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Census counts of benthic foraminifera were studied from the SW Iberian Margin to reconstruct past changes in
deep-water hydrography across Terminations [ and II. Detailed benthic faunal data (>125 pm size-fraction)
allow us to evaluate the limitations imposed by taphonomic processes and restricted size-fractions. The compar-
ison of recent (mudline) and fossil assemblages at IODP Site U1385 indicates the quick post-mortem disintegra-
tion of shells of astrorhizoid taxa (~80% of the present-day fauna), resulting in impoverished fossil assemblages.
While the application of quantitative proxy methods is problematic under these circumstances, the fossil assem-
blages can still provide a qualitative palaeoenvironmental signal that, while most fully expressed in the
125-212 um size-fraction, is nonetheless also expressed to some degree in the >212 pm size-fraction.

Variations in the benthic foraminiferal assemblages reveal information about changing organic matter supply,
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Taphonomy deep-water oxygenation and temperature. MIS 2 is generally characterized by an elevated trophic state and var-
Multiproxy records iable oxic conditions, with oxygenation minima culminating in the Younger Dryas (YD) and Heinrich Stadials
IODP Site U1385

(HS) 1,2 and 3. Low oxic conditions coincide with decreased water-temperature and lower benthic 6'C, pointing
to the strong influence of a southern sourced water-mass during these periods. HS 1 is the most extreme of these
intervals, providing further evidence for a severe temporary reduction or even shutdown of AMOC. With the in-
ception of MIS 1, organic matter supply reduced and a better ventilated deep-water environment bathed by
NEADW is established.
For Termination II, clear indications of southern-sourced water are limited to the early phase of HS 11. During the
latter part of HS 11, the deep-water environment seems to be determined by strongly increased supply of organic
matter, potentially explaining the decoupling of benthic 8'3C and Mg/Ca records of earlier studies as a
phytodetritus effect on the carbon isotope signal. However, the presence of a warm, nutrient-rich and poorly ox-
ygenated water-mass cannot be ruled out. With the inception of interglacial MIS 5e trophic conditions are re-
duced and ventilation by NEADW increases.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction the area is situated at the southern edge of the ice rafting debris

(IRD) belt, and melting icebergs reached the western Iberian Margin

Deep-sea sediments of the SW Iberian Margin show a remarkable
sensitivity to climate change on orbital and sub-orbital time scales and
have stimulated a number of landmark studies in palaeoclimatic and
palaeoceanographic research on glacial/interglacial cycles (see Voelker
and de Abreu, 2011, for a review). Shackleton et al. (2000) demonstrated
that a signal of interhemispheric phasing is preserved in the sediments:
changes in 6'80 of planktonic foraminifera follow the Greenland ice
core record, whereas the 580 record of benthic foraminifera resem-
bles variations in the Antarctica temperature signal. Furthermore,
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during Heinrich and Greenland stadials of the last glacial cycle and
during ice-rafting events (IREs) of preceding glacial periods (Hodell
et al., 2008). Finally, the relative proximity to the continent allows
for good pollen preservation and correlation of marine and terrestri-
al records (Margari et al., 2014 and references therein). The western
Iberian Margin is thus a unique place to study Quaternary climate,
and there is an ever-growing amount of geochemical, geophysical
and micropalaeontological data available for the area that allows de-
tailed insights in the hydrography of surface, intermediate and deep
waters for the past 1.4 Myrs (see e.g., Shackleton et al., 2000; Skinner
and Elderfield, 2007; Voelker and de Abreu, 2011; Hodell et al.,
2013a, 2013b; Margari et al., 2014 and references therein).

Proxy methods based on benthic foraminiferal assemblages have
been applied to track changes in deep-water hydrography along the
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western Iberian Margin since the last glacial maximum (Caralp, 1987;
Baas et al., 1998; Schoénfeld and Zahn, 2000; Schonfeld et al., 2003).
The exclusive focus on shells >250 pum ensured the time-efficient acqui-
sition of quantitative data at high stratigraphic resolution as well as
methodological consistency between studies. However, the restriction
of the analysis to coarser size-fractions resulted in low numbers of
specimens, an impoverished faunal inventory and loss of small-sized
index species. The latter results in the potential loss of important
palaeoenvironmental information (Schroder et al., 1987; Schonfeld
et al., 2003; Schonfeld, 2012). In addition, taphonomic processes may
bias the composition of any fossil assemblage and remain a major con-
cern with all micropalaeontological proxy methods (Jorissen et al.,
2007). The standing stock of benthic foraminifera in the study area
shows a strong dominance of agglutinating foraminifera, in strong con-
trast to Holocene and Pleistocene assemblages that rarely contain agglu-
tinated tests (Caralp, 1987; Baas et al., 1998; Phipps et al., 2012;
Expedition 339 Scientists, 2013). This decline in agglutinated shells
within the uppermost sediment column reflects taphonomic disintegra-
tion (Schroder, 1988; Kuhnt et al., 2000), a potential problem that was
not addressed in previous studies.

Mudline and core samples recovered from IODP Site U1385 provide
a way to address these issues (Expedition 339 Scientists, 2013). In this
study, we present census counts of ~34,000 shells of benthic foraminif-
era across the last and penultimate glacial/interglacial transitions from
four deep-sea cores on the southwestern Iberian Margin. Two types of
quantitative data-sets are compared and integrated: a low-resolution
data-set that represents the complete foraminiferal inventory
>125 pm, and a high-resolution data-set focusing on the most abundant
taxa >212 pm. This two-fold approach allows for 1) the assessment of
the limitations imposed on benthic foraminiferal proxy records by ta-
phonomy and the reliance on coarser size-fractions; and 2) the recon-
struction of relative changes in bottom water oxygenation, organic
matter availability and deep water temperature and, ultimately, chang-
es in deep-water circulation across Terminations I and II.

2. Regional setting

The studied cores include: U1385D-1H (37°34.28'N, 10°7.56'W;
2584 m water depth), U1385E-3H (37°34.28'N, 10°7.57'W; 2589 m),
MD99-2334 K (37°48'N, 10°10’'W; 3146 m) and MDO01-2444
(37°33.88'N, 10°8.34’'W; 2656 m). They have all been recovered from
an elevated spur on the upper slope of the southwestern Iberian Margin
(Fig. 1; Hodell et al., 2013a). At present, these sites are bathed in north-
ward re-circulating Northeast Atlantic Deep Water (NEADW; tempera-
ture: 2-10 °C; salinity: 35-36 psu), a derivative of North Atlantic Deep
Water (NADW; Van Aken, 2000; Voelker and de Abreu, 2011).
NEADW is sourced from Lower Deep Water (LDW), Labrador Sea
Water (LSW), Iceland-Scotland Overflow Water (ISOW), and, to a
minor extent, Mediterranean Outflow Water (MOW) (Van Aken,
2000). Warm (10-12 °C) and highly saline (>36 psu) MOW overlies
NEADW at depths <1500 m. Below 4000 m, NEADW is underlain by
cold (2 °C) and low saline (<35 psu) LDW, which is derived from Ant-
arctic Bottom Water (AABW; Van Aken, 2000; Hernandez-Molina
etal, 2011).

Over the past 400 kyrs, oscillations in the Atlantic meridional
overturning circulation (AMOC) and thus, antagonistic changes in the
export of southward NADW and northward AABW, have significantly
altered deep-water hydrography in the area across glacial/interglacial
and stadial/interstadial cycles (Hodell et al., 2013a). The severe reduc-
tion or even shut down of AMOC during Heinrich and Greenland
stadials resulted in a significant shoaling of the Glacial North Atlantic
Intermediate Water (GNAIW)/AABW boundary, the increased influence
of cold, more poorly ventilated southern sourced waters, and increased
nutrient availability in the study area (Baas et al., 1998; Sarnthein et al.,
2000; Shackleton et al., 2000; Williamowski and Zahn, 2000; Schonfeld
et al., 2003; Skinner et al., 2003; Skinner and Shackleton, 2006; Skinner

and Elderfield, 2007; Voelker and de Abreu, 2011). While the depth of
AABW shoaled, an enhanced MOW core settled deeper in the water col-
umn during at least some of the Heinrich stadials (Schénfeld and Zahn,
2000; Voelker and de Abreu, 2011).

3. Material and methods
3.1. Sample material and data-sets

Four quantitative data-sets of benthic foraminifera across Termina-
tions I and Il have been acquired from the southwestern Iberian Margin
cores for this study. 1 cm-thick slices of sediment have been collected
from half sections of the studied cores. After washing the samples
over a >63 um sieve, benthic foraminiferal shells of the targeted size-
fractions were picked from the dried residues, determined and counted
(see Appendix A for taxonomy). Fragments of foraminiferal shells have
been counted as individual specimens. The data-sets group in two
types:

3.1.1. Low-resolution records of benthic foraminifera >125 um

These data-sets, collected from cores U1385D-1H and U1385E-3H of
IODP Expedition 339, consist of a limited number of samples (25) due to
time constraints but represent a quantitative record of the entire micro-
faunal inventory >125 um. Foraminiferal shells from size-fractions
125-212 um and > 212 um have been counted separately to evaluate po-
tential biases on the interpretation of the high-resolution records
>212 pum. In some samples (1.12, 2.3, 2.5, 2.6, 2.8-2.10), the size-
fraction 125 um-212 pm contained a very high amount of foraminiferal
shells and has been subdivided into smaller portions by using a standard
microsplitter to facilitate counting.

