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ABSTRACT

We study coarse grainings— reductions of a dynamical system to its factor systems. In the literature,

different variations of this problem are known under various denominations; including lumping,

model reduction, aggregating, semi-conjugacy, etc.

In the first half we investigate the problem of simplifying a dynamical system by reducing the

number of variables and give an algorithm achieving this in some special cases. Building on the known

results we extend the theory of aggregations of heuristics. We then turn to a probabilistic generalisation

of these models and show that in certain cases they coarse grain onto the well-known probabilistic

game of Gambler’s ruin for which we prove some new results.

In the second half coarse graining is used to motivate questions in topological dynamics. Given a

system (X,T ) we study the induced system (2X , 2T ) on the hyperspace of compact non-empty subsets

of X and its periodic points. Related to this we construct an almost totally minimal system on the

Cantor set. We also give a solution to a certain problem in topological dynamics related to ω-limit sets

and show how a known result on the Cantor set dynamics can be seen as a consequence of a structural

result about shift spaces.
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Chapter 1

INTRODUCTION

A
lthough very simple, it could be argued that the idea of representing complex (or

complicated) systems in terms of their simplified models is fundamental to all the sciences

— for applied disciplines such as physics and engineering this goes without saying, but also

in mathematics itself working with so called “toy models” often o�ers a great deal of insight. In this thesis

we hope to show how this simple idea can be formalised in the framework of dynamical systems, how

it can help to solve a number of di�erent problems, and how it guided our own research in unexpected

directions.

A system for us always means an ordered pair (X,T ) whereX is a topological space (often compact

and metric), and T : X → X is a continuous (and often surjective) map. Given such a system, one

would like to know what its trajectories

x, T (x), T 2(x), T 3(x), . . .

look like for various initial conditions x ∈ X . But iterating the map T many times may be infeasible,

either because it is computationally demanding or because it is just technically inaccessible. In that case,

one might hope to find a projectionΞ : X → Y onto a simpler system (Y, S) which is compatible with

the dynamics (X,T ). That is to say that the trajectories of (Y, S)

y, S(y), S2(y), S3(y), . . .

should coincidewith the projections underΞ of the trajectories of (X,T ). In other words (Y, S) should

be a model for (X,T ).
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It requires only a little thought to see that this will be fulfilled provided that the following diagram

commutes

X X

Y Y

T

Ξ Ξ

S

or written symbolically

Ξ ◦ T = S ◦ Ξ.

When this happens we shall say that (X,T ) coarse grains, or factors onto (Y, S); that Ξ is a coarse

graining, or a semi-conjugacy, or a factor map of (X,T ); and that (Y, S) is a factor of (X,T ).

It is only natural to require the projection Ξ to be continuous and surjective. Surjective as we do

not wish to introduce additional dynamical features that did not previously exist in the system (X,T ),

and continuous as we would like that tiny perturbations in the initial condition of the original system

correspond to tiny perturbations in the coarse grained system.

To give the reader a better idea of what a coarse graining is, let us consider a simplified description of

our Solar System as it is being taught to the first year undergraduates in any classical mechanics course.

The initial positions of the Sun, the planets and their moons are given as a set ofN position vectors in

R3. Newtonian mechanics teach us that once we know their initial velocities, which is another set ofN

vectors inR3, we can predict the behaviour of this system i.e. give the positions and velocities of any

celestial body at any point in the future (and indeed in the past). Here we assume that the masses of all

bodies are known and do not change over the course of time.

To fit this within our framework, we define a map T : (R3)2N → (R3)2N which to a given set of

positions and velocities assigns the new set of data representing the system after one year has elapsed.

This is a standard way to discretise a continuously running system.

This map T is all we need to compute the state of our Solar System in 1-year time steps. If we

wonder what the position of the planets will be in exactly 1000 years from now, we simply run the map

T iteratively a thousand times on today’s data and we shall obtain the answer.
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But unfortunately the mapT is not easily obtainable, let alone computable. As we have seen above,

in order to produce T one would have to solve the equations of motion for our system. This is known

as solving theN -body problem and is still very much an active area of research.

Consider now a projection map Ξ : (R3)2N → R3 × R3 which to any configuration of celestial

bodies assigns the position vector of its centre of mass x ∈ R3 and its velocity v ∈ R3. This is just the

weighted average of all the position vectors and velocities in the system respectively. It is then a classical

fact that the system (R3 × R3, S) given (in the appropriate units) by

S(x, v) = (x + v, v)

is a factor of ((R3)2N , T ) via coarse graining Ξ.

The crucial point here is that the dynamics of S requires no knowledge of the behaviour of the

systemgivenbyT . Thedescriptionof the dynamics on the coarser level is independent of the description

of the dynamics on the finer level. And if one is interested only in the long term behaviour of the centre

of mass of our Solar System then it suffices to study the system S which is a simple translation by a fixed

velocity vector v.

Let us remark that for the purposes of this discussion we assumed that our System is in isolation

and not a part of any other celestial structure. We also remark that various energy and momenta

conservation laws can be seen as coarse grainings to a stationary system in a similar fashion.

In the first part of this thesis we shall mostly be concerned with the existence of coarse grainings

and algorithms to find them. Stated in this generality the question is elusive and some restrictions have

to be imposed in order to be able to say anything meaningful. Therefore in Chapter 2 we restrict our

attention to systems where the underlying space isRn (or some subset ofRn) and where the dynamics

is given by an analytic map. We also require coarse grainings to be linear projections of a very special

form—we require that they are induced by the partitions of the set {1, 2, . . . , n}. These special kinds
of coarse grainings we call aggregations, or lumpings.

In that chapter we extend the results of Rowe, Vose and Wright [RVW06] and give a criterion

deciding when an aggregation is a valid coarse graining. This, in theory, gives an algorithm to find all

3



such aggregations of a given map. It turns out that this is not always very effective as we also show that

the problem of existence of a non-trivial aggregation isNP-complete when the family of maps consists

of Markov chain transition matrices i.e. linear maps. The results in this chapter form joint work with

Chris Good, David Parker, and Jonathan E. Rowe.

In Chapter 3 we study a special class of Markov chains with the state space consisting of different

colourings of a fixed connected graph. The vertices of the graph are meant to represent individuals

and the transition probabilities are modelling interactions between them where each individual adopts

the colour (in that chapter we use the term strategy rather then colour) of its neighbour with certain

probability. These kinds of models have previously been studied in relation to disease spreading

and voting models. We show how the coarse graining approach can be used to study their statistical

properties. When the underlying graph is the complete graph, these dynamics coarse grain onto a

generalised instance ofGambler’s ruin— a classical problem in probability theory for which we prove

some new results related to the mean duration of the game. The results in this chapter form joint work

with John Haslegrave.

We begin Chapter 4 by defining the transfer operator on the space of measures over X . Given a

system (X,T ) imagine that the spaceX is filled with an inhomogeneous gas whose varying density is

given by a map g : X → [0,∞). It is then natural to ask how the density of this gas evolves under the

map T . Under the assumption that no other dynamics (such as diffusion) takes place— the transfer

operator is exactly what provides the dynamics in this case. We then use a particular coarse graining

to motivate the study of induced systems on the hyperspace of compact non-empty subsets ofX . In

the central part of this chapter we investigate the interactions of the original system and its induced

systems. In particular we seek to explain how dynamical properties— such as having periodic points of

certain period— transfer from the original system to its induced systems. As a by-product we construct

a dynamical system on the Cantor set which is almost totally minimal, as defined there, and obtain an

interesting result on dynamical embeddings (Theorem 4.21). The results in this chapter form joint

work with Leobardo Fernández and Chris Good.

Finally Chapter 5 contains two additional results regarding the Cantor set dynamics. In the first

part we reprove a result by Sherman from [She12] in which he shows that a system consisting entirely of
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periodic points must either have a finitely based spectrum, a notion defined below, or otherwise have a

non-trivial connected component. We show how, by using an appropriate coarse graining, his theorem

can be seen as a corollary of a structural result about shift spaces.

The second part of this chapter revolves around ω-limit sets and draws from the theory advanced

in recent years by Barwell, Davies, Good, Knight, Meddaugh, Oprocha, and Raines. There we resolve

a conjecture related to ω-limit sets posed by Barwell in [Bar11, BDG12]. He asked if ω-limit sets are

characterised by the ICT property in the systems with shadowing. We construct a Cantor system

showing that the answer in general is no.

As we mentioned before, the idea of coarse graining is quite broad and it would be extremely

difficult, if not impossible, to give a comprehensive treatment of the topic. This is why we chose to

focus on different problems inwhichwe couldmake use of thismethod. As a consequence the structure

of this thesis is somewhat unconventional; the four main chapters are all written and can be read as

self-contained units.

Lastly, we acknowledge that this research was funded by the HIERATIC project which aimed

to develop a framework for understanding complex systems through the hierarchical decomposition

— and the notion of coarse graining was used as a main tool for detecting higher level dynamics. As

a consequence, large portions of this thesis appeared in technical reports of the HIERATIC project

[GPPR14,GPPR15, FGP16b,CGH+14,CGH+15, FGH+16,GJP+14,GJP+15,DHH+15].

In addition to this the material from Chapter 3 has been accepted for publication as a joint paper

[HP17] with John Haslegrave. The material from Chapter 4 is currently under review in a joint paper

[FGP16a] with Leobardo Fernández and Chris Good. Lastly, the material from Chapter 2 forms a

joint paper [GPPR16] with Chris Good, David Parker, and Jonathan E. Rowe which is also currently

under review. Other material from the HIERATIC project has not been included in this thesis but

may appear in future papers.

5



6



Chapter 2

A CHARACTER I SAT ION OF STATE SPACE AGGREGATIONS

W
e study coarse grainings of discrete time dynamical systems on Rn. In particular we

are interested in state space (or dimensional) aggregations. An aggregation is a simple

change of variables transformation mapping Rn to Rm which is associated to a particular

partition of the set {1,2,. . . ,n}. This means that there are only finitely many tentative aggregations

available and in theory one could go through the whole list checking each if it produces a well-defined

dynamics on Rm, i.e. if it is a coarse graining of our system (Rn, T ). The actual difficulty is thus to find

an efficient way to target only (or some of) those partitions which produce aggregations compatible with

(Rn, T ).

In this chapter we show that if T is in a certain class of maps (weighted binary tournaments) one

can efficiently characterise and find all the compatible aggregations. The characterisation used for these

maps can be generalised to work with analytic maps on Rn, but it is no longer efficient enough to give a

quick algorithm to identify compatible aggregations. Indeed, we are able to show that in any class of

maps containing Markov chains (i.e. linear maps) the decision problem whether there exist a non-trivial

aggregation is NP-complete.

We also show how our results apply to artificial chemistries, Random Heuristic Search models, and

related finite population models.

The results in this chapter form joint work with Chris Good, David Parker, and Jonathan E. Rowe

— the paper [GPPR16] containing this material is currently under review.

Modelling real life dynamical systems is a challenging problem. Whether we are exploring social

dynamics on a large scale, or trying to understand biological interactions in a cell at the molecular

level, the number of variables involved to describe these processes is often too large for any meaningful

7



computer simulation or analysis to take place in a reasonable amount of time. One then has to resort

to various techniques of simplifying the underlying model, thus reducing its dimension and enabling

computation.

One typical approach is that of coarse graining. Given a (continuous) map T : Rn → Rn, the map

Ξ : Rn → Rm is a coarse graining of T provided the following diagram commutes.

Rn Rn

Rm Rm

T

Ξ Ξ

S

The point here is that the dynamics are preserved by Ξ in the sense that Ξ
(
T k(x)

)
= Sk

(
Ξ(x)

)
for

any k (in topological dynamics, such a Ξ is called a semi-conjugacy). Typically, of course, in practical

applications one wantsm to be very much smaller than n.

In this chapter we look at a systematic approach for finding those coarse grainings which are a result

of aggregating or lumping dimensions. Our approach stems from analysing state space aggregations

in the Random Heuristic Search framework developed by Vose [Vos99], but extends to provide a

complete characterization of such coarse grainings for discrete timeMarkov processes and analytic maps

on Rn. The theory provides an algorithm for determining such coarse grainings. However, we also

show that the problem of deciding whether a Markov chain has a non-trivial state space aggregation is

NP-complete.

Consider the following problem from evolutionary biology. Suppose that for a set of n states, which

we might call genotypes,G (for simplicity we frequently assume thatG = {1, 2, . . . , n} = [n]) we are

given a set of rules that determines which genotype is dominant in any given pair, i.e. the genotype

inherited by the offspring. Equivalently, the rules specify an orientation for each edge of the complete

graph over the set of n vertices G. We write k → i to mean that mating between k and i produces

an offspring of type i. One would then like to predict how a population of individuals with these

genotypes evolves over time.
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The first problem one faces is how to model this evolution. One common approach is to assume

that the population is large and well-mixed. This leads to a model whose dynamics is given by a

quadratic polynomial T : Rn → Rn, T = (T1, . . . , Tn), where

Ti(p) = Ti(p1, . . . , pn) = pi
(
pi + 2

∑
k→i
pk

)
, for any 1 ≤ i ≤ n, (2.1)

and where the sum runs over all the genotypes k which are dominated by i. The function T is the

heuristic in the aforementioned RandomHeuristic Search framework, but we shall often say that T is

a continuous, or infinite population model. The interpretation is as follows: suppose that we start with a

population in which the proportions of different genotypes are given by p = (p1, . . . , pn), then Ti(p)

gives the probability that the offspring of two individuals chosen at randomhas genotype i. In particular,

note that the non-negative portion (p ≥ 0) of the hyperplane p1 + · · · + pn = 1 is invariant under T .

We remark that this construction generalises binary tournaments given in [RVW05b,RVW06].

Another approach is to consider finite population models. Assume that our population is of fixed

size r and that this total number does not change over time. Let N0 denote the set of non-negative

integers and letXnr be the set of all vectors inNn0 whose terms sum to r, so that v = (v1, . . . , vn) ∈ Xnr

represents a population of r individuals vi of whom have genotype i, for each i ≤ n. ClearlyXnr has

cardinality C (n, r) :=
(
r+n−1
r

)
. We then define a discrete-timeMarkov chain with the state spaceXnr

where the transition probabilities are given by

P [v→ w] =
r!

w1! · · ·wn!
(T1(v/r))w1 · · · (Tn(v/r))wn =

r!
w!

(T (v/r))w , (2.2)

where T is as in (2.1). The equation above implies that, starting from a population v ∈ Xnr , the

transition probabilities are given by a multinomial random variable with the expectation T (v/r) and

the parameter r. In other words, if we start with the population v, in order to obtain the generation in

the next time step we first compute T (v/r), this represents the proportions of different labels in an

urn from which we draw r of them independently with replacement to form the new generation w.

Alternatively, one can think of this Markov chain purely in algorithmic terms. Starting with a

population represented by v ∈ Xnr , one randomly chooses two individuals from it with replacement.
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They then produce an offspring which inherits the dominant genotype of the parents (if the parents

have the same genotype or if the same parent is chosen twice, then the offspring inherits that same

genotype). This ‘mating’ process is repeated r times and results in a new generation of r offspring

represented by w. It was shown in [Vos99] that this leads to the same transition probabilities as given

in (2.2).

Once a particular model has been chosen, one might try to reduce the state space in order to

facilitate computations. This clustering of portions of the state space should be done in such a way

that the dynamics on these ‘higher level’ states is still well-defined. In the present chapter we shall be

interested only in reductions that work across the range of derived models we mentioned above. In

Section 2.1 we argue that the only simplifications to be considered under this requirement are state

space aggregations that correspond to the changes of variables of the form Pi = pi1 + · · · + pik where

each of the variables pj occurs exactly once in exactly one of Pis. This effectively gives a partition of the

set of variables. It was shown by Vose in [Vos99] that for aggregations of this type it suffices to find

those that are compatible with the continuous model as they naturally extend to aggregations for the

derived models described above. We further show that they are also compatible with the dynamics of

derived models from a larger class (Theorem 2.1) reinforcing the view that it is only aggregations of the

continuous model that matter.

It turns out that for the map T as in (2.1) it is possible to characterise all the valid aggregations

efficiently using the notion of contiguous partitions. We say that an equivalence relation (or the cor-

responding partition) ≡ on the set G is contiguous with respect to an orientation→ on G if for all

i, j, k ∈ G we have

i ≡ j ≡ k whenever i ≡ k and k→ j → i.

In words, any two genotypes i and k that are in the same block of the partition must for each individual

j from any other block either both dominate or both be dominated by it. In Section 2.2 we prove

Theorem 2.3. Let T be a heuristic as in (2.1). An equivalence relation on G is compatible (i.e. gives a

coarse graining) with T if and only if it is contiguous with respect to→.
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This can be seen as an extension of the well-known condition for lumping states of a Markov chain

(see e.g. [KS76]) which says that any two states that are lumped together must have exactly the same

outgoing transition probabilities towards any of the blocks in the partition. Theorem 2.3 itself can

further be seen as a Corollary of Theorem 2.11 where, more generally, we give a criterion for finding

compatible aggregations in terms of the Taylor coefficients of an analytic map.

Section 2.3 is about the computational complexity of our problem and there we show that even for

Markov chains the problem of deciding whether a non-trivial aggregation of the system exists isNP-

hard (Theorem 2.6). It is then perhaps somewhat surprising to learn that in that same section we give a

polynomial algorithm deciding the very same question in the class of weighted binary tournaments.

Theorem 2.3 above and its analogue, Theorem 2.4, play a decisive role in constructing this algorithm.

In Section 2.4 we show how the systems we are studying can be interpreted in the context of

artificial chemistries. And lastly Section 2.5 deals with aggregations of analytic maps. This can be seen as

a general model encompassing all those discussed in the sections preceding it. The contiguity criterion

manifests itself there as a condition on certain Taylor series coefficients, see (2.10).

Coarse graining has been previously studied by Vose and his collaborators and some useful criteria

have been devised that guarantee existence of coarse grainings in certain cases [RVW06, RVW05a,

RVW05b,Bur07]. Other authors, most prominently Rabitz and collaborators [LR89,LR90,LRT94],

and more recently Jacobi [Jac05], and Tomlin et al. [TLRT97] explored the coarse grainings of con-

tinuous systems given by differential equations. It is not hard to see that the theory of linear coarse

grainings coincides in both the discrete and continuous systems.

We would like to stress that there are other approaches to simplifying the dynamics of iterated

dynamical systems. These model reduction techniques include, most notably, singular value decom-

position and variants thereof (see, for example, [JG09,GKK+06]). However, in general these do not

preserve the inner dynamics of the system, which is our primary concern.
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Markov/
Linear maps

Binary Tournaments/
Oriented complete graphs

Weighted Binary Tournaments

Chemistries of degree 2/Quadratic T

. . .

Analytic T

Figure 2.1: Maps for which we characterise aggregations

2.1 different models

In this section we describe a general method for generating finite populationMarkov chain models

akin to those we discussed in the introduction. Our starting point is an infinite model given by a map

T : Rn → Rn. We further assume that T maps the unit simplex ∆n = {p ∈ Rn | ∑ni=1 pi = 1 and pi ≥

0} into itself.
Let {

Zk,iα , Y
k,i
β | k, i ∈ N and α, β ∈ ∆n

}

be a family of independent random variables where

Zk,iα ∼
(

1 2 . . . n
α1 α2 . . . αn

)
and Y k,iβ ∼

(
1 2 . . . n
β1 β2 . . . βn

)
.

Let r ∈ N, the population size, be fixed and recall that for our purposes G = {1, 2, . . . , n} = [n].

The family above acts as a stock of independent random variables we use to define a Markov chain

(Sk : k ∈ N) over the state spaceXnr . The evolution of this chain is prescribed by a transition function

F : Xnr × [n]∞ × [n]∞ → Xnr ,
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and the rule

Sk+1 = F (Sk;Zk,1T (Sk/r)
, Zk,2T (Sk/r)

, . . . ;Y k,1Sk/r, Y
k,2
Sk/r
, . . . ).

The idea is that by varying F one can emulate the effect of changing the simulation algorithm bymeans

of which the finite population model evolves. This will better be understood in an example.

If we let F be

F1(v; i1, i2, . . . ; j1, j2, . . . ) =
r∑
l=1
eil ,

where ei is the ith vector of the canonical basis in Rn, then the chain (Sk : k ∈ N) satisfies the following

transition rule

Sk+1 =

r∑
l=1
eZk,lT (Sk/r)

.

In particular, this is precisely the same chain as the one described in the introduction. Each new

generation Sk+1 is formed by drawing r genes with replacement from an urn in which the distribution

of different genes is given by T (Sk/r).

Another useful choice is taking

F2(v; i1, . . . ; j1, . . . ) = v + ei1 − ej1 . (2.3)

In this case our chain (Sk : k ∈ N) will satisfy

Sk+1 = Sk + eZk,1T (Sk/r)
− eY k,1Sk/r

and the next generation Sk+1 is produced by throwing out one individual uniformly chosen from

the current population (the third term accounts for this) in order to free up one space for another

individual carrying a gene randomly chosen from [n] with weights T (Sk/r) (the second term). When

T is quadratic as in (2.1) this evolution can, perhaps more naturally, be explained by saying that in each

step a couple1 is chosen that produces an offspring with the gene inherited from the dominant parent

while at the same time, independently, one individual dies.

1As mentioned before, one feature of this model is that it allows for the same parent being chosen twice to form a
couple.
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Clearly F1 and F2 represent two extreme approaches to modelling this system. The first is gen-

erational, as all the individuals get replaced at each step, while the other represents one change at a

time evolution. There are various other possibilities in between which can be modelled by choosing a

different F .

We nowwish to show that any aggregation of genes that coarse grains the dynamics ofT also works

for the models induced by F1 and F2. Indeed in Theorem 2.1 below we give a sufficient condition on F

for this to happen.

Recall that an aggregation is a partition of the set G = [n]. By choosing some ordering on the

blocks of the partition we can identify this with a function π : [n]→ [m] wherem ≤ n. We set Ξπ to

be anm × nmatrix associated to this aggregation where

Ξπ(i, j) =




1, if π(j) = i,

0, otherwise.

Thus, the matrix Ξπ is the change of variable transformation corresponding to the aggregation π.

Asking that π is compatible with a map T : Rn → Rn amounts to asking that there exists a map

T̃ : Rm → Rm such that Ξπ semi-conjugates T and T̃ , i.e.

Ξπ ◦ T = T̃ ◦ Ξπ.

Note that π aggregatesG = {1, 2, . . . , n} but the induced models we now wish to consider have

Xnr for the state space. There is, however, a natural partition onXnr that π induces and it is given by

Ξπ. In particular Ξπ mapsXnr toXmr .

Theorem 2.:. Let F : Xnr × [n]∞ × [n]∞ → Xnr be a modelling scheme which is compatible with any

aggregation, i.e. such that for anym ≤ n and anyπ : [n]→ [m] the map F̃ : Xmr ×[m]∞×[m]∞ → Xmr

is well-defined by the formula

F̃ (Ξπ(v);π(i1), . . . ;π(j1), . . . ) = Ξπ(F (v; i1, . . . ; j1, . . . )).
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Then given any system T : Rn → Rn all the aggregations compatible with T induce coarse grainings of

the Markov model (Sk : k ∈ N) obtained via F .

Proof. Let π : [n] → [m] be an aggregation compatible with T . Employing the usual criteria for

matching outgoing probabilities, it suffices to see that for any three states v, u, w ∈ Xnr the equation

P [Ξπ(Sk+1) = Ξπ(w) | Sk = v] = P [Ξπ(Sk+1) = Ξπ(w) | Sk = u]

holds as soon as Ξπ(v) = Ξπ(u). The LHS of this expression is

P [Ξπ(Sk+1) = Ξπ(w) | Sk = v] =

= P
[
Ξπ

(
F

(
Sk;ZkT (Sk/r) ;Y kSk/r

))
= Ξπ(w) | Sk = v

]
=

= P
[
F̃

(
Ξπ(Sk);π

(
ZkT (Sk/r)

)
;π

(
Y kSk/r

))
= Ξπ(w) | Sk = v

]
=

= P
[
F̃

(
Ξπ(v);π

(
ZkT (v/r)

)
;π

(
Y kv/r

))
= Ξπ(w)

]
=

= P
[
F̃

(
Ξπ(v);Zk

Ξπ (T (v/r)) ;Y k
Ξπ (v)/r

)
= Ξπ(w)

]
.

It remains to notice that the last expression above will not change if we substitute u instead of v.

This is because Ξπ(v) = Ξπ(u), and hence also by assumption Ξπ(T (v/r)) = Ξπ(T (u/r)). Now

backtracking the same steps we get the RHS. �

It is easy to check that both F1 and F2, regardless of the population size r, satisfy the hypothesis of

the theorem above. Thus, we have just shown that the aggregations that work for the heuristic T , also

coarse grain two associated infinite families of Markov chains. This justifies our primary concern of

coarse graining heuristics.

At the end of this sectionwe provide a simple example showing that even linear coarse grainings that

are not induced by an aggregation of variables need not lead to a coarse graining of finite population

models.

Example 2.2. Consider the identity map T : R3 → R3 given by T (p1, p2, p3) = (p1, p2, p3). This

trivial dynamics is clearly coarse grained by any map. In particular, the projection map Ξ(p1, p2, p3) =
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p2 − p3 is a coarse graining albeit not induced by an equivalence relation. The transition matrix2 of the

associatedMarkov chain constructed via F2 with r = 2 over the state space

X3
2 = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (0, 1, 1), (1, 0, 1), (1, 1, 0)}

is 

1 · · · 1/4 1/4

· 1 · 1/4 · 1/4

· · 1 1/4 1/4 ·

· · · 1/2 · ·

· · · · 1/2 ·

· · · · · 1/2



.

