

Panels A and B show absolute values of CD4+CD28null IFN-+ percentages and panels 

D and E absolute values of CD4+CD28null IFN-+ cell counts following overnight 

stimulation with CMV lysate at baseline (M0) and month 6 (M6) for treatment (n=19) 

and control (n=19) patients respectively.  There was a proportionate reduction in both 

CD4+CD28null IFN- percentage and absolute count across the treatment period in the 

treated patients but not in controls.   
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5.8.5 Change in soluble markers of endothelial damage from baseline to 6 

months 

Soluble markers of endothelial dysfunction (RANTES, sVCAM-1, sICAM-1, P-selectin, E-

selectin, Fractalkine, IP-10, MCP-1 and IL-12) were measured using Luminex 

technology at the start and end of treatment as detailed in Section 2.6.3 in order to 

determine whether blockage of CMV reactivation with valaciclovir would have an 

effect on the levels of these markers.  Paired ratio t tests were used to detect 

statistically significant trends between the baseline and month 6 measurements in the 

treatment and control groups.   

 

The only statistically significant change observed was in the level of P-selectin that 

decreased by 15% (p=0.046) in the treated patients whereas no statistically significant 

difference was observed in controls (Figure 5.14) (Table 5.9).  There was no statistically 

significant change in the ratio of month 6 to baseline concentration of RANTES, 

sVCAM-1, sICAM-1, E-selectin, Fractalkine, IP-10, MCP-1 or IL-12 in either of the groups 

(Figure 5.15 and Table 5.9).   
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Figure 5.14 Exploratory outcome – Change plasma concentration of markers of 

endothelial dysfunction (P-selectin) 

Absolute values are shown for treatment (n=19) and control (n=19) patients at 

baseline (M0) and month 6 (M6).  There was a statistically significant proportionate 

reduction in the levels of P-selectin in the treated patients but not in controls. 
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Figure 5.15  Exploratory 
outcome – change in 
plasma concentration of 
markers of endothelial 
dysfunction  
Panels A, C, E, G, I, K, M 

and O show absolute 

values for concentration 

of RANTES, IL-12, IP-10, 

fractalkine, sVCAM-1, 

sICAM-1, MCP-1 and E-

selectin respectively for 

baseline (M0) and month 

6 (M6) in treated 

patients.  Panels B, D, F, 

H, J, L, N and P show 

values for control 

patients. 
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Table 5.9 Results of paired ratio t tests for soluble markers of endothelial 

dysfunction 

 Treatment Control 

Marker Geometric 
mean of ratios 

(M6:M0) 

95% CI p value Geometric 
mean of ratios 

(M6:M0) 

95% CI p value 

RANTES 0.602 [0.336 - 1.078] 0.084 0.832 [0.472 - 1.467] 0.504 

P-selectin 0.850 [0.726 - 0.996] 0.046 0.859 [0.718 - 1.027] 0.090 

E-selectin 1.037 [0.839 - 1.281] 0.723 1.019 [0.884 - 1.176] 0.783 

sVCAM-1 1.058 [0.942 - 1.141] 0.129 1.030 [0.969 - 1.095] 0.320 

sICAM-1 1.012 [0.945 - 1.084] 0.720 1.000 [0.924 - 1.082] 0.997 

Fractalkine 1.036 [0.829 - 1.295] 0.741 0.980 [0.733 - 1.311] 0.886 

IP-10 1.063 [0.940 - 1.202] 0.312 1.018 [0.878 - 1.181] 0.803 

MCP-1 1.088 [0.956 - 1.237] 0.188 0.924 [0.808 - 1.057] 0.232 

IL-12 0.452 [0.177 - 1.157] 0.093 0.879 [0.556 - 1.389] 0.560 

M6 = month 6, M0 = baseline, CI = confidence intervals 

 

 