The analysed data-sets for Termination I (14 samples) and Termina-
tion I (11 samples) come from the intervals between 0.2 m and 3.62 m
(mcd) and 21.02 m to 23.13 m (mcd), respectively, of the U1385D/E
shipboard splice. Depths at these sites are always indicated as metres
composite depth (mcd). The identification of the Younger Dryas (YD),
Heinrich Stadial (HS) 1 and HS 11 is based on §'30- and XRF-data
(Fig. 2; Hodell et al., 2013b).

3.1.2. High-resolution records of benthic foraminifera >212 um

These data-sets (188 samples) have been acquired from cores
MD99-2334 K and MDO01-2444 (Skinner, PhD Thesis, 2004). Due to
low total numbers of foraminifera, in particular in samples from MIS 1
and MIS 5e, the focus is placed on the most abundant taxa at each site
that allows for the analysis of a greater number of samples (Fatela and
Taborda, 2002; Schonfeld et al., 2003). Other benthic foraminiferal
taxa that show minor abundances have not been differentiated.

The high-resolution data-set representing Termination I consists of
143 samples taken at average intervals of 4 cm (range: 2-12 cm) from
the upper part (4-466 cm corrected depth) of core MD99-2334 K. The
identification of the YD and HS 1, 2, and 3 has been adopted from
Skinner et al. (2003) and Skinner and Shackleton (2006). Depth refers
to the corrected depth scale of Skinner and McCave (2003) at this site.

The high-resolution data-set for the penultimate glaciation and Ter-
mination Il has been acquired from core MD01-2444. Forty-five samples
have been taken with an average spacing of 2 cm (range: 1-3 cm) from
the depth interval between 2100 cm and 2202 cm. The identification of
HS 11 is based on Skinner and Shackleton (2006) and Hodell et al.
(2013a).

3.2. Mudline samples

To account for a potential taphonomic bias on the fossil assemblages,
the low-resolution data-sets are compared to benthic foraminiferal as-
semblages >125 um from the mudline cores of IODP Sites U1385B,
U1385C and U1385E. These samples represent the unconsolidated sed-
iment collected from the top of the first core at each site. Although an
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Fig. 1. Location of the studied drill-sites at the southwestern Iberian Margin. (A) Sites U1385-U1391 of IODP Expedition 339. (B) IODP Site U1385 and sites MD99-2334 K and MD01-2444.

unspecified amount of sediment containing foraminifera is unavoidably
lost during the APC (advanced piston coring) drilling process, the inte-
gration of mudline samples from several sites should provide an ap-
proximation of the recent time-averaged live and dead assemblage.
The samples have been stained with Rose Bengal after collection, and
the presence of stained benthic foraminifera (Astrorhiza granulosa,
Astrorhizoidea indet., Triloculina tricarinata, Bulimina alazanensis,
Pyrulina angusta) confirms that the mudline assemblages represent
the recent fauna (live and dead) of the uppermost centimetres of sea-
floor sediment. Stained and unstained tests have been combined for
the present analysis.

3.3. Palaeoenvironmental analysis

We apply a suite of methods to the foraminiferal census counts that
consider taphonomic effects and allow a qualitative assessment of
palaeoceanographic changes in the study area. For a detailed discussion
of the proxy methods the reader is referred to Section 5.1 of the
Discussion.

Multivariate statistics are the basis for the interpretation of faunal
changes in the low-resolution data sets. To process the large amount
of census counts, the software PAST 2.17 has been used for statistical
analyses (Hammer et al., 2001; Hammer, 2012). Cluster analysis
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Fig. 2. Proxy records used for the identification of Terminations I and Il as well as the Younger Dryas, Heinrich 1 and Heinrich 11 stadials (light grey) in the studied intervals (dark grey) of
10DP Cores U1385D-1H and U1385E-3H. '%0- and Ca/Ti-records from Hodell et al. (2013b). Circled numbers indicate sample locations.

(Paired-group algorithm, Euclidean distance measure) and non-
metrical multidimensional scaling (nMDS; Euclidean distance measure)
were performed to identify groups of samples based on similarities in
their composition. A Similarity Percentage (SIMPER) analysis has been
conducted to identify those taxa that primarily contribute to the differ-
ences between groups of samples revealed by cluster analysis and
nMDS.

We further follow the approach of Schonfeld (2001) and Jorissen
et al. (2007) and apply the abundances of deep infaunal taxa adapted
to low oxic conditions (Chilostomella spp., Globobulimina spp.) as a qual-
itative proxy for extremely depressed oxygenation levels. The combined
abundances of intermediate (Melonis barleeanum) and deep infaunal
taxa are used to identify mesotrophic conditions (Jorissen, 2003). The
abundances of miliolid shells are used as indicators of oligotrophic and
comparably well-ventilated environments (Kaiho, 1999). A modified
concept of BFAR (Herguera and Berger, 1991) will be introduced to as-
sess export productivity.

4. Results

A total of ~34,000 benthic foraminiferal shells (>212 pm: ~25,000;
125-212 pm: ~9000) have been picked and counted, and >220 taxa
have been determined in the low resolution data-sets. Relative abun-
dances are shown in Figs. 3,4 and 9, results from multivariate statistical
analysis are presented in Figs. 5-8, the most important taxa are depicted
on Plate 1. Tables with census counts and abundance data for all sites are
available as supplementary data files (Supplementary Tables 1-5).

4.1. U1385D-1H — low resolution record of Termination I

4.1.1.>125 uym

The number of benthic foraminifera/g (18-50/g; A = 33/g,0 = 10/g)
shows an overall decrease. High abundance values during MIS 2 abruptly
decrease with the onset of HS 1 and remain low thereafter. This trend is
mainly determined by hyaline shells (16-43/g; A = 26/g, 0 = 9/g) as
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fractions); red = 125-212 pm; blue > 212 pm. See text for a detailed discussion.

miliolid (1-11/g; A = 5/g, 0 = 4/g) and agglutinated shells (0-5/g; A =
1/g, 0 = 1/g) are represented in considerably lower numbers (Fig. 3;
Supplementary Table 1).

Prominent changes in the assemblages are reflected in opposite pat-
terns of hyaline (61-93%; A = 79%, 0 = 10%) and miliolid shells
(2-37%; A = 16, 0 = 11%). Assemblages with Cassidulina neoteretis
and Epistominella exigua as most common species during MIS 2 are
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Fig. 4. Abundances of selected benthic foraminiferal taxa in different size-fractions across
Terminations I (left) and II (right) at IODP Site U1385. Black > 125 pm (combined frac-
tions); red = 125-212 um; blue > 212 um.

replaced by assemblages with Globobulimina spp., B. alazanensis and
Melonis pompilioides during HS 1 (Fig. 4; Supplementary Table 2). The
Bolling-Allerad interstadial (BAIS) is characterized by an increase in
miliolid shells, mainly represented by fragments (many of them cf.
Pyrgo), together with Pyrgo spp., Triloculina elongotricarinata and
Sigmoilopsis schlumbergeri, that continues with a minor decrease during
the YD to the inception of MIS 1. At the same time, Globobulimina spp.
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vanishes rapidly and disappears following the YD. Assemblages of MIS 1
are characterized by Bulimina mexicana, B. alazanensis, Hoeglundina
elegans and Gyroidinoides spp. as most common foraminifers. Amongst
the generally rare agglutinated shells, Eggerella bradyi is the only species
that occurs regularly. Increased abundances of agglutinated shells be-
tween 0.20 and 0.80 m mcd are related to the presence of Hyperammina
spp., Rhizammina algaeformis and Saccorhiza ramosa.

M. barleeanum, preferring an intermediate infaunal habitat, is re-
stricted to rare occurrences in MIS 2 and HS 1. Deep infaunal taxa are al-
most exclusively represented by Globobulimina spp., Chilostomella
oolina occurs rarely (Fig. 3; Supplementary Table 1). Values >10%
occur during MIS 2 and across Termination I with peak values >30% dur-
ing HS 1. Following the YD, deep infaunal taxa disappear rapidly.

4.1.2.125-212 um

Shells of the smaller size-fraction contribute 59-85% (A = 73%, 0 =
7%) to the combined fractions with distinct peaks during MIS 1 and MIS
2, and trends resemble those of the combined fractions. Numbers of
benthic foraminifera/g (12-40/g; A = 25/g, 0 = 8/g) are highest during
MIS 2 and decrease abruptly with the onset of HS 1. Hyaline shells
(12-34/g; A = 20/g, 0 = 8/g) are clearly dominant while miliolid
(0-9/g; A = 3/g, 0 = 3/g) and agglutinated shells (0-4/g; A = 1/g, =
1/g) are rare (Fig. 3; Supplementary Table 1).

Assemblages are dominated by hyaline foraminifera (69-96%; A =
82%, 0 = 10%) with peak values during MIS 2, HS 1 and MIS 1.

Conversely, miliolid shells (2-30%; A = 14%, 0 = 11%) are most abun-
dant across Termination I, mainly due to increased abundances of
Pyrgo spp. and Triloculina spp. While changes in assemblage composi-
tion generally follow the pattern observed for the combined fractions,
there are subtle differences in the abundances of certain taxa. E.g.,
B. alazanensis, C. neoteretis and E. exigua are more abundant, while
Globobulimina spp., H. elegans and Pyrgo spp. are diminished (Fig. 4;
Supplementary Table 2). Agglutinated foraminifera are generally rare
with E. bradyi as the only regularly occurring species. Increased values
in the upper part of the core are related to Hyperammina spp.,
R. algaeformis, S. ramosa and undetermined shell fragments.

The abundances of intermediate and deep infaunal taxa are dimin-
ished compared to the combined fractions, and almost exclusively rep-
resented by Globobulimina spp. (Fig. 3; Supplementary Table 1). Highest
values >17% occur during HS 1, and they disappear with the inception of
MIS 1.