This matrix is clearly not compatible with the induced aggregation that merges the states (2, 0, 0) and

(0, 1, 1). /

2.2 aggregating weighted binary tournaments

In the previous section we argued why we are interested only in aggregations of the infinite model T .

Here, we seek to characterise these aggregations for the case when T is modelling a binary tournament

of the form (2.1).

We start by orienting the complete graph Kn over G = [n] and define a map T : Rn → Rn,

T = (T1, . . . , Tn) as in (2.1) by setting

Ti(p) = Ti(p1, . . . , pn) = pi
(
pi + 2

∑
k→i
pk

)
, for any 1 ≤ i ≤ n.

Recall that an equivalence relation ≡ on G is contiguous with respect to the orientation → if for all

i, j, k ∈ G we have

i ≡ j ≡ k whenever i ≡ k and k→ j → i. (2.4)

2The dots stand for zeros.
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Note that i and k in the definition above are distinct as we cannot have j → i and at the same time i → j.

Also, in general, the relation→ need not be transitive. An example of a non-transitive rule is the game

‘Rock, paper, scissors’ and extensions thereof. We can now state our characterisation of compatible

aggregations for these systems. Its proof is omitted as it follows frommore general Theorem 2.4 we

prove below.

Theorem 2.3. Let T be a heuristic as in (2.1). An equivalence relation on G is compatible (i.e. gives a

coarse graining) with T if and only if it is contiguous with respect to→.

Suppose that it is not an orientation that is given onKn but let P : G2 → [0, 1] be a function such

that P(i, j) = 1 − P(j, i) for all i, j ∈ G. We call such a P a selection map. The interpretation is that

in a clash between i and j, gene i dominates with probability P(i, j) and hence j dominates with the

probability 1 − P(i, j) = P(j, i). Note that this forces P(i, i) = 1/2 for all i ∈ G.

If P(i, j) ∈ {0, 1} whenever i , j then this reduces to the previous case as P(i, j) = 1 can be

interpreted as orienting the edge connecting i and j by choosing j → i. It turns out that there is a

characterisation of admissible aggregations that is the same as the one given in Theorem 2.3. Of course,

the definition of a contiguous partition requires some amendments.

An equivalence relation ≡ onG is contiguous with respect to a selection map P if for all i, j, k ∈ G

we have

i ≡ j ≡ k whenever i ≡ k and P(i, j) , P(k, j). (2.5)

We remark that this reduces to (2.4) when P maps off-diagonal pairs to {0, 1}.
If we denote by π : [n]→ [m] the partition induced by the classes of ≡ then the condition above

amounts to requiring that for any two blocks π−1(s) and π−1(t), with s , t, and for any i, k ∈ π−1(s)

and j ∈ π−1(t) we have P(i, j) = P(k, j).

If we let l be any other element inπ−1(t), the same condition now applied with the roles ofπ−1(s)

and π−1(t) swapped gives P(j, k) = P(l, k). But since P is a selection this implies P(k, j) = P(k, l)

and hence P(i, j) = P(k, l).
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This shows that for a contiguous partition there is a well defined selection map P : [m]2 → [0, 1]

such that P(s, t) + P(t, s) = 1 for all s, t ∈ [m], and for every i ∈ π−1(s) and j ∈ π−1(t) we have

P(s, t) = P(i, j). Although these are two different maps, we shall keep the same notation.

How does the heuristic map look in this more general setting? Let us compute the probability that

the winning gene in a random pairing is of type i.

Ti(p1, . . . , pn) = p2
i +

∑
k∈[n]\{i}

2pipkP(i, k) = 2pi
n∑
k=1
P(i, k)pk, (2.6)

where we noted that P(i, i) = 1/2. Any such T induced by a selection map P is said to be a weighted

binary tournament. Note that the formula for T again reduces to (2.1) if the range of P is {0, 1} on the
off-diagonal pairs. We are now ready to prove our characterisation.

Theorem 2.4. Let P be a selection map on G, and let the heuristic T be as in (2.6). An equivalence

relation on G is compatible (i.e. gives a coarse graining) with T if and only if it is contiguous with respect

to P.

Proof. Let π : [n]→ [m] be the map associated to the partition ofG = [n] induced by a contiguous

equivalence relation, and let Ξπ be the associated aggregation. Take s ∈ [m] and calculate

((Ξπ ◦ T )(p))s =
∑
π(i)=s

Ti(p) =
∑
π(i)=s

2pi *
,

n∑
k=1
P(i, k)pk+

-
=

= 2
∑
π(i)=s

pi
*.
,

m∑
t=1

∑
π(k)=t

P(i, k)pk
+/
-
= 2

∑
π(i)=s

pi
*.
,

m∑
t=1
P(s, t)

∑
π(k)=t

pk
+/
-

= 2(Ξπ(p))s
m∑
t=1
P(s, t)(Ξπ(p))t = T̃s(Ξπ(p)) = (T̃s ◦ Ξπ)(p).

ThusΞπ ◦T = T̃ ◦Ξπ, where T̃ = (T̃1, . . . , T̃m). This shows thatΞ is a coarse graining of the system

and, moreover, we see that the coarse grainedmap T̃ is in the same form as the original one. It expresses

the rule of transformation for meta-genes that are given by the blocks of the partition π.

Conversely, suppose that π : [n] → [m] is a partition of [n] whose associated aggregation Ξπ

coarse grains T . We need to prove that the equivalence relation that it induces is contiguous with

respect to P. To that end, take s, t ∈ [m], s , t. Following the discussion after (2.5) above, it suffices
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to prove that for any i, k ∈ π−1(s) and j ∈ π−1(t) we have P(i, j) = P(k, j). For the sake of getting a

contradiction assume that i, k and j are chosen such that P(i, j) < P(k, j).

To simplify the notation we can, without loss of generality, assume that i = 1, k = 2, j = 3. Take

vectors v = (1/2, 0, 1/2, 0, . . . , 0) and w = (0, 1/2, 1/2, 0, . . . , 0) and note that

Ξπ(v) = Ξπ(w)

and since Ξπ is a coarse graining we must also have

(Ξπ ◦ T )(v) = (Ξπ ◦ T )(w)

and hence also

((Ξπ ◦ T )(v))π(1) =
∑

π(k)=π(1)

Tk(v) = T1(v) =
1
2

(P(1, 1) + P(1, 3))

is equal to

((Ξπ ◦ T )(w))π(1) =
∑

π(k)=π(1)

Tk(w) = T2(w) =
1
2

(P(2, 2) + P(2, 3)).

As P(1, 1) = P(2, 2) = 1/2, we get P(1, 3) = P(2, 3), which contradicts the initial assumption

P(1, 3) < P(2, 3). This finishes the proof of the other implication. �

To finish this sectionwe give an example of a weighted binary tournament whose one generalisation

will be the main theme of Chapter 3.
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Example 2.5. Let p ∈ [0, 1] be a fixed parameter. We setG = [n] = {1, 2, . . . , n} and let P : [n]2 →

[0, 1] be a selection map onG given by:

P(i, j) =




p if i > j,

1 − p if i < j,

1/2 if i = j.

This means that among any two different types of genes the one labelled with the higher number

dominates with probability p. And this is regardless of the chosen pair. The associated heuristic map

T : Rn → Rn can be computed from the equation (2.6) and in this case reduces to:

Ti(p1, . . . , pn) = p2
i + 2pi *

,

∑
k<i

ppk +
∑
k>i

(1 − p)pk+
-
.

Using Theorem 2.4 we can deduce which equivalence relations over [n] are compatible with the

dynamics of this weighted binary tournament.

If p = 1/2 it is clear that any equivalence relation will do as P is identically equal to 1/2 and so (2.5)

is vacuously satisfied.

If p , 1/2 then taking into account the definition of P the same condition can be rewritten as

i ≡ j ≡ k whenever i ≡ k and i < j < k or i > j > k. (2.7)

Above we noted that (2.5) is always going to be satisfied when either i = j, or k = j, or i = k; and we

could safely assume that i, j, and k are all distinct.

The condition (2.7) can now be reinterpreted as saying that each block of a compatible equivalence

relation must be an interval in {1, 2, . . . , n}with the usual ordering. /
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2.3 intermezzo: on complexity

In this section we present a result showing that even for Markov Chains, i.e. linear maps, finding

aggregations is a difficult task in general. More precisely we show

Theorem 2.6. Deciding if there exists a non-trivial aggregation for a Markov chain is NP-complete.

Recall that aMarkov chain defined by a stochasticn×nmatrixM possesses a non-trivial aggregation

if there exist a (non-trivial) surjective partitioning function π : [n]→ [m] where 1 < m < n, and an

m ×mmatrix R such that

ΞM = RΞ

where Ξ = Ξπ is the change of variable transformation associated to π.

In order for this decision problem to be well defined we clearly need to restrict the entries of

transition matrices to be in a countable domain, say inQ. Note however that by multiplying each entry

of the matrixM by a sufficiently large number we can obtain a matrix with integer entries and constant

column sums which clearly has a non-trivially aggregation if and only ifM does.

Further note that this problem is indeed inNP as givenM , Ξ, and R verifying if this is a solution

amounts to multiplying and comparing matrices. It will thus suffice to show that some well-know

NP-complete problem, say the subset sum problem (SSP), is polynomially reducible to the problem

of deciding if an integer matrix with constant column sums has a non-trivial aggregation. For more

details on these notions we refer the reader to any textbook dealing with complexity, e.g. [TW06].

Recall that SSP (originally the KNAPSACK problem in Karp’s list [Kar72]) is an NP-complete

decision problem that asks, given a set of positive integers {a1, . . . , an} and an integer 0 < K <
∑n
i=1 ai,

whether there exists a subset I ⊆ [n] such that
∑
i∈I ai = K .
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Proof of Theorem 2.6. Let an input for SSP ({a1, . . . , an}, K ) be given. Set L =
∑n
i=1 ai − K and let

M be an (n + 2) × (n + 2) matrix as below

M =



a1 2a1 3a1 . . . (n + 2)a1
a2 2a2 3a1 . . . (n + 2)a2
...

...
... . . . ...

an 2an 3a1 . . . (n + 2)an
(n + 2)K (n + 1)K na1 . . . K
(n + 2)L (n + 1)L na1 . . . L



.

Note that 0 < L <
∑n
i=1 ai. We claim thatM has a non-trivial aggregation if and only if the given SSP

instance has a solution. This will be enough to finish the proof as this reduction is clearly polynomial

in the size of the input.

First assume that I ⊆ [n] solves the SSP, i.e.
∑
i∈I ai = K . Let I c denote the complement of I in

[n]. Thus
∑
i∈I c ai = L.

Define π : [n + 2]→ [2] by

π(i) =




1 if i ∈ I or i = n + 1,

2 otherwise,

and let Ξ = Ξπ be the associated change of variables transformation. One readily checks that

ΞM = RΞ,

where

R =
[
(n + 3)K (n + 3)K
(n + 3)L (n + 3)L

]

and thusM has a non-trivial aggregation.

Conversely, assume thatπ : [n + 2]→ [m] is a non-trivial aggregation compatible withM , where

1 < m < n + 2. Let Ξ = Ξπ and R be such that

ΞM = RΞ (2.8)
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holds. By the pigeon-hole principle and because of non-triviality there must exist k ∈ [m] such that

1 < |π−1(k) | < n+2. Choose two different integers s, t ∈ π−1(k). Inspecting the elements on positions

(k, s) and (k, t) in matrices ΞM and RΞ and using (2.8) we conclude that they are the same and they

equal

s
∑
i∈I
ai + (n + 3 − s)(κK + λL) = t

∑
i∈I
ai + (n + 3 − t)(κK + λL) = R(k,k),

where I = π−1(k) ∩ [n] and κ and λ are 0-1 indicators depending on whether (n + 1) and (n + 2)

respectively are in π−1(k). From here we get

(s − t)
∑
i∈I
ai = (s − t)(κK + λL)

and as s , t ∑
i∈I
ai = κK + λL.

The only possibilities are now:

• κ = λ = 1 and I = [n],

• κ = 1, λ = 0 and I ( [n],

• κ = 0, λ = 1 and I ( [n],

• κ = λ = 0 and I = ∅.

The first can be discarded as it would imply that π−1(k) = [n + 2] and the aggregation given by π is

trivial. Similarly, the last is impossible as it would imply that π−1(k) = ∅ contradictory to our choice

of k ∈ [m]. If the second holds then I is the subset solving our SSP
∑
i∈I ai = K , and in case the third

one holds, the complement I c of I in [n] solves the SSP
∑
i∈I c ai = K , as we know that

∑
i∈I ai = L.

This completes the proof of the theorem. �

To aid the understanding, we illustrate the proof above with an example.
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Example 2.7. Take two instances of SSP ({5, 6, 1, 8}, 12) and ({9, 4, 12, 1}, 15). The construction

from the proof gives matrices

M1 =



5 10 15 20 25 30
6 12 18 24 30 36
1 2 3 4 5 6
8 16 24 32 40 48

72 60 48 36 24 12
48 40 32 24 16 8



, M2 =



9 18 27 36 45 54
4 8 12 16 20 24
12 24 36 48 60 72
1 2 3 4 5 6

90 75 60 45 30 15
66 55 44 33 22 11



.

The first system has a valid aggregation {{1, 2, 3, 5}, {4, 6}} and one can check that Ξ1M1 = R1Ξ1

where

Ξ1 =

[
1 1 1 0 1 0
0 0 0 1 0 1

]
, R1 =

[
84 84
56 56

]
.

This agrees with the fact that the first instance of SSP has a solution a1 + a2 + a3 = 5 + 6 + 1 = 12.

Here n = 4 and the set of indices giving the solution is I = {1, 2, 3} = {1, 2, 3, 5} ∩ [4].

The other instance of SSP does not have a solution and the consequence is, as we have proved, that

theMarkov chain defined via transition probabilities in the normalisedmatrix 1
182M2 has no non-trivial

aggregations. /

It is worth noting that the problem of finding a non-trivial aggregation can be efficiently solved for

certain classes of systems. For example, weighted binary tournaments discussed in Section 2.2 form one

such a class. The polynomial algorithm that checks for non-trivial aggregations in that case is given

below.

The algorithm relies heavily on the fact that we have an efficient way of checkingwhether a partition

gives a compatible aggregations bymeans of the contiguity test (2.5), see also Theorem 2.4. In particular

this means that given any non-trivial compatible partition {S1, . . . , Sk} of [n], and assuming that

|S1 | > 1, the refined partition {S1} ∪ {{i} | i ∈ [n] \ S1} is also a non-trivial aggregation for the same
weighted binary tournament. This reduces the number of aggregations we need to check greatly, but

still leaves exponentiallymany of them to be considered. The final trickmaking this work in polynomial

time is that by virtue of (2.5) at each step we can either verify that the current lump S is a block of a

compatible aggregation, or we can increase it by at least one element S ←− S ∪ Q and be certain we are

not omitting any solutions by doing so.
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input : Rational n × nmatrix P satisfying Pij + Pji = 1 and Pii = 1/2
output : Yes if the tournament given by P has an aggregation,No otherwise
foreach s, t ∈ [n], s , t do
S ←− {s, t}
repeat
Q←− ∅
foreach j ∈ [n] \ S do

j_is_not_compatible←− No

foreach i, k ∈ S, i , k do
if Pij , Pkj then

j_is_not_compatible←− Yes

end
end
if j_is_not_compatible then
Q←− Q ∪ {j}

end
end
S ←− S ∪ Q

until Q = ∅
if S , [n] then

return Yes

end
end
returnNo

25



Let us explain in plain words what this algorithm does. It starts by considering all possible pairs

s, t ∈ [n], s , t and then attempts to prove that there is a compatible aggregation lumping those two

variables together. S is the current candidate for a block of a compatible aggregation. Using criterion

(2.5) the algorithm picks all the elements Q ⊆ [n] \ S that falsify the contiguity property. If Q = ∅

then we have a certificate of S being a lump of a non-trivial compatible aggregation, otherwise S ∪ Q is

taken to be a new candidate. If in the end this results with S being everything (S=[n]) we conclude that

no non-trivial aggregation lumps s and t together. Should this be the case for all the pairs s and t, we

have a proof that no non-trivial aggregations exist.

This discussion thus proves

Theorem 2.8. Determining whether a non-trivial aggregation for a weighted binary tournament exists

is in P.

2.4 artificial chemistries

We shall now show that the selection mapmodel considered in Section 2.2 can further be generalised to

include an even larger class of quadratic maps. A natural way to interpret these is through artificial

chemistries.

Example 2.9 (Chemical reactions of degree 2). Let each number in [n] represent a different chemical.

Assume that for each choice of two chemicals c1 and c2 (not necessarily different) we are given a

distribution τv = (τ1,v, τ2,v, . . . , τn,v) over [n] whose entries are interpreted as the proportions of

each of the chemicals produced by a chemical reaction involving the particles c1 and c2 as reactants. The

vector v ∈ Xn2 is, as before, used to represent the chosen pair by setting v = ec1 + ec2 . We can also write

this as a set of
(
n+1

2

)
equations of the form

c1 + c2 → τ1,v · 1 + τ2,v · 2 + · · · + τn,v · n.
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The evolution of such a system (assuming the chemical solution contains a large number of particles

and is well-mixed) is given by T = (T1, . . . , Tn) : Rn → Rn where

Ti(p) =
∑
v∈Xn2

2
v1! · · · vn!

τi,vpv1
1 · · · p

vn
n =

∑
v∈Xn2

2
v!
τi,vpv.

The factor 2/v! accounts for the number of different ways to choose the reactants represented by v.

Here it is either 2, if the reactants are different, or 1, if they are not.

One can show that for an aggregation Ξ to be compatible with this dynamics Ξ(τ1,v, . . . , τn,v) =

Ξ(τ1,w, . . . , τn,w) must hold true whenever Ξ(v) = Ξ(w). In other words, taking the blocks of the

partition associated with Ξ as meta-chemicals, the distributions over these must be well-defined for all

the pairings of meta-chemicals as reactants. This is a direct consequence of Theorem 2.11 we prove later

on. /

We could interpret any system given by a selection map as in (2.6), as a chemistry of degree 2. But

the chemistries are still more general since they also incorporate systems as in the following example.

Example 2.:0. Consider a second order chemistry on Zn = {0, 1, 2, . . . n − 1}with the reaction rules

i + j → 1 · (i + j mod n), for all i, j ∈ Zn.

Following Example 2.9, a partition π : Zn →M will be a valid aggregation if and only for any two of

its blocks, it is well defined which block they produce. Let us fix one of the blocks π−1(m) form ∈M .

Then for any element d ∈ Zn the set (π−1(m) + d mod n) must be contained within one block. From

here it is not hard to see that all the blocks are translates (or cosets) of the set {0, l, 2l, . . . , (n − l)},
where l is some positive divisor of n. Thus the range of π inM can be given a group structure that

makes it isomorphic to Zl .

This establishes a correspondence between the compatible aggregations and the divisors of n. In

fact, both the compatible aggregations and the set of divisors of n come equipped with a natural

partial order making them into lattices. It is not hard to see that these lattices are isomorphic and the

refinement relation in the former corresponds to the relation ‘is divisible by’ in the latter. /
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2.5 aggregating analytic maps

In this section we give a general framework incorporating, amongst others, models from Sections 2.2

and 2.4. Our results in this section apply to maps that are given by an absolutely convergent series

T = (T1, . . . , Tn) : Rn → Rn

Ti(p) =
∑

v1,...,vn∈N0

αi,v
v1! · · · vn!

pv1
1 · · · p

vn
n =

∑
v∈Nn0

αi,v
v!
pv (2.9)

where αi,v ∈ R for 1 ≤ i ≤ n, v ∈ Nn0 is a family of parameters. Our goal is to derive a sufficient and

necessary condition for an aggregationπ : [n]→ [m] to be compatible with T solely in terms of these

parameters. Indeed, we prove

Theorem 2.::. Let T = (T1, . . . , Tn) : Rn → Rn be an absolutely convergent series as in (2.9) defining

an analytic function on Rn. An aggregation Ξ = Ξπ : Rn → Rm (associated to π : [n] → [m]) is a

valid coarse graining if and only if

Ξ(α1,v, . . . , αn,v) = Ξ(α1,w, . . . , αn,w) whenever v, w ∈ Nn0 with Ξ(v) = Ξ(w). (2.10)

In particular, for all u ∈ Nm0 the coefficients (β1,u, . . . , βm,u) = Ξ(α1,v, . . . , αn,v), where v ∈ Nn0 is chosen

such that Ξ(v) = u, are well-defined and the coarse grained system is a convergent series on Rm given by

Q = (Q1, . . . , Qm) : Rm → Rm where

Qi(q) =
∑

u1,...,um∈N0

βi,u
u1! · · · um!

qu1
1 · · · q

um
m =

∑
u∈Nm0

βi,u
u!
qu.

Note the similarity between condition (2.10) above and (2.5). Indeed, it is not hard to see that the

former generalises the latter when T is a heuristic induced by a two point selection, and hence the

theorem above generalises Theorem 2.4.

Our proof of this result is elementary and relies on the well-known multi-variable multinomial

theorem and the fact that aggregations compatible with T must also be compatible with any of the
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partial derivatives of T . We also use a criterion for coarse grainings from [RVW06] specialised for the

case of linear maps, Proposition 2.13 below.

Recall that, as before p = (p1, . . . , pn) ∈ Rn, and ei is i-th vector of the canonical basis in Rn.

Variables v, w, etc. are reserved for labelling vectors inNn0 and |v| := v1 + v2 + · · · + vn. Following the

multi index notation due to Schwartz, the factorial function naturally extends over integral vectors

via v! = v1! · · · vn! and so do integral powers pv := pv1
1 p
v2
2 . . . p

vn
n . It is also convenient to introduce a

shorthand C (n, r) :=
(
r+n−1
r

)
, and for the space of (real)m × nmatricesMm×n. We also use vectors to

denote partial derivatives as in ∂vT (p) = d |v |
dpv11 ...dp

vn
n
T (p1, . . . , pn).

The multinomial theorem is extremely easy to state using the introduced notation. The proof is

classical and is left to the reader.

Proposition 2.:2 (The vector multinomial theorem). Let Ξ ∈ Mm×n be a stochastic 0-1 matrix

(m ≤ n) and π : [n]→ [m] the associated aggregation, and let u ∈ Nm0 . For any p ∈ R
n we have

(
Ξp

)u
=

m∏
j=1

*.
,

∑
π(i)=j

pi
+/
-

uj

=
∑

y∈Nn0∩Ξ−1(u)

u!
y!
py.

Proposition 2.:3 (Rowe et al. [RVW06, Theorem 1]). Let T : Rn → Rn be a continuously di�eren-

tiable map and let Ξ : Rn → Rm, m ≤ n, be a linear transformation. Then Ξ is a coarse graining of

the system T if and only if the kernel of Ξ is invariant under the di�erential of T at any point of the

domain Rn, formally

(DT )x · kerΞ ⊆ kerΞ for all x ∈ Rn. (2.11)

Lemma 2.:4. Let T : Rn → Rn be a smooth function of class Cd and let Ξ : Rn → Rm be a linear

map. If Ξ is a coarse graining of the system T then it coarse grains ∂vT : Rn → Rn for any v ∈ Nn0 for

which |v| ≤ d.
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Proof. It is enough to prove that ∂iT = ∂eiT =
d
dpiT is coarse grained via Ξ for any 1 ≤ i ≤ n as the

general result will then follow by induction. We denote the coarse grained system by T̃ and calculate

Ξ
d
dpi
T (p) = Ξ lim

h→0

1
h

(
T (p + hei) − T (p)

)
= lim
h→0

1
h

(
ΞT (p + hei) − ΞT (p)

)
=

= lim
h→0

1
h

(
T̃ (Ξp + hΞei) − T̃ (Ξp)

)
= (DT̃ )ΞpΞei

which is a function of Ξp as can be seen from the formula. �

Note that the linearity of both the derivative and Ξ is crucial here as it has allowed us to swap the

operators ∂ei and Ξ. We also note in passing that the calculation above proves that a surjective linear

coarse graining of a smooth map produces a system with the same degree of smoothness. In fact, as

Tóth et al. prove in [TLRT97, Theorem 2.1], the Lipschitz property is also preserved in the coarse

grained system, and with the same order. We now proceed to prove the main result.

Proof of Theorem 2.11. To simplify notation we write αv for the vector of parameters (α1,v, . . . , αn,v)

and similarly for αw. This allows us to fully exploit the vector notation and write (2.9) as

T (p) =
∑
v∈Nn0

αv
v!
pv.

Assume first that Ξ(v) = Ξ(w) implies Ξ(αv) = Ξ(αw). We need to show that Ξ(T (p)) is a

function of Ξ(p). We calculate

Ξ(T (p)) = Ξ *.
,

∑
v∈Nn0

1
v!
αvpv

+/
-
=

∑
v∈Nn0

1
v!
Ξ(αv)pv =

∑
u∈Nm0

∑
v:Ξ(v)=u

1
v!
Ξ(αv)pv =

=
∑
u∈Nm0

1
u!
βu

∑
v : Ξ(v)=u

u!
v!
pv =

∑
u∈Nm0

1
u!
βu(Ξp)u = Q(Ξp)

where we used the multinomial theorem.