5.8.6  Change in CMV IgG titre levels 

Given the fact that CMV IgG titre has been linked with adverse outcomes [278], a pre-

specified exploratory outcome was whether valaciclovir treatment for 6 months can 

lead to a reduction in CMV IgG titres.  To determine this, plasma samples were 

collected from clinical trial participants monthly over the duration of the trial and 

analysed at the end of the study as outlined in Section 2.6.8.  Because initial titre levels 

varied widely between patients and in order to avoid skewing of the data by occasional 

patients with high titre values, the data was normalised by expressing it as a 

percentage at each month relative to the baseline that was given a value of 100%.      
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The CMV IgG titre percentage levels in control patients remained fairly static for the 

duration of the clinical trial period (Figure 5.16, Panel B).  In contrast, CMV IgG titre 

percentage levels gradually reduced in the treatment group, although this became 

more evident from month 5 onwards in keeping with the half-life of IgG (Figure 5.16, 

Panel A).  The CMV IgG percentage titre sharply increased for participant CT005 (red 

arrow) and CT031 (green arrow) during the treatment period, in contrast to the rest of 

the treatment group (Figure 5.16, Panel A).  Interestingly, CT005 had a CMV 

reactivation episode at baseline prior to commencing treatment (Table 5.3) suggesting 

a temporal delay between CMV reactivation and rise in CMV IgG titre.  Participant 

CT031 on the other hand had a 1-week break in treatment during month 2 which was 

followed by a gradual rise in CMV IgG titre and a further 2-week break in treatment 

during month 4 that was followed by a CMV reactivation episode of low intensity 

(Table 5.3) and a further spike in CMV IgG titre in month 7 (Figure 5.16).  Similar spikes 

in CMV IgG titre were noted following CMV reactivation in control patients.    

 

Repeated measures ANOVA revealed a statistically significant change overall in the 

CMV IgG titre percentage change during the study period in the treatment group 

(p=0.040) but not in the control patients (p=0.813).  Furthermore, on post-hoc analysis 

there was a statistically significant negative linear trend in the treated patients (post-

test for linear trend, slope -1.305, p<0.001) but not in controls (post-test for linear 

trend, slope 0.218, p=0.521) indicating that blocking subclinical CMV reactivation with 
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valaciclovir led to a statistically significant reduction in CMV IgG titre in the treated 

patients only.   

 

 

 

Figure 5.16 Panels A and B show summary data of CMV IgG titre percentage change 

in treatment (n=19) and control (n=17) patients respectively 

The red and green arrows in Panel A refer to participant CT005 and CT031 respectively 

that displayed a rise in CMV IgG titre following episodes of CMV reactivation.  Panel C 

shows mean IgG titre percentage values in treated (red) and control (black) patients.  

The IgG titre gradually declined over the course of the study in treated patients but not 

in controls.   
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5.8.6.1 Correlation between reduction in CMV IgG titre and CD4+CD28null T-cell 

parameters 

Having observed a reduction in CD4+CD28null T-cell proportion, CD4+CD28null T-cell 

absolute count and CMV IgG titre in the treated patients, further analysis was carried 

out to determine whether these changes were appropriately correlated in the same 

patients.  In order to achieve this, linear regression analysis was performed between 

the month 6 to baseline CD4+CD28null T-cell proportion or absolute count log ratio 

and the slope of the CMV IgG titre change from baseline to month 12 (Figure 5.17).  

CMV IgG titre slope was examined across the entire study period due to the observed 

delay in titre reduction in treated patients.   

 

The change in CD4+CD28null T-cell proportion as well as absolute count was directly 

related to the change in CMV IgG titre as shown in Figure 5.17.  This association was 

statistically significant in the treated patients but not in controls suggesting that 

blocking subclinical CMV reactivation with valaciclovir therapy resulted in a reduction 

in the CD4+CD28null T-cell expansion which was mirrored by a drop in CMV IgG titre 

adding validity to the results reported earlier in this chapter.  Interestingly, although 

not statistically significant, the change in CD4+CD28null T-cell absolute count appeared 

to be related to the change in CMV IgG titre also in the control patients (Figure 5.17, 

Panel D). This probably reflects the influence of subclinical CMV reactivation, or 

absence of, on the CD4+CD28null T-cell compartment and CMV IgG titre as further 

discussed below in Section 5.9.      
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Figure 5.17 Correlation between CMV IgG titre and CD4+CD28null T-cell parameters 

Linear regression analysis was carried out between the CD4+CD28null T-cell proportion 

(A, B) or CD4+CD28null T-cell absolute count (C, D) month 6 (M6) to baseline (M0) log 

ratio and the CMV IgG titre slope change in treated (n=19) (A, C) and control (n=17) (B, 

D) patients.  Regression lines with 95% confidence intervals are shown. 