4.1.3.>212 ym

Shells >212 pm contribute up to 41% to the combined assemblages
(15-41%; A = 27%, 0 = 7%) and have their highest abundances
(230%) from the BAIS to the inception of MIS 1. Generally low numbers
of benthic foraminifera/g (3-17/g; A = 9/g, 0 = 4/g) show only minor
fluctuations during MIS 2 and across Termination I, until a marked de-
crease occurs with the inception of MIS 1. Hyaline shells (2-13/g;
A = 6/g, 0 = 3/g) are primarily responsible for this trend, while
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elevated numbers of miliolid shells (0-5/g; A = 2/g, 0 = 1/g) are re-
stricted to Termination I (Fig. 3; Supplementary Table 1). Agglutinated

shells (0-1/g; A = 1/g, 0 = 0/g) are almost absent throughout.

Similar to the smaller and combined fractions, assemblages are dom-
inated by hyaline foraminifera (43-89%; A = 71%, 0 = 13%) with peak
values > 78% during MIS 2 and HS 1. However, miliolid shells are
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ness of the assemblages > 212 um is impoverished and characterized by
the dominance of a few species resulting in a stronger contrast in abun-
dances and more pronounced shifts in assemblage composition. During
MIS 2 and HS 1, Globobulimina spp. dominate the assemblages with
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Fig. 7. NMDS analysis (Euclidean distance; stress = 1.5) for benthic foraminiferal assemblages 125-212 pm (left) and >212 pm (right) at IODP Site U1385. Colours refer to the assemblages

identified in Fig. 5.
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Plate 1. Common taxa of benthic foraminifera identified in the present study. For taxonomic notes see Appendix A. Scale bar next to reference number corresponds to 100 pm.

Bulimina aculeata d'Orbigny, 1826. U1385E-3H-6W-40-41.
Bulimina marginata d'Orbigny, 1826.U1385E-6H-1W-120-121.
Bulimina mexicana d'Orbigny, in Guérin-Méneville, 1843. U1385E-6H-2W-80-81.
Bulimina alazanensis Glimbel, 1868. U1385D-1H-3W-20-21.
Globobulimina affinis (d'Orbigny, 1839). U1385D-1H-3W-20-21.
Uvigerina pigmea d'Orbigny, 1826. U1385E-6H-2W-0-1.
Chilostomella oolina Schwager, 1878. U1385E-3H-5W-140-141.
Melonis barleeanum (Williamson, 1858). U1385E-3H-5W-140-141.
Globocassidulina minuta (Cushman, 1933). U1385E-3H-6W-80-81.
Cassidulina neoteretis Seidenkrantz, 1995. U1385E-3H-6W-80-81.

. Epistominella exigua (Brady, 1884). U1385E-3H-5W-100-101.
Gyroidinoides soldanii (d'Orbigny, 1826). U1385E-3H-5W-100-101.
Pyrgo murrhina (Schwager, 1866). U1385E-3H-5W-80-81.
Sigmoilopsis schlumbergeri (Silvestri, 1904). U1385D-1H-2W-80-81.
Saccorhiza ramosa (Brady, 1879). U3185D-1H-1W-0-1.

PN A WN =

—_
Lk wN = oL

abundances up to 48%, accompanied by minor abundances of
B. alazanensis, C. neoteretis (MIS 2), M. barleeanum (MIS 2) and
M. pompilioides (HS 1). This assemblage deteriorates during the BAIS
and the inception of MIS 1 with a parallel increase in B. mexicana and
miliolid taxa (fragments, many of them cf. Pyrgo, together with Pyrgo
spp. and S. schlumbergeri). After a short-lived bloom during the YD,

Globobulimina spp. and Melonis spp. finally disappear. Assemblages of
Cibicidoides spp. (mainly Cibicidoides wuellerstorfi), B. mexicana,
Gyroidinoides spp. (mainly G. soldanii) and H. elegans characterize MIS
1 (Fig. 4; Supplementary Table 2). Agglutinated foraminifera are a
minor component except for the interval between 0.20 and 0.80 m
mcd in which fragments of Hyperammina spp., R. algaeformis,

Fig. 8. Abundances of benthic foraminiferal taxon groups at MD99-2334 K (left) and MD01-2444 (right). Positions of the Younger Dryas and Heinrich stadials 1, 2, 3, and 11 have been
adopted from Skinner et al. (2003), Skinner and Shackleton (2006) and Hodell et al. (2013a). Light grey area indicates extension of IRD deposition related to HS 11 (Skinner and Shackleton,

2006).
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S. ramosa and others show increased abundances. E. bradyi is the most
abundant agglutinated foraminifer showing increased values (9%) dur-
ing MIS 2.

The abundances of intermediate and deep infaunal taxa mainly fol-
low the abundances of Globobulimina spp. and vary widely between
0% and 55% (Fig. 3; Supplementary Table 1). Values > 20% occur during
MIS 2 and across Termination I, and they are absent following the YD.

4.2. U1385E-3H — low resolution record of Termination Il

4.2.1.>125 um

For most samples, numbers of benthic foraminifera/g (17-126/g;
A = 64/g, 0 = 35/g) are considerably higher compared to Termination
I. A stepwise decrease occurs across Termination Il with highest values
during MIS 6 and late HS 11, and abrupt decreases at the onset and
end of HS 11. While hyaline shells (12-122/g; A = 57/g, 0 = 37/g) de-
termine trends during MIS 6 and HS 11, miliolid shells (2-21/g; A = 6/g,
o = 6/g) contribute considerably during MIS 5e (Fig. 3; Supplementary
Table 1). Agglutinated shells (0-2/g; A = 1/g, o = 1/g) are almost
absent.

Samples are generally dominated by hyaline foraminifera (57-97%;
A = 84%, 0 = 16%) with peak values during MIS 6 and HS 11, miliolid
foraminifera (2-40%; A = 14%, 0 = 14%) show considerably increased
values after HS 11. Similar to the U1385D-1H data-set, faunal changes
occur across Termination II but the composition is different. MIS 6 and
HS 11 are characterized by often antagonistic fluctuations of
C. neoteretis, Bulimina marginata, Uvigerina pigmea, Melonis spp.,
Globobulimina spp. and Bulimina aculeata. Most notably, the onset of
HS 11 is marked by an abrupt decrease in Globobulimina spp. and in-
creases in M. pompilioides. M. barleeanum shows highest values in the
late HS 11. These taxa quickly diminish with the end of HS 11 and are
replaced by B. alazanensis, E. exigua, Gyroidinoides spp. and miliolid
taxa (fragments, many of them cf. Pyrgo, and Pyrgo spp. (Fig. 4, Supple-
mentary Table 2)). E. bradyi is the only agglutinated foraminifer
that occurs regularly throughout the samples. Tube-shaped shells of
Hyperammina spp., R. algaeformis and S. ramosa are absent from the
samples.

In contrast to Termination I, the intermediate infaunal M. barleeanum
is abundant during MIS 6 and HS 11 while deep infaunal taxa, mainly
represented by Globobulimina spp., are less abundant. Deep infaunal
taxa are most abundant (up to 16%) during MIS 6, M. barleeanum in
late HS 11.

4.2.2.125-212 um

Shells of the smaller size-fraction contribute slightly larger portion
(70-85%; A = 77%, 0 = 5%) to the combined data-sets compared to
U1385D-1H, and similarly trends of the smaller fraction largely resem-
ble those of the combined fractions. Numbers of benthic foraminifera/g
(13-108/g; A = 49/g, 0 = 29/g) show an overall decrease with highest
values during MIS 6 and late HS 11. Hyaline shells (11-105/g; A = 45/g,
o = 30/g) generally determine this trend except for the interval follow-
ing HS 11 (21.62-21.82 m mcd) in which miliolid shells (1-13/g; A = 4/g,
o = 4/g) increase (Fig. 3; Supplementary Table 1). Agglutinated shells
are almost absent throughout.

Changes in the assemblages are reflected in antagonistic fluctuations
in the abundances of the generally dominant hyaline shells (63-98%;
A = 87%, 0 = 13%) and the less abundant miliolid shells (2-33%;
A = 12%, 0 = 12%). The latter show a considerable increase following
HS 11, mainly due to fragments (many of them cf. Pyrgo) and Pyrgo
spp. Similar to U1385D-1H, changes in assemblage composition follow
the pattern observed for the combined fractions with subtle differences
in the abundances of certain taxa compared to the combined fractions.
E.g., C. neoteretis and E. exigua are more abundant, while Globobulimina
spp., H. elegans, U. pigmea and Pyrgo spp. are diminished (Fig. 4; Supple-
mentary Table 2). Other taxa, notably Globocassidulina minuta (MIS 6),
Gc. cf. rossensis (MIS 5e) and Nuttallides umbonifera (MIS 5e), show

increased abundances in individual samples compared to the other
size-fractions.

The abundances of intermediate and deep infaunal taxa follow the
same trends as in the combined fractions with slightly lower values
(Fig. 3; Supplementary Table 1).

42.3.>212 um

Shells of the larger size-fraction contribute 15-30% (A = 23%, 0 =
5%) to the combined fractions, and similar to Termination I this size-
fraction shows some differences to the smaller and combined fractions.
Except for a peak prior to HS 11, numbers of benthic foraminifera/g
(3-30/g; A = 14/g; o = 7/g) show only minor fluctuations until a sud-
den decrease at the top of the core (21.22 m mcd). Trends are almost ex-
clusively determined by hyaline shells (1-28/g; A = 12/g; 0 = 8/g).
Miliolid shells (0-5/g; A = 2/g; o = 1/g) are of minor importance, ag-
glutinated shells (0-1/g; A = 0.3/g; 0 = 0.1/g) are almost absent
(Fig. 3; Supplementary Table 1).