Conversely, assume that the aggregation Ξ is a coarse graining of T . It suffices to show that

Ξ(v) = Ξ(w) implies Ξ(αv) = Ξ(αw) when v − w = ei − ej , i.e. when the vectors v and w differ by 1 at

exactly two coordinates. For any other choice of an equivalent pair v and w we can construct a chain of
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intermediate equivalent vectors transforming v to w by changing one coordinate at the time. Applying

the base case to each link in the chain will produce a chain of equalities giving the general case. For

example, if n = 4 and the aggregation corresponds to the partition {{1, 2, 3}, {4}} then

(3, 0, 0, 1) (2, 1, 0, 1) (1, 2, 0, 1) (0, 2, 1, 1)

is a valid sequence of intermediate transformations.

Assume, therefore, that for some y, v, w ∈ Nn0 we have y = v − ei = w − ej, and Ξ(v) = Ξ(w).

Using Lemma 2.14 we get thatΞ coarse grains ∂yT . Note that ei − ej = v−w ∈ kerΞ, and the necessary

condition for coarse graining (2.11) implies that

(D(∂yT ))(0,...,0) (ei − ej) = ∂ei∂yT (0, . . . , 0) − ∂ej∂yT (0, . . . , 0) =

= ∂vT (0, . . . , 0) − ∂wT (0, . . . , 0) ∈ kerΞ.

Hence,

Ξ(∂vT (0, . . . , 0)) = Ξ(∂wT (0, . . . , 0)).

But the series for T is given as a Taylor series about (0, . . . , 0) and therefore ∂vT (0, . . . , 0) = αv for all

v ∈ Nn0. Thus Ξ(αv) = Ξ(αw), as required. �

Observation. Note that the proof works even if the series expansion for T is given about a point

other than 0. This allows to extend the result to any analytic function T just by requiring that the

condition (2.10) holds locally for a series expansion of T about any point in the domain.

Corollary 2.:5. Let T = (T1, . . . , Tn) : Rn → Rn be an analytic function as in (2.9). An aggregation

Ξ : Rn → Rm is a valid coarse graining if and only if it coarse grains each of the homogeneous components
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of T which are defined for each d ∈ N0 as the projection T (d) = (T (d)
1 , . . . , T (d)

n ) : Rn → Rn on the

space of homogeneous polynomials of degree d where

T (d)
i (p) =

∑
v1 ,...,vn∈N0
v1+···+vn=d

αi,v
v1! · · · vn!

pv1
1 · · · p

vn
n =

∑
v∈Nn0:|v|=d

αi,v
v!
pv.

Proof. It suffices to note that |v| = |Ξ(v) | and similarly for w, and hence |v| = |w| whenever Ξ(v) =

Ξ(w). Applying Theorem 2.11 twice will now give the result. �

2.6 concluding remarks

In the present chapter we gave a criterion for an aggregation of variables to be compatible with a map

that is given by its series expansion; and showed how it can be applied to artificial chemistries. Despite

the attractive and deceptively simple looking characterisations presented here, we also showed that the

existence of a non-trivial compatible aggregation is a difficult problem in general. This means that for

some systems, an algorithm searching for compatible aggregations cannot essentially be better then the

one that exhaustively tests all the partitions of the set of variables.

For certain classes of problems, as we saw in the case of binary tournaments, it is possible to give

an efficient algorithm searching for aggregations. The ideas we used here are somewhat similar in

flavour to those used in other model reduction algorithms for DTMCs, one of such being ‘partition

minimisation’ introduced by Paige and Tarjan in [PT87], and adapted to Markov chains in [DHS03].

We also looked into different ways of modelling finite number particles systems. Given an infinite

population model, one possible way of simulating the system was using RandomHeuristic Search

framework. Themain characteristic of theRHS approach is that it is generational. Each new generation,

although dependent on the previous one, consists of an entirely new collection of entities. Sometimes,

other approaches may be more appropriate. Indeed, if our algorithm is supposed to simulate a real

biological system, it is natural to allow the members of different generations to coexist. Similarly, if we

are to simulate a chemical process, we would like to keep most of the particles for the new generation,
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and only those few that bump into another particle with which they can react, will be replaced with a

product of the reaction in the next time step.

Artificial chemistries are a fruitful area and it is no surprise that different authors (Fontana et al.

[FB94], Tóth et al. [TLRT97], Dittrich et al. [DDF07] to name a few) model chemical reactions in

different ways. What seems promising is that all of them incorporate a polynomial model similar to

the one we had above. This should mean that the results on compatible aggregations can be easily

transferred across the modelling paradigms, and this is something we would like to explore in future.
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Chapter 3

REACHING CONSENSUS ON A CONNECTED GRAPH

I
n this chapter we study a simple random process by means of which vertices of a connected

graph can reach a mutual decision only through pairwise interactions with their neigh-

bours. Each vertex of the graph is initially assigned a label (we shall call them strategies)

from the set [n] = {1, 2, . . . , n} uniformly at random. Then at each time step one of the edges of the

graph is selected uniformly at random and the two vertices it connects get relabelled as follows: with

probability p both adopt the higher strategy and with probability 1 − p both adopt the lower one. Almost

surely this process has to terminate in finite time with all the vertices playing the same strategy.

In the special case when the underlying graph is the complete graph over r vertices Kr it is not too

difficult to see that we can lump together any two isomorphic labellings of Kr . This means that we

consider two labellings the same if the number of vertices playing each of the strategies is the same. This

gives a coarse graining onto a Markov chain with the underlying state space Xnr (as defined in Section

2.1). Indeed this chain is exactly the same as the one obtained by considering the heuristic map T from

Example 2.5 and the chain from Section 2.1 induced by the transition function F2 defined in (2.3).

If the underlying graph is not complete then it is no longer the case that labellings with the same

counts are necessarily isomorphic and thus the models considered in this chapter are truly a generalisation

of those studied in Chapter 2.

For these models one can compute probabilities that a certain strategy gets chosen and these, surpris-

ingly, do not depend on the network structure between the vertices. For the class of regular graphs —

those in which each vertex is adjacent to the same number of neighbours — and with the restriction to

two strategies one can also show that the expected waiting time until the decision has been made is the

shortest for the complete graph. These two results are due to Haslegrave [HP17].
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In order to obtain the formula for the mean of the waiting time we also study a version of the classical

gambler’s ruin process with delays. We obtain explicit expressions for the expected time until absorption

and also prove that this monotonically increases with the parameter p ∈ [0, 1/2] in case of symmetric

delays. As a direct application we obtain the monotonicity result for the mean of the waiting time until

consensus on the complete graph when the number of strategies is 2.

In the last section we briefly mention two results, again due to Haslegrave, that give upper bounds on

the waiting time for p = 0.

The results in this chapter form joint work with John Haslegrave and the paper [HP17] containing

this material has been accepted for publication.

The reader should be warned that in order to maintain consistency with [HP17] the notation is

slightly altered below. From this point onwards we denote the number of strategies by m, and the

number of vertices in the connected graph by n.

Let us reiterate. We consider the evolution of a system on a connected graphG with n vertices. Each

vertex has a strategy taken from {1, . . . , m} (we shall frequently write [m] for this set). The starting

strategies of the vertices are chosen independently and uniformly at random. At each time step an edge

is chosen uniformly at random, and both vertices are updated to have the same strategy, which is the

higher of the two with probability p and the lower with probability 1 − p. This simple model covers

a broad range of real-life scenarios where a consensus is reached via pairwise interactions among the

individual agents, whether we are interested in modelling an infectious disease spread or the process by

which a certain gene became prevalent in the human genome.

The model was inspired by the well-studied tournament games in the theory of genetic algorithms

(see Rowe, Vose andWright [RVW06,RVW05a] and Vose [Vos99]) and indeed, it is a generalisation

of these as we have seen in the introduction. The idea is that the underlying connected graph allows for

modelling a spatial aspect of the problem at hand. It therefore comes as a surprise when in Section 3.1

we prove that the probability that a certain strategy prevails does not depend on the network structure

of the vertices. This is achieved by reducing the problem to the study of the two-strategy case by looking

at contiguous partitions of the strategy set. Validity of these coarse grainings was previously checked

only for the complete graph case in [RVW05a] (and see also Example 2.5).
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The expected time to reach a consensus will, of course, depend on the graph structure and we are

able to give explicit formula for this mean only for the case of the complete graph and two strategies.

This is done in Section 3.2 by relating the problem to a version of the gambler’s ruin process with delays.

By elementary means we show that this expression is monotonic in parameter p ∈ [0, 1/2] in the case

of symmetric delays, which translates to a monotonicity result for the expected decision time of our

process on the complete graph. Computer simulations using the PRISMmodel-checking software

[KNP11] seem to indicate that this holds true more generally for any fixed connected graph but the

proof remains elusive.

It seems natural to conjecture that for a fixed parameter p the process over the complete graph, on

average, reaches consensus most quickly. This is again supported by the computer simulations but has

been only proven it in the class of regular graphs where each vertex is adjacent to the same number of

neighbours and with the restriction to two strategies, see Section 3.1.

3.1 absorption probabilities; the optimality of the complete graph

Since G is connected, eventually the process will, with probability 1, reach a state where only one

strategy remains. Let S be the random variable denoting the strategy that is left. Below we reproduce

an argument due to Haslegrave showing that the distribution of S depends only on parameters n,m,

and p. In particular, it does not depend on the structure ofG, only its order.

Theorem 3.: (Haslegrave). For any graph G with n vertices, if the initial state is chosen uniformly at

random from [m]n then P (S = l) does not depend on the structure of G.

Proof. Trivially if p = 1/2 all strategies are equivalent, and each is equally likely to remain to the end,

so we may assume p , 1/2. We first compute P (S 6 l) by coarse graining the strategies into those at

most l and those exceeding l; call these sets of strategiesA and B respectively. This is a coarse graining

in the sense that when we consider the vertices as playing strategies in {A, B} nothing changes unless
the edge chosen has one vertex with strategyA and one with strategy B (call this a “significant edge”),

in which case they will both adopt B with probability p and both adoptA with probability 1− p. Thus
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the coarse grained process we obtain on strategies {A, B} is exactly the same as the original process for
m = 2, save that the distribution of starting states is different. We shall have S 6 l if and only if the

coarse grained process reaches consensus with all vertices playingA.

Write a0 for the number of vertices initially playingA, and let ar be the number playingA after

the rth time a significant edge is chosen. The evolution of ar is a randomwalk with absorbing states at 0

and n, where ar = ar−1 + 1 with probability 1 − p and ar = ar−1 − 1 with probability p, independent of

which edges are chosen, and indeed independent ofG. So the probability that ar reaches n before 0, i.e.

P (S 6 l), does not depend onG, only on n,m and l. Therefore P (S = l) = P (S 6 l) −P (S 6 l − 1)

is also independent ofG. �

Remark 3.2. Note that the process (ar)r∈N0 above is just an instance of the classical gambler’s ruin

process (precisely defined in the following section) and using the formulae from say [Fel68] one can

obtain the probability that ar reaches n before 0 conditionally on a0 = k:

P (S ≤ l | a0 = k) =
(1 − p)n − pk(1 − p)n−k

(1 − p)n − pn
, for 0 ≤ k ≤ n.

Recall that the initial distribution of strategies is uniform and thus the probability that any vertex starts

with a strategy inA which is less than or equal to l is lm . As there are n vertices inG, the probability

that exactly k of them are initially playingA is:

P (a0 = k) =
(
n
k

) (
l
m

)k (
m − l
m

)n−k
, for 0 ≤ k ≤ n.

Now using

P (S ≤ l) =
n∑
k=0
P (S ≤ l | a0 = k) P (a0 = k)

and

P (S = l) = P (S ≤ l) − P (S ≤ l − 1)
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one obtains the following expression for these probabilities:

P (S = l) =




1/m if p = 1/2,

(2pl−2p+m−mp−l+1)n−(2pl+m−mp−l)n
(m−mp)n−(mp)n otherwise.

The probability of a particular strategy remaining at the end does not depend on the structure of

G, but the time taken until this point is reached will do. It is natural to conjecture that the graph which

has the quickest expected time isKn. Haslegrave showed this for the special case whereG is known to

be regular andm = 2. We quote the result below and omit the proof as it does not employ any coarse

graining ideas.

Theorem 3.3 (Haslegrave). For m = 2 and any values of n and p, Kn has the shortest expected time

to completion of any n-vertex regular graph.

3.2 gambler’s ruin with delays

In this section we consider a special case of our problem of reaching a consensus on the complete graph

with n vertices wherem = 2. We shall say that the vertices playing strategy 1 are active and those playing

strategy 2 are inactive. Because of the symmetries of the complete graph, from the probabilistic point

of view, it is easily seen that the evolution of this system is isomorphic to a random walk over the set of

states {0, 1, . . . , n}with 0 and n being absorbing states. More precisely, given that k vertices are active

and the remaining n − k are inactive, the probability of sampling a significant edge (see Section 3.1) is

γk = 2k(n−k)
n(n−1) and conditionally on choosing a significant edge the probability of activating yet another

vertex is 1− p, and with probability p a previously active vertex is deactivated. We remark in passing that

the probability of sampling a significant edge is symmetric under swapping the strategies, γn−k = γk.

Below, we recall some of the theory on random walks relevant to our problem.

Gambler’s ruin (GR) is a classical problem in probability theory. Given fixed parameters p ∈

[0, 1/2] and n ∈ N, a Markov chain (Xt )t∈N0 over the state space {0, 1, . . . , n} is defined as follows.
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The states 0 and n are set to be absorbing and the remaining transition probabilities for states 0 < k < n

are given by

pk,k−1 = P (Xt+1 = k − 1 | Xt = k) = p,

pk,k+1 = P (Xt+1 = k + 1 | Xt = k) = 1 − p.

This Markov chain models the situation where a gambler enters a casino with £X0 in his pocket and

plays a sequence of games in which his odds of winning are p : 1 − p and each time he bets £1 on his

win. This continues until he either hits his goal £n, or until he bankrupts, whichever occurs first. The

time of this happening is represented by the random variable T = min{t ∈ N0 : Xt ∈ {0, n}} and is
usually called the absorption time, which is known to be almost surely finite.

There are a few interesting quantities to investigate in this setting: the probability of gambler’s ruin

and how it depends on the initial capital, P (XT = 0 | X0 = k), the expected time for this to happen,

E (T | X0 = k, XT = 0), etc. It turns out that for the classical GR many of these quantities can be

explicitly computed. This is usually done by employing martingale theory (see e.g. Williams [Wil91]),

or, more elementarily, by solving certain recurrence relations (as in [Fel68]).

In the present chapter we seek to analyse the more general problem of gambler’s ruin with delays

(DGR). Given p and n as before, and a sequence of parameters (γ1, . . . , γn−1) ∈ (0, 1]n−1 we define a

newMarkov chain (Xt )t∈N0 over {0, 1, . . . , n}with 0 andn still being absorbing states and the following

transition probabilities for 0 < k < n:

pk,k−1 = P (Xt+1 = k − 1 | Xt = k) = pγk,

pk,k+1 = P (Xt+1 = k + 1 | Xt = k) = (1 − p)γk,

pk,k = P (Xt+1 = k | Xt = k) = 1 − γk.

Thismodifies the previousmodel by allowing a drawoutcome of a gamewith probability 1−γk inwhich

case our gambler’s fortune is unchanged, and conditioned on winning or losing £1 the probabilities

are the same as before. It may seem artificial as a game of chance to allow the probability of the draw
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outcome to depend on the current fortune of the gambler. However, for our purposes, this is exactly

what was needed, as the number of significant edges (and hence the probability to sample one) at any

time depends only on the number of currently active vertices.

Note that setting γ0 = 0, γn = 0 the formulae above extend to 0 ≤ k ≤ n. In the special case

γ1 = · · · = γn−1 = 1 we recover the classical GR.

There is a vast amount of literature dealing with gambler’s ruin and its extensions. This ranges

from classical textbooks on probability such as Feller’s [Fel68] to recent papers generalising the original

problem in various directions. Engel [Eng93], Stirzaker [Sti94, Sti06], Bruss, Louchard and Turner

[BLT03], and Swan and Bruss [SB06] all look at the problem ofN > 2 gamblers playing each other at

random and compute probabilities of each player being ruined and various other associated quantities

depending on the initial wealth distribution. Some authors refer to this as theN -tower problem as the

process can be visualised byN towers of stacked coins where at each step a coin is taken from the top

of a tower chosen at random and placed on another tower amongst the others chosen again at random.

The game stops when one of the towers becomes empty.

Other variations include two players (a casino and a gambler) with multiple currencies [KP02] by

Kmet and Petkovšek. Lengyel in [Len09] and Gut in [Gut13] allow ties, and more generally Katriel in

[Kat14,Kat13] studies absorption time for a game in which the pay-off is a random variable with range

[−ν,+∞) ∩ Z for a positive integer ν. Common to all these is that they assume identically distributed

increments, whereas we allow that these depend on the given state.

InGut’s paper [Gut13], a particular instance ofDGRwhen all the delays are the same is investigated.

One can recover all of his results (with slightly different notation) by setting γ1 = · · · = γn−1 = 1 − r.

El-Shehawey [ES09] allows all the probabilities to win, lose or draw to depend on the player’s current

fortune. This is indeed a more general setting then ours but only absorption (i.e. ruin) probabilities are

provided there and the expected waiting time until absorption is not considered. The procedure to

compute these expectations was, however, described in Parzen’s book [Par99, pp. 239 – 241] and we

apply it to our setting below.

We shall now derive the formula for the expected time of absorption of DGR. As before, T is the

time of absorption. To simplify notation, for each 0 ≤ k ≤ nwe denote E (T | X0 = k) by Ek. Note
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that the ratio pk,k−1
pk,k+1
=

p
1−p ∈ [0, 1] is fixed and we denote it by λ. In order to calculate the expected time

of absorption, we need to solve the following recurrence relation

γkEk = 1 + γk(pEk−1 + (1 − p)Ek+1), (3.1)

for 0 < k < n, with the boundary conditions E0 = 0, and En = 0. Note that the associated

homogeneous equation

Ek = pEk−1 + (1 − p)Ek+1 (3.2)

whose solutions yield the probabilities for the chain to be absorbed in 0 or n, depending on which

boundary conditions are imposed, is the same as in the case of classical GR. In other words, since the

equation (3.2) above does not depend on the lagging parameters γk, the probability that the gambler

bankrupts before earning £n is the same for both DGR and GR.

It is not hard to see that for any a, b ∈ R the expression a + bλk solves the homogeneous equation

above and finding the solution is therefore just a matter of fitting the constants a and b. In order to find

all the solutions to (3.1) it therefore suffices to find just one particular solution to it. One way to solve

this is by assuming a series expansion
∑
i aiλi of the solution. After a somewhat tedious computation

which we deliberately skip, one can obtain the solution:

Ek =
1 + λ
1 − λ

*.
,
Sn

1 − λk

1 − λn
−

k−1∑
i=1

1
γi

(1 − λk−i)+/
-
, for 0 ≤ k ≤ n, (3.3)

where

Sn =
n−1∑
i=1

1
γi

(1 − λn−i).
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The reader is invited to check that this indeed satisfies both the recurrence relation (3.1) and the boundary

conditions. Setting γ1 = · · · = γn−1 = 1 − r gives

Sn =
1

1 − r

(
n −

1 − λn

1 − λ

)
,

Ek =
1

1 − r
·

1 + λ
1 − λ

(
n

1 − λk

1 − λn
− k

)
,

which coincides with the result in Gut’s aforementioned paper [Gut13].

Note that plugging in the values γi = 2i(n−i)
n(n−1) into (3.3) will give the explicit formula for the expected

time of reaching a consensus on the complete graph assuming we start with k supporters of the first

(more persuasive if p < 1/2) and n − k of the second (weaker) option.

Remark 3.4. Note that all the formulae have a removable singularity at 1 and hence are well defined

by continuity at λ = 1 which corresponds to p = 1/2.

3.2.1 Monotonicity of the mean absorption time

We now wish to show that as p increases from 0 to 1/2 (or λ from 0 to 1) the mean absorption time

monotonically increases as well. We could try to prove that each Ek is monotonic in p but this clearly

is not true even in the case with no delays. One can easily compute that, for example, E1 when n = 3

attains a global maximum at λ = (−1+
√

3)/2. For this reason we shall be considering symmetric sums

Ek + En−k.

Unfortunately, these symmetric sums are also not in general monotonic. It turns out, however, that

for a fixed 0 < k < n the symmetric term Ek + En−k is indeed increasing with λ, as long as we assume

that the parameters γi are symmetric, i.e. if γi = γn−i for 0 < i < n. Note that for the application we

have in mind this suffices, as the starting distribution of strategies over the graph is usually chosen in

a way that makes it symmetric under swapping the strategies, and also the probability of sampling a

significant edge (which is interpreted as a delay parameter γi) only depends on the number of vertices

currently playing one or the other strategy, and, as we noted before, is independent under swapping

the two strategies.
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We shall first give the proof of this fact for the classical GR which immediately extends to the case

where all the parameters γi are the same. We shall need the following lemma.

Lemma 3.5. Let α > 1. The function

f (λ) =
1 − λ
1 + λ

·
1 + λα

1 − λα

is a decreasing (non-negative) function of λ on [0, 1].

Proof. The function is continuously differentiable on (0, 1) with f ′(0) = −2, hence it suffices to show

that f ′ does not have zeros in (0, 1).

The zeros of f ′, if they were to exist, would have to satisfy the following equation

αλα−1(1 − λ2) + λ2α − 1 = 0,

or the equivalent one

g (λ) = α
( 1
λ
− λ

)
+

(
λα −

1
λα

)
= 0.

Setting λ = e−t we get

g (λ) = h(t) = 2α (sinh(t) − sinh(αt))

and it suffices to show that h(t) does not have zeros in t ∈ (0,+∞). But this is clear since sinh is

increasing on (0,+∞) and hence t < αt implies sinh(t) − sinh(αt) < 0. �

Theorem 3.6. In the classical GR setting, the symmetrised expectation

Ek + En−k = n ·
1 + λ
1 − λ

·
(1 − λk)(1 − λn−k)

1 − λn

is a (non-negative) increasing function of λ on [0, 1] for each 0 ≤ k ≤ n.

Proof. Note,

1 − λn =
1
2

(1 − λk)(1 + λn−k) +
1
2

(1 + λk)(1 − λn−k).
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Hence,
1

Ek + En−k
=

1
2n

(
1 − λ
1 + λ

·
1 + λn−k

1 − λn−k
+

1 − λ
1 + λ

·
1 + λk

1 − λk

)
and applying Lemma 3.5 twice yields the result. �

Wewould now like to prove the same result for the general symmetric DGR. The expression for

the symmetric term is

Ek + En−k =
1 + λ
1 − λ

[ n−1∑
i=1

1
γi

(1 − λn−i)
2 − λk − λn−k

1 − λn

−

k−1∑
i=1

1
γi

(1 − λk−i) −
n−k−1∑
i=1

1
γi

(1 − λn−k−i)
]
. (3.4)

For a fixed 0 < i < n letting γi = γn−i tend to 0 whilst keeping the rest of the parameters bounded

away from zero, the terms containing 1
γi =

1
γn−i will become dominant whichmeans that the expression

above increases with λ if and only if each of those terms increases with λ ∈ [0, 1]. It now remains to

collect the like terms involving 1
γi =

1
γn−i , and to show that these are increasing with λ.

Let us fix k and i. We may assume that 0 < k, i ≤ n/2 as it is assumed that γis are invariant under

changing i with n − i, and as the expression under consideration Ek + En−k is also symmetric. The

termmultiplying 1
γi =

1
γn−i in (3.4) is

1 + λ
1 − λ

[
(2 − λn−i − λi)

(2 − λk − λn−k)
1 − λn

− (1 − λk−i) − (1 − λn−k−i)
]

(3.5)

if i < k, and hence n − i > n − k; and

1 + λ
1 − λ

[
(2 − λn−i − λi)

(2 − λk − λn−k)
1 − λn

− (1 − λn−k−i) − (1 − λi−k)
]

(3.6)

if i > k, and hence n − i < n − k. If k = i both expressions are valid. Notice that swapping i with k

transforms one into another and therefore it suffices to prove that the expression in (3.5) is an increasing

function of λ ∈ [0, 1] for fixed 0 < i ≤ k ≤ n/2.
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Remark 3.7. Note that in case n is even and i = n/2, we have i = n − i and also k ≤ i, so in order

not to double-count, the expression we should be considering is not (3.6) but rather

1 + λ
1 − λ

[
(1 − λn/2)

(2 − λk − λn−k)
1 − λn

− (1 − λn/2−k)
]

which is exactly a half of (3.6). It therefore still suffices to showmonotonicity of (3.6), or equivalently

(3.5).

Let us denote byG(λ) the expression inside the square brackets in (3.5):

G(λ) = (2 − λn−i − λi)
(2 − λk − λn−k)

1 − λn
− (1 − λk−i) − (1 − λn−k−i).

Then in order to show that

λ 7→
1 + λ
1 − λ

· G(λ)

is increasing on [0, 1] it is sufficient to show that

H (λ) =
1 + λi

1 − λi
· G(λ)

is increasing and non-negative on the same domain, as by virtue of Lemma 3.5 we know that

λ 7→
1 + λ
1 − λ

·
1 − λi

1 + λi

is non-negative and increasing, and so will be the product of the two. We calculate,

G(λ) =
(2 − λn−i − λi)(2 − λk − λn−k) − (2 − λk−i − λn−k−i)(1 − λn)

1 − λn

=
2 − 2λk − 2λn−k − 2λn−i − 2λi + λk+i + λn−(k−i) + λk−i + λn−(k+i) + 2λn

1 − λn

=
(1 − λi)

[
2 − 2λn−i + λk−i + λn−(k+i) − λk − λn−k

]

1 − λn

=
(1 − λi)

[
2(1 − λn−i) + (1 − λi)(λk−i + λn−(k+i))

]

1 − λn
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and hence

H (λ) =
1 + λi

1 − λi
· G(λ) =

(1 + λi)
[
2(1 − λn−i) + (1 − λi)(λk−i + λn−(k+i))

]

1 − λn
.