 

 

5.8.7 Change in pulse wave velocity across the study period 

Given the association between CD4+CD28null T-cell expansion and cardiovascular 

disease as well as the independent association between CD4+CD28null T-cells and 

increased arterial stiffness as measured by pulse wave velocity, observed in Chapter 4, 

the final exploratory outcome of the clinical trial arm aimed to determine whether 

treatment with valaciclovir for 6 months could lead to an improvement in arterial 
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stiffness.  Arterial stiffness was measured by carotid femoral PWV as detailed in 

Chapter 2 at baseline, at the end of the 6 month treatment and at the end of the study 

at 12 months.   

 

Figure 5.18 (Panel A) shows PWV adjusted for a mean arterial pressure (MAP) of 90 

mmHg for control and treated patients.  There was a statistically significant increase in 

PWV in the control patients but not the treated patients across the study period 

suggesting that controlling subclinical CMV reactivation and reducing the size of the 

CD4+CD28null T-cell expansion might have had a protective effect in the treated 

patients.  Furthermore, the absolute count of CD4+CD28null T-cells at baseline 

significantly correlated with the change in PWV (adjusted for MAP of 90 mmHg) across 

the study period in that patients with higher numbers of CD4+CD28null T-cells at 

baseline exhibited a larger increase in PWV across the study period (Figure 5.18, Panel 

B). 
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Figure 5.18 Change in pulse wave velocity across the study period 

Panel A shows the change in PWV (adjusted for MAP 90 mmHg) across the study 

period for control (n=19) (black) and treatment (n=19) (red) patients.  There was an 

overall increase in PWV in the control patients (p=0.016) but not the treated ones 

(p=0.827) with the statistically significant difference in the control patients lying 

between the baseline and month 6 time points (ANOVA with post-hoc Dunnett’s 

multiple comparison test comparing M12 and M6 to the baseline values).  In panel B, 

the CD4+CD28null absolute cell count at baseline was correlated to the magnitude of 

the change in PWV (adjusted for MAP 90 mmHg) from baseline to month 12 (r=0.334, 

p=0.047; Pearson’s correlation).    

 

 

5.9 CMV reactivation and expansion of the CD4+CD28null T-cell 

compartment in the control patients 

In order to further evaluate the impact of subclinical CMV reactivation on the size of 

the CD4+CD28null T-cell compartment, the change in the size of the CD4+CD28null T-

cell expansion across the entire study period was assessed in the control patients 

(n=19) in relation to CMV reactivation.  Patients that reactivated CMV at least once 
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exhibited an overall increase in CD4+CD28null T-cell percentage (0.9 [IQR -1.1 - 2.0]) 

compared to those that did not (-1.6 [-8.9 - 0.4]; p=0.038) (Figure 5.19, Panel A).  

Furthermore, the overall change in CD4+CD28null T-cell percentage over the study 

period was correlated with the number of reactivation episodes observed (r=0.537, 

p=0.018) (Figure 5.19, Panel B). 

 

 

 

Figure 5.19 CMV reactivation and change in CD4+CD28null T-cells in controls  

The change in CD4+CD28null T-cell proportion between the pre-baseline visit (PB) and 

month 12 (M12) in control patients (n=19) was assessed in relation to CMV 

reactivation between the baseline and month 12 visits.  Patients that reactivated CMV 

at least once versus those that did not reactivate at all are shown in Panel A (Mann 