In contrast to the smaller and combined fractions, the dominance of
hyaline foraminifera (28-96%; A = 73%, 0 = 26%) is restricted to MIS 6
and HS 11. With the end of HS 11, miliolid shells (3-63%; A = 24%, 0 =
24%) begin to dominate. Similar to U1385D-1H, assemblages >212 pm
are comparably impoverished in their faunal inventory (most notably,
C. neoteretis is almost completely absent), and fewer species determine
more pronounced shifts in composition. During MIS 6, B. aculeata,
B. marginata and Globobulimina spp. are consistently abundant together
with occasional increases in U. pigmea and M. pompilioides. With the
onset of HS 11, a sudden decrease in Globobulimina spp. is paralleled
by an increase in M. pompilioides. The later phase of HS 11 shows
highest abundance of M. barleeanum and Cibicidoides spp. (mainly
C. wuellerstorfi). B. aculeata and B. marginata stay abundant throughout
HS 11. With the end of the termination, miliolid shells (fragments, many
of them cf. Pyrgo, and Pyrgo spp.) become dominant and no hyaline spe-
cies show increased abundances except for individual samples
(C. bradyi, C. wuellerstorfi, Osangularia culter; Fig. 4; Supplementary
Table 2). Agglutinated foraminifera (1-10%; A = 4%, 0 = 3%) are gener-
ally rare except for the top (21.02-21.22 m mcd) where E. bradyi and
other Eggerellinae show slightly increased abundances.

Abundances of intermediate and deep infaunal taxa are more pro-
nounced than in the combined and smaller fractions but generally fol-
low the same pattern with high abundances during MIS 6 and HS 11,
and absence during MIS 5e (Fig. 3; Supplementary Table 1).

4.3. Multivariate statistical analysis of the low-resolution data-sets

4.3.1.>125 um

Eight distinct groups of samples are differentiated in the cluster and
nMDS analyses based on their dissimilarity (Figs. 5, 6). SIMPER analysis
reveals that the grouping is caused by a small number of taxa:
C. neoteretis and miliolids contribute ~45% to the dissimilarity between
the identified groups, B. marginata, E. exigua, B. mexicana, B. alazanensis,
Pyrgo spp., and Gyroidinoides spp. contribute another ~30% (Table 2;
Supplementary Table 3). Assemblages 1-3 occur during glacial stages
MIS 2 and 6 and HS 11, assemblages 4 and 5 contain samples of HS 1,
the BAIS, and the YD, and assemblages 6-8 are associated with intergla-
cial stages MIS 1 and MIS 5e (Fig. 5). In the nMDS analysis, assemblages
1-3 and 4-8 are well separated along coordinate 1, indicating parallel
trends in both data-sets. In contrast, coordinate 2 is characterized by a
distinct offset between of the data-sets of Terminations I and II (Fig. 6).

4.3.2.125-212 um

NMDS analysis reveals results similar to the combined fractions
>125 pm (Fig. 7). SIMPER analysis shows that the grouping is largely de-
termined by the same taxa: C. neoteretis and B. marginata contribute
~50% to the dissimilarity between the identified groups, miliolids,
E. exigua, B. alazanensis and B. mexicana contribute another ~28%
(Supplementary Table 3). The same groups of samples as in the
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Abundances of benthic foraminiferal shell types and key-taxa in mudline samples of IODP Sites U1385B, C, and E compared to samples 1.1-1.3 of the MIS 1 interval at IODP Site U1385D
(see Fig. 2). For the mudlines samples, relative abundances have been calculated for total and reduced (i.e., exclusion of astrorhizoid taxa) assemblages. See text for details. Bold numbers

indicate taxa that show abundances >5%.

U1385B U1385C U1385E Total Reduced MIS 1

Total Reduced Total Reduced Total Reduced Mean Stdv Mean Stdv Mean Stdv.
Hyaline 224 68.7 12.7 71.7 16.8 69.6 173 49 70.0 1.6 81.0 53
Miliolid 2.8 8.7 0.8 43 3.7 15.2 24 1.5 94 5.5 9.7 3.6
Agglutinated 741 22.6 86.5 239 79.6 15.2 80.1 6.2 20.6 4.7 9.3 6.1
Astrorhizoid taxa 63.4 - 78.8 - 73.3 - 71.8 7.8 - - 24 22
Triloculina spp. 0.3 0.9 0.0 0.0 1.6 6.5 0.6 0.8 2.5 35 0.0 0.0
Bolivinids 2.6 7.8 0.0 0.0 25 109 1.7 1.5 6.2 5.6 1.1 0.9
B. alazanensis 3.7 113 1.5 8.7 1.0 43 2.1 14 8.1 3.5 124 2.0
B. mexicana 0.3 0.9 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.5 125 6.2
C. oolina 2.6 7.8 0.0 0.0 0.5 22 1.0 14 33 4.0 0.0 0.0
Cibicids 0.0 0.0 1.2 6.5 1.0 43 0.7 0.6 3.6 33 38 0.4
E. exigua 0.6 1.7 0.8 43 0.5 22 0.6 0.1 2.8 14 7.9 5.1
Fissurina spp. 1.7 5.2 1.5 8.7 2.1 8.7 1.8 0.3 7.5 2.0 13 1.2
Gyroidinoides spp. 1.1 3.5 3.1 174 1.6 6.5 1.9 1.0 9.1 7.3 12.7 0.6
H. elegans 0.0 0.0 0.8 43 0.5 22 04 0.4 2.2 2.2 3.7 14
0. umbonatus 0.0 0.0 0.0 0.0 0.5 22 0.2 0.3 0.7 13 33 2.2
T. rhomboidalis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 24

combined fractions are separated along coordinate 1 of the nMDS anal-
ysis although samples of HS 1 show greater similarities with MIS 2. The
differentiation between samples of Terminations I and II along coordi-
nate 2 is not as well expressed, in particular during interglacial periods
MIS 2 and MIS 6 (Fig. 7).

4.3.3.>212 ym

NMDS analysis reveals some remarkable differences compared to
the smaller and combined fractions (Fig. 7). SIMPER analysis indicates
that the grouping is caused by a group of taxa different from fractions
>125 um and 125-212 pm: Pyrgo spp., Globobulimina affinis, B. aculeata
and miliolids contribute ~50% to the dissimilarity, Globobulimina sp.1,
H. elegans, M. barleeanum and C. neoteretis another ~25% (Supplementa-
ry Table 3). While samples of MIS 1, MIS 5e and the YD are still well sep-
arated from those of MIS 2, MIS 6 and HS 11 along coordinate 1, the
assemblages of HS 1 shows greater similarities with the latter. Similar

Table 2

to 125-212 um, the differentiation between samples of Terminations I
and II along coordinate 2 is not as well expressed (Fig. 7).

4.4. MD99-2334 K — high resolution record of Termination I

Assemblages at this site are determined by a few taxa which, on av-
erage, represent 71% (0 = 13%) of all benthic foraminifera: Cibicidoides
spp., Globobulimina spp., Gyroidinoides spp., H. elegans, Melonis spp., and
Uvigerina spp. (Fig. 8; Supplementary Table 4). Highest numbers of in-
determinate taxa are associated with interstadial periods and MIS 1,
during the later related to a marked increase in miliolid shells. A distinct
faunal turnover is associated with Termination I: MIS 2 and HS 1-3 are
characterized by antagonistic fluctuations in Globobulimina spp. and
Uvigerina spp., the latter being abundant in interstadial periods and ab-
sent in HS 1-3. Globobulimina spp. remains dominant across Termina-
tion I, until it disappears rapidly with the end of the YD. Parallel

SIMPER analysis (Euclidean distance) for benthic foraminifera >125 um (combined fractions), highlighting taxa determining assemblages 1-8 (Fig. 5). Species that show abundances <5%
in the assemblages have been summarized in their respective genera. Bold numbers indicate taxa that show an abundance of >4% in their respective assemblage.

Taxon Average Contribution ~ Cumulative Ass.1  Ass.2 Ass. 3 Ass. 4 Ass. 5 Ass. 6 Ass. 7 Ass. 8
Samples in assemblage dissimilarity (%) % 211 112-114; 25-29 16-19 1.10-1.11 1.1-13:22 14-15; 2.1
2.10 2.3-24