After introducing a substitution λ = e−2t ,

F (t) =
1
2
H (e−2t ) =

2 cosh(it) [sinh((n − i)t) + sinh(it) cosh((n − 2k)t)]
sinh(nt)

=
2 cosh(it) sinh((n − i)t) + sinh(2it) cosh((n − 2k)t)

sinh(nt)

it suffices to show that F is non-negative and decreasing on [0,+∞). Using addition formulae we can

rearrange the numerator of the previous expression to read

[2 cosh(it) sinh(nt) cosh(it) − sinh(nt)] + sinh(nt) − 2 cosh(it) sinh(it) cosh(nt)

+ sinh(2it) cosh((n − 2k)t)

= sinh(nt) cosh(2it) + sinh(nt) − sinh(2it) cosh(nt) + sinh(2it) cosh((n − 2k)t)

= sinh((n − 2i)t) + sinh(2it) cosh((n − 2k)t) + sinh(nt).

Therefore

F (t) = 1 +
sinh((n − 2i)t) + sinh(2it) cosh((n − 2k)t)

sinh(nt)
.

Tomake things cleaner, we introduce yet another substitution

Q(t) = F (t/n) − 1 =
sinh((1 − α)t) + sinh(αt) cosh((1 − β)t)

sinh(t)

=
2 sinh((1 − α)t) + sinh((α + β − 1)t) + sinh((1 − β + α)t)

2 sinh(t)

where α = 2i
n , β =

2k
n , and since 0 < i ≤ k ≤ n/2 we have 0 < α ≤ β ≤ 1. It is clear now from the

formula that F (t) ≥ 1 on [0,∞) and in particular F is non-negative on the positive reals. It therefore
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remains to show that Q is decreasing on [0,∞), or equivalently (since the denominator of Q′(t) is

4 sinh2(t)) that

4 sinh2(t)Q′(t) ≤ 0, for t ∈ [0,∞).

We calculate

W (t) = 4 sinh2(t)Q′(t)

= 2 sinh(t)
[
2(1 − α) cosh((1 − α)t) + (α + β − 1) cosh((α + β − 1)t)

+ (1 − β + α) cosh((1 − β + α)t)
]
− 2 cosh(t)

[
2 sinh((1 − α)t)

+ sinh((α + β − 1)t) + sinh((1 − β + α)t)
]

= 2(1 − α)
[

sinh((2 − α)t) + sinh(αt)
]
+ (α + β − 1)

[
sinh((α + β)t)

+ sinh((2 − α − β)t)
]
+ (1 − β + α)

[
sinh((2 − β + α)t) + sinh((β − α)t)

]
− 2

[
sinh((2 − α)t) − sinh((α)t)

]
−

[
sinh((α + β)t) − sinh((2 − α − β)t)

]
−

[
sinh((2 − β + α)t) − sinh((β − α)t)

]
= −2α sinh((2 − α)t) + 2(2 − α) sinh(αt) − (2 − α − β) sinh((α + β)t)

+ (α + β) sinh((2 − α − β)t) − (β − α) sinh((2 − β + α)t)

+ (2 − β + α) sinh((β − α)t)
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This last expression forW (t) clearly evaluates to zero at t = 0 and therefore it is enough to show that

this is decreasing on t ∈ [0,∞), in other words it suffices to showW ′(t) ≤ 0 for t ≥ 0. We calculate

again,

W ′(t) = 2(2 − α)α [cosh(αt) − cosh((2 − α)t)]

+ (α + β)(2 − α − β)
[
cosh((2 − α − β)t) − cosh((α + β)t)

]

+ (2 − β + α)(β − α)
[
cosh((β − α)t) − cosh((2 − β + α)t)

]

= 4(2 − α)α sinh(t) sinh((α − 1)t)

+ 2(α + β)(2 − α − β) sinh(t) sinh((1 − α − β)t)

+ 2(2 − β + α)(β − α) sinh(t) sinh((β − α − 1)t)

= − sinh(t)
[
4(2 − α)α sinh((1 − α)t) + 2(2 − β + α)(β − α) sinh((1 − β + α)t)

− 2(α + β)(2 − α − β) sinh((1 − α − β)t)
]

In the case α + β > 1 the claim easily follows as the minus sign in front of the third term can be used to

change the argument of that sinh function to (α + β − 1)t. Recalling that 0 < α ≤ β ≤ 1 it is easy to

check that all the other constant factors appearing in the expression are non-negative.

In the case α + β ≤ 1, the claim follows from the facts that

4(2 − α)α + 2(2 − β + α)(β − α) ≥ 2(α + β)(2 − α − β),

1 − α ≥ 1 − α − β,

1 − β + α ≥ 1 − α − β,

and the following lemma.

Lemma 3.8. Let a1, a2, a3, b1, b2, b3 be non-negative real numbers such that b1 ≥ b3, b2 ≥ b3, and

a1 + a2 ≥ a3. Then for all t ≥ 0

a1 sinh(b1t) + a2 sinh(b2t) − a3 sinh(b3t) ≥ 0.
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Proof. We rewrite the left hand side as

a1 [sinh(b1t) − sinh(b3t)] + a2 [sinh(b2t) − sinh(b3t)] + (a1 + a2 − a3) sinh(b3t).

Since sinh is an increasing function, each of the terms above is non-negative. �

This completes the proof of the following theorem.

Theorem 3.9. For each 0 ≤ k ≤ n the symmetric sum of the mean absorption times E (T | X0 = k)+

E (T | X0 = n − k) of gambler’s ruin with symmetric delays is monotonically increasing with p ∈

[0, 1/2].

In particular, we have proved the following result.

Theorem 3.:0. For m = 2 and G = Kn the complete graph with n vertices, and if the initial state is

chosen symmetrically with respect to swapping strategies (e.g. uniformly at random), then the expected

time until reaching consensus increases monotonically with p ∈ [0, 1/2].

3.3 a few words on upper bounds on the time to completion

Haslegrave also considered which graphs give the longest expected time to completion. In the special

case when p = 0 andm = 2, he proves the following upper bound.

Theorem 3.:: (Haslegrave). For any connected graph G with n vertices, E (T ) < n2 log n + n.

This bound is close to best possible, as he also shows that jellyfish graphs attain the bound up to a

factor of 1 − o(1). Recall that the jellyfish graph consists of a clique (that is, a complete subgraph) with

several shorter pendant paths attached as evenly as possible.

Theorem 3.:2 (Haslegrave). Let Jn be the jellyfish graph consisting of a clique of size n − 2n/ log2 n,

with n/ (log2 n)2 pendant paths of length 2 log2 n each. Then the expected time of the process on Jn is

(1 − o(1))n2 log n.

The proofs of both of these results involve bounding the expected time to completion in a variant

of the coupon collector’s problem and are beyond the scope of this thesis.
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Chapter 4

INDUCED DYNAMICS ON THE HY PERSPACE OF COMPACT

SUBSETS

S
tudying the dynamics of a system (X,T ) can be approached from many di�erent angles.

The most direct strategy, by studying individual orbits, can indeed be very fruitful, and

most of the topological dynamics has built upon this premise. In reality, however, one

rarely knows precisely the state of a physical system. The observables usually come with some uncertainty

and it therefore makes sense to study probability distributions on X and how they evolve. As Bauer and

Sigmund nicely put it in their paper [BS75] from 1975:

“The elements ofM (X ) [the space of probability measures onX] can be viewed as statistical
states, representing imperfect knowledge of the system. The elements of X are imbedded in
M (X ) as the pure states.”

To a topologist, it seems natural to dismiss probabilities and study how the support of a probability

distribution evolves over time, i.e. to study the induced dynamics on 2X , the hyperspace of compact

non-empty subsets of X . This transition from probability measures to their supports is in fact a coarse

graining.

In this chapter we study the interplay between the original system (X,T ) and its associated system

(2X , 2T ). The focus is on periodic points and how knowing which periods appear in one system can help

to find those appearing in the other. We give some necessary conditions on admissible sets of periods for

these maps. Seemingly unrelated to this, we construct an almost totally minimal homeomorphism of the

Cantor set. We also apply our theory to give a full description of admissible period sets for induced maps

of the interval maps, and maps over the reals. The description of admissible periods is also given for

maps induced on symmetric products.
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The results in this chapter are joint with Leobardo Fernández and Chris Good— the paper [FGPR15]

containing this material is currently under review.

Let us first expand on the motivational construction from the introduction. Given a compact

metric spaceX and a continuous function T : X → X , recall that

2X = {A ⊆ X | A is non-empty and compact}

denotes the hyperspace of compact non-empty subsets of X . The topology on 2X is induced by the

Hausdor� distance:

dH (A, B) = inf{ε > 0 | A ⊆ Nε(B) and B ⊆ Nε(A)},

for anyA, B ∈ 2X , whereNε(A) = {x ∈ X | (∃y ∈ A) d(x, y) < ε} denotes the ε-neighbourhood
of the setA. It turns out that this topology on 2X is compact and coincides with the abstractly defined

Vietoris’ topology given by the basis

B = {〈U1, U2, . . . , Um〉 | Ui is open for each i ∈ {1, 2, ..., m}, m ∈ N},

where

〈U1, U2, ..., Um〉 =


A ∈ 2X | A ⊆

m⋃
i=1
Ui andA ∩ Ui , ∅, i ∈ {1, 2, ..., m}


.

For the proof of these and related results see [Mac05] and [Nad06, Theorem 0.11 and 0.13].

On this compact space one can define a natural induced map 2T : 2X → 2X given by:

2T (A) = T (A) = {T (a) | a ∈ A}, for anyA ∈ 2X ,
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which is continuous with respect to the Hausdorff distance. Intuitively, if T is taken to represent an

update function of some system, then tracking the orbits of 2T amounts to tracking a collection of

points of the original system as they evolve over time.

From the measure theoretic perspective computing the probability of seeing a system in a certain

state at a certain time is more important then trying to compute the exact state of the system given that

the initial state is usually not accurately known and only probabilities can be assigned to regions of the

state space from which the system was likely to have started. This point of view has lead to the rich

study of the space of measures overX and the associated push-forward operator µ 7→ T#µ where T#µ

is a measure defined by:

(T#µ)(S) = µ(T−1(S)), for any measurable S ⊆ X.

IfX is for example an interval [0, 1], T a smooth piecewise monotone map with T ′ , 0 everywhere

except possibly at a finite number of points, and if the measure µ has a density f with respect to the

Lebesgue measure; by the change of variables formula one can see that the push-forward measure T#µ

also has a density g given by the formula:

g (x) =
∑

y∈T−1(x)

f (y)
1

|T ′(y) |
,

which is precisely the defining relation of the transfer operator.

Dispensing with probabilities, one can ask how supports of these measures evolve over time. Recall

that the support of ameasure can intuitively be understood as a closed set of fullmeasure that isminimal

with respect to inclusion. The set, denoted by supp(µ), outside of which our system is unlikely to be

found if µ represents the probability of finding our system in some state. It is immediate from the

definition that supp(T#µ) = 2T (supp(µ)) hence the evolution of the support is precisely described

by the hyperspace dynamics and the map supp : M (X ) → 2X is a coarse graining.

Clearly one is interested in which properties of the dynamical system (X,T ) transfer to the system

(2X , 2T ) and there have been a number of results in this direction. For example, Banks [Ban05] proves

that T is weakly mixing if and only if 2T is weakly mixing which is further equivalent to 2T being
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transitive. Bauer and Sigmund in [BS75] show that if T has positive entropy, then the entropy of 2T is

infinite. Kwietniak andOprocha go on to show [KO07] that ifT does not have a dense set of recurrent

points, then the entropy of 2T is at least log 2. Guirao, Kwietniak, Lampart, Oprocha, and Peris in

[GKL+09] show that each of the usual notions of chaos except for the classical Devaney’s definition is

transferred from T to 2T , whereas the converse does not hold for any of them. Fernández and Good in

[FG16] show that 2T has shadowing if and only if T does. Recently, Fernández, Good, and Ramírez

jointly with the author in [FGPR15] have proved that 2T is chain transitive if and only if T is chain

weakly mixing. The results from this paper have not been included in this thesis.

Prior to our work, little has been done on the periodic points of 2T other than some results on

periodicity in symmetric products by Gómez, Illanes, andMéndez in [GRIM12] which we extend in

Section 4.7. It turns out that the theory here is of some interest. Moreover, the techniques that seem to

be necessary to construct hyperspaces with various periods are of independent interest.

The rest of the chapter is organised as follows. In Section 4.1 we briefly introduce the notation.

Then in Section 4.2, Example 4.7 we show that the induced system (2X , 2T ) can contain periodic

points of any period even when T has no periodic points at all. A complete description of the situation

for interval maps is given in Theorem 4.8 where we show that if T is an interval map, then the set of

periods of 2T is either {1} or {1, 2} or N. A similar result holds for the maps over R, see Theorem

4.31, except that it is now possible that the map has no periods at all — as is the case e.g. for the map

x 7→ x + 1.

In Section 4.3 we introduce minimal building blocks of periodic sets in hyperspaces and derive

some fundamental properties related to these. And in Section 4.4 we seek to characterise admissible

periods for induced maps. Trivially, if x is a point of period n under T , then {x} is a point of period
n under 2T . Since finite unions of points are again closed sets, it follows, for example, that if T has

a period 4 point and a period 6 point, then 2T has points of period 1, 2, 3, 4, 6, and 12. It is possible

to give a complete description of admissible periods in 2T that arise in this fashion, i.e. those that

are formed exclusively of points that were periodic in the original system (X,T ), and this is done in

Section 4.7. This section also contains results on periods in symmetric products. More generally if

2T has points of period 4 and 6 consisting of pairwise disjoint subsets ofX , then it would again have
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points of period 1, 2, 3, 4, 6, and 12. It is reasonable to ask then, whether this is a general property of

induced maps on hyperspaces.

It turns out that this is not the case. In Section 4.6 we construct a dynamical system (Z, R) on the

Cantor set such that the induced system (2Z , 2R) only has periodic points of periods 1, 2, and 3. In

particular it does not have a period 6 point. In Theorem 4.26 we generalise this construction to an

induced system which admits only those periods that are divisors1 of two positive integers p and q.

To obtain those results we first in Section 4.5 construct an almost totally minimal system (ATM)

over the Cantor set which is of interest in its own right, see Theorem 4.18. Recall that a system (X,T )

having a fixed point x0 ∈ X is almost totally minimal if after removing its (unique) fixed point the

remaining non-compact system (X∗ = X \ {x0}, T ) is totally minimal, meaning that the full orbit

with respect to any iterate of T of any point is dense in X∗ (see Section 4.5 for a precise definition).

This is done via graph covers, a tool first devised by Gambaudo and Martens in [GM06] to give a

combinatorial description of minimal systems over the Cantor set. This theory has proved useful

not just for describing the algebraic structure of such systems but also for constructing maps on the

Cantor set with particular properties. Shimomura [Shi16b], for example, uses it to construct a transitive,

completely scrambled 0-dimensional system. Essentially the same method but formalised in a slightly

different way was used by Akin, Glasner, andWeiss in [AGW08] to give a generic self homeomorphism

of the Cantor set. Bernardes and Darji extend some of their results in [BD12] and again make use

of the same method. There is a close link between these graph covers, Bratteli-Vershik diagrams and

Kakutani-Rokhlin towers and it would be possible to pass from one representation to another. As an

example, in Section 4.9 we give a Bratteli-Vershik representation of that almost totally minimal system.

Section 4.7 contains results on periods in symmetric products, and towards the end in Section

4.10 we list some problems naturally arising from our considerations that are still without a satisfying

resolution.

1Here and elsewhere in text by divisors we actually mean positive divisors.
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4.1 preliminaries

All the spaces under consideration will be compact and metric unless specified otherwise. Given a

continuous self-map T : X → X of such a space the inverse limit lim
←−−

(X,T ) is defined as the set of

full orbits of this system

lim
←−−

(X,T ) =

¯
x = (xi)i∈Z = (. . . , x−1, x0, x1, x2, . . . ) ∈

∏
i∈Z
X | T (xi) = xi+1



.

Note the slightly unconventional enumeration of indices above. We shall say that any
¯
x ∈ lim
←−−

(X,T )

with x0 = x is a full orbit of the point x ∈ X . There exists a natural homeomorphism of lim
←−−

(X,T )

called (right) shift σ : lim
←−−

(X,T ) → lim
←−−

(X,T ) given by (σ (
¯
x))i = xi+1, for all i ∈ Z. For more on

inverse limits see [IM12].

Recall that to a full orbit
¯
x ∈ lim
←−−

(X,T ) one can associate two limit sets, ω- and α-limit set which

are the accumulation sets of the forward and backward orbit of x0 respectively.

ω(
¯
x) =

∞⋂
m=0

∞⋃
n=m

{xn},

α(
¯
x) =

∞⋂
m=0

∞⋃
n=m

{x−n}.

Both of these are closed, non-empty, and strongly T -invariant meaning that T (ω(
¯
x)) = ω(

¯
x) and

T (α(
¯
x)) = α(

¯
x), see e.g. [BC92,BGL13]. Note that we could equivalently say that they are fixed points

of the induced map 2T . As a shorthand we denote their union ω(
¯
x) ∪ α(

¯
x) by λ(

¯
x) which is again a

closed and strongly T -invariant set

λ(
¯
x) = α(

¯
x) ∪ ω(

¯
x) =

∞⋂
m=0

∞⋃
n=m

{x−n, xn}.

Remark 4.:. Note that the definition of the ω-limit set involves only the forward orbit and hence

does not depend on the choice of the full orbit. Thus it makes sense to define ω(x) for any point x ∈ X .
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As we shall constantly be dealing with the sets of periods of different functions it is convenient to

introduce a symbol Per(T ) for the subset of natural numbers such that k ∈ Per(T ) if and only if there

exists a point x ∈ X with the fundamental period k. Per(2T ) will consequentially be the set of all the

fundamental periods of points in 2X .

We shall also be interested in restrictions of the map 2T to a few 2T -invariant subsets of 2X . We

introduce a special symbol for each of these restrictions:

Tn = 2T |Fn(X ),

T<ω = 2T |F (X ),

where Fn(X ) = {A ∈ 2X | A has at most n points} is the n-fold symmetric product of X and

F (X ) =
⋃∞
n=1 Fn(X ) is the collection of all finite subsets ofX . Occasionally we shall write just T for

any of the above maps (including 2T itself) as this does not lead to any confusion, and is useful to keep

the notation simple, especially when we need to refer to the nth iterate of the map 2T which we simply

denote by T n.

The usual n-fold Cartesian product will also be of interest as the n-fold symmetric product can be

seen as a quotient of this space. Somewhat unconventionally in this chapter we denote the product

space X × X × · · · × X︸               ︷︷               ︸
n−times

by X (n) and the induced map by T (n) . This is not to be confused with T n

which as mentioned above is simply the nth iterate of T .

Let us define a few more notions we use below.

Definition 4.2 (Pseudo-orbit). A sequence 〈x0, x1, x2, . . . 〉 is said to be a δ-pseudo-orbit for some

δ > 0 provided that d(f (xi), xi+1) < δ for each i ∈ N0. A finite δ-pseudo-orbit of length l ≥ 1 is a

finite sequence 〈x0, x1, x2, . . . , xl〉 satisfying d(f (xi), xi+1) < δ for 0 ≤ i < l. We also say that it is a

δ-pseudo-orbit between x0 and xl .

Definition 4.3 (Recurrence). A point x ∈ X is said to be recurrent in (X,T ) if x ∈ ω(x). A point

that is not recurrent is said to be non-recurrent.

For notational convenience, we now introduce a stronger notion than non-recurrence which we

call full non-recurrence. A point x ∈ X is said to be fully non-recurrent if there exists a full orbit
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¯
x ∈ lim
←−−

(X,T ) of x = x0 such that x < λ(
¯
x). Note that it is, thus, possible for a point to be neither

recurrent nor fully non-recurrent. The motivation for introducing this notion is given in Remark 4.11.

Definition 4.4 (Chain recurrence). A point x ∈ X is said to be chain recurrent in (X,T ) provided

that for any ε > 0 there exists an ε-pseudo-orbit 〈x = x0, x1, . . . , xl = x〉 of positive length l ≥ 1.

Definition 4.5 (Turbulence). The interval map T : I → I is said to be turbulent if there exist

compact subintervals J, K with at most one common point such that J ∪ K ⊆ T (J ) ∩ T (K ).

Definition 4.6 (0-dimensional space). A compact metric space is 0-dimensional if it has a base

consisting of clopen sets, or equivalently, if it is totally disconnected.

4.2 two simple results

To put our results into perspective, we start with two related results.

Example 4.7. Let C = S1 × [0, 1] be a cylinder where S1 = [0, 1]/∼ denotes the unit circle obtained

from the interval [0, 1] with its endpoints identified. Let T : C → C be an irrational rotation by

α ∈ R \ Q about the central axis combined with an upward displacement that preserves the bases,

e.g. (φ, z)
T
7→ (φ + α mod 1, 2z − z2). Note that this is a homeomorphism of C . Let X ⊂ C be

the set consisting of the two bases S1 × {0, 1} and a full orbit {. . . , z−1, z0, z1, z2, . . . } of a point z0
on a generating line, say z0 = (0, 1/2), where we set zk = T k(z0) for all k ∈ Z \ {0} (see Figure 4.1).
Then clearly T |X has no periodic points and at the same time, for any k ∈ N the set S1 × {0, 1} ∪
{. . . , z−2k, z−k, z0, zk, z2k, . . . } is periodic under 2T with period k. /

Block and Coven [BC86] prove that if T is a continuous map from a compact interval to itself and

every point is chain recurrent, then either T 2 is the identity map or T is turbulent. From this, one can

easily deduce the following.

Theorem 4.8. Let T be a continuous map of a compact interval to itself. Then Per(2T ) is either {1}
or {1, 2} or N.
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Figure 4.1: The setX from Example 4.7.

Proof. If T 2 is the identity, then Per(2T ) is either {1} or {1, 2}. If T 2 turbulent, then T must have a

periodic point with period which is not a power of 2 (see p33 in [BC92]). But ifT has a point of period

2n(2k + 1), then by Šarkovs′kiı̆’s Theorem, it has points of period 2n+1m for any positive integerm,

from which it follows that 2T has points of periodm, i.e. that Per(2T ) = N.

So suppose that there exists a point x0 that is not chain recurrent.2 Clearly, x0 is not periodic. Also,

we may assume that T is onto, as otherwise one can take a restriction to the surjective core of the map

T and repeat the same reasoning. We can therefore take a full orbit
¯
x ∈ lim
←−−

(X,T ) of x0 and consider

the limit set

λ(
¯
x) = α(

¯
x) ∪ ω(

¯
x) =

∞⋂
m=0

∞⋃
n=m

{x−n, xn}.
We claim x0 < λ(

¯
x), i.e. that x0 is fully non-recurrent. Firstly note that x0 < ω(x0) as otherwise it

would be recurrent and hence chain recurrent. The other possibility is that there exists an increasing

subsequence (pk)k∈N such that x−pk → x0 as k → ∞. But then x−pk+1 → x1 and for any ε > 0 one

can choose k0 ∈ N large enough so that x−pk0+1 is ε close to x1. Thus, 〈x0, x−pk0+1, x−pk0+2, . . . , x0〉 is an

ε-pseudo-orbit from x0 to x0 making x0 a chain recurrent point. A contradiction.

As x0 is fully non-recurrent, by Proposition 4.10, we immediately obtain all periods in Per(2T )

proving our corollary. �

2Compare this with Proposition 4.10. Also note that whether a point is (chain) recurrent depends only on its forward
orbit, as is common in the literature; but, for convenience, our notion of fully non-recurrent point involves the full λ-limit
set of the point. As a results, it is possible for a point to be neither recurrent nor fully non-recurrent.
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4.3 elementary periodic points

We shall first describe the most basic type of periodic points that appear in the induced dynamics on

2X . It captures both the periods arising from cycles in (X,T ) via x 7→ {x} embedding as well as the
periods as in Example 4.7.

Given a point
¯
x = (. . . , x−2, x−1, x0, x1, x2, . . . ) ∈ lim

←−−
(X,T ) we define the set of periods of

¯
x by

Per(
¯
x) = {k ∈ N | {xmk | m ∈ Z} ∈ 2X is periodic with period k}.

We use the same symbol as before but the meaning will be clear from the context. Note that this

set does not depend on the choice of the starting point, i.e. Per(
¯
x) = Per(σ (

¯
x)) = Per(σ−1(

¯
x)). It

may however depend on the chosen backward orbit of x0. For example, if x0 is a fixed point which

also has a history of infinitely many isolated points then Per((. . . , x−2, x−1, x0, x0, . . . )) = N but

Per((. . . , x0, x0, x0, . . . )) = {1}.
Remark 4.9. If {x0, x1, . . . , xp−1} is a p-cycle in (X,T ) then it is not hard to check that

Per((. . . , xp−1, x0, . . . , xp−1, x0, . . . ))

is the set of all divisors of p.