Whitney U test).  In Panel B the correlation between the total number of reactivation 

episodes and the change in the CD4+CD28null T-cell compartment is shown 

(Spearman’s rank test). 
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Next, the CD4+CD28null T-cell proportion was evaluated monthly across the study 

period using cryopreserved PBMC samples from 3 control patients that reactivated 

CMV during follow up.  Figure 5.20 shows the CD4+CD28null T-cell percentage plotted 

against CMV viral copy number and CMV IgG titre.  A temporal relationship was 

observed between episodes of CMV reactivation and changes in the size of the 

CD4+CD28null T-cell compartment as well as the CMV IgG titre.  Measurable CMV 

reactivation was preceded by an increase in CD4+CD28null T-cell proportion and was 

followed by a rise in CMV IgG titre in agreement with the results presented so far. 
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Figure 5.20 CD4+CD28null tracking experiments in control patients with CMV 

reactivation 

The change in CD4+CD28null T-cell proportion was tracked across the study period 

(pre-baseline (PB) to month 12) in 3 different control patients that reactivated CMV in 

order to relate the onset of CMV reactivation (right y axes) to changes in 

CD4+CD28null T-cell proportion and CMV IgG titre (left y axes).  An increase in 

CD4+CD28null T-cell percentage preceded measurable CMV reactivation.  CMV 

reactivation was followed by an increase in CMV IgG titre in some but not all episodes 

of reactivation.  
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5.10 CMV reactivation and polyfunctionality 

The data discussed in Chapter 3 revealed that CD4+CD28null T-cells, despite being 

markedly pro-inflammatory, were less polyfunctional in terms of IFN-, TNF- and IL-2 

co-expression following overnight stimulation with CMV lysate compared to their 

CD4+CD28+ counterparts.  The effect of relative proportions of polyfunctional cells on 

the risk of CMV reactivation was therefore evaluated.  Patients free from CMV 

reactivation over the 12 month study period had a higher baseline ratio of CD4+CD28+ 

to CD4+CD28null CMV specific T-cells (Figure 5.21, Panel A).  In addition, this ratio was 

negatively correlated to the total number of reactivation episodes over the 12 month 

study period (Figure 5.21, Panel B).   

 

Finally, patients that reactivated CMV at least once had a lower baseline proportion of 

polyfunctional CD4+CD28+ CMV specific T-cells (Figure 5.21, Panel C), defined as 

CD4+CD28+IFN-+ cells also capable of TNF- and IL-2 co-expression following 

overnight stimulation with CMV lysate suggesting that the possession of polyfunctional 

CD4+CD28+ CMV specific T-cells is important in keeping CMV controlled and avoiding 

episodes of subclinical CMV reactivation.    
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Figure 5.21 Effect of polyfunctionality on risk of CMV reactivation (n=38) 

Panel A: Patients that reactivated CMV at least once over the course of the study had a 

lower ratio of CD4+CD28+:CD4+CD28null CMV specific T-cells at baseline, identified by 

IFN- expression following overnight stimulation with CMV lysate (Mann Whitney U 

test).  Panel B: The ratio of CD4+CD28+:CD4+CD28null CMV specific T-cells at baseline 

was negatively correlated with the total number of CMV reactivation episodes over the 

study period (Spearman’s rank test).  Panel C: Patients that reactivated CMV at least 

once over the course of the study had a lower proportion of polyfunctional 

CD4+CD28+ CMV specific T-cells, identified as CD4+CD28+IFN-+ T-cells capable of 

TNF- and IL-2 co-expression following overnight stimulation with CMV lysate 

compared to patients that did not reactivate. 
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5.11 Discussion 

There is very little information in the literature on the prevalence and magnitude of 

potential CMV reactivation during latency in immunosuppressed patients with 

inflammatory conditions.  The data presented here show that significant subclinical 

CMV reactivation does indeed occur in CMV seropositive AAV patients in disease 

remission and that 37% of patients will reactivate CMV at least once over a period of 

12 months based on reactivation rates in the control patients.  All detectable episodes 

were asymptomatic, of low titre and were mainly seen in patients’ urine.      

 

Six months treatment with valaciclovir was successful in blocking CMV reactivation in 

AAV patients.  In turn, blocking CMV reactivation in treated patients led to a consistent 

reduction in several parameters of CMV-specific cell mediated immunity compared to 

controls that showed no change in any of these assessments.  Specifically, the 

proportion as well as absolute count of CD4+CD28null T-cells was reduced after 6 

months of valaciclovir therapy in treated patients but not in controls.  In addition, the 

absolute count of CD8CD28null T-cells as well as the proportion and absolute count of 

CD4+CD28null CMV-specific T-cells were reduced in treatment but not in control 

patients.  The fact that blocking CMV reactivation with valaciclovir in treated patients 

led to a decrease in these cell populations indicates that expansion of such T-cell 

subsets is driven by episodes of subclinical CMV reactivation.   
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This is supported by the supplementary analysis in the control patients where subjects 

that reactivated CMV showed an increase in their CD4+CD28null T-cell percentage.  