Cassidulina neoteretis 377.40 33.81 33.81 55.0 235 12.6 0.5 25 0.8 13 14.0
Miliolidae indet. 127.00 11.38 45.19 2.0 1.5 34 6.5 0.0 5.3 21.5 13.0
Bulimina marginata 122.70 10.99 56.18 3.0 23 17.8 0.0 0.0 0.0 1.0 0.0
Epistominella exigua 60.61 543 61.61 1.0 13.8 5.2 8.0 4.5 9.5 6.0 13.0
Bulimina alazanensis 50.82 4.55 66.16 0.0 13 0.0 0.3 85 11.8 3.0 8.0
Bulimina mexicana 49.73 4.46 70.62 0.0 1.0 0.6 7.3 1.5 9.5 35 1.0
Pyrgo spp. 33.55 3.01 73.63 1.0 0.8 1.6 7.0 0.5 4.3 8.5 12.0
Gyroidinoides spp. 30.69 2.75 76.37 0.0 23 0.6 33 3.0 11.3 43 5.0
Globobulimina affinis 28.30 2.54 78.91 3.0 4.8 34 43 12.5 0.0 2.0 0.0
Melonis barleeanum 2497 2.24 81.15 1.0 2.0 6.4 0.0 0.5 0.0 0.8 0.0
Bulimina aculeata 20.83 1.87 83.01 2.0 1.0 74 0.0 0.0 0.0 0.8 0.0
Melonis pompilioides 20.71 1.86 84.87 1.0 1.8 4.8 53 5.0 0.0 23 0.0
Globobulimina sp.1 20.66 1.85 86.72 1.0 23 1.0 6.3 75 0.0 0.8 0.0
Triloculina sp.1 (T. elongotricarinata?) 11.12 1.00 87.71 0.0 25 0.0 4.0 0.5 0.0 1.8 0.0
Hoeglundina elegans 1097 0.98 88.7 0.0 0.0 0.8 33 0.5 2.8 33 0.0
Globobulimina spp. 10.60 0.95 89.65 3.0 4.8 2.6 2.5 5.5 0.0 1.5 0.0
Globocassidulina minuta 10.59 0.95 90.6 9.0 2.0 14 0.0 0.5 0.3 0.0 0.0
Sigmoilopsis schlumbergeri 7.54 0.68 91.27 0.0 13 0.2 4.8 1.5 1.8 1.8 1.0
Pullenia spp. 7.01 0.63 91.9 2.0 3.8 1.6 35 5.5 25 23 1.0
Tortoplectella rhomboidalis 6.39 0.57 92.47 0.0 0.3 0.8 0.0 0.0 43 1.0 2.0
Sphaeroidina bulloides 6.13 0.55 93.02 0.0 1.0 0.0 1.5 5.5 0.0 0.5 1.0
Agglutinated indet. 5.78 0.52 93.54 0.0 0.0 0.2 0.0 0.0 2.8 0.0 0.0
Nuttallides umbonifera 5.57 0.50 94.04 0.0 0.3 0.8 0.3 0.0 0.3 1.8 7.0
Hyaline indet. 4.75 043 94.46 3.0 48 5.6 35 5.0 3.0 3.8 1.0
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increases in the abundances of Cibicidoides spp., Gyroidinoides spp. and
H. elegans characterize MIS 1.

4.5. MD01-2444 — high resolution record of Termination Il

In addition to the key-taxa identified at MD99-2334 K, Bulimina spp.
and Chilostomella spp. constitute important elements of this data-set
(Fig. 8; Supplementary Table 5). On average, the determined taxa repre-
sent 73% (0 = 25%) of the assemblage. Similar to MIS 2, Globobulimina
spp. is the dominant taxon during glacial conditions prior to HS 11,
showing inverse fluctuations to Bulimina spp. and Melonis spp. while
Uvigerina spp. is generally rare. While increased abundances of Bulimina
spp. persist during HS 11, a marked decrease in Globobulimina spp. oc-
curs at its onset paralleled by increases in Melonis spp. and Chilostomella
spp. With the end of HS 11 and the onset of MIS 5e, abundances of these
taxa deteriorate rapidly, giving rise to Cibicidoides spp., Gyroidinoides
spp. and H. elegans, similar to MIS 1. However, in contrast to MD99-
2334 K, indeterminate taxa increase rapidly up to 91% after HS 11, main-
ly related to a considerable increase in miliolid shells.

4.6. Mudline samples

Mudline samples contain an average 80% agglutinated, 17% hyaline,
and 3% miliolid shells (Table 1). Minor variations in assemblage compo-
sition occur between the three sites, but overall they are very similar.
Tubular astrorhizoid shells represent the most abundant group of agglu-
tinated taxa. No hyaline taxa show abundance of more than 5% at any
site, bolivinids, buliminids (in particular B. alazanenis), Fissurina spp.
and Gyroidinoides spp. are most common.

5. Discussion

5.1. Taphonomic bias on benthic foraminiferal assemblages of the
southwestern Iberian Margin

Present-day assemblages of benthic foraminifera in the study area
contain high proportions of foraminifera with agglutinated shells, par-
ticularly at sites bathed in NEADW and LDW where these foraminifera
amount to 70-90% (Phipps et al., 2012). This pattern also characterizes
the mudline assemblages from IODP Sites U1385B, U1385C, and U1385E
which contain on average ~80% of agglutinated shells (Table 1). A se-
vere decrease in the abundance of agglutinated shells apparently occurs
within the first 20 cm below the mudline, and their contribution to the
fossil assemblages never exceeds 16% and remains <5% in most of the
samples studied. A similar decline within the first 10-20 cm of deep-
sea sediments has been reported from other sites and attributed to se-
lective preservation of hard-shelled carbonate over soft-shelled aggluti-
nated foraminiferal shells (Schroder, 1988; Kuhnt et al., 2000;
Schroder-Adams and van Rooyen, 2011; Lejzerowicz et al., 2013).
Strong indications that the decline of agglutinated shells at U1385 is a
taphonomic rather than a biological signal arise from two observations.
First, most agglutinated shells in the mudline samples represent tube-
shaped, furcate and non-furcate, uni- and bilocular morphotypes of
astrorhizoid taxa. These foraminifers build their shells from sedimenta-
ry particles embedded in a proteinaceous or mineralized matrix (= soft
shells in Schroder, 1988) and occupy epifaunal and shallow infaunal mi-
crohabitats (Kuhnt et al.,, 2000). Both factors make the shells especially
prone to post-mortem disintegration by bacterial decay and/or trans-
portation (Goldstein and Barker, 1988; Schroder, 1988; Kuhnt et al.,
2000). In the fossil assemblages, following the severe reduction of ag-
glutinated shells to <16%, soft-shelled foraminifera are present to a
small extent as fragments of Hyperammina, Rhabdammina, Rhizammina
and Saccorhiza down to 80 cm below the sediment surface. Below this
level, fragments of these taxa vanish, and agglutinated shells remain
<8% for the U1385D data-set and <5% for the U1385E data-set. This re-
sidual agglutinated fauna consists of firmly cemented tests of infaunal

taxa such as Eggerella and Karreriella that have a comparably high fossil-
ization potential (Schroder, 1988; Kuhnt et al., 2000).

Second, if astrorhizoid shells are excluded from the mudline sam-
ples, the ratio of agglutinated to miliolid to hyaline shells (21%/9%/
70%) as well as the composition (B. alazanensis and Gyroidinoides spp.
as most abundant taxa) of the residual mudline assemblages resembles
that of samples 1.1-1.3 from MIS 1 (Table 1). Minor differences in com-
position are most likely explained by patchy distribution (apparent in
the faunal variability between mudline samples; Gooday and
Rathburn, 1999; Griveaud et al., 2010) as well as the partial loss of fora-
minifera during the mudline sampling process. It is thus reasonable
to assume that astrorhizoid foraminifera have been the dominant
component of the fossil assemblages at least during MIS 1, i.e. the
taphocoenoses of this interval most likely represent not more than
~30% of the original assemblages. For the time preceding MIS 1, it is
not possible to give an estimate on the loss of agglutinated shells as ex-
port productivity and water-mass distribution, and thus environmental
conditions at the sea-floor, differed from today (Voelker and de Abreu,
2011). However, present-day assemblages contain >70% of agglutinated
shells at sites bathed by NEADW and up to 90% in LDW, two water
masses that differ significantly in their nutrient and oxygen content
(Phipps et al., 2012). As glacial/interglacial and stadial/interstadial
changes in the study area are characterized by fluctuations in the
depth of the NEADW/LDW interface (Skinner et al., 2003; Voelker and
de Abreu, 2011), it seems reasonable to assume that agglutinated shells
have originally been the major component in the order of >70% of all
studied samples regardless of the climate state (the composition of
the agglutinated assemblages, however, might have differed; Phipps
et al., 2012). Assuming no major variations occurred in the total
abundance of agglutinated shells between glacial and interglacial condi-
tions, differences in the composition of the fossil assemblages as
revealed by multivariate statistical analysis still carry qualitative
palaeoenvironmental information. However, the relative proportions
of taxa are clearly overstated, and changes in the abundances of those
benthic foraminifera revealed most significant by SIMPER analysis are
useful as index taxa.

Another aspect concerns the application of the TROX concept to the
assemblages (Jorissen et al., 1995, 2007; Jorissen, 2003). This well-
tested concept links the microhabitat of benthic foraminiferal species
to two contrasting environmental parameters, food availability and
oxygenation: Epifaunal taxa dominate oligotrophic, well ventilated
environments, whereas deep infaunal taxa are more abundant in eutro-
phic, poorly oxygenated environments (Jorissen et al., 2007). Between
these end-members, a more equal distribution of epi- and infaunal mi-
crohabitats occurs in intermediate, mesotrophic environments. The loss
of large portions of epifaunal and shallow infaunal taxa at U1385 would
thus result in the overestimation of trophic conditions and/or underes-
timation of oxic conditions if the TROX concept is applied in a straight-
forward manner. This bias is evident in the mudline assemblages: if
astrorhizoid shells are excluded, the well diversified distribution of epi-
faunal, shallow, intermediate and deep infaunal microhabitats would
imply a mesotrophic to eutrophic sea-floor environment (Jorissen
et al.,, 2007; Phipps et al., 2012). When including the complete aggluti-
nated fauna, epifaunal and shallow infaunal taxa are clearly dominant,
and the indicated oligotrophic to slightly mesotrophic sea-floor envi-
ronment describes present-day conditions very well (Phipps et al.,
2012). This strong bias is considered in the present study by a cautious
and limited application of the TROX concept. First, the combined
abundances of intermediate (M. barleeanum) and deep infaunal
(Chilostomella spp., Globobulimina spp.) taxa, reflecting a well-tiered mi-
crohabitat distribution, are applied as indicators of mesotrophic condi-
tions with intermediate ventilation (Jorissen, 2003). Second, we apply
the abundances of deep infaunal taxa adapted to low oxic conditions
(Chilostomella spp., Globobulimina spp.) as a qualitative proxy for ex-
tremely depressed oxygenation levels (Jorissen et al., 2007). Finally, an-
other indication of deteriorated trophic conditions and improved
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oxygenation is provided by the ratio of miliolid to hyaline shells. Pyrgo,
which is the most abundant miliolid taxon at U1385, is indicative of
comparably well-ventilated, oligotrophic conditions (Kaiho, 1999).