The situation akin to that in Example 4.7 occurs whenever there exists a fully non-recurrent point, i.e.

a point whose full orbit does not accumulate at the point itself. Formally x ∈ X is fully non-recurrent

if there exists a full orbit
¯
x ∈ lim
←−−

(X,T ) of x = x0 such that x < λ(
¯
x).

Proposition 4.:0. Let T : X → X be a continuous map and assume that there exists a fully non-

recurrent point x0 with a full orbit
¯
x = (. . . , x−1, x0, x1, . . . ) ∈ lim

←−−
(X,T ). Then Per(

¯
x) = N and

therefore also Per(2T ) = N.

Proof. Let k ∈ N be arbitrary and set S = {xmk | m ∈ Z} ∈ 2X . S is clearly mapped to itself under k

iterates of 2T . It is therefore periodic with a fundamental period that divides k. To show that this is in

fact k it suffices to see that x0 < (2T )n(S) for any 0 < n < k.
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To that end take any such n and note that (2T )n(S) = {xmk+n | m ∈ Z}. Recall that x0 < λ(
¯
x)

and so if x0 was in (2T )n(S) it could only be equal to xm0k+n for somem0 ∈ Z and thus x0 would have

to be periodic. This would then imply that x0 ∈ ω(
¯
x) ⊆ λ(

¯
x) which gives a contradiction. �

Remark 4.::. It is worth noting that this result does not hold if x0 above is only required to be non-

recurrent. Indeed, the system (X,T ) we construct in Theorem 4.18 below has points whose forward

orbits in the limit approach the unique fixed point and are, thus, non-recurrent in the traditional sense.

Their backward orbit, however, must be densely filling the space as we know that the full orbit of each

point, save the fixed one, is dense. Those points are thus non-recurrent but are not fully non-recurrent

and one can easily check that Per(2T ) = {1}.
Remark 4.:2. The result holds even if x itself is recurrent but has a point x−k for some k > 0 in the

backward part of its orbit that is fully non-recurrent. This is because Per(
¯
x) = Per(σ−k(

¯
x)) = N.

In light of this remark it is useful to extend the notion of non-recurrence to full orbits. We say that

¯
x = (. . . , x−1, x0, x1, . . . ) ∈ lim

←−−
(X,T ) is fully non-recurrent if xk < λ(

¯
x) for some k ∈ Z.

We have already used the obvious fact that Per(
¯
x) ⊆ Per(2T ) and one might suspect that by taking

the union
⋃

¯
x∈lim
←−

(X,T ) Per(¯
x) one could obtain the whole of Per(2T ). But this is not the case as is easy

to see by looking at a system that consists of five points, two of which form a 2-cycle and the other

three a 3-cycle. Then clearly 6 ∈ Per(2T ) but no point in the inverse limit has 6 in its set of periods.

Per(
¯
x), however, has a nice structure. Below we show that it is closed under taking divisors and

least commonmultiples. This in particular implies that in case it is finite, Per(
¯
x) is simply the set of

divisors of its largest element. But what if it is infinite, does it have to beN? A negative answer to this

provides the odometer, a classical example of a transitive system over the Cantor set.

Example 4.:3. LetX = Σ2 = {0, 1}N. The 2-adic odometer T : X → X is defined recursively by

T (ξ0, ξ1, . . . ) =




(1, ξ1, . . . ), if ξ0 = 0,

(0, f (ξ1, ξ2, . . . )), otherwise.

It is not hard to see that Per(
¯
x) = {1, 2, 22, 23, . . . } is the set of all powers of 2 for any

¯
x ∈ lim
←−−

(X,T ),

and that Per(2T ) is the same set.
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We note in passing that this is also an example of a systemwhere 2T -periodic points are dense in 2X .

This is simply because any closed set in Σ2 can be approximated by a finite union of clopen cylinders to

an arbitrary precision and these cylinders are clearly periodic under 2T and so is their finite union. We

remind the reader that a cylinder in Σ2 is a set of the form

{(ξ0, ξ1, . . . ) ∈ Σ2 | ξi = ai for 0 ≤ i ≤ n},

for some n ∈ N and a choice of ai ∈ {0, 1}, and that all such sets form a clopen basis of the Cantor

topology on Σ2. /

To prove the aforementioned structural result for elementary sets of periods, we shall need two

lemmata.

Lemma 4.:4. If S ∈ 2X is a k-periodic then none of its k − 1 iterates under 2T can be a subset of S.

Proof. Otherwise, let us assume that (2T )j (S) ⊆ S for some 0 < j < k. Using the usual notation one

would write T j (S) ⊆ S and from there

S = T kj (S) ⊆ T (k−1)j (S) ⊆ · · · ⊆ T j (S) ⊆ S.

Thus T j (S) = S and S periodic with a period strictly less than k, a contradiction. �

Lemma 4.:5. Let
¯
x ∈ lim
←−−

(X,T ). Then

Per(
¯
x) = { k ∈ N | ∃N0 ∈ N s.t. x−N0k < {xl | l ∈ Z and k6 | l} }. (4.1)

Also

Per(
¯
x) = { k ∈ N | ∃N0 ∈ N s.t. ∀N ≥ N0 x−Nk < {xl | l ∈ Z and k6 | l} } (4.2)

and in particular

Per(
¯
x) =

∞⋃
N=0

{ k ∈ N | x−Nk < {xl | l ∈ Z and k6 | l} }. (4.3)
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Proof. (4.2) follows easily from (4.1) if one recalls that x−Nk < {xl | l ∈ Z and k6 | l} implies x−(N+1)k <

{xl | l ∈ Z and k6 | l}. And from there it is clear that the sets under the union sign in (4.3) form a

monotonically increasing family of sets converging to the set in (4.1).

We now turn to proving that the first claim holds. We first show that any k satisfying the defining

statement of the set in (4.1) is necessarily in Per(
¯
x). Let such a k ∈ N be fixed and let N0 be as in

the definition of the set. It is clear that x−N0k is a “distinguishing feature”, an element contained in

{xmk | m ∈ Z}butwhich cannot be in any of its k−1 forward iterates under 2T . The set {xmk | m ∈ Z}
is thus truly a k-period point.

Conversely, take a k ∈ Nwhich does not satisfy the statement in (4.1). Hence, there are infinitely

many points in the k-step backward orbit of x0 that are also in {xl | l ∈ Z and k6 | l}. In particular,
infinitely many of them are in {xkm+j | m ∈ Z} for some 0 < j < k. Similar reasoning as in the first

paragraph of this proof allows us to conclude that, not just infinitely many, but all of the elements of

the k-step orbit {xmk | m ∈ Z} are contained in {xkm+j | m ∈ Z} and hence their closure as well. But
this implies that {xkm | m ∈ Z} is not a k-periodic point by Lemma 4.14. �

Proposition 4.:6. Let
¯
x ∈ lim
←−−

(X,T ). Then Per(
¯
x) is non-empty (always contains at least 1) and

closed under taking divisors and least common multiples.

Proof. Clearly 1 ∈ Per(
¯
x). The rest is proved by invoking Lemma 4.15. Let k ∈ Per(

¯
x), d |k and letN0

be chosen as in (4.1), i.e. x−N0k < {xl | l ∈ Z and k6 | l} and hence x−(N0k/d)d < {xl | l ∈ Z and k6 | l} ⊇
{xl | l ∈ Z and d6 | l}. Therefore d ∈ Per(¯

x).

As we have already seen that this set is closed under taking divisors it will suffice to show that for

any two co-primem, n ∈ Per(
¯
x) their productmn is in there as well. ChoseN0 to be the greater of the

two integers associated tom and n in the context of (4.1). Then x−(N0m)n < {xl | l ∈ Z and n6 | l} and
x−(N0n)m < {xl | l ∈ Z andm6 | l}. Asm and n are co-prime we have that nm6 | l if and only if n6 | l orm6 | l,

hence x−N0(mn) < {xl | l ∈ Z and n6 | l} ∪ {xl | l ∈ Z andm6 | l} = {xl | l ∈ Z andmn6 | l}. Therefore
mn ∈ Per(

¯
x). �
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4.4 admissible sets of periods for the induced map

A few facts about Per(2T ) are obvious. By considering singleton sets we see that Per(2T ) ⊇ Per(T )

and also 1 ∈ Per(2T ) asX ∈ 2X is a fixed point. In fact Per(T<ω) = [D(Per(T ))]3 ⊆ Per(2T ) since

F (X ) ⊆ 2X . It turns out that Per(2T ) itself is closed under taking prime power divisors. Whether it

must be closed under taking any divisor remains an open question. Surprisingly it needs not to be

closed under taking least commonmultiples. The construction of such an example occupies Section 4.6.

Intuitively one might think that ifA0, A1, . . . , An−1 is an n-cycle and B0, B1, . . . , Bm−1 is anm-cycle in

2X , and d |n thenA0 ∪Ad ∪ · · · ∪An−d should be a d-periodic point andA0 ∪ B0 should be a [m, n]-

periodic point, where [m, n] denotes the least common multiple ofm and n. But this does not hold in

general as it could happen that their fundamental period is smaller than expected. As a trivial example

consider a map over X = {0, 1, 2, 3} given by T (x) = x + 1 mod 4. Then A0 = {0, 1, 2} ∈ 2X is

2T -periodic with period 4 butA0 ∪ T 2(A0) = X is a fixed rather than a period 2 point in 2X .

Theorem 4.:7. Given a continuous map T : X → X , the set of periods Per(2T ) of the induced map

on 2X contains Per(T ) ∪ {1} and is closed under taking prime power divisors.

Proof. We have already seen that Per(T ) ∪ {1} ⊆ Per(2T ). Given an n ∈ Per(2T ) and its prime

factorisation n = pα1
1 p
α2
2 · · · p

αr
r where r ≥ 1, for the second part of the claim it will suffice to find a full

orbit
¯
x ∈ lim
←−−

(X,T ) for which Per(
¯
x) contains pα1

1 as the result will then follow from Proposition 4.16.

To that end we set k = pα1
1 and l = n/p1 = pα1−1

1 pα2
2 · · · p

αr
r , and letA0, . . . , An−1 be a periodic orbit

for 2T of period n. By Lemma 4.14 there exists x0 ∈ A0 \Al , and asAis are mapped surjectively onto

each other, it is possible to find a full orbit
¯
x = (. . . , x−1, x0, x1, x2, . . . ) of x0 such that xmn+i ∈ Ai for

allm ∈ Z. We claim that k ∈ Per(
¯
x), i.e. that {xmk | m ∈ Z} is k-periodic under 2T .

Firstly note that x−mn+i ∈ Ai \Ai+l mod n form ∈ N, as otherwise if x−mn+i ∈ Ai+l mod n then after

mapping it forward by Tmn−i we would have a contradiction with x0 ∈ A0 \Al . Similar reasoning

allows us to conclude that, as we go backwards along the orbit, the pre-images x0, x−n, x−2n, x−3n, . . .

belong to, possibly, more and more complements of differentAis and, as there are only finitely many

of those, this number must stabilise. The backward iterate at which this happens is then taken to be x0

3This notation is defined in Remark 4.29 below.
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and all the other indices are shifted accordingly. Note that this does not affect the claim we wish to

prove as Per(
¯
x) = Per(σ t (

¯
x)) for any t ∈ Z. Also note that for this new x0 we still have x0 ∈ A0 \Al .

This modification will however allow us that from x0 ∈ Aj for some j we infer xmn+i ∈ Ai+j mod n for

allm ∈ Zwhere before we could conclude this only for positivems. Essentially the same trick was used

previously in the proof of Lemma 4.15.

After we altered the enumeration in
¯
x we are ready to conclude the proof by showing that (now

modified) x0 < {xt | t ∈ Z and k6 | t}. Note that

{xt | t ∈ Z and k6 | t} =
k−1⋃
i=1

{xmk+i | m ∈ Z}

and for the sake of getting a contradiction we assume that x0 ∈ {xmk+i | m ∈ Z} for some 0 < i < k.

This means that either x0 = xmk+i for somem ∈ Z and therefore x0 ∈ Aĩ where

ĩ ≡ mk + i (mod n), hence ĩ ≡ i (mod k),

or x0 is a limit of such points (xmk+is) out ofwhich infinitelymanymust fall within the same congruence

class with respect to n, say ĩ, and thus also in the sameAĩ for some 0 ≤ ĩ < n, which must also satisfy

ĩ ≡ i (mod k). AsAĩ is closed, in both cases we get x0 ∈ A0 ∩Aĩ.

From here we can conclude that in the periodic case x0 ∈ Aĩ ∩A2ĩ mod n as x0 = xmk+i = x2mk+2i.

Also, if x0 is a limit point of some subsequence in {xmn+ĩ | m ∈ Z} ⊆ Aĩ, using the reasoning described
above and in light of the fact that x0 ∈ Aĩ, this subsequence is also inA2ĩ mod n and so must be x0 as its

limit. In both cases we henceforth conclude x0 ∈ A0 ∩Aĩ ∩A2ĩ mod n. Continuing in this fashion we

see that x0 ∈ Aj for any j that satisfies

j ≡ sĩ (mod n) for some s ∈ N0.

To obtain a contradiction with x0 < Al it now only remains to show that there exist s ∈ N0 for

which sĩ ≡ l (mod n). It is an elementary fact from number theory that there exists s̃ ∈ N0 such that

s̃ĩ ≡ (ĩ, n) (mod n), where (a, b) stands for the greatest common divisor of integers a and b. Note
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that ĩ . 0 (mod k) and hence pα1
1 = k6 | ĩ. Thus (ĩ, n) = (ĩ, n/p1) = (ĩ, l) | l and setting s = l

(ĩ,n) s̃ gives

the desired conclusion. �

We now turn to showing that Per(2T ) is not always closed under taking least commonmultiples.

But for this we need first to revisit the notion of almost minimal systems.

4.5 almost totally minimal cantor system

Recall that any two non-compact, locally compact, totally disconnected, separable, metrizable spaces

with no isolated points are homeomorphic (see e.g. [Dan01, Proposition 1.1]). These are essentially

equal to the Cantor set without a point, which is in turn homeomorphic to a countable union of

Cantor sets. Let us denote such a set byX∗. In [Dan01] Danilenko gives a direct limit construction of

a class of minimal systems onX∗. The system (X∗, T ) is said to beminimal if the only non-empty,

closed, strongly T -invariant subset ofX∗ isX∗ itself, or equivalently if any full orbit4 of any point is

dense inX∗. In the compact case this is equivalent to asking that the ω-limit set of any point is whole of

the state space, but here one has to be careful with the definition of minimality as some points can have

their ω-limit sets empty due to non-compactness even if their full orbits are dense. In fact Danilenko

proved that for any invertible minimal map on X∗ the set of points with their forward orbit dense

(those points x for which ω(x) = X∗) will be a dense,Gδ set with empty interior (see [Dan01, Theorem

1.2]).

The class ofmaps constructed there conveniently extends to a class of continuous homeomorphisms

of the Cantor set X which is obtained as a one point compactification of X∗ with point at infinity

being mapped onto itself. Such maps, with one fixed point and all the other points having dense full

orbits are called almost minimal systems and in particular they are examples of essentially minimal

systems which are defined as those systems which have one unique minimal subsystem (see [HPS92]).

To make our proofs in Section 4.6 work we need a map that is almost totally minimal (ATM) meaning

that the system (X,Tm) is almost minimal for any iterate Tm of the original map T wherem ∈ N, in

4If T is non-invertible then there will be points with more than one full orbit.
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other words, that the system (X∗, T |X∗ ) with the fixed point removed is totally minimal in the usual

sense.

Theorem 4.:8. There exists an almost totally minimal homeomorphism T : X → X of the Cantor

set X . This T has exactly one fixed point x0 ∈ X and the full Tm-orbit of every other point is dense in

X for every m ∈ N i.e.

(i) (∃! x0 ∈ X ) T (x0) = x0,

(ii) (∀y ∈ X \ {x0}) (∀m ∈ N) {Tmk(y) | k ∈ Z} = X .
Remark 4.:9. We remark in passing that, asX here is a Baire space without isolated points, the set

{T k(y) | k ∈ Z} is equal toX if and only if λ(
¯
y) = X where

¯
y ∈ lim
←−−

(X,T ) is the full orbit of y.

To prove this theoremwe revisit Gambaudo andMartens’ combinatorial approach for constructing

self-maps of the Cantor set (or indeed any 0-dimensional compact metric space) via graph covers (see

[GM06]).

4.5.1 Graph covers

It is a well-known fact that any totally disconnected, compact andHausdorff space (these are sometimes

called Stone spaces) can be obtained as an inverse limit of a (countable) system of discrete finite spaces.

This property actually characterises Stone spaces via Stone duality (see [Nag70, Proposition 8-5]) which

is why these are also occasionally called profinite spaces.

It turns out, using similar ideas, that it is possible to give a complete description not just for Stone

spaces, but also for the self-maps on them by adding arrows to the discrete spaces forming the inverse

system and, thus, creating an inverse limit of directed graphs. We shall now briefly recall the main

results of this theory following Shimomura’s treatment in [Shi14].

A graph5 is a pairG = (V, E) where V is a finite set of vertices and E ⊆ V × V is a set of directed

edges. We additionally require that each vertex has at least one outgoing and one incoming edge. A

5All graphs we consider are directed.
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graph homomorphism between graphs (V, E) and (V ′, E′) is a vertex map ϕ : V → V ′ which respects

the edges, i.e. for any pair (v, w) ∈ E it must be (ϕ(v), ϕ(w)) ∈ E′. A graph homomorphism is said

to be +-directional if ϕ(w1) = ϕ(w2) whenever both (v, w1) ∈ E and (v, w2) ∈ E. If additionally

(v1, w) ∈ E and (v2, w) ∈ E implies ϕ(v1) = ϕ(v2) it is said that ϕ is bidirectional. A graph cover is

a +-directional homomorphism of graphs that is also edge-surjectivemeaning that the map which ϕ

naturally induces on the set of edges ϕ : E → E′ is surjective.

Given a sequence of graph covers G0
ϕ0
←−− G1

ϕ1
←−− G2

ϕ2
←−− · · · one forms a Stone space as the

inverse limit

G∞ = lim
←−−
Gi =




(v(i))i≥0 ∈

∞∏
i=0
Vi | v(i) = ϕi(v(i+1)) for all i ∈ N0



.

It is possible to define a self-map ϕ∞ : G∞ → G∞ by setting

ϕ∞
(
(v(i))i≥0

)
=

(
ϕi(w(i+1))

)
i≥0

where w(i) is any vertex for which the edge (v(i), w(i)) is in Ei. Intuitively, the map is given by the rule

‘follow the arrows’ except that if there are more than one outgoing arrow from the chosen vertex at

any given level, we might need to peek at one level below whose finer resolution will help us decide

which of the arrows to follow. +-directionality of the covers ensures that this process, or indeed ϕ∞ is a

well-defined continuous self-map of the Stone spaceG∞. If additionally each of the bonding maps in

the sequence is bidirectional then the map ϕ∞ is a homeomorphism, see [Shi14, Lemma 3.5].

The full correspondence is given by

Theorem 4.20 ([Shi14, Theorem 3.9]). A topological (compact, metric, surjective) dynamical system

is 0-dimensional if and only if it is topologically conjugate to G∞ for some sequence of covers G0
ϕ0
←−−

G1
ϕ1
←−− G2

ϕ2
←−− · · · .

We remark that these results have a flavour of those by Mioduszewski in [Mio63] but are more

elaborate as here we are dealing only with 0-dimensional spaces.
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We are now ready to construct the system described in Theorem 4.18. The inspiration for this came

from the construction in [Shi16b]. Very recently similar techniques appeared in [Shi16a].

4.5.2 Proof of Theorem 4.18

LetG0 = ({v(0)
0 }, {(v(0)

0 , v
(0)
0 )}) be one vertex with a self-loop. GivenGi we shall inductively define

Gi+1. The graphGi+1 will consist of |Vi+1 | = (|Vi |+Ci)·(i+1)!+1 vertices6Vi+1 = {v(i+1)
0 , . . . , v(i+1)

|Vi+1 |−1}
which make a cycle in that order, and additionally Ei+1 also contains a self-loop at v(i+1)

0 , see Figure 4.2.

The constants Ci ∈ N are inductively chosen so that |Vi | + Ci and (i + 1)! are co-prime. It remains to

specify the cover ϕi : Vi+1 → Vi by the formula

ϕi(v(i+1)
k ) = v(i)I (i,k)

where

I (i, k) =




0, if k ≡ 0, 1, 2, . . . , or Ci (mod |Vi | + Ci),

l, otherwise, where l ≡ k − Ci (mod |Vi | + Ci).

It is perhaps easier to see what is going if we look at how ϕi maps the edges ofGi+1 onto the edges

ofGi. Let us denote the self loops inGi andGi+1 by e0 and e′0 respectively, and let {f1, . . . , f|Vi |} and
{f ′1 , . . . , f ′|Vi+1 |

} be successive edges in their bigger cycles respectively. The formulae above capture the
fact that the cycle {f ′1 , . . . , f ′|Vi+1 |

} on the (i + 1)st level is wound (i + 1)! times over the full circuit (with

the first edge being repeated Ci times) in the graphGi in the following succession

e0 . . . e0︸ ︷︷ ︸
Ci times

f1 . . . f|Vi | e0 . . . e0︸ ︷︷ ︸
Ci times

f1 . . . f|Vi | · · · e0 . . . e0︸ ︷︷ ︸
Ci times

f1 . . . f|Vi |︸                                                                        ︷︷                                                                        ︸
(i+1)! times

e0.

6Thus |Vn | grows faster than superfactorials n!(n − 1)! · · · 2!1!.
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v(0)
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v(1)
0G1 :

v(1)
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f1
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v(2)
0G2 :

v(2)
1 v(2)

2

v(2)
10 v(2)

9

e′0

f ′1 f ′2

f ′10f ′11

Figure 4.2: The first 3 steps of the construction, with C0 = 1 and C1 = 2.

In particular, looking at Figure 4.2, ϕ1 : G2 → G1 maps denoted edges as follows:

f ′1 , f
′

2 , f
′

3 , f
′

4 , f
′

5 , f
′

6 , f
′

7 , f
′

8 , f
′

9 , f
′

10, f
′

117→ 7→ 7→ 7→ 7→ 7→ 7→ 7→ 7→ 7→ 7→

e0, e0, f1, f2, f3, e0, e0, f1, f2, f3, e0

Also note the additional twist over e0 at the end which is needed to ensure that these are bidirectional

covers.

Let G∞ be the inverse limit of the just constructed inverse system G0
ϕ0
←−− G1

ϕ1
←−− G2

ϕ2
←−− · · · .

As each vertex inGi is covered with at least 2 vertices ofGi+1 one easily checks thatG∞ has no isolated

points and is therefore homeomorphic to the Cantor set. Aswementioned earlier, the sequence consists

of bidirectional covers and ϕ∞ : G∞ → G∞ is thus a homeomorphism of the Cantor set.

It remains tobe seen that (G∞, ϕ∞) is almost totallyminimal. One fixedpoint of the system is clearly

(v(i)0 )i≥0. Any other point (v(i)pi )i≥0 ∈ G∞ will have pi > 0 for all i large enough. Let x∞ = (v(i)pi )i≥0 be

one such a point. We wish to show that for any givenm ∈ N the full orbit under ϕm∞ of this point is

dense inG∞.

We shall denote by [v(i)k ] the set of all the points inG∞ with ith coordinate equal to v(i)k . Recall that

these sets [v(i)k ], where i ∈ N0 and 0 ≤ k ≤ |Vi | − 1, form a clopen basis for the topology onG∞. They
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are neatly nested within each other and those on the level i + 1 refine all those on levels less than i. In

fact one has the relation [v(i+1)
k ] ⊆ [ϕi(v(i+1)

k )] = [v(i)I (i,k)]. It will thus suffice to see that for any level

L ∈ N0, one can find ϕm∞-iterates of x∞ that hit each of the sets [v(L)
k ], for 0 ≤ k ≤ |VL | − 1.

Let L be one such level and chooseM ≥ max{L,m− 1} large enough so that pM+1 > 0. We claim

that ϕ(M+1)!
∞ -iterates of x∞ hit each of the sets [v(M )

k ], for 0 ≤ k ≤ |VM | − 1, which will suffice as

m|(M + 1)! andM ≥ L.

Note that as pM+1 > 0 it is possible to infer where a large portion of iterates of x∞ are mapped

within levelM + 1 without actually having to look at what happens at the level below7. In particular

we know that ϕ−pM+1+k
∞ (x∞) ∈ [v(M+1)

k ] for each 0 ≤ k ≤ |VM+1 | − 1. This means that those same

iterates hit each of the sets [v(M )
k ], for 0 ≤ k ≤ |VM | − 1, at least (M + 1)! times, as each of the vertices

inGM+1 covers those ofGM with at least multiplicity (M + 1)!. This, along with the choice of CM

(the number of successive repetitions of v(M )
0 in the covering map), creates an apt offset implying that

ϕ(M+1)!
∞ -iterates of x∞ end up in all of the sets [v(M )

k ].

To put it precisely, let pM+1 = q(M + 1)!+rwith 0 ≤ r < (M + 1)! as in Euclidean division. Then

if k = s(M + 1)!+ r with 0 ≤ s ≤ |VM | +CM − 1 we have ϕ(s−q)(M+1)!
∞ (x∞) = ϕ−q(M+1)!−r+k

∞ (x∞) =

ϕ−pM+1+k
∞ (x∞) ∈ [v(M+1)

k ] ⊆ [v(M )
I (M,k)]. This is justified by noting that k falls within the required range

0 ≤ r ≤ k ≤ (M + 1)!(|VM | + CM ) = |VM+1 | − 1.