The increase in CD4+CD28null T-cell percentage in control patients was also found to 

be correlated with the number of reactivation episodes over the study period.  

Detailed analysis of the change in CD4+CD28null T-cell percentage on a per month 

basis in a subset of control patients that reactivated CMV showed that a rise in 

CD4+CD28null T-cell percentage preceded the onset of documented reactivation.  

 

The reduction in CMV-specific CD4+CD28null T-cells capable of producing IFN- 

following overnight stimulation with CMV lysate in treated patients was accompanied 

by a reduction in IL-2 and IFN-plasma levels that was not seen in controls.  The 

plasma marker of endothelial dysfunction P-selectin was also reduced only in treated 

patients.  P-selectin is expressed on inflamed endothelium and is implicated in vascular 

inflammation where proinflammatory Th1 T-cells bearing its ligand PSGL-1 (P-selectin 

glycoprotein ligand 1) under control of the transcription factor T-bet are able to bind 

to it and induce endothelial damage [353, 358].  As such, a reduction in P-selectin and 

Th1 mediated cytokines seen here may translate to an improvement in vascular 

inflammation.  There was a suggestion from the serial pulse wave velocity 

measurements undertaken during the trial that arterial stiffness increased in the 

control patients but remained static in the treated patients during the first 6 months of 

the study.  However, the trial was not designed to detect a difference in pulse wave 
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velocity between treated and control patients and therefore this remains to be 

adequately investigated in future studies. 

 

Blocking subclinical CMV reactivation with valaciclovir also led to a sustained reduction 

in CMV IgG titre levels.  There was a temporal delay associated with this, which is in 

keeping with the findings presented in Figure 5.15 (Panel A), where CMV reactivation 

preceded a rise in IgG titre that could be detected in peripheral blood.  Similarly, the 

effect of blocking CMV reactivation with valaciclovir treatment on the CMV IgG titre 

became clear only at month 5 and persisted for several months following treatment 

cessation likely as a result of the long half-life of IgG [359].   

 

Importantly, the decline in CMV IgG titre in treated patients was mirrored by a 

decrease in CD4+CD28null T-cell percentage and absolute counts as these changes 

were correlated when plotted against each other.  In addition, changes to CMV IgG 

titre levels have been shown to correspond to episodes of reactivation [360-362].  

Hence, a declining CMV IgG titre in the treated patients likely reflects another marker 

of evidence of blocked CMV reactivation in addition to the PCR results and the fact 

that the CMV IgG titre correlated with a drop in CD4+CD28null T-cell indices of similar 

magnitude adds further validity to the data.  
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Valaciclovir was well tolerated with mainly gastrointestinal symptoms reported by 

treated patients in keeping with the drug’s known side effect profile.  There was an 

episode of significant valaciclovir toxicity associated with acute kidney injury in one 

patient.  This was picked up at the month 1 safety assessment, however on discussion 

with the patient the symptoms had started from the 2nd week of taking the drug.  

Future clinical trials should therefore include a safety assessment also at 2 weeks as 

significant toxicity, where it occurs, is likely to be encountered within the first few 

weeks of commencing treatment. 

 

As discussed, there was a consistent effect of valaciclovir treatment leading to a block 

of CMV reactivation which was associated with a reduction in CD4+CD28null T-cells 

and other subsets of CMV-specific and associated cell mediated immunity, plasma 

levels of markers of inflammation and endothelial dysfunction and plasma CMV IgG 

titres.  Importantly, this treatment effect was consistently found across 4 different 

techniques that were used in the assessment of these outcomes namely, qPCR, flow 

cytometry, LUMINEX and ELISA.  The clinical trial was powered to detect a difference in 

reactivation rates between treated and control patients.  Hence 2-way ANOVA 

analyses comparing repeated measure assessments between treated and control 

patients for the secondary and exploratory outcomes were not carried out.  However, 

the fact that a reduction in all secondary and exploratory outcomes of CMV mediated 

changes to the immune system was persistently seen in the treated patients only and 

not in the control group is in keeping with validity of these findings.  The results of the 
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trial are very encouraging.  However, there is a need to replicate these findings in a 

larger clinical trial adequately powered to detect statistically significant changes in 

these parameters with 2-way ANOVA analyses.  