As the benthic microhabitat is defined by both, oxygen and food
availability, a modified approach based on the BFAR method of
Herguera and Berger (1991) is introduced to estimate export productiv-
ity. The BFAR concept relies on the assumption that the total number of
benthic foraminifera per gram in a given sample carries a quantitative
signal of export productivity. Because of the loss of large portions of
the original assemblages, the BFAR proxy is not applicable in its original
form at U1385. However, we argue that the number of benthic forami-
nifera with hyaline (perforate) shells per gram can be used for
an assessment of qualitative changes in export productivity. The
agglutinated/carbonate shell ratio in the study area is largely deter-
mined by export productivity (Phipps et al., 2012), and higher trophic
demands of hyaline foraminifera result in an increase of their standing
stock with increasing food availability. The number of hyaline foraminif-
era per gram sediment in the residual assemblages of U1385 thus indi-
rectly reflects relative changes in trophic conditions (sedimentation
rates are fairly constant at the studied sites, see Hodell et al., 2013b).
We thus introduce the hyaline benthic foraminifera accumulation rate
(hBFAR) as a qualitative proxy of export productivity for the present
study (its application outside the study area remains to be tested).

In summary, a strong taphonomic bias on the composition of the fos-
sil assemblages of the western Iberian Margin is evident, but they still
retain a qualitative palaeoenvironmental signal if carefully interpreted.
The considerations also suggest that studies relying on well-chosen
and abundant taxa will yield reliable results (Caralp, 1987; Schonfeld
et al., 2003). Proxy methods that require knowledge of the complete
faunal inventory (e.g., TROX, BFOI, BFAR; Baas et al., 1998) have to be
applied very cautiously and adapted to the taphonomic bias.

5.2. Long-term trends in assemblages > 125 pm across Terminations I and Il

Multivariate statistical analyses of the benthic assemblages > 125 pm
indicate similarities as well as differences in the evolution of deep water
hydrography across Terminations I and II. The separation of assem-
blages of MIS 2, MIS 6 and HS 11 from those of MIS 1, MIS 5e, HS 1
and the YD in the cluster analysis and along nMDS coordinate 1 reflects
parallel trends from glacial to interglacial conditions in both data-sets
(Figs. 5, 6). The separation is primarily determined by the abundances
of C. neoteretis which is a frequent, sometimes dominant faunal element
in MIS 2, MIS 6 and HS 11, but rare to absent in MIS 1, MIS 5e, HS 1 and
YD samples. Today, C. neoteretis is restricted to the Arctic and boreal re-
gions of the northern North Atlantic >46°N where it inhabits fine-
grained, organic matter rich sediments of the continental shelf and
slope down to 3000 m (Mackensen et al., 1985; Mackensen and Hald,
1988; Seidenkrantz, 1995). Bottom-water temperature seems to be a
prime factor in its distribution as C. neoteretis commonly occurs at
temperatures < 2 °C. The data indicate that this temperature threshold
is crossed during both terminations which is supported by estimates
of deep water temperature (Tqy) from Mg/Ca: present-day Tgqy at
IODP Site U1385 is ~3-3.5 °C, while Ty, has been estimated to be
~3-5 °Clower during MIS 2 and associated stadials, and ~1-3 °C during
MIS 6 and HS 11 (Figs. 10, 11; Skinner et al., 2003; Skinner and
Shackleton, 2006; Expedition 339 Scientists, 2013). The timing of the
decrease in C. neoteretis differs between the terminations (Fig. 4):
while it occurs rather abruptly with the onset of HS 1 despite prevailing
cold Tgyw (Fig. 9; Skinner et al., 2003), the species vanishes in two pulses
over a longer time interval across HS 11. However, given the particularly
high abundances of deep infaunal species in the HS 1 interval, the sud-
den decrease in C. neoteretis with the onset of this stadial might rather
be related to poor oxygenation than warming Tg. Although Cassidulina
teretis s.l. has been occasionally reported from environments with
oxygen concentrations as low as 0.5 ml/l, Globobulimina spp. and
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Fig. 9. Correlation of the abundance of deep-infaunal taxa (used as proxy of oxygen
depletion) with existing geochemical records for deep-water temperature (Tgy, calculated
from Mg/Ca values of G. affinis; Skinner et al., 2003; Skinner and Shackleton, 2006) and
benthic 6'3C (C. wuellerstorfi; Skinner and Shackleton, 2004, 2006) for MD99-2334 K.
Light grey areas indicate intervals of low Tgy.

Chilostomella spp. are adapted to thrive in dysoxic and anoxic environ-
ments (Jorissen et al., 2007; Pifia-Ochoa et al., 2010).

Export productivity is most likely a secondary component that con-
tributes to the separation along coordinate 1. Besides C. neoteretis which
thrives in organic rich sediments, the frequent occurrences of Bulimina
aculeata, B. marginata, Globobulimina spp., Melonis spp., and Uvigerina
spp. as well as elevated hBFAR values indicate increased organic matter
flux to the sea floor during MIS 2, MIS 6, HS 11 and HS 1 (Altenbach
et al., 1999; Jorissen, 1999; Morigi et al., 2001; Fontanier et al., 2002;
Schonfeld et al., 2003). In contrast, assemblages of MIS 1, MIS 5e, the
YD and the late terminations frequently contain miliolids (including
Pyrgo), B. mexicana, B. alazanensis, and Gyroidinoides spp. and show
low hBFAR values, thus suggesting reduced trophic conditions in those
intervals (Murray, 2006).

While parallel trends across Terminations I and Il are apparent along
coordinate 1, both data-sets are well separated along coordinate 2
(Fig. 6). The contrasts in assemblage composition are most likely related
to changes in oxygenation as well as the quantity and quality of avail-
able organic matter. However, the trends differ between glacial and
stadial periods and those of interglacial and late termination periods.
High abundances of deep infaunal taxa and low hBFAR values during
MIS 2, HS 1, and the YD suggest a strong influence of depressed oxygen-
ation on the faunal composition (culminating in HS 1), resulting in re-
duced specimen numbers. Peaks in the abundance of M. pompilioides
during HS 1 and the YD are probably related to the increased input
of refractory organic matter in these intervals (in HS 1, it is associated
with a peak in IRD deposition; Poli et al., 2012). In contrast, the elevated
hBFAR values (several times those of MIS 2) and high abundances of
B. marginata, B. aculeata, M. barleeanum, and (in some samples)
U. pigmea suggest high input of fresh, labile organic matter into the sed-
iment during MIS 6 and most of HS 11 (Caralp, 1989; Fontanier et al.,
2002). Most of those taxa are stress-tolerant and can survive variable
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conditions of oxygenation and food. These conditions are only
interrupted at the onset of HS 11 when a severe decrease in hBFAR,
and peak abundances of M. pompilioides suggest increased input of re-
fractory organic matter (Poli et al., 2012).

For the second group of samples, the assemblages of the late termi-
nations are clearly separated from those of the BAIS, MIS 1 and (partly)
MIS 5e. Highest miliolid abundances indicate a rapid improvement of
oxygenation and oligotrophic conditions at the inception of intergla-
cials. While high abundances of miliolids are maintained after the incep-
tion of MIS 5e, hyaline assemblages recover during MIS 1, resembling
today's mesotrophic environment (see Section 5.1).

The long-term trends in deep-water temperature and oxygenation
agree with and complement previous studies that link changes in local
deep-water hydrography to changes in thermohaline circulation and
the depth of the NEADW/LDW boundary during glacial/interglacial
transitions. Tqy, < 2 °C prevailed during MIS 2 and, most likely, HS 1.
With the end of HS 1, Tq,, remains above LGM levels. Decreased ventila-
tion during MIS 2 is in agreement with AMOC reduced by ~30-40%
during the LGM compared to the better ventilated MIS 1, and a stronger
influence of southern sourced waters (Sarnthein et al., 2000; McManus
et al., 2004; Lynch-Stieglietz et al., 2007). A period of particularly strong
oxygen depletion is associated with HS 1 which supports views of a se-
vere reduction or even shutdown of AMOC and maximum influence of
southern sourced waters at this time (Skinner et al., 2003; McManus
et al., 2004). During the early phase of the YD, oxygen depletion
seems to have been less strong indicating that considerable NADW for-
mation took place during this early stage despite ice rafting (Sarnthein
et al.,, 2000). HS 1 and the YD share the input of refractory organic mat-
ter and a potential decrease in seasonality (tentatively indicated by
E. exigua; see next paragraph), most likely the result of aged continental
organic matter brought to the site during ice rafting. Trophic conditions
at the sea-floor deteriorate from MIS 2 to MIS 1, paralleled by an in-
crease in oxygenation heralding the establishment of present-day
conditions.