As |VM |+CM and (M + 1)! are co-prime it is an elementary number theoretic fact that s(M + 1)!,

and hence also k = s(M + 1)!+ r, will run through all the residue classes modulo |VM | + CM as s runs

through {0, 1, . . . , |VM | +CM − 1}. Inspecting the definition of I (M, k) = I (M, s(M + 1)!+ r), we

see that this attains all the values in {0, 1, . . . , |VM | −1}when s goes through {0, 1, . . . , |VM |+CM −1}.
This completes our proof. �

7By the level below we mean levelM + 2, i.e. a level with a finer structure.
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4.6 an embedding result

Using Theorem 4.18 we can now prove an interesting embedding result which will later help us to

construct a map on the Cantor set for which the induced map on the hyperspace has period 2 and 3

points but none of the period 6.

Theorem 4.2:. Let (Y, S) be a 0-dimensional minimal system. There exist a system (Ŷ, Ŝ) on the

Cantor set Ŷ such that:

(i) (Y, S) dynamically embeds into (Ŷ, Ŝ) as a nowhere dense set via ι : Y→ Ŷ ,

(ii) Every full Ŝm-orbit of any point y ∈ Ŷ \ ι(Y ) is dense in Ŷ for every m ∈ N.

Let (X,T ) be the ATM system we constructed in Theorem 4.18. LetX = A t B be a separation

into two disjoint clopen non-empty sets. Further assume that the fixed point x0 of the ATM is inA.

For any x ∈ X let

N (x, B) = min{k ∈ N0 | T−k(x) ∈ B}
be the time elapsed since x last visited B. If the minimum above does not exist, we setN (x, B) = ∞.

ClearlyN (x, B) = 0 for all x ∈ B, but it is also finite for all other x ∈ X which have their backward

orbit dense inX which we know is aGδ dense set inX with empty interior. In fact,N (x, B) is finite

on a much larger (dense and open) set U = {x ∈ X | N (x, B) < ∞}. To see that U is open it

suffices to notice thatN (x, B) is a locally constant function. What we mean by this is that for any

point x ∈ U there exists a (cl)open neighbourhood containing x on which the functionN ( · , B) is

constant (= N (x, B)). This is easy to see as one just needs to ensure that the neighbourhood is small

enough so that theN (x, B) backward iterates of the points in it follow tightly those of x.

Going forward fix a point y0 ∈ Y to act as the origin and set

Ŷ = {(x, SN (x,B) (y0)) ∈ X × Y | N (x, B) < ∞}
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where the closure is taken inX × Y . Note that Ŷ is still homeomorphic to the Cantor set since it is

defined as the closure of a subset of the Cantor set with no isolated points. It is also immediately clear

that Ŷ can be written as

Ŷ =
∞⋃
k=0
Ŝk(B × {y0})

where Ŝ is the map on the productX × Y given by Ŝ = π ◦ S ◦ π and where π is a partial projection

ontoX × {y0} defined by
π(x, y) =




(x, y), if x ∈ A,

(x, y0), if x ∈ B.

To prove that this is the unique minimal closed strongly Ŝ-invariant set containing B × {y0} it only
remains to be seen that Ŷ ⊆ Ŝ(Ŷ ). Actually, B × {y0} ⊆ Ŝ(Ŷ ) will suffice.

To see this let πX : X × Y → X be the projection to the first coordinate given by πX (x, y) = x.

This is in fact a semi-conjugacy as one can verify thatπX ◦ Ŝ = T ◦πX . Using this we getT (πX (Ŷ )) =

πX (Ŝ(Ŷ )) ⊆ πX (Ŷ ) and so πX (Ŷ ) is a T -invariant set clearly containing B. Remembering that the

set of points with their forward orbit dense under T is itself dense inX we conclude thatπX (Ŷ ) = X .

Now given any (x, y0) ∈ B × {y0} set x−1 = T−1(x). Since πX (Ŷ ) = X , there exists a point

(x−1, y) ∈ Ŷ . Then clearly Ŝ(x−1, y) = (x, y0) which concludes the proof that B × {y0} ⊆ Ŝ(Ŷ ).

Another important thing to note is that the mapπX restricted to Ŷ is almost a homeomorphism as

it is injective everywhere except possibly at some points ofπ−1
X (X \U ) ∩ Ŷ . To see thatπX is injective

on π−1
X (U ) ∩ Ŷ recall that for any x ∈ U one can find a clopen neighbourhood Vx whereN ( · , B) is

constant and hence Vx × {SN (x,B) (y0)} is contained in Ŷ and this is the only intersection of Ŷ with

the rectangle Vx × Y . In other words, πX is invertible on the part of Ŷ contained in the strip Vx × Y .

This observation allows us to prove the following lemma.

Lemma 4.22. For any fixed natural numberm ∈ N, Ŷ is the least closed Ŝm-invariant set that contains

B × {y0}.
Proof. Letm ∈ N be fixed, and let F ⊆ Ŷ be a closed, Ŝm-invariant subset of Ŷ containing B × {y0}.
We need to see that F = Ŷ . Reasoning similarly as before, we see that πX (F ) is a closed Tm-invariant
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subset ofX containingB. Almostminimality of (X,Tm) then givesπX (F ) = X . If we now remember

that πX is injective on π−1
X (U ) ∩ Ŷ = {(x, SN (x,B) (y0)) | N (x, B) < ∞}, we get that F contains

{(x, SN (x,B) (y0)) | N (x, B) < ∞} and from there immediately F = Ŷ . �

Remark 4.23. The statement of Lemma 4.22 could equivalently be written as

Ŷ =
∞⋃
k=0
Ŝkm(B × {y0}), for anym ∈ N.

Proof of Theorem 4.21. As we said before, Ŷ is the closure of a subset of the Cantor setX × Y with no

isolated point and is thus homeomorphic to the Cantor set itself.

We shall now see that {x0} × Y is indeed contained in Ŷ . This follows from the fact that Ŷ fully

projects on the X and thus we can conclude that there exists y ∈ Y such that (x0, y) ∈ Ŷ . Since we

know that Ŷ is Ŝ-invariant, that the dynamics of Ŝ coincides with that of S on {x0} × Y , and because
(Y, S) is minimal we infer that {x0} × Y ⊂ Ŷ .

Since all the points in {x0} × Y are limit points of those in {(x, SN (x,B) (y0)) | N (x, B) < ∞}we
can conclude that the interior of {x0}×Y inside Ŷ is empty. This concludes the proof of the statement

(i) above where the map ι is given by y 7→ (x0, y).

To see (ii), let (x, y) ∈ Ŷ be a point with x , x0 and letm ∈ N be fixed. We know that the closure

of any full Ŝm-orbit of (x, y) is a closed Ŝm-invariant set. SinceπX is a semi-conjugacy the projection of

this set toX is going to be the closure of some full obit of x under themapTm. Almost total minimality

allows us to conclude that this projection is the whole ofX and thus reasoning as in Lemma 4.22 we

conclude that the closure of this full orbit of (x, y) under Ŝm is the whole of Ŷ . �

From Theorem 4.21 one directly obtains the following corollary.

Corollary 4.24. Theorem 4.21 holds for any 0-dimensional system (Y, S) that can be obtain as a power

of a minimal system.

Proof. Let (Y, R) be a minimal system such that Rn = S and apply Theorem 4.21 to obtain the system

(Ŷ, R̂). Then the system which embeds (Y, S) as a nowhere dense set and in which any point outside

this embedding has its full orbit dense under any iterate of the map is simply (Ŷ, Ŝ = R̂n). �
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This poses a question:

Question 4.25. Which 0-dimensional systems cannot be represented as a power of a minimal system?

Does Theorem 4.21 hold for those systems?

4.6.1 2, 3 ∈ Per(2T ) 6=⇒ 6 ∈ Per(2T )

We can now use Theorem 4.21 to construct a map on the Cantor set for which the induced map on the

hyperspace has period 2 and 3 points but none of the period 6.

Let (Y, S) be a two point cycle, i.e. let Y = {x0, x1} and let S : Y → Y be a map swapping the two

points inY . ApplyTheorem4.21 to obtain the system (Ŷ, Ŝ) intowhich (Y, S) is dynamically embedded.

We identify Y with its image in Ŷ so we can write Y ⊂ Ŷ . Now take a product of (Ŷ, Ŝ) with a three

cycle and quotient out the six cycle obtained from three copies of the cycle {x0, x1}. More precisely let

Z = Ŷ ×{0, 1, 2}/∼ be a quotient space obtained by gluing the points in {(x0, i) | i = 0, 1, 2} together
and likewise the points in {(x1, i) | i = 0, 1, 2}. Let us call those two points z0 and z1 respectively. We

define a map R : Z → Z by:

R(y, i) = (Ŝ(y), i + 1 mod 3).

Note that this rule respects the quotient relation on Ŷ × {0, 1, 2} and therefore accounts for a well-
defined map on Z.

We claim that (Z, R) is a system for which Per(2R) = {1, 2, 3}. The whole setZ ∈ 2Z is of course a

fixed point. It is clear that {z0}↔ {z1} is a 2-cycle in 2Z as z0 is 2-periodic forR. It is also clear that the

natural embedding of Ŷ in Z as Ŷ × {0} produces a 3-cycle in 2Z . It remains to show that no 6-cycle,

or indeed any other cycle, in 2Z exists. For if it did, the set F ∈ 2Z of periodm other than 1, 2, or 3

would have to contain at least one point (y, i) ∈ Z other than z0 or z1. Note that y ∈ Ŷ \ Y , and let

¯
y = (. . . , y−1, y0, y1, y2, . . . ) ∈ lim

←−−

(
Ŷ, Ŝ

)
be a full orbit of y = y0 such that

{(ymk, i +mk mod 3) | k ∈ Z} ⊆ F.
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In particular {(ymk, i +mk mod 3) | k ∈ 3Z} = {(y3mk, i) | k ∈ Z} ⊆ F . Now part (ii) of Theorem

4.21 guaranties that the full orbit (. . . , y−3m, y0, y3m, y6m, . . . ) ∈ lim
←−−

(
Ŷ, Ŝ3m

)
is dense in Ŷ . Thus

Ŷ ×{i}/∼ ⊆ F . Since i ∈ {0, 1, 2}was arbitrary, the previous reasoning shows that in fact F = Ŷ × I/∼
where I ⊆ {0, 1, 2} is non-empty. But then clearly the period k of F is either 1 or 3. This contradiction

concludes the proof that Per(2R) = {1, 2, 3}.

4.6.2 General p and q

It is easy to see how the construction above generalises to obtain a system (Z, R) for which Per(2R) is

the set of divisors of p or q where p and q are two positive integers.

As before let (Y, S) be a p-cycle embedded into (Ŷ, Ŝ) by virtue of Theorem 4.21. We set Z =

Ŷ × {0, 1, . . . , q − 1}/∼ where ∼ identifies q distinct sets of points coming from the p-cycle into one

p-periodic orbit {z0, . . . , zp−1} ⊂ Z. The map R : Z → Z given by:

R(y, i) = (Ŝ(y), i + 1 mod q)

is once again well-defined and clearly satisfies p, q ∈ Per(2R). We claim that any otherm ∈ Per(2R)

must be a divisor of either p or q.

Firstly, if we assume that the periodic point F ∈ 2Z of period m is completely contained in

{z0, . . . , zp−1} then it is not hard to see thatm|p. If otherwise there exists a point (y, i) ∈ F other than

any of z0, . . . , zp−1 then arguing as before we can show that Ŷ × {i}/∼ ⊆ F . Thus F = Ŷ × I/∼ for
some non-empty I ⊆ {0, 1, . . . , q − 1}. From here we immediately get thatm|q. Therefore we have

proved the following theorem.

Theorem 4.26. Let p, q ∈ N. There exists a continuous onto map of the Cantor set R : Z → Z for

which the periods appearing in the induced map are exactly divisors of either p or q, i.e.

Per(2R) = {m ∈ N | m|p or m|q}.
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4.7 periodicity in symmetric products

In this section we shall be concerned only with periodic points in 2X made up entirely of periodic

points for (X,T ). We shall see that in this setting the anomalies such as those in Theorem 4.26 are not

possible.

Firstly note that one can reduce the problem to studying periodic points of T<ω. Namely, let

F ∈ 2X be a periodic point with fundamental period k = pα1
1 · · · p

αr
r where each point of F is periodic

underT . Then as in the proof ofTheorem4.17we can find points x1, . . . , xr inF forwhich pαii ∈ Per(¯
xi)

where each
¯
xi is the unique full orbit of xi that is periodic. It could happen that some of these xis are

represented by the same point or by points that are members of the same full orbit, which in this case

means the same cycle. For a moment let us assume that this is not the case and that all of these r full

orbits are mutually disjoint when considered as subsets ofX . Then for each 1 ≤ i ≤ r let Fi ∈ 2X be

the canonical ki = pαii -periodic set given by Fi = {xi, T ki (xi), T 2ki (xi), . . . }. Note that Fis are finite
and mutually disjoint, and thus

⋃r
i=1 Fi is a k-periodic point for 2T but also for T<ω. This proves the

reduction when distinct prime factors of k can be represented by mutually disjoint orbits.

Suppose now that x1 and x2 belong to the same orbit. As they are both periodic it must be that

¯
x1 is just shifted ¯

x2. We then apply Proposition 4.16 to get l1 = k1k2 ∈ Per(¯
x1) = Per(

¯
x2). Grouping

the elements of the same orbits in this way and discarding all but one representative for each of the

orbits we obtain a factorisation of k = l1 · · · ls into s co-prime factors where s ≤ r and where each

li is an element of some Per(¯
xt (i)) with xt (1) , . . . , xt (s) all belonging to distinct orbits. After setting

Fi = {xt (i), T li (xt (i)), T 2li (xt (i)), . . . } the union⋃s
i=1 Fi will again be a k-periodic point for both 2T

and T<ω. We thus obtained the reduction in general.

We shall now give explicit formulae for Per(T (n)), Per(Tn), and Per(T<ω) in terms of Per(T ).

Recall that T (n) is an induced map on the n-fold Cartesian productX (n) = X × · · · × X , that Tn is

the restrictions of 2T on Fn(X ) — the space of subsets ofX of cardinality at most n, and that T<ω is

the restriction of 2T on F (X ) — the space of subsets ofX of finite cardinality.
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Proposition 4.27. We have the following identities

Per(T (n)) =
{

[m1, . . . , mn] | mi ∈ Per(T ) for all 1 ≤ i ≤ n
}
, (4.4)

Per(Tn) =

n⋃
l=1

{
[d1, . . . , dl] | di |mi ∈ Per(T ) for all 1 ≤ i ≤ l, (4.5)

and
m1

d1
+ · · · +

ml
dl
≤ n

}
,

Per(T<ω) =
∞⋃
l=1

{
[d1, . . . , dl] | di |mi ∈ Per(T ) for all 1 ≤ i ≤ l

}
, (4.6)

where [k1, . . . , km] stands for the least common multiple of k1, . . . , km.

Proof. The statement (4.4) is easy. Given points x1, . . . , xn with fundamental periodsm1, . . . , mn it

is clear that the point (x1, . . . , xn) ∈ X (n) has fundamental period [m1, . . . , mn]. And conversely any

periodic point of T (n) must arise in this fashion.

We shall now prove (4.5). Let Q = {x1, . . . , xn} be a periodic point in Fn(X ). Clearly each xi

must be a periodic point of T . Then Q can be naturally partitioned into sets Q1, . . . , Ql where each

Qi contains points belonging to the same cycle under T , and no two points from distinct Qis belong

to the same cycle. All the points in Qi have the same periodmi under T . Let us denote the periods of

Q,Q1, . . . , Ql ∈ Fn(X ) by d, d1, . . . , dl respectively. Clearly d = [d1, . . . , dl] and since Tmin (Qi) = Qi

we also have di |mi. By the construction we have l ≤ n as every Qi must contain at least one point from

Q.

Lastly, we claim that midi ≤ |Qi | where | . | denotes the cardinality of a set. This is because T
di
n acts

onQi as a permutation over set of cardinality |Qi | of order at most midi . But a permutation can not have

order larger than the cardinality of the set it acts upon and, thus, we get the claim. From this it follows∑l
i=1

mi
di ≤ |

⋃l
i=1 Qi | = |Q| = nwhich finishes the proof of the inclusion ⊆ in (4.5).

The other inclusion follows by noting that any period of the form [d1, . . . , dl] where 1 ≤ l ≤ n,

di |mi for somemi ∈ Per(T ), and
∑l
i=1

mi
di ≤ n can be realised by taking points x1, . . . , xl of periods

m1, . . . , ml respectively and then settingQ =
⋃l
i=1 Qi where for each 1 ≤ i ≤ l the setQi is formed of

mi
di equispaced iterates of xi. More preciselyQi = {xi, T di (xi), T 2di (xi), . . . , T

(midi −1)di (xi)}. Thus (4.5)
holds.
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Lastly, note that Per(T<ω) =
⋃
n∈N Per(Tn), therefore (4.6) follows immediately from (4.5). �

Remark 4.28. An important observation that implicitly drives the proof of the equation (4.5) above

was that no periods are lost if one only considers points in Fn(X ) formed of equispaced8 iterates of

points inX . To take a simple example, consider a point x which is periodic with fundamental period

6 in some system (X,T ). Even though {x, T (x)}, {x, T (x), T 2(x)}, and many others are period 6

points for T3, there is a simple, canonical, equispaced point of period 6 for T3, namely {x}.

Remark 4.29. Note that the statement (4.6) could equally be written as

Per(T<ω) = [D(Per(T ))]

whereD(S) = {d ∈ N | d |n for some n ∈ S} is the set of divisors of S, and [S] = {[k1, . . . , kl] | l ∈

N, k1, . . . , kl ∈ S} is the set of least commonmultiples of a set S ⊆ N. In particular, Per(T<ω) is the

smallest set containing Per(T ) that is closed both under taking least commonmultiples and divisors.

Let us show how Proposition 4.27 can be used to compute the periods of induced maps on

hyperspaces.

Example 4.30. Let T : [0, 1] → [0, 1] be an interval map of type 2r (r > 1), i.e. a map for which

Per(T ) = {1, 2, 22, . . . , 2r−1, 2r}. One possible construction of such a map is described in [BC92,
Example I.13]. For any positive integer n, all the sets Per(Tn), Per(T (n)), Per(T<ω) clearly contain

Per(T ). Note that in our special case, if di |mi and mi ∈ Per(T ) then di ∈ Per(T ), and hence also

[d1, . . . , dl] = max{d1, . . . , dl} ∈ Per(T ). Therefore Per(Tn) = Per(T (n)) = Per(T<ω) = Per(T ).

Note that using Theorem 4.8 and the fact Per(T ) ⊆ Per(2T ) we can also conclude Per(2T ) = N. /

8Formally, we say thatQ = {x1, . . . , xm} is an equispaced point in Fn(X ) if min{k ≥ 1 | T k(xi) ∈ Q} does not depend
on 1 ≤ i ≤ m.
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4.8 admissible periods for systems defined over the reals

In this section we prove an extension of Theorem 4.8 to a non-compact setting where the underlying

set is taken to beR. Recall that in this case 2R denotes the set of all compact subsets of the reals and

that 2R itself is no longer compact.

Theorem 4.3:. Let T : R→ R be a continuous map over the reals. Then Per(2T ) is either ∅ or {1}
or {1, 2} or N.

Proof. We shall consider 3 cases depending on the number of fixed points of the map T .

Case 1. If T has no fixed points then either T (x) > x or T (x) < x for all x ∈ R which means that

Per(T ) = Per(2T ) = ∅.

Case 2. If T fixes at least two points then T is either the identity (in which case Per(2T ) = {1}) or there
exists a non-degenerate interval [a, b] whose endpoints are fixed by T but no other point in

(a, b) is. Therefore either T (x) > x or T (x) < x for all the points x ∈ (a, b).

Let us assume that the former is the case as the other possibility is treated analogously. Let

z = min{x ∈ (a, b] | T (x) = b}. If z = b then T ((a, b)) = (a, b) and any point in (a, b) has a

bounded (contained in [a, b]) fully non-recurrent full orbit with its forward iterates converging

to b and its backward orbit converging to a. If on the other hand a < z < b then any backward

orbit (within [a, b]) of z is still converging to a and as T (z) = b the point z is (boundedly) fully

non-recurrent. In both cases Proposition 4.10 gives Per(2T ) = N.

Case 3. If T fixes exactly one point (say T (0) = 0) and further assume that Per(2T ) ) {1} as otherwise
we are done. Let F ∈ 2R be a compact set with period p > 1. Then D =

⋃p−1
k=0 T

k(F ) is a

compact set which is fixed by T and is not {0}. It then follows using the same reasoning as in
[BC86, Lemma 3] that T 2 fixes at least two points. For convenience of the reader we reproduce

the argument.

Clearly T 2 fixes the point 0 thus we need to find one additional T 2-fixed point. Setm = minD

andM = maxD. As 0 is the only fixed point ofT it is not hard to see thatm andM must be on

80



the opposite sides of 0, i.e.m < 0 < M . Further we see that T ([m, 0]) ⊇ [0,M ] and similarly

T ([0,M ]) ⊇ [m, 0]. This means that there exists a point z ∈ [m, 0) such that T 2(z) = m. As

T 2(m) ≥ m and T 2(z) = m ≤ z there must exist a point in [m, z] which is fixed by T 2. This

point is clearly an additional fixed point for T 2 as z < 0.

Now thatwe know thatT 2 fixes at least twopointswe can argue as inCase 2. EitherT 2 is the iden-

tity map in which case Per(2T ) = {1} or {1, 2}, or there exist a point with a bounded fully non-
recurrent full orbit under the map T 2. For definiteness let us call it

¯
x(2) = (. . . , x−2, x0, x2, . . . ).

Then
¯
x = (. . . , x−2, x−1, x0, x1, x2, . . . ) where x2i+1 = T (x2i) still has bounded orbit and we

claim it is fully non-recurrent. We shall show that x−2k < λ(
¯
x) for some k ∈ N. Otherwise, for

each k ∈ N there would exist a monotone (increasing to +∞ or decreasing to −∞) subsequence

(pkn)n such that x2pkn+1 → x−2k. Note that we know that x−2k < λ(
¯
x(2)) where this set denotes

the limit set of
¯
x(2) ∈ lim

←−−

(
R, T 2

)
. But then x2pkn+2 → x−2k+1 and thus x−2k+1 ∈ λ(

¯
x(2)). As

λ(
¯
x(2)) is T 2 invariant we get that x2k+1 ∈ λ(

¯
x(2)) for all k ∈ Z, and since it is closed we get that

x0 is in it too which contradicts the fact that x0 < λ(
¯
x(2)) as x0 is fully non-recurrent under T 2.

This completes the proof that for some k ∈ N the point x−2k is fully non-recurrent underT and

we can once more use Proposition 4.10 to conclude that Per(2T ) = N.

�

One couldnowuse this result to deduceTheorem4.8 as follows. Given an intervalmapT : [0, 1]→

[0, 1] we first extend it over the wholeR by setting

T̃ (x) =




T (x), if x ∈ [0, 1],

T (1), if x ≥ 1,

T (0), if x ≤ 0.

Clearly the option Per(2T̃ ) = ∅ is not viable any more as T̃ has to fix a point inside [0, 1] and further-

more any 2T̃ -periodic compact set is contained in [0, 1] and thus 2T -periodic with the same period.
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4.9 bratteli-vershik representation

We have mentioned before that it would be possible to give rewrite rules for translating a description of

a systems given by graph covers to those using Bratteli-Vershik diagrams or Kakutani-Rokhlin towers.

In this section we give an example of how this is done by providing another, equivalent construction

of the system (X,T ) from Theorem 4.18 using the former.

There are many references explaining the theory behind Bratteli-Vershik diagrams, e.g. [HPS92,

Doo03], but to us most relevant was a recent paper [AEG15] by Amini, Elliott, and Golestani where

they give a category theory treatment of thematter highlighting the connection between these diagrams

and essentially minimal systems.

Consider the infinite graph in Figure 4.3, where all the edges are oriented downwards even if this is

not depicted there. Additionally, for each node other than the root L0 which has no incoming edges,

an ordering is given on the set of incoming edges into that node. This order is depicted in the figure as

the order in which the edges connect to that node going from left to right.

We have yet to explain how this infinite graph is constructed. Recall that in the proof of Theorem

4.18 we obtained a sequence of numbers (Ci)i∈N0 which was of some significance in the construction

of the map T . Here, any node Li+1 will have only one incoming edge coming from the node Li for any

i ∈ N0. The incoming edges into the node Ri+1 will be: Ci+1 edges coming form the node Li, then one

edge from the node Ri, then another Ci+1 edges form Li, and another one from Ri, and this sequence

of Ci+1 + 1 edges is to be repeated in total (i + 1)! times, after which the last one in comes the edge

from Li. Note that we could simply say that there are (i + 1)! · (Ci+1) + 1 edges coming from Li and

(i + 1)! fromRi intoRi+1, but by listing them as above, we implicitly specified the order on those edges

incoming into the node Ri+1 for any i ∈ N.

The space we shall be considering is the space of all infinite paths starting from L0 and then

following the sequence of edges down through the vertices Li/Ri. Encoding these paths as sequences

of edges allows one to see this space as the Cantor set of symbolic sequences. It remains to specify the

map on this space of infinite paths.
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L0

L1 R1

L2
R2

L3
R3

e11

e21

e31

f 1
1 f 1

2 f 1
3

f 2
1 f 2

2

f 2
3f 2

4
f 2

5 f 2
6

f 2
7

Figure 4.3: Bratteli-Vershik representation of the system from Theorem 4.18.