 

There are some learning points from this study that can be applied to a future larger 

clinical trial.  There was a discrepancy noted in the CD4+CD28null T-cell percentage 

between patients randomised to the treatment versus the control arm although this 

difference was not statistically significant.  A CD4+CD28null cell percentage 

stratification cut-off of 40% was incorporated into the randomisation algorithm.  

However, there were only a couple of patients with CD4+CD28null cell percentages 

greater than 40% so follow up clinical trials should utilise a lower stratification cut-off 

in order to achieve better balance between treated and control patients.   

 

Furthermore, given the longevity of CD4+CD28null T-cells and the delay in the 

reduction of CMV IgG titre observed in this trial, it is possible that a longer duration of 

anti-viral treatment is necessary to attain larger reductions in these pro-inflammatory 

T-cells rather than the modest reductions observed in this present study.  Future trials 

should therefore employ a duration of treatment of 12 months in order to assess 

whether this can be achieved and also evaluate clinically meaningful outcomes such as 

change in arterial stiffness that are likely to require a longer treatment and follow up 

period to detect significant such changes.   
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In summary, this proof of concept clinical trial presented here shows that CMV 

reactivation regularly occurs in AAV CMV seropositive patients in remission and can be 

safely blocked with valaciclovir treatment.  The data shows for the first time that 

subclinical CMV reactivation drives the expansion of CD4+CD28null T-cells and that this 

and other associated CMV induced changes to the immune system can be ameliorated 

with valaciclovir treatment in patients with AAV, in agreement with the study 

hypothesis.   
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CHAPTER 6 
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Chapter 6 General Discussion 

 

The two leading causes of morbidity and mortality in AAV are infection and 

cardiovascular disease [93].  Previous research has shown that large expansions of 

proinflammatory CD4+CD28null T-cells in AAV patients are only present in CMV 

seropositive individuals and are associated with increased infection, reduced renal 

function and increased mortality [112].  CMV and CD4+CD28null T-cells have also been 

described as having a significant bearing on immunosenescence and are associated 

with reduced immune responses to heterologous antigen [297] and influenza 

vaccination [300].  In addition CMV seropositivity and CD4+CD28null T-cell expansions 

have been linked to vascular pathology [287] and an increased risk of cardiovascular 

disease in patients with inflammatory conditions such as chronic kidney disease (CKD), 

rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) [156, 175, 180]. 

 

This thesis examined the hypothesis that subclinical CMV reactivation is the driver 

behind the observed expansion of CD4+CD28null T-cells in inflammatory disease.  Part 

of the work carried out aimed to explore the mechanisms via which the harmful effects 

of this cell subset are mediated in patients with AAV.  In addition, a proof of concept 

open label randomised controlled clinical trial of 6 months oral valaciclovir or no 

additional therapy in CMV seropositive AAV patients in remission was designed and 

implemented during the course of this PhD.  The trial tested the hypothesis of whether 
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blocking subclinical CMV reactivation with valaciclovir can halt or reduce the expansion 

of CD4+CD28null T-cells and ameliorate associated CMV induced immune 

dysregulation.  Further work aimed to explore the mechanisms involved in the control 

of subclinical CMV reactivation. 

 

6.1  Subclinical CMV reactivation drives the expansion of CD4+CD28null T-

cells 

The first of its kind proof of concept clinical trial carried out during the course of this 

work has shown that firstly, valaciclovir blocks subclinical CMV reactivation in CMV 

seropositive AAV patients and secondly, that this in turn leads to a reduction in the 

proportion of CD4+CD28null T-cells in treated patients only.  Other favourable changes 

such as reduction in inflammatory and endothelial dysfunction markers and reduction 

in CMV IgG titres were also seen in the treated patients but not in controls indicating 

that blocking CMV reactivation with valaciclovir ameliorates associated CMV adverse 

modulation of the immune system in AAV.  Finally, valaciclovir therapy was safe and 

well tolerated.   