Some notable differences occur between Termination I and Termina-
tion II. While HS 11 shares the input of refractory organic matter in its
early stage with HS 1 and the YD (indicated by M. pompilioides), the per-
sistently high abundances in B. aculeata and B. marginata indicate a gen-
erally elevated input of labile organic matter that culminates in the later
phase of HS 11 with abundant M. barleeanum and high hBFAR values.
This palaeoenvironmental trend is also recognized in trace fossil assem-
blages of the same interval (Rodriguez-Tovar et al,, 2015). The increased
input of organic matter coincides with a period of increased primary
productivity along the western Iberian Margin during Termination II
(Thomson et al., 2000). Food as a driving factor in contrast to oxygena-
tion suggests a reduction of AMOC more similar to the YD and MIS 2
than HS 1 (Oppo et al., 1997). In the context of export productivity,
low abundances of E. exigua potentially indicate seasonality is muted
during MIS 6 and Termination II. It cannot be ruled out, however, that
this is the result of an environment unfavourable for E. exigua, the exclu-
sion of the fraction 63-125 pm or the reliance of E. exigua as sole indica-
tor of seasonality (Schroder et al., 1987; Jorissen, 1999; Sun et al., 2006).

5.3. Limitations and potential of high-resolution records >212 pum

The restriction of foraminiferal analysis to coarse size fractions al-
lows for the time-efficient acquisition of a large amount of data, and
benthic foraminiferal studies in the area are generally based on size-
fractions >250 um (Caralp, 1987; Baas et al., 1998; Schonfeld et al.,
2003). This approach puts further limitations on the interpretation in
addition to the taphonomic effects, including the low number of shells,
diminished species richness and diversity, and the loss of small-sized in-
dicator species (Schroder et al., 1987; Fatela and Taborda, 2002;
Schonfeld, 2012). The low-resolution data-sets offer an opportunity to
evaluate these factors for the study area.

In Recent foraminiferal assemblages, only ~20% of foraminiferal taxa
are represented in fractions >250 um compared to the faunal inventory
>63 um, while ~75% are present in fractions >125 pum (Schonfeld, 2012).
The result is an overrepresentation of certain species while small-sized
taxa (including potentially important index taxa like E. exigua,
bolivinids) are underrepresented or missing (Schroder et al., 1987). At
U1385, abundances of Pyrgo spp., Globobulimina spp., H. elegans, Melonis
spp., and U. pigmea are clearly over-emphasized in the larger size-
fraction. In turn, C. neoteretis, E. exigua, B. alazanensis, and Gyroidinoides
spp. are considerably underrepresented. As a result, potential indicators
for T4y and seasonality cannot be applied in the >212 um data-sets and
indicators for organic matter supply and oxygenation dominate these
data-sets. The bias on assemblage composition is also evident in multi-
variate statistical analyses and has consequences for the interpretation.
SIMPER and nMDS analyses clearly show that the combined fractions
are primarily determined by the fraction 125-212 um (contributing
75% to the total number of specimens in the combined fractions). As a
consequence, the results for the smaller size-fraction are fairly similar
to the combined fractions despite minor differences (Fig. 7). While
Globobulimina spp. is slightly diminished, the separation along coordi-
nate 1 is caused by the varying abundance of C. neoteretis, thus linked
to deep-water temperature. Oxygenation might be the main compo-
nent along coordinate 2, exemplified in the comparably increased abun-
dances of miliolids in the YD sample resulting in its grouping in the
nMDS analysis with samples from the inception of MIS 1 and MIS 5e.

As a consequence of the rare abundances of C. neoteretis >212 um,
the temperature signal is lost in the larger size-fraction, and nMDS coor-
dinate 1 is determined by the antagonistic abundances of Pyrgo spp. and
Globobulimina spp. reflecting mainly contrasts in food availability and
oxygenation between glacial and interglacial periods (Fig. 7). Notewor-
thy, the oxygen depletion during HS 1 is particularly well expressed,
whereas the YD shows more similarities to samples of MIS 1. The inter-
pretation of coordinate 2 is less straightforward but might contain oxy-
genation as a component as indicated by varying abundances of deep
infaunal taxa.

The application of the hBFAR proxy to coarse size-fractions also
seems problematic as the considerably lowered number of hyaline
shells per gram prohibits a meaningful interpretation (Fig. 3). Although
the overall trend towards lower numbers from glacial to interglacial is
preserved, short-term and minor changes cannot be resolved.

In summary, the >212 um fraction of U1385 over-emphasizes the ef-
fect of oxygenation and food on the benthic microhabitat while the sig-
nal for deep-water temperature and seasonality is strongly diminished
or lost entirely. hBFAR, while useful when size-fractions >125 um are
considered, cannot be applied due to low specimen numbers. The avail-
ability of the detailed records of U1385 thus clearly improve the inter-
pretation of the high-resolution records of MD99-2334 K and MDO1-
2444 and their comparison to existing geochemical records.

5.4. Long- and short-term changes across Termination I

The foraminiferal records of U1385D and MD99-2334 K show paral-
lels in long-term trends as well as differences most likely related to the
different water depths. Similar to U1385D, the benthic foraminiferal re-
cord of MD99-2334 K is characterized by contrasting abundances of
Globobulimina spp. and oxic indicators (cibicids, miliolids) during MIS
2 and MIS 1, indicating short- and long-term changes in deep-water
ventilation. Rapid changes in the assemblages preceding HS 1 are essen-
tially defined by the alternation of Uvigerina spp. and Globobulimina spp.
dominance, suggesting relatively high organic carbon supply yet of dif-
ferent quality, and variable states of oxygenation (Schonfeld et al., 2003;
Schénfeld and Altenbach, 2005). It appears that HS 3 and HS 2 both cor-
respond to periods of relatively depressed oxygenation on the south-
western Iberian Margin. The frequent abundance of Uvigerina spp.
during interstadial periods of MIS 2 is in stark contrast to U1385D
where this species is virtually absent in the glacial samples. This contrast
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between the two sites might be the result of different water depths as
U. pigmea, the main component of Uvigerina spp., constitutes a major
component of faunal assemblages from sites below 3000 m water
depth in the area (Caralp, 1987; Schonfeld et al., 2003). The interval
spanning HS 1, the BAIS, and the YD is characterized by the dominance
of Globobulimina spp. (sometimes twice the abundance of U1385D).
However, variations in the abundance of Globobulimina spp. during
this interval indicate that ventilation changes occurred in parallel with
HS 1, the BAIS and the YD, when local deep-water alternated between
lower, higher, and again lower oxygenation states respectively, before
the final transition to well-ventilated Holocene conditions. Short-term
variations in oxygenation are indicated for both stadial periods. Maxi-
mum abundances of Globobulimina spp. in the early phase of HS 1 sug-
gest significantly depressed oxygenation, while a slight decrease
paralleled by a minor increase in hBFAR at U1385D indicates a more
prominent role of export productivity in its later phase. A gradual de-
crease in deep-water oxygenation occurs over the YD interval, indicated
by a final peak in Globobulimina spp. in its late phase.

Similar inferences regarding deep-water circulation changes record-
ed in MD99-2334 K have been made based on geochemical proxies for
deep-water temperature (Skinner et al., 2003), radiometric dating
(Skinner and Shackleton, 2004), and deep-water nutrient content
(Skinner and Shackleton, 2006), all of which suggest an alternation be-
tween northern- and southern sourced deep-water masses across these
millennial-scale events. In Fig. 9, geochemical proxies for T4y, (Mg/Ca of
G. affinis; Skinner et al., 2003) and organic matter content (8">Cpennic of
C. wuellerstorfi; Skinner and Shackleton, 2004) measured in MD99-
2334 K are compared with the abundance of Globobulimina spp. There
is a general correspondence between periods of reduced Ty, lowered
6"3Cpentnic and reduced oxygenation, suggesting that a deep-water cir-
culation and/or sourcing signal may dominate all three records. The cor-
respondence is particularly clear for the tripartite deglacial portion of
the records, where both micropalaeontological and geochemical proxy
records indicate transient changes in NE Atlantic deep-water circulation
in parallel with HS 1, the BAIS and the YD.

The same may also be the case for faunal and geochemical variations
associated with HS 3 and HS 2, although the correspondence of the
proxy records is less clear for these events. In part, this is due to a pau-
city of 6'3Cpennic data, which in itself might indicate a severe limitation
of the preferred oxygenated and/or oligotrophic microhabitat of
C. wuellerstorfi (Altenbach et al., 1999). For better-resolved intervals of
the 8'3Chentnic record however, distinct albeit fine-scaled mismatches
with respect to the Tq,, record can be identified, often in parallel with
similar mismatches exhibited by the deep infaunal fauna. Hence at
~300 cm and ~240 cm depth, local maxima in both &'*Cpen¢hic and ap-
parent oxygenation coincide with Tg,, minima, rather than maxima as
observed for the large-scale variations recorded in MD99-2334 K and
as occurs in the modern deep Atlantic primarily as a result of deep-
water circulation patterns (Broecker and Peng, 1982). Taken at face
value, these mismatches may represent the occurrence of relatively
cold, yet better-ventilated and low nutrient deep-water on the Iberian
Margin. Alternatively, they might represent the effect of sedimentary
time-averaging, resulting in the incorporation of C. wuellerstorfi and
Globobulimina spp. specimens into the same sediment interval derived
from short-lived periods of contrasting deep-water ventilation, lasting
less than the residence time of the active sedimentation layer (perhaps
~400 years, given a sedimentation rate of ~20 cm/ka and the possibility
of ~8 cm habitat penetration). Such averaging has been inferred for
planktonic foraminifera (Skinner et al., 2003), and would require very
rapid fluctuations in deep-water character (Corliss et al., 2002).