Recall that for each node other than the root there exists the minimal and the maximal ingoing

edge into that node. A path is said to be minimal (resp. maximal) if it consists entirely of minimal (resp.

maximal) edges. It is not hard to check that in our graph the path e11e
2
1 e

3
1 . . . that is always staying on

the left side is both minimal and maximal and no other minimal nor maximal path exits. This path will

be the fixed point of our map. For any other path p1p2p3 . . . there must exist a k ∈ N0 such that the

edge pk is not maximal. Choose this k to be the smallest possible and then we let our function map this

path to the path q1q2 . . . qkpk+1pk+2pk+3 . . . where qk is the successor of the edge pk and qis for i < k

are chosen in such a way that q1q2 . . . qk−1 forms the (unique) minimal path connecting L0 and the

source vertex of the edge qk. Equivalently, q1 . . . qk is chosen to be the successor of the path p1 . . . pk

with respect to the natural induced order on the sequence of paths (of length k) terminating at the

source of pk+1.

We leave to the reader to check that this does give the same (or formally, conjugated) system as

the method given in Section 4.5. For this it is helpful to see how this representation was derived from

Figure 4.2.
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Each vertex above stands for a cycle in the graph covers representation. To be precise, the self-loop

of the graphG0 is represented by the root L0, the self-loop of anyGi is represented by the vertex Li,

and the bigger cycle v(i)0 v
(i)
1 . . . v

(i)
|Vi |

inGi corresponds to the right side vertex Ri. Finally the edges and

the order in which they connect vertices Li and Ri to the vertices Li+1 and Ri+1 are to be inferred from

the way the cycles in the graphGi+1 wrap around through the cycles ofGi. In particular, the loop e′0

inG2 just goes once through the loop e0 inG1 and hence only one edge from L1 to L2. On the other

hand, the cycle f ′1 f
′

2 . . . f
′

11 inG2 wraps firstly two times around e0, then once around the bigger cycle in

G1, then repeats this, and then finally winds the last time over e0. This means that the edges incoming

into R2 are: two edges from L1, followed by one from R1, then again two from L1 and one from R1,

and lastly one from L1.

At the very end wemention that the corresponding representation using Kakutani-Rokhlin towers

is obtained by associating the cycles in the graphsGi with the eponymous towers and the vertices within

those cycles correspond to the levels of the towers.

4.10 concluding remarks

Nearly all the results contained in this chapter were driven by the problem of finding a complete

description of all admissible pairs (Per(T ), Per(2T )). We say that a pair (A, B) of subsets of positive

integersA, B ⊆ N is admissible if there exist a compact metric dynamical system (X,T ) with (A, B) =

(Per(T ), Per(2T )). The first stepwould be to find constraints onPer(2T ) givenPer(T ) and this already

seems involved. We have shown that Per(2T ) must be closed under taking prime divisors, but the

question remains if it is closed under taking divisors in general. Whatever turns out to be the truth, one

will still be facedwith the laborious task of constructingmaps attaining all the admissible periodicity sets

in-between, if one seeks for such a full characterisation. Some of these will be easy, but we have already

gone through much trouble in order to construct examples having two co-prime periods in Per(2T )

but not their product. We conjecture that, more generally, a map with Per(2T ) = {m | m|p for p ∈ P}
exists for any finite P ⊂ N.
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One plausible strategy for obtaining such results easily would be to find a way to extend the

embedding result from Theorem 4.21 to any, and not just minimal, Cantor set dynamics (Y, S). We

have already remarked that this is possible for the systems which are a powers of a minimal system but

anything more general than this is still out of our reach. We thus pose a question:

Question 4.32. Does Theorem 4.21 hold for any 0-dimensional system (Y, S)?

Should the answer to this question be yes, one could construct a system for which the set of

periods in the hyperspace is {m | m|p for some p ∈ P} as follows. Let p1, p2 ∈ P and let (Y, S)

be the system with Per(2S) = {m | m|p1 orm|p2} as in Theorem 4.26. To add another period

p3 ∈ P we simply imitate the proof of Theorem 4.26. We firstly embed (Y, S) within (Ŷ, Ŝ) and

then define Z = Ŷ × {0, 1, . . . , p3 − 1}/∼ where ∼ identifies p3 copies of Y ⊂ Ŷ into just one

copy. The map over Z is given by R : (y, i) 7→ (Ŝ(y), i + 1 mod p3). It is not hard to check that

Per(2Z ) = {m | m|p1 orm|p2 orm|p3}. This procedure can now be repeated with the system we have

just obtained (Z, R) as a starting point. Continuing in this way we shall eventually add all the periods

from P, building along the way systems with increasingly complex hierarchies of subsystems nested

within each other. The final system obtained in this way will have {m | m|p for some p ∈ P} for the
set of periods of its induced system.

Another possible direction for further research is investigating almost totally minimal systems

and the spaces that admit them. This is related to a prominent question in topological dynamics to

characterise spaces which admit minimal maps. One usually asks this question in the class of compact

systems, but as we have seen on the example of the Cantor set, asking for almost minimality on compact

spaces is related to minimality on non-compact spaces.

Let us elaborate, if (X∗, T ) is a system on a non-compactX∗, and if furthermore T is a (totally)

minimal homeomorphism, then there is awell-defined extensionofT on theonepoint compactification

of X∗ that fixes the point at infinity and that is again a homeomorphism which is almost (totally)

minimal.
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Chapter 5

TWO ADDIT IONAL RESULTS

T
he two additional results included in this chapter continue our study of the Cantor

set dynamics. The first part is concerned with a beautiful result proved by Sherman

in his PhD thesis [She12] where he completely characterised the orbit structure of

homeomorphisms of the Cantor set. A part of his work relies on a surprising result that a compact

system consisting entirely of periodic points must either have a finitely based spectrum, a notion defined

below, or otherwise have a non-trivial connected component. He proves this using somewhat involved

point-set topology argument. In the first part of this chapter we show how by choosing an appropriate

coarse graining one can obtain this as a consequence of a structural result about shift spaces.

In the second part of this chapter using similar symbolic methods we answer a question posed by

Barwell in his thesis [Bar11, BDG12]. He asked whether in a system with the shadowing property each

internally chain transitive set is necessarily an ω-limit set of some point in that system. We show that

unexpectedly the answer is no. The terminology will be defined below.

5.1 on sherman’s result

Up until now, whenever we had a dynamical system (X,T ) we assumed thatX was a nice (Hausdorff,

metric and often compact) topological space and that T was a continuous map on it. Let us for a

moment forget about the topology and continuity — and just think ofX as a set on which a map T is

given. We can think of the spaceX as having the discrete topology where each point is isolated and

where each x ∈ X is connected by an arrow to its image T (x).
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If we think of these arrows as links in a chain then the whole spaceX breaks apart in a number of

disjoint chains each of which is a full orbit of the map T . These orbits can be categorised in three main

groups. Those which contain a loop of n points z1 → z2 → · · · → zn → z1 are called n-cycles, those

with a chain stretching infinitely in both directions · · · → z−1 → z0 → z1 → z2 → . . . are Z-orbits,

and those remaining areN-orbits. Note that if T is a bijection then all the orbits are either cycles or

Z-obits. The cardinalities of each type of those orbits are denoted by σn, ζ and ν respectively. This

information written as a sequence (ν, ζ, σ1, σ2, σ3, . . . ) is called the orbit spectrum of (X,T ) and it is

denoted by σ (T ).

It is interesting to see how much the topology of X affects the orbit spectrum of a system. In

particular one can ask which orbit spectra are admissible for a class of dynamical systems over, say,

compact Hausdorff spaces. This very question was answered by Good, Greenwood, Knight, McIntyre,

andWatson in [GGK+06]— and they further proved that knowing the orbit spectrum alone is enough

to determine whether one can put a compact Hausdorff topology on an, a priori topologyless, system

(X,T ) which makes the map T continuous.

Under the additional assumption that T is a bijection, they obtain a similar characterisation of the

admissible orbit spectra for the class of compact metric spaces. In this case there are noN-orbits, hence

ν = 0.

Theorem 5.: (Good et al. [GGK+06]). Let T : X → X be a bijection. Then X admits a compact

metric topology with respect to which T is a homeomorphism if and only if ζ and each σn, n ∈ N is

either countable or has cardinality c, and either:

(1) |X | = c; or

(2) ζ , 0 and σn , 0 for some n ∈ N; or

(3) σ (T ) is finitely based.

Recall that σ (T ) is said to be finitely based if the setN = {n ∈ N | σn , 0} is finitely generated—
meaning that there exist a finite subsetG ⊆ N such that each j ∈ N is a multiple of a number inG.

This theorem was further refined by Sherman in [She12] where he yields a criterion to makeX the

Cantor set. As an initial step towards his classification he obtains the following result:

88



Theorem 5.2 (Sherman [She12]). If X is a compact Hausdor� space and T : X → X is a home-

omorphism with ζ = 0, i.e. all points are periodic, and if σ (T ) is not finitely based, then X has a

non-degenerate connected component.

We shall now show how to obtain this result using the coarse graining approach. Recall that the

connected component of a point x ∈ X is the union of all connected subspaces ofX containing it. In

a compact Hausdorff space this is easily seen to be the intersection of all clopen sets containing x, see

[Eng89, Theorem 6.1.23]. This allows us to prove the following lemma.

Lemma 5.3. Let X be a compact Hausdor� space and x1, x2, . . . , xn a finite number of points in it,

no two of which belong to the same connected component of X . Then there exists a continuous map

π : X → {1, 2, . . . , n} so that π(xi) = i, for each 1 ≤ i ≤ n.

Proof. Since no two of the points x1, x2, . . . , xn share a connected component and since components

can be written as intersections of clopen sets, there must exist clopen setsU1, U2, . . . , Un inX such

that eachUi contains xi and none of the other n − 1 points.

We can easily ensure that the sets are disjoint just by takingU ′i = Ui \
⋃
j,i Uj. The setsU ′i satisfy

the same property as those without dashes and are also pairwise disjoint.

Finally note that the remaining part of the space R = X \
⋃n
i=1U

′
i is also clopen and we can define

a continuous map satisfying the lemma as follows:

π(x) =




i if x ∈ U ′i for some 1 ≤ i ≤ n,

1 if x ∈ R.

�

Before we can proceed with the proof of Theorem 5.2 we have to recall some facts about shift

spaces. The full shift over a finite discrete set of symbolsA is the setAN consisting of all right-infinite

sequences of elements inA. The product topology on this set can be induced by the following metric:

two distinct points ξ = (ξ1, ξ2, . . . ) and η = (η1, η2, . . . ) are 2−i apart if and only if their ith entries

differ ξi , ηi while the ones preceding themmatch ξj = ηj, for 1 ≤ j < i. This topology makesAN

89



into a Cantor set and it is common to denote it by ΣA or in caseA = {0, 1, . . . , n− 1} by Σn. There is
a natural left shift map on this space σ : ΣA → ΣA given by:

ξ = (ξ1, ξ2, ξ3, . . . )
σ
7→ (ξ2, ξ3, ξ4, . . . ) = σ (ξ).

Any compact, σ-invariant subsetX ⊆ ΣA of the full shift is called a shift space. Here by σ-invariant we

mean σ (X ) = X so that the shift map σ restricted toX is well-defined and surjective. More on this

topic can be found for example in a textbook by Lind andMarcus [LM95].

The shift space systems are one of the best understood dynamical systems around. One can use

their symbolic structure to effectively compute a number topological invariants such as their entropy,

number of periodic points, structure of limit sets etc. This is why, quite often, they are used as toy

models to test conjectures— and why finding a coarse graining from, or to a shift space leads to a better

understanding of the system one studies.

Nevertheless, their dynamics can be quite restrictive. As we are about to see, a shift space consisting

only of periodic points must be finite.

Lemma 5.4. Let X be a shift space, i.e. a σ-invariant closed subset of the full shift over n ∈ N symbols.

Then all points in (X, σ) are periodic if and only if X is a finite set.

Proof. We shall first show that periodicity implies finiteness. For the sake of getting a contradiction

assume thatX is not finite and yet all points are periodic. Note that in the full shift over n symbols, and

thus in any of its subshifts, there are at most nk points of period k. SinceX is infinite it must contain

points with arbitrarily large periods.

Let (xi)i∈N be a sequence of points whose corresponding periods (pi)i∈N form a strictly increasing

sequence of positive integers. By passing onto a subsequence, if necessary, wemay assume that lim
i→∞

xi =

x. This limit is again a periodic point with some periodm ∈ N. By discarding an initial portion of the

sequence we may assume that p1 > m and in particular no point of (xi)i∈N is equal to x. We can write x

as

x = (ξ1, ξ2, . . . , ξm, ξ1, ξ2, . . . , ξm, . . . ).
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For each i ∈ N let t (i) ∈ N be the first position in which the sequences xi and x differ. Since

lim
i→∞

xi = x it must be that lim
i→∞

t (i) = ∞. By passing onto a subsequence yet again, if necessary, we

may assume that t (i) gives the same remainder 0 ≤ r < mwhen divided bym for all i ∈ N. Since the

period of x ism this means that the symbol ξt (i) in x at the position in which x and xi differ is always ξr

(in case r = 0 we set ξ0 = ξm ).

Let us now consider the sequence (σ t (i)−1(xi))i∈N. The initial coordinate of each of its elements

is never ξr for the reasons given in the previous paragraph. By passing onto a subsequence for the

third time, if necessary, we may assume that (σ t (i)−1(xi))i∈N is again convergent and that the initial

coordinate of its limit lim
i→∞

σ t (i)−1(xi) = y is also not ξr. We can write

y = (η1, η2, . . . )

where η1 , ξr.

Since t (i) grows unboundedly the numbers t (i) − 1 − m are positive for all large enough i ∈ N.

Therefore taking the limit lim
i→∞

σ t (i)−1−m(xi) makes sense and it is clear from the construction that this

limit is:

lim
i→∞

σ t (i)−1−m(xi) = (ξr, ξr+1, . . . , ξr+m−1, η1, η2, . . . )

where ξj for j ≥ m is defined as ξj mod m.

Similarly for any k ∈ Nwe have

lim
i→∞

σ t (i)−1−mk(xi) = (ξr, ξr+1, . . . , ξr+m−1, . . . , ξr, ξr+1, . . . , ξr+m−1︸                                                  ︷︷                                                  ︸
k times

, η1, η2, . . . )

and η1 , ξr.

By the initial assumption, all of these points we have constructed should be periodic under the shift

map. But since all of them contain y in their forward orbit they must all belong to the same cycle con-

sisting only of iterates of y. This is only possible if y = (ξr, ξr+1, . . . , ξr+m−1, ξr, ξr+1, . . . , ξr+m−1, . . . )

which is in contradiction with η1 , ξr. This finishes the proof of one implication.
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To prove the converse let us assume thatX is finite. As σ is surjective onX it also must be bijective.

This means that σ permutes the points ofX and thus all of them are periodic. �

The following simple fact about coarse graining periodic points will also come in handy in the

proof of Theorem 5.2.

Lemma 5.5. Assume that (X,T ) coarse grains onto (Y, S) via Ξ : X → Y . Then any periodic point

x ∈ X coarse grains onto a periodic point Ξ(x) ∈ Y and furthermore the period of Ξ(x) divides that of

x.

Proof. Let us assume that the period of x is n. Then T n(x) = x and thus

Ξ(x) = Ξ(T n(x)) = Sn(Ξ(x))

which means that Ξ(x) is periodic. This however does not imply that the fundamental period of Ξ(x)

is n. Letm ≤ n be the least positive integer for which Sm(Ξ(x)) = Ξ(x) and write n = mq + r with

q ∈ N and 0 ≤ r < m as in Euclidean division. Then

Ξ(x) = Sn(Ξ(x)) = Smq+r (Ξ(x)) = Sr (Smq(Ξ(x))) = Sr (Ξ(x))

where in the last equality we used the fact that Ξ(x) ism-periodic.

This now implies that r = 0 asmwas chosen to be the least positive integer satisfying Sm(Ξ(x)) =

Ξ(x). Thus n = mq andm|n. �

Nowwe have all the ingredients to prove Sherman’s theorem.

Proof of Theorem 5.2. Since σ (T ) is not finitely based, the set N = {n ∈ N | σn , 0} is infinite.
Enumerate its elements in the increasing order by a sequence (pi)i∈N. AsN is not finitely generated,

one can find a sequence of points (xi)i∈N inX such that for each i ∈ N none of the integers p1, p2, . . . , pi

divides the period of xi.

Using compactness we can extract a convergent subsequence (xs(i))i∈N. Its limit lim
i→∞

xs(i) = x ∈ X

must again be periodic with period pm ∈ N for somem ∈ N. If all the connected components ofX
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were degenerate then each iterate of x would lie in its own component and applying Lemma 5.3 we

could obtain a map π : X → {1, 2, . . . , pm} sending each point of the cycle {x, T (x), . . . , T pm−1(x)}
to a different integer. Indeed we can choose π so that π(T i−1(x)) = i for 1 ≤ i ≤ pm.

The map π naturally induces a coarse graining Ξ into the full shift over pm symbols {1, 2, . . . , pm}
which is given by:

Ξ(x) = (π(x), π(T (x)), π(T 2(x)), . . . ).

This is just the itinerary assignment fromMilnor and Thurston’s kneading theory[MT88,CE80]. Each

point gets a sequence of numbers in {1, 2, . . . , pm} depending on the area of setX in which its iterates

land. The image Ξ(X ) of X in the full shift is easily seen to be a shift space, a σ-invariant compact

subset of the full shift. As any coarse graining maps periodic points to periodic points and since all

points inX are periodic, by Lemma 5.4 we get that Ξ(X ) is a finite set. This further implies that all

but finitely many points in the sequence (xs(i))i∈N are mapped to the same point as x which due to the

construction is

Ξ(x) = (1, 2, . . . , pm, 1, 2, . . . , pm, . . . ),

and is clearly σ-periodic with period pm. Therefore, by Lemma 5.5, pm divides the period of all but

finitely many points in (xs(i))i∈N. This is not possible as by the construction pm does not divide the

period of xs(i) for all i large enough (it suffices to take i ≥ m). This contradictionmeans that at least two

different iterates of xmust lie in the same connected component proving that not all the components

ofX can be degenerate. �

As we are closing this section we remark that this forms a small part of Sherman’s characterisation

and that it looks like the coarse graining approach alone is not powerful enough to recover his complete

result.

93



5.2 on ω-limit sets

In this section we give an example of a dynamical system on a compact metric space having shadowing

property for which ωf , ICT (f ), thus answering negatively on a question raised in [Bar11, BDG12].

Independently, Gareth Davies found a similar example which remains unpublished.

We warn the reader that in order to stay consistent with most of the literature on the topic — the

map providing dynamics in this section is denoted by f rather than T . The underlying space X is

always assumed to be compact and metric.

Let (X, f ) be a dynamical system. To gain insight about its long term behaviour it is useful to

study the structure of its limit sets or attractors. The most natural limit set to consider is probably the

ω-limit set of a point x ∈ X which is defined as the set of limit points of its orbit sequence (f i(x))i∈N0 ,

or equivalently by:

ωf (x) =
∞⋂
i=1

∞⋃
j=i

{f j (x)},

where, as is usual, f j = f ◦ · · · ◦ f︸      ︷︷      ︸
j times

stands for the j-fold iteration of f . We shall write just ω(x) when

the mapping is clear from the context.

It can be shown that each ω-limit set is a non-empty, closed, and f -invariant subset ofX , see e.g.

[BC92, Chapter IV]. In particular, this means that all of them belong to 2X —the hyperspace of closed

subsets ofX . By

ωf = {ωf (x) | x ∈ X} ⊆ 2X ,

we denote the set of all ω-limit sets in the system.

It is also known (see again [BC92, Chapter IV]) that for any given point x the set ω(x) satisfies a

slightly technical property known as weak incompressibility (WI) introduced by Šarkovs′kiı̆ in [Šar65].

Definition 5.6 (Weak Incompressibility). An f -invariant and closed setA ⊆ X is said to be weakly

incompressible if for any proper, non-empty closed subset F ⊂ A we have

F ∩ f (A \ F ) , ∅,
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or equivalently, any non-empty subsetG ⊆ A relatively open inA that satisfies f (G) ⊆ G is necessarily

A itself.

Barwell, Good, Oprocha, and Raines in [BGOR13] showed that WI is equivalent to another well-

known notion, namely that of internal chain transitivity (ICT). But before we can define this we need

to recall what pseudo-orbits are.

Definition 4.2 (Pseudo-orbit). A sequence 〈x0, x1, x2, . . . 〉 is said to be a δ-pseudo-orbit for some

δ > 0 provided that d(f (xi), xi+1) < δ for each i ∈ N0. A finite δ-pseudo-orbit of length l ≥ 1 is a

finite sequence 〈x0, x1, x2, . . . , xl〉 satisfying d(f (xi), xi+1) < δ for 0 ≤ i < l. We also say that it is a

δ-pseudo-orbit between x0 and xl .

Definition 5.7 (Internal Chain Transitivity). An f -invariant and closed set A ⊆ X is said to be

internally chain transitive if given any δ > 0 there exists a δ-pseudo-orbit between any two points ofA

that is completely contained insideA. By ICT (f ) we denote the set containing all ICT subsets ofX .

This is again a subset of 2X .

As we mentioned before, any ω-limit set is WI/ICT.We thus have the following inclusion of sets in

the hyperspace 2X :

ωf ⊆ ICT (f ).

For some systems this is a strict inclusion and it is not hard to find such examples. It is much more

interesting to try to characterise systems in which ωf and ICT (f ) coincide. This would be useful as it

is easier to check if a given set is ICT than if it is an ω-limit set.

Bowen in [Bow75] proved that ωf = ICT (f ) holds for Axiom A diffeomorphisms. In a series of

papers [BDG12,BR15,Bar10,BGO12,BGKR10,BGOR13] Barwell, Davies, Good, Knight, Oprocha,

and Raines prove that for many other classes of systems, they also coincide. These include shifts of

finite type and Julia sets for certain quadratic maps. It turns out that they can prove this equality for

an even larger class of systems under the assumption that the systems in question have the shadowing

property.

Definition 5.8. A point z ∈ X is said to ε-shadow a sequence 〈x0, x1, x2, . . . 〉 for some ε > 0 if

d(xi, f i(z)) < ε for each i ∈ N0.
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Definition 5.9 (Shadowing). A dynamical system f : X → X is said to have shadowing provided

that for every ε > 0 there exists a δ > 0 such that every δ-pseudo-orbit is ε-shadowed by some point in

X .

Barwell et al. posed a conjecture that under shadowing it is always ωf = ICT (f ). Not long ago,

Meddaugh and Raines in [MR13] have proved that the set ICT (f ) must be closed in the space 2X

furnished with the Hausdorff distance. Assuming the shadowing condition they further show that

closure of ωf in 2X is equal to ICT (f ):

ωf = ICT (f ).

This is a particularly nice result, because it has been known for some time that for any continuous

map of the interval f : [0, 1] → [0, 1] the set ωf is closed, i.e. ωf = ωf , and so assuming that f has

shadowing ωf = ICT (f ).

That ωf is closed for interval maps was proved by Blokh, Bruckner, Humke, and Smítal in

[BBHS96]. Pokluda then showed this for circle maps in [Pok02], and finally the general case of

maps on any finite graph was covered byMai and Shao in [MS07].

This meant that Meddaugh and Raines’s result gave a positive resolution to the conjecture in all of

these cases. It remained open if the shadowing property itself implies closedness of ωf . Note that in

the light of new results this is equivalent to Barwell’s question.

We shall now show that the answer is no by constructing a system with shadowing in which

ωf , ICT (f ). To do this we once again use shift spaces and methods of symbolic dynamics.

As before, letA be an alphabet — a finite discrete set of symbols. Recall that a word overA is a

finite sequence of elements inA. If one can find a finite collection of wordsW such that a shift space

X is precisely the set of sequences in which none of the words fromW appears, then that shift space is

said to be of finite type. Walters in [Wal78] showed that shifts of finite type are precisely those shift

spaces with the shadowing property.

Proposition 5.:0 (Walters [Wal78]). A shift space over a finite alphabet is of finite type if and only if

it has the shadowing property.
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We can now proceed with the construction. We fix the alphabetA = {0, 1} and for each k ∈ N0

we set

Xk = {ξ ∈ Σ2 | any two 1s in ξ are separated with at least (k + 1) 0s},
and

X∞ = {ξ ∈ Σ2 | ξ has at most one symbol 1}.
Note that eachXk is in fact a shift space of finite type where the set of forbidden words is exactly

{10 . . . 0︸︷︷︸
l zeros

1 | 0 ≤ l ≤ k} = {11, 101, 1001, . . . , 10 . . . 0︸︷︷︸
k zeros

1}.

We also setN = {1/2k | k ∈ N ∪ {0,∞}} where 1/2∞ = 0 by the convention. The topology onN is

taken to be inherited from the real line, and the observant reader might realise thatN andX∞ are in

fact homeomorphic. The spaceN × Σ2 is a compact metric space equipped with the max-distance:

d((a1, ξ1), (a2, ξ2)) = max{|a1 − a2 |, dΣ2 (ξ1, ξ2)},

where dΣ2 is the standard metric on the full shift Σ2 defined in the previous section.

OnN × Σ2 we define a continuous map f as the product of the identity onN and the shift map σ

on Σ2:

f (a, ξ) = (a, σ (ξ)).