 

As discussed, CMV is implicated in the immunosenescence that is increasingly been 

recognised with advancing age but may also play a part in immune dysregulation in the 

setting of inflammatory disease leading to weakened immune responses.  One possible 

mechanism in which this may occur is via ‘memory inflation’ whereby expansion of 
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proinflammatory subsets such as CD4+CD28null T-cells is mirrored by a shrinkage of 

the naïve CD4 T-cell compartment associated with a reduced ability to mount effective 

responses to new antigens.   

 

Work carried out during this thesis has shown that the size of the CD4+CD28null T-cell 

compartment in AAV patients is reciprocally related to the CD4:CD8 ratio suggesting 

that limiting CD4+CD28null T-cell expansion by blocking subclinical CMV reactivation 

may also have favourable outcomes in terms of improving the ‘immune risk profile’ in 

patients with AAV.  Indeed, valaciclovir treatment in the clinical trial was associated 

with an improvement in the CD4:CD8 ratio in treated patients whereas no change was 

seen in control patients, although these findings need to be confirmed in a larger 

study. 

 

6.2 Phenotype of CD4+CD28null T-cells in AAV and mechanisms of vascular 

damage 

Several reports exist on the type of surface and intracellular markers possessed by 

CD4+CD28null T-cells in different inflammatory conditions and in healthy individuals.  

However a comprehensive analysis of the phenotype of CD4+CD28null T-cells in AAV 

has not been previously undertaken.  The studies presented here have shown 

CD4+CD28null T-cells in AAV to be CMV responsive Th1 cells with a proinflammatory 

potential expressing mainly IFN- and TNF-.  Further analysis of their cell surface 
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chemokine receptor pattern showed for the first time that such cells in AAV co-express 

CXCR3, CX3CR1, CD49d and CD11b suggesting that they are able to traffic to and bind 

activated endothelial cells.  Surface expression of NKG2D and possession of 

intracellular perforin and granzyme B that have been shown to enable endothelial cell 

lysis were also seen.  Finally, the size of the expansion of CD4+CD28null T-cells in CMV 

seropositive AAV patients was independently associated with increased arterial 

stiffness as measured by carotid to femoral pulse wave velocity suggesting 

involvement of this cell subset in the pathophysiology of atherosclerosis in CMV 

seropositive patients.   

 

Other researchers have previously shown that during in vitro co-culture experiments, 

peripheral blood mononuclear cells (PBMC) from CMV seropositive individuals with a 

high proportion of CMV specific CD4 T-cells induce higher levels of upregulation of 

fractalkine, VCAM-1 and ICAM-1 (the ligands for CX3CR1, CD49d and CD11b identified 

on CD4+CD28null T-cells in this thesis) on endothelial cell monolayers and exhibit 

higher levels of PBMC adherence and endothelial damage compared to PBMC from 

individuals with a low proportion of CMV specific CD4 T-cells [363].  Endothelial cell 

activation was dependent on IFN- and TNF- production by CMV specific cells and in 

other experiments the ligand for CXCR3, IP10, was also shown to be upregulated on 

activated endothelium and be critical for the adherence of CMV effector CD4 T-cells 

onto endothelial cell monolayers [287].     
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Taking this together with the data from this thesis it is proposed that in AAV patients 

subclinical CMV reactivation drives the expansion of proinflammatory CMV specific 

CD4+CD28null T-cells that are targeted to endothelial cells through co-expression of 

unique chemokine receptors.  Through production of Th1 cytokines these cells induce 

endothelial activation and via release of cytotoxic perforin and granzyme B participate 

in endothelial damage exacerbating atherosclerosis and arteriosclerosis and leading to 

an increased incidence of cardiovascular disease. 

 

 

6.3  Control of subclinical CMV reactivation requires polyfunctional CD4 

responses 

The mechanisms that control subclinical CMV reactivation remain unclear.  Given the 

link between subclinical CMV reactivation and CD4+CD28null T-cell expansion 

demonstrated by this thesis, it is important to consider how viral control is maintained 

in this situation.  Work undertaken here has identified TIM-3 as a marker of exhausted 

CD4+CD28null T-cells with reduced functionality.  Furthermore, CMV specific 

CD4+CD28+ cells were identified as having increased functionality compared to 

CD4+CD28null T-cells.   