5.5. Long- and short-term changes across Termination Il
Owing to their proximity, the records of U1385E and MD01-2444

show a high correspondence in their faunal trends and can be integrated
easily (Hodell et al., 2013b). Similar to IODP Site U1385, the abundance

records from core MD01-2444 show considerable differences to the
data-sets of Termination I (Fig. 8). While interstadial conditions of MIS
6 resemble those of MIS 2 with the dominance of Globobulimina spp.,
their diminished abundances in most of HS 11 contrast stadials of
Termination L. The high abundances of Bulimina spp. and Melonis spp.
indicate increased food availability rather than oxygenation as the
main factor during HS 11, particularly in the later stage of HS 11 and
the transition into MIS 5e as indicated by elevated hBFAR values at
U1385E-3H (Fig. 3). Geochemical proxy measurements performed in
core MDO01-2444, including T4,y (Mg/Ca of G. affinis) and organic matter
content (8'3Cpenthic of C. wuellerstorfi; both Skinner and Shackleton,
2006), also reveal transient fluctuations in deep-water character across
the penultimate glacial termination, and these are compared with the
deep-infaunal taxa (Fig. 10). The geochemical and faunal proxies all
co-vary across the oxygenation pulse at the onset of HS 11 IRD deposi-
tion, and therefore both indicate the occurrence of an early change in
deep-water character in the NE Atlantic prior to the MIS 6/5e boundary.
This deep-water circulation change was characterized by the increased
influence of a warmer, more oxygenated water-mass depleted in organ-
ic matter (more suggestive of northern North Atlantic than Antarctic
source).

In the later stage of HS 11 and the transition into MIS 5e, the rela-
tionship between the geochemical and faunal proxies is not obvious,
with 8"3Cpencnic and deep-infaunal taxa suggesting a later increase in
deep-water ventilation than might be inferred from Ty, (Fig. 10). The
first group of indices (indicating late oxygenation increase) are distinct
from the latter proxy in that they can be significantly affected by organic
matter input, with increased organic matter input allowing deep infau-
nal habitats to persist and providing a greater portion of '2C/C for equil-
ibration with the dissolved inorganic carbon (DIC) budget. A high
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Fig. 10. Correlation of the abundance of deep-infaunal taxa (used as proxy of oxygen de-
pletion) with existing geochemical records for deep-water temperature (Tq. calculated
from Mg/Ca values of G. affinis; Skinner et al., 2003; Skinner and Shackleton, 2006) and
benthic 8'C (C. wuellerstorfi; Skinner and Shackleton, 2004, 2006) for MD01-2444. Light
grey areas indicate intervals of low Tqy, dark grey interval indicates period of particularly
high export productivity during HS 11.
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supply of organic matter to the sea floor is suggested for this interval by
the increase of M. barleeanum as well as strongly elevated hBFAR values
at U1385E in the same interval (in contrast to HS 1). Organic matter
exported from surface waters in sufficient quantity (perhaps due to a
change in the seasonality of productivity pulses on the Iberian Margin;
Thomson et al.,, 2000; Voelker and de Abreu, 2011) could have resulted
in the release of '2C into near-bottom water when eventually oxidized
at the sea-floor, thus generating a “phytodetritus effect” in the &-
B3 Chenthic (Mackensen and Bickert, 1999; Zarriess and Mackensen,
2011).

The relationships illustrated in Fig. 10 are consistent with the exis-
tence of a “phytodetritus effect” during the latter half of HS 11, however
they cannot unequivocally rule out an alternative interpretation of the
geochemical and faunal census data, whereby a water-mass of similar
Tqw to modern NEADW yet of relatively low oxygen and high organic
matter content is inferred to have prevailed in the NE Atlantic at
2460 m depth across Termination Il and into MIS 5e (Hodell et al.,
2009; Galaasen et al., 2014). This persistent ambiguity underlines the
difficulty of interpreting 8'3C data that necessarily includes a deep-
water source signature, is subsequently altered by deep-water transit
through the ocean, and potentially bears an additional local organic car-
bon respiration imprint (Zarriess and Mackensen, 2011). The NE Atlan-
tic margin is particularly problematic in this regard, being characterized
by high upwelling productivity and the admixture of deep-waters de-
rived from both southern and northern sources (Van Aken, 2000;
Voelker and de Abreu, 2011).

6. Conclusions

The integration of census counts of benthic foraminifera from low-
resolution records >125 um of IODP Site U1385 with high-resolution
records >212 pm of sites MD99-2334 K and MDO01-2444 allows for a de-
tailed analysis of changes in deep-water hydrography along the SW Ibe-
rian Margin across Terminations I and II. The evaluation of the size-
fraction 125-212 pm, missing in previous studies in the area, provides
information about potential biases on the interpretation of the micro-
fossil records from taphonomic processes and the use of restricted
size-fractions. The comparison of recent (mudline) and fossil assem-
blages indicates the quick post-mortem disintegration of shells of
astrorhizoid taxa, which make up ~80% of present-day fauna, resulting
in impoverished fossil assemblages at IODP Site U1385. A straightfor-
ward application of quantitative proxy methods (e.g., BFAR, BFOI) is
problematic under these circumstances, and they should be modified
(e.g., the herein introduced hBFAR) or abandoned. However, the
taphocoenoses still carry a qualitative palaeoenvironmental signal that
is most fully expressed in the 125-212 um size-fraction, but nonetheless
also expressed to some degree in the >212 pm size-fraction.

Elevated trophic conditions and considerable fluctuations in oxic
conditions characterize MIS 2 and Termination I, with minima oxygen-
ation culminating in the YD and HS 1, 2 and 3. The coincidence of low
oxic conditions with decreased water-temperature (Mg/Ca) and
lowered benthic §'3C indicates the strong influence of a southern
sourced water-mass during these periods. HS 1 is the most extreme of
these intervals, providing further evidence for a severe temporary re-
duction or even shutdown of AMOC. With the inception of MIS 1, organ-
ic matter supply at the sea-floor decreases and a better ventilated deep-
water environment bathed by NEADW is established.

Severe alterations of deep-water conditions are also occurring at the
penultimate termination. The temporary incursion of a NADW-like
water-mass prior to HS 11 is suggested by faunal and geochemical
data. Clear indications of southern-sourced water are limited to the
early phase of HS 11, whereas the later part of the stadial was marked
by increased input of organic matter, potentially explaining the
decoupling of benthic 6'3C and Mg/Ca records of earlier studies as a
“phytodetritus effect” on the carbon isotope signal. However, the
presence of a warm, nutrient-rich and poorly oxygenated water-mass

cannot be discarded. Similar to Termination I, food supply at the sea-
floor decreases with the inception of interglacial MIS 5e, paralleled by
increased NEADW production.

This study demonstrates the potential application of assemblage
analysis to fossil foraminiferal faunas for inferring palaeoenvironmental
conditions, provided limitations caused by taphonomy and size-
fractions are considered. The interpretation of high-resolution records
>212 pm benefit considerably from the integration with a detailed
evaluation of the complete faunal inventory >125 um at a lower resolu-
tion, thereby providing a robust tool for the reconstruction of deep-
water change in the North Atlantic. Multiproxy comparisons of
micropalaeontological and geochemical records can be essential to eval-
uate a given proxy's environmental significance, and to identify specific
secondary controls on proxy measurements.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gloplacha.2015.06.002.
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Appendix A

The herein applied taxonomic concepts generally follow the widely
used reference works on deep-sea benthic foraminifera by Van
Morkhoven et al. (1986), Jones (1994) and Holbourn et al. (2013). The
revised taxonomic concepts of Seidenkrantz (1995) and Schonfeld
(2006) have been applied to Cassidulina and the Uvigerina, respectively.
The identification of Cassidulina neoteretis is primarily based on its non-
serrate apertural plate (Seidenkrantz, 1995).

In the following, specific references to plates and figures are listed
that have been used for the identification of the most common forami-
niferal species of this study (also see Plate 1):

Bulimina aculeata d'Orbigny, 1826: Holbourn et al. (2013), p. 88,
Figs. 1-3.

Bulimina alazanensis Cushman, 1927: Holbourn et al. (2013), p. 90,
Figs. 1-2.

Bulimina marginata d'Orbigny, 1826: van Morkhoven et al. (1986),
PL 2, Figs. 1

Bulimina mexicana Cushman, 1922: Holbourn et al. (2013), p. 110,
Figs. 1-2.

Cassidulina neoteretis Seidenkrantz, 1995: Seidenkrantz (1995), PL. 2,
1-14; PL. 3, Figs. 1-8.

Chilostomella oolina Schwager, 1878: Holbourn et al. (2013), p. 148,
Figs. 1-2.

Epistominella exigua (Brady, 1884): Jones (1994), P1. 103, Fig. 14
Globobulimina affinis (d'Orbigny, 1839): Cushman (1922), PL 20.
Fig. 6

Globocassidulina minuta (Cushman, 1933): Arellano et al. (2011),
Pl 4, Fig. 5

Gyroidinoides soldanii (d'Orbigny, 1826): Jones (1994), Pl. 107, Fig. 7
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Hoeglundina elegans (d'Orbigny, 1878): van Morkhoven et al.
(1086), P1. 29, Figs. 1-2.

Melonis barleeanum (Williamson, 1858): Holbourn et al. (2013),
p. 354, Figs. 1-2.

Melonis pompilioides (Fichtel and Moll, 1798): Jones (1994), PI. 108,
Fig. 10

Pyrgo murrhina (Schwager, 1866): Jones (1994), PL. 2, Figs. 11, 15
Saccorhiza ramosa (Brady, 1879): Jones (1994), Pl, Figs. 15-19.
Sigmoilopsis schlumbergeri (Silvestri, 1904): Jones (1994), Pl 8.
Figs. 1-4.

Uvigerina pigmea d'Orbigny, 1826: Schonfeld (2006), P1.1, Figs. 1-6.
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