This is easily seen continuous. Finally, we take

X = {(a, ξ) ∈ N × Σ2 | a =
1

2k
and ξ ∈ Xk, for some k ∈ N ∪ {0,∞}},

or equivalently

X = {0} × X∞ ∪
∞⋃
k=0

{1/2k} × Xk.
This is clearly an f -invariant subset ofN × Σ2. We below show thatX is also closed and that the map

f restricted toX provides the counter-example we have been looking for.
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Let us briefly describe the idea behind the construction. The map f on each space {1/2k} × Xk is
conjugated to a shift of finite type and hence, by Proposition 5.10, f has shadowing on those subspaces.

The space {0} × X∞ on the other hand is not of finite type and does not have shadowing. In the

construction we exploit the fact that the sequence of spaces ({1/2k} × Xk)k∈N0 converge to {0} × X∞
in the hyperspace 2X as k→ ∞. This allows us to shadow pseudo-orbits in the subspace {0} × X∞
using real orbits in the space {1/2k} × Xk for k large enough. In this way we succeeded (Lemma 5.12)
to impose shadowing on f in the whole space by having shadowing on a family of proper subspaces

approximatingX in the limit.

It remains to be seen that for this system ωf , ICT (f ). The counter-example is the set {0} × X∞
which is not an ω-limit set of any of the points inX (Theorem 5.13). Yet, it is the limit of the sequence of

subspaces {1/2k} × Xk as k→ ∞, each of which is an ω-limit set of a point inX . This, when combined
with the result of Meddaugh and Raines, implies that {0} × X∞ is an ICT set but not an ω-limit set.

We shall now proceed with proving these claims.

Lemma 5.::. X is a closed and hence a compact subset of N × Σ2.

Proof. Let (a, ξ) be a point inN × Σ2 \ X . If a = 1/2k > 0, this means that ξ ∈ Σ2 \ Xk. SinceXk is

closed in Σ2 there is an open set V around ξ that does not intersectXk. SinceU = {a} is an open (and
closed) set inN ,U × V is an open neighbourhood containing (a, ξ) that does not intersectX .

If a = 0 and ξ < X∞ then there exists a k ∈ N0 so that word 10 . . . 0︸︷︷︸
k zeros

1 occurs somewhere in ξ. Take

V to be the set of all 0-1 sequences in Σ2 which have this word at the same position as ξ does. This

set is easily seen to be clopen. It is indeed what is called a cylinder set in Σ2 (see e.g. [LM95]). Setting

U = [0, 1/2k) ∩N one readily checks thatU × V is an open neighbourhood containing (a, ξ) but

not intersectingX . �

Lemma 5.:2. (X, f ) has shadowing.

Proof. Let ε > 0 and additionally assume ε < 1. Choose a k ∈ N so that ε/2 ≤ 1/2k < ε. Set

δ = min{ε/4, δ1(ε), . . . , δk(ε)} > 0, where each δj (ε) for 1 ≤ j ≤ k is a positive number chosen so that

every δj (ε)-pseudo-orbit inXj is ε-shadowed. This can be done by Proposition 5.10. We claim that for

this δ, every δ-pseudo-orbit inX is ε-shadowed by a real orbit.
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Let 〈(an, ξn)〉n∈N0 be a δ-pseudo-orbit inX . We shall distinguish two cases.

Case 1. We first suppose that a0 > ε/2. If a1 > a0 then a1 ≥ 2a0 and hence |a1 − a0 | > ε/2 > δ. On the

other hand, if a1 < a0 then 2a1 ≤ a0 and hence |a0 − a1 | ≥ a0/2 > ε/4 ≥ δ. Therefore, it must

be that a1 = a0 and inductively an = a0 for all n ∈ N. Which means that in this case the whole

pseudo orbit is actually contained in the same subspace {1/2m} × Xm where a0 = 1/2m.

Clearlym ≤ k. Since δ ≤ δm(ε), we have that 〈ξn〉n∈N0 is a δm(ε)-pseudo-orbit inXm, hence we

can choose a point ξ∗ that ε-shadows it. But then the point (a0, ξ∗) clearly ε-shadows the initial

pseudo-orbit.

Case 2. We now suppose a0 ≤ ε/2. A similar argument to the one above shows that an ≤ ε/2, and

hence an ≤ 1/2k for all n ∈ N. Since (Xn)n∈N0 from a decreasing sequence of sets, each ξn is

contained in the space Xk. The sequence 〈ξn〉n∈N0 is a δk(ε)-pseudo-orbit in Xk, hence there

exists a point ξ∗ that ε-shadows it. Again, it is readily checked that (1/2k, ξ∗) ε-shadows the initial

pseudo-orbit. �

Theorem 5.:3. (X, f ) is a dynamical system on a compact metric space which exhibits shadowing but

for which ωf , ICT (f ).

Proof. It suffices to note that {0} × X∞ is an ICT set that is not an ω-limit set of any of the points in

X . If it were an ω-limit set of some point (a, ξ) ∈ X , it would have to be that a = 0. But it is not hard

to see that the ω-limit set of any point in {0} × X∞ is the singleton {(0, 0∞)} as they are all pre-fixed
points. Here by 0∞ we denote the sequence in Σ2 consisting only of zeros. Therefore the set {0} ×X∞
is not in ωf .

It remains to be shown that {0} × X∞ is in ICT (f ). To simplify notation we shall instead show

that the setX∞ is ICT under the shift map σ . This is clearly an equivalent statement. Let δ > 0 and let

ξ and η be any two points inX∞. We can always choose k ∈ N such that σk(ξ) = 0∞. If η = 0∞ we are

done as

〈ξ, σ (ξ), . . . , σk(ξ) = η〉

is a δ-pseudo-orbit between ξ and η.
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If otherwise η = 0m10∞ for somem ∈ N0, choose n > m large enough so that the point ζ = 0n10∞

is δ-close to 0∞. Then one can check that

〈ξ, σ (ξ), . . . , σk(ξ) = 0∞, ζ, σ (ζ), . . . , σn−m(ζ) = η〉

is a δ-pseudo-orbit between ξ and η. �

Wementioned already that combining this theorem with Meddaugh and Raines’s result we obtain

the following corollary.

Corollary 5.:4. (X, f ) is a dynamical system on a compact metric space which exhibits shadowing but

for which ωf is not closed in the hyperspace of compact subsets 2X .

We remark that Barwell’s results in particular show that (X, f ) cannot be conjugated to any shift

system.

Related to these results, Good andMeddaugh in [GM16] very recently obtained a characterisation

of systems in which ωf = ICT (f ). They show that this is equivalent to another technical property

named orbital limit shadowing, a definition of which can be found in their paper. Our example thus

shows that a system can exhibit shadowing without having orbital limit shadowing.

100



L I ST OF REFERENCES

[AEG15] Massoud Amini, George A. Elliott, and Nasser Golestani, The category of Bratteli diagrams, Canad. J. Math.

67 (2015), no. 5, 990–1023. MR3391730

[AGW08] Ethan Akin, Eli Glasner, and BenjaminWeiss,Generically there is but one self homeomorphism of the Cantor

set, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3613–3630. MR2386239

[Ban05] John Banks, Chaos for induced hyperspace maps, Chaos Solitons Fractals 25 (2005), no. 3, 681–685. MR2132366

(2006a:37013)

[Bar10] Andrew D. Barwell,A characterization of ω-limit sets of piecewise monotone maps of the interval, Fund. Math.

207 (2010), no. 2, 161–174. MR2586009 (2011k:37059)

[Bar11] Andrew Barwell,Omega-limit sets of discrete dynamical systems, Ph.D. Thesis, University of Birmingham,

2011.

[BBHS96] Alexander Blokh, A. M. Bruckner, P. D. Humke, and J. Smítal, The space of ω-limit sets of a continuous map

of the interval, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1357–1372. MR1348857 (96j:58089)

[BC86] Louis Block and EthanM. Coven,Maps of the interval with every point chain recurrent, Proc. Amer. Math.

Soc. 98 (1986), no. 3, 513–515. MR857952 (87j:54059)

[BC92] L. S. Block andW. A. Coppel,Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-

Verlag, Berlin, 1992. MR1176513 (93g:58091)

[BD12] Nilson C. Bernardes Jr. and Udayan B. Darji,Graph theoretic structure of maps of the Cantor space, Adv. Math.

23: (2012), no. 3-4, 1655–1680. MR2964619

[BDG12] Andrew D. Barwell, Gareth Davies, and Chris Good,On the ω-limit sets of tent maps, Fund. Math. 2:7 (2012),

no. 1, 35–54. MR2914921

[BGKR10] Andrew Barwell, Chris Good, Robin Knight, and Brian E. Raines,A characterization of ω-limit sets in shift

spaces, Ergodic Theory Dynam. Systems 30 (2010), no. 1, 21–31. MR2586343 (2011e:37026)

[BGL13] Francisco Balibrea, Juan L. G. Guirao, andMarek Lampart,A note on the definition of α-limit set, Appl. Math.

Inf. Sci. 7 (2013), no. 5, 1929–1932. MR3072393

101



[BGO12] Andrew D. Barwell, Chris Good, and Piotr Oprocha, Shadowing and expansivity in subspaces, Fund. Math.

2:9 (2012), no. 3, 223–243. MR3001240

[BGOR13] Andrew D. Barwell, Chris Good, Piotr Oprocha, and Brian E. Raines, Characterizations of ω-limit sets in

topologically hyperbolic systems, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 1819–1833. MR3002729

[BLT03] F. Thomas Bruss, Guy Louchard, and JohnW. Turner,On theN -tower problem and related problems, Adv. in

Appl. Probab. 35 (2003), no. 1, 278–294. In honor of JosephMecke. MR1975514 (2004d:60181)

[Bow75] Rufus Bowen, ω-limit sets for axiom A di�eomorphisms, J. Differential Equations :8 (1975), no. 2, 333–339.

MR0413181

[BR15] Andrew D. Barwell and Brian E. Raines, The ω-limit sets of quadratic Julia sets, Ergodic Theory Dynam.

Systems 35 (2015), no. 2, 337–358. MR3316915

[BS75] Walter Bauer and Karl Sigmund, Topological dynamics of transformations induced on the space of probability

measures, Monatsh. Math. 79 (1975), 81–92. MR0370540 (51 #6767)

[Bur07] Keki Burjorjee, Sufficient conditions for coarse-graining evolutionary dynamics, Foundations of genetic algo-

rithms, 2007, pp. 35–53.

[CE80] Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics,

vol. 1, Birkhäuser, Boston, Mass., 1980. MR613981

[CGH+14] Chris Cannings, Chris Good, John Haslegrave, David Parker, Mate Puljiz, and Jonathan E. Rowe,WP2:

Invariance properties of sub-systems — D2.1: Theory of topological and dynamical invariants (2014), available

at http://www.hieratic.eu/deliverables.php. Accessed: 11/08/2016.

[CGH+15] , WP2: Invariance properties of sub-systems — D2.2: Combination of complex sub-systems (2015),

available at http://www.hieratic.eu/deliverables.php. Accessed: 11/08/2016.

[Dan01] Alexandre I. Danilenko, Strong orbit equivalence of locally compact Cantor minimal systems, Internat. J. Math.

:2 (2001), no. 1, 113–123. MR1812067 (2002j:37016)

[DDF07] Peter Dittrich and Pietro Speroni Di Fenizio, Chemical organisation theory, Bulletin of mathematical biology

69 (2007), no. 4, 1199–1231.

[DHH+15] Peter Dittrich, Jan Huwald, Richard Henze, Bashar Ibrahim, and Mate Puljiz,WP4: Multi-scale simula-

tion — D4.2: Integration of coarse-graining algorithms (2015), available at http://www.hieratic.eu/

deliverables.php. Accessed: 11/08/2016.

[DHS03] S. Derisavi, H. Hermanns, and W. Sanders, Optimal state-space lumping in Markov chains, Information

Processing Letters 87 (September 2003), no. 6, 309–315.

102

http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php


[Doo03] AnthonyH.Dooley,Markov odometers, Topics in dynamics and ergodic theory, 2003, pp. 60–80. MR2052275

(2005c:37007)

[Eng89] Ryszard Engelking,General topology, Second, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag,

Berlin, 1989. Translated from the Polish by the author. MR1039321

[Eng93] Arthur Engel, The computer solves the three tower problem, The AmericanMathematical Monthly :00 (1993),

no. 1, pp. 62–64.

[ES09] M. A. El-Shehawey,On the gambler’s ruin problem for a finite Markov chain, Statist. Probab. Lett. 79 (2009),

no. 14, 1590–1595. MR2547416 (2010i:60133)

[FB94] Walter Fontana and LeoW Buss, The arrival of the fittest: Toward a theory of biological organization, Bulletin

of Mathematical Biology 56 (1994), no. 1, 1–64.

[Fel68] William Feller,An introduction to probability theory and its applications. Vol. I, Third edition, JohnWiley &

Sons, Inc., New York-London-Sydney, 1968. MR0228020 (37 #3604)

[FG16] Leobardo Fernández and Chris Good, Shadowing for induced maps of hyperspaces, Fund. Math. (2016), to

appear.

[FGH+16] Leobardo Fernández, Chris Good, JohnHaslegrave,Mate Puljiz, and Ártico Ramírez,WP2: Invariance proper-

ties of sub-systems — D2.3: Invariance properties of sub-systems (2016), available at http://www.hieratic.

eu/deliverables.php. Accessed: 11/08/2016.

[FGP16a] Leobardo Fernández, Chris Good, andMate Puljiz,Almost minimal systems and periodicity in hyperspaces

(2016), available at http://arxiv.org/abs/1602.03127. Accessed: 16/8/2016.

[FGP16b] ,WP1: Theory of hierarchical structure — D1.3: Theory of hierarchical structure (2016), available at

http://www.hieratic.eu/deliverables.php. Accessed: 11/08/2016.

[FGPR15] Leobardo Fernández, Chris Good, Mate Puljiz, and Ártico Ramírez, Chain transitivity in hyperspaces, Chaos

Solitons Fractals 8: (2015), no. part A, 83–90. MR3426021

[GGK+06] C. Good, S. Greenwood, R. W. Knight, D. W.McIntyre, and S. Watson, Characterizing continuous functions

on compact spaces, Adv. Math. 206 (2006), no. 2, 695–728. MR2263719 (2007i:54027)

[GJP+14] Chris Good, Martin Nilsson Jacobi, David Parker, Mate Puljiz, and Jonathan E. Rowe,WP3: Algorithms

for non-linear decompositions — D3.1: Algorithms for identifying linear coarse grainings (2014), available at

http://www.hieratic.eu/deliverables.php. Accessed: 11/08/2016.

[GJP+15] ,WP3: Algorithms for non-linear decompositions — D3.2: Algorithms for identifying non-linear

and alternative coarse-grainings of non-linear systems (2015), available at http://www.hieratic.eu/

deliverables.php. Accessed: 11/08/2016.

103

http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php
http://arxiv.org/abs/1602.03127
http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php


[GKK+06] Aleksandr Nikolaevich Gorban, Nikolas K Kazantzis, Ioannis G Kevrekidis, Hans Christian Öttinger, and

Constantinos Theodoropoulos,Model reduction and coarse-graining approaches for multiscale phenomena,

Springer, 2006.

[GKL+09] Juan Luis García Guirao, Dominik Kwietniak, Marek Lampart, Piotr Oprocha, and Alfredo Peris, Chaos on

hyperspaces, Nonlinear Anal. 7: (2009), no. 1-2, 1–8. MR2518006 (2010c:37032)

[GM06] Jean-Marc Gambaudo andMarcoMartens,Algebraic topology for minimal Cantor sets, Ann. Henri Poincaré 7

(2006), no. 3, 423–446. MR2226743 (2006m:37007)

[GM16] Chris Good and JonathanMeddaugh,Orbital shadowing, internal chain transitivity and ω-limit sets, Ergodic

Theory Dynam. Systems (2016).

[GPPR14] Chris Good, David Parker, Mate Puljiz, and Jonathan E. Rowe,WP1: Theory of hierarchical structure —

D1.1: Algebraic structure of hierarchical decompositions (2014), available at http://www.hieratic.eu/

deliverables.php. Accessed: 11/08/2016.

[GPPR15] ,WP1: Theory of hierarchical structure — D1.2: Topological characterisation of property convergence

(2015), available at http://www.hieratic.eu/deliverables.php. Accessed: 11/08/2016.

[GPPR16] ,A characterisation of compatible state space aggregations for discrete dynamical systems (2016), available

at http://matepuljiz.tk. Accessed: 16/8/2016.

[GRIM12] José L. Gómez-Rueda, Alejandro Illanes, and Héctor Méndez,Dynamic properties for the induced maps in the

symmetric products, Chaos Solitons Fractals 45 (2012), no. 9-10, 1180–1187. MR2979228

[Gut13] Allan Gut, The gambler’s ruin problem with delays, Statist. Probab. Lett. 83 (2013), no. 11, 2549–2552.

MR3144040

[HP17] John Haslegrave andMate Puljiz, Reaching consensus on a connected graph, J. Appl. Probab. 54 (2017), no. 1,

to appear, available at http://arxiv.org/abs/1511.05435. Accessed: 16/8/2016.

[HPS92] Richard H. Herman, Ian F. Putnam, and Christian F. Skau,Ordered Bratteli diagrams, dimension groups and

topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827–864. MR1194074 (94f:46096)

[IM12] W. T. Ingram andWilliam S. Mahavier, Inverse limits, Developments in Mathematics, vol. 25, Springer, New

York, 2012. From continua to chaos. MR3014043

[Jac05] Martin N. Jacobi,Hierarchical organization in smooth dynamical systems, Artif. Life :: (December 2005),

no. 4, 493–512.

[JG09] Martin Nilsson Jacobi and Olof Görnerup,A spectral method for aggregating variables in linear dynamical

systems with application to cellular automata renormalization, Advances in Complex Systems :2 (2009), no. 02,

131–155.

104

http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php
http://www.hieratic.eu/deliverables.php
http://matepuljiz.tk
http://arxiv.org/abs/1511.05435


[Kar72] RichardM. Karp, Reducibility among combinatorial problems, Complexity of computer computations (Proc.

Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), 1972, pp. 85–103. MR0378476

[Kat13] Guy Katriel,Gambler’s ruin probability—a general formula, Statist. Probab. Lett. 83 (2013), no. 10, 2205–2210.

MR3093803

[Kat14] ,Gambler’s ruin: the duration of play, Stoch. Models 30 (2014), no. 3, 251–271. MR3238565

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker, PRISM 4.0: verification of probabilistic real-time

systems, Computer aided verification, 2011, pp. 585–591. MR2870782

[KO07] Dominik Kwietniak and Piotr Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos

Solitons Fractals 33 (2007), no. 1, 76–86. MR2301847 (2008b:37024)

[KP02] Andrej Kmet andMarko Petkovšek,Gambler’s ruin problem in several dimensions, Adv. in Appl. Math. 28

(2002), no. 2, 107–118. MR1888839 (2003a:60012)

[KS76] John G. Kemeny and J. Laurie Snell, Finite Markov chains, Springer-Verlag, New York-Heidelberg, 1976.

Reprinting of the 1960 original, Undergraduate Texts in Mathematics. MR0410929 (53 #14670)

[Len09] Tamás Lengyel, The conditional gambler’s ruin problem with ties allowed, Appl. Math. Lett. 22 (2009), no. 3,

351–355. MR2483497 (2010b:60125)

[LM95] Douglas Lind and BrianMarcus,An introduction to symbolic dynamics and coding, Cambridge University

Press, Cambridge, 1995. MR1369092

[LR89] GenyuanLi andHerschelRabitz,A general analysis of exact lumping in chemical kinetics, Chemical engineering

science 44 (1989), no. 6, 1413–1430.

[LR90] ,A general analysis of approximate lumping in chemical kinetics, Chemical engineering science 45

(1990), no. 4, 977–1002.

[LRT94] Genyuan Li, Herschel Rabitz, and János Tóth,A general analysis of exact nonlinear lumping in chemical

kinetics, Chemical Engineering Science 49 (1994), no. 3, 343–361.

[Mac05] Sergio Macías, Topics on continua, Chapman &Hall/CRC, Boca Raton, FL, 2005. MR2147759

[Mio63] J. Mioduszewski,Mappings of inverse limits, Colloq. Math. :0 (1963), 39–44. MR0166762

[MR13] JonathanMeddaugh and Brian E. Raines, Shadowing and internal chain transitivity, Fund. Math. 222 (2013),

no. 3, 279–287. MR3104074

[MS07] Jie-Hua Mai and Song Shao, Spaces of ω-limit sets of graph maps, Fund. Math. :96 (2007), no. 1, 91–100.

MR2338540 (2008h:37043)

105



[MT88] JohnMilnor andWilliam Thurston,On iterated maps of the interval, Dynamical systems (College Park, MD,

1986–87), 1988, pp. 465–563. MR970571

[Nad06] Sam B. Nadler Jr., Hyperspaces of sets. A text with research questions, Aportaciones Matemáticas: Textos

[Mathematical Contributions: Texts], vol. 33, SociedadMatemática Mexicana, México, 2006. Unabridged

edition of the 1978 original. MR2293338 (2007i:54024)

[Nag70] Keiô Nagami,Dimension theory, With an appendix by Yukihiro Kodama. Pure and AppliedMathematics,

Vol. 37, Academic Press, New York-London, 1970. MR0271918 (42 #6799)

[Par99] Emanuel Parzen, Stochastic processes, Classics in Applied Mathematics, vol. 24, Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1999. Reprint of the 1962 original. MR1699272

[Pok02] David Pokluda,Characterization of ω-limit sets of continuous maps of the circle, Comment.Math. Univ. Carolin.

43 (2002), no. 3, 575–581. MR1920533 (2003d:37048)

[PT87] Robert Paige and Robert E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. :6 (1987), no. 6,

973–989. MR917035 (89h:68069)

[RVW05a] JonathanE.Rowe,MichaelD.Vose, andAldenH.Wright,Coarse graining selection andmutation, Foundations

of genetic algorithms, 2005, pp. 176–191. MR2238251

[RVW05b] , State aggregation and population dynamics in linear systems, Artif. Life :: (December 2005), no. 4,

473–492.

[RVW06] , Di�erentiable coarse graining, Theoret. Comput. Sci. 36: (2006), no. 1, 111–129. MR2254227

(2007h:68171)

[Šar65] O.M. Šarkovs′kiı̆,On attracting and attracted sets, Dokl. Akad.Nauk SSSR :60 (1965), 1036–1038. MR0188992

(32 #6419)

[SB06] Yvik C. Swan and F. Thomas Bruss,Amatrix-analytic approach to theN -player ruin problem, J. Appl. Probab.

43 (2006), no. 3, 755–766. MR2274798 (2007m:60221)

[She12] Casey Sherman,Orbit structures of homeomorphisms, Ph.D. Thesis, Baylor University, 2012.

[Shi14] Takashi Shimomura, Special homeomorphisms and approximation for Cantor systems, Topology Appl. :6:

(2014), 178–195. MR3132360

[Shi16a] , A combinatorial construction of residually scrambled symbolic systems (2016), available at http:

//arxiv.org/abs/1602.01568. Accessed: 9/2/2016.

[Shi16b] ,The construction of a completely scrambled system by graph covers, Proc. Amer. Math. Soc. :44 (2016),

no. 5, 2109–2120. MR3460171

106

http://arxiv.org/abs/1602.01568
http://arxiv.org/abs/1602.01568


[Sti06] David Stirzaker, Three-handed gambler’s ruin, Adv. in Appl. Probab. 38 (2006), no. 1, 284–286. MR2213975

(2006k:60073)

[Sti94] , Tower problems and martingales, Math. Sci. :9 (1994), no. 1, 52–59. MR1294785 (95h:60068)

[TLRT97] Alison S Tomlin, Genyuan Li, Herschel Rabitz, and János Tóth, The e�ect of lumping and expanding on

kinetic di�erential equations, SIAM Journal on Applied Mathematics 57 (1997), no. 6, 1531–1556.

[TW06] John Talbot and Dominic Welsh, Complexity and cryptography, Cambridge University Press, Cambridge,

2006. An introduction. MR2221458

[Vos99] Michael D. Vose, The simple genetic algorithm, Complex Adaptive Systems, MIT Press, Cambridge, MA, 1999.

Foundations and theory, A Bradford Book. MR1713436 (2000h:65024)

[Wal78] PeterWalters,On the pseudo-orbit tracing property and its relationship to stability, The structure of attractors in

dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 1978, pp. 231–244. MR518563

(80d:58055)

[Wil91] DavidWilliams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University

Press, Cambridge, 1991. MR1155402 (93d:60002)

107


	Introduction
	A characterisation of state space aggregations
	Different models
	Aggregating Weighted Binary Tournaments
	Intermezzo: On complexity
	Artificial Chemistries
	Aggregating analytic maps
	Concluding remarks

	Reaching consensus on a connected graph
	Absorption probabilities and the optimality of the complete graph
	Gambler's ruin with delays
	Monotonicity of the mean absorption time

	A few words on upper bounds on the time to completion

	Induced dynamics on the hyperspace of compact subsets
	Preliminaries
	Two Simple Results
	Elementary periodic points
	Admissible sets of periods for the induced map
	Almost totally minimal Cantor system
	Graph covers
	Proof of Theorem 4.18

	An embedding result
	2, 3 in Per(2^f) does not imply 6 in Per(2^f)
	General p and q

	Periodicity in symmetric products
	Admissible periods for systems defined over the reals
	Bratteli-Vershik representation
	Concluding remarks

	Two additional results
	On Sherman's result
	On w-limit sets