 

Analysis of the clinical trial CMV reactivation results revealed that patients reactivating 

CMV at least once during the course of the study had a lower ratio of CMV specific 

CD4+CD28+ to CMV specific CD4+CD28null T-cells at baseline and that the number of 
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viral reactivation episodes was also inversely correlated with this ratio indicating for 

the first time the importance of polyfunctional CD4+CD28+ CMV specific T-cells in the 

control of subclinical CMV reactivation.  Furthermore, patients that reactivated CMV at 

least once during the study also had a lower percentage of polyfunctional CD4+CD28+ 

CMV specific T-cells at baseline further highlighting the importance of multiple-

cytokine producing T-cells in the control of subclinical reactivation.  It will be 

interesting to see in subsequent studies whether controlling subclinical CMV 

reactivation changes the pattern of cytokine production in CMV specific T-cells in a 

favourable way or not.      
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6.4  Conclusion 

In conclusion, the studies undertaken during this PhD have shown for the first time 

that subclinical CMV reactivation drives the expansion of CD4+CD28null T-cells in a 

patient group with an inflammatory disease.  CD4+CD28null T-cells were shown to be 

endothelial homing cytotoxic T-cells and were independently associated with 

increased arterial stiffness, a well-established marker of increased cardiovascular risk.  

It is proposed here that CD4+CD28null T-cells through expression of chemokine 

receptors bind to respective ligands on activated endothelial cells leading to vascular 

damage which ultimately culminates to the observed increased risk of cardiovascular 

disease seen in association with CMV and this proinflammatory subset.  Finally, 

blocking subclinical CMV reactivation with valaciclovir in AAV patients led to a 

reduction in CD4+CD28null T-cells.  This opens exciting potential therapeutic avenues 

for patients with AAV but also other inflammatory conditions such as chronic kidney 

disease and rheumatoid arthritis where such CMV driven changes have been 

associated with adverse outcomes including a higher risk of cardiovascular disease. 
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6.5  Future work 

Chronic kidney disease (CKD) is a global public health concern with an estimated 

prevalence of over 10% of the population in Western Europe and the United States 

[364].  People with CKD are much more likely to die from cardiovascular disease (CVD) 

rather than progress to end-stage renal failure and the risk of CVD in CKD increases 

inexorably with declining renal function.  Furthermore this increased risk cannot be 

fully attributed to conventional atherosclerotic risk factors and it is likely that 

increased arterial stiffness is one of the major contributors to this adverse outcome 

[348]. 

 

Previous work has shown that CMV seropositive patients CKD have increased arterial 

stiffness [285].  In addition, CD4+CD28null T-cell expansions in CKD correlate with 

measures of early atherosclerotic damage and CMV seropositivity with prevalence of 

atherosclerotic disease [173, 180, 181].  Given the findings of this thesis we have 

hypothesised that subclinical CMV reactivation drives the expansion of cytotoxic 

CD4+CD28null T-cells in patients with CKD leading to increased arterial stiffness, a key 

contributor of increased CVD in CKD.  As such subclinical CMV reactivation and the 

expansion of CD4+CD28null T-cells may represent a potentially modifiable factor in the 

treatment of the increased cardiovascular risk in CKD.  We are currently in the process 

of submitting a grant application to carry out an interventional study in patients with 

CKD of 12 months treatment with valaciclovir in order to determine whether blocking 



CMV Modulation of the Immune System in AAV 227 
 

subclinical CMV reactivation and ameliorating the CD4+CD28null T-cell expansion in 

this patient group can reduce arterial stiffness. 
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Appendix 4 Vicorder Work Instruction  
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Appendix 5 Data Input Quality Control Standard Operating Procedure 
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Appendix 6 CANVAS Laboratory Manual 
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Appendix 7  Validation Plans and Analysis for Clinical Trial Laboratory 

Assays 
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Appendix 8 Case Report Form 
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Appendix 9 Development Safety Update Report 
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Appendix 10 REC and MHRA approvals 
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