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Abstract The processes that are involved in migration and extraction of melt from the mantle are not
yet fully understood. Gaining a better understanding of material properties of partially molten rock could
help shed light on the behavior of melt on larger scales in the mantle. In this study, we simulate three-
dimensional torsional deformation of a partially molten rock that contains a rigid, spherical inclusion. We
compare the computed porosity patterns to those found in recent laboratory experiments. The laboratory
experiments show emergence of melt-rich bands throughout the rock sample, and pressure shadows
around the inclusion. The numerical model displays similar melt-rich bands only for a small bulk-to-shear-
viscosity ratio (five or less). The results are consistent with earlier two-dimensional numerical simulations;
however, we show that it is easier to form melt-rich bands in three dimensions compared to two. The addi-
tion of strain-rate dependence of the viscosity causes a distinct change in the shape of pressure shadows
around the inclusion. This change in shape presents an opportunity for experimentalists to identify the
strain-rate dependence and therefore the dominant deformation mechanism in torsion experiments with
inclusions.

1. Introduction

The transport of melt in the mantle plays an important role in the dynamics and chemical evolution of both
the mantle and the crust. Although the equations that describe the conservation of mass, momentum, and
energy of partially molten rock are well established [McKenzie, 1984; Bercovici and Ricard, 2003], the appro-
priate constitutive relations remain uncertain. This means that the dynamics of melt segregation and trans-
port present significant unanswered questions.

One means of addressing questions on the dynamics of melt segregation and transport is by comparison of
simulations with laboratory experiments on partially molten rocks subjected to forced deformation. A recent
experimental study with significant potential in this regard is reported by Qi et al. [2013]. Following on the
torsional deformation experiments of King et al. [2010], Qi et al. [2013] modified the basic experiment by
including rigid, spherical beads within the partially molten rock that is undergoing deformation. They find
that pressure shadows around the bead are expressed as variations in melt fraction there. Furthermore,
they find that melt-rich bands, also observed in experiments without beads [e.g., Holtzman et al., 2003],
emerge and tend to connect with the large-porosity lobes of the pressure shadow. Previous analysis of pres-
sure shadows [McKenzie and Holness, 2000; Rudge, 2014] and their interaction with banding instabilities
[Alisic et al., 2014] suggests that the observed relationship between these two modes of compaction could
constrain the bulk viscosity of the two-phase system.

In working toward a better understanding of compaction in a two-phase system, we pose the following
questions about the viscosity of the two-phase system that remain unresolved. What is the ratio of the bulk
viscosity to the shear viscosity at small reference porosity [Simpson et al., 2010]? How do the bulk and shear
viscosities vary with porosity [e.g., Kelemen et al., 1997; Mei et al., 2002; Takei and Holtzman, 2009]? Is the rhe-
ology non-Newtonian and, if so, does this help to explain the patterns observed in experiments? And, more
broadly, is a solely viscous rheology sufficient to capture the dynamics? These are long-term questions that

Key Points:
� Evolution of partially molten rock

under torsion is simulated in 3-D
� Melt-rich bands only form near

inclusion at small bulk-to-shear-
viscosity ratios
� Strain-rate dependence affects shape

of pressure shadows near the
inclusion

Correspondence to:
L. Alisic,
Laura.A.Jewell@jpl.nasa.gov

Citation:
Alisic, L., S. Rhebergen, J. F. Rudge,
R. F. Katz, and G. N. Wells (2016),
Torsion of a cylinder of partially
molten rock with a spherical inclusion:
Theory and simulation, Geochem.
Geophys. Geosyst., 17, 143–161,
doi:10.1002/2015GC006061.

Received 13 AUG 2015

Accepted 17 NOV 2015

Accepted article online 15 DEC 2015

Published online 21 JAN 2016

Corrected 1 APR 2016

This article was corrected on 1 APR

2016. See the end of the full text for

details.

VC 2015. American Geophysical Union.

All Rights Reserved.

ALISIC ET AL. TORSION OF PARTIALLY MOLTEN CYLINDER 143

Geochemistry, Geophysics, Geosystems

PUBLICATIONS

http://dx.doi.org/10.1002/2015GC006061
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1525-2027/
http://publications.agu.org/


we address. However, we find that on the basis of the comparison between experiments and theory consid-
ered here, we cannot answer these questions definitively, and we present a discussion of this shortcoming.

In an earlier paper, we developed two-dimensional models of two-phase flow around a cylindrical inclusion
to study the same experimental system [Alisic et al., 2014]. Here we build on those results by expanding the
numerical simulations to three dimensions. This allows us to capture the three-dimensional scaling of com-
paction around a sphere, which differs from the two-dimensional scaling around a cylinder [Rudge, 2014].
Moreover, the simulations presented here provide a more realistic comparison to the results of laboratory
experiments [Qi et al., 2013]. These new simulations with �73106 degrees of freedom would be impossible
without an advanced, new preconditioning method for the equations of magma dynamics that has been
recently developed [Rhebergen et al., 2015].

We begin this manuscript with a description of the equations governing deformation and compaction of
partially molten rock, after which we summarize the domain geometry, boundary conditions, and discretiza-
tion used in the numerical simulations. Analytical solutions for certain limiting cases are provided in Appen-
dix B; we use these to benchmark the simulation code. The first set of results in section 3.1 pertains to
simulations with a uniform initial porosity that allows us to focus on compaction around a spherical inclu-
sion in three dimensions, with Newtonian and non-Newtonian rheology. The simulations in section 3.2
focus on problems with a random initial porosity field, where we investigate the interaction between pres-
sure shadows around the inclusion and melt-rich bands developing throughout the domain. The results are
followed by a discussion in section 4, after which conclusions are drawn.

2. The Model

2.1. Governing Equations
The compaction of partially molten rock and the transport of melt can be described by governing equations
for two-phase flow, formulated here following McKenzie [1984]. In dimensionless form (see Appendix A for
the nondimensionalization):

@/
@t

2r � 12/ð Þus50; (1)

2r � us1r �
D2

R1 4
3

K/rpf

 !
50; (2)

2r � us2 Rfð Þ21pc50; (3)
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where t denotes time, / is porosity, us is the solid (matrix) velocity, pf and pc are the magma and compac-
tion pressure, respectively, and s is the deviatoric stress in the solid. Constitutive properties, discussed fur-
ther below, appear as K/ for the permeability and f for the bulk viscosity. The bulk-to-shear-viscosity ratio in
the reference state is defined as R5fref=gref , where fref is a reference bulk viscosity and gref is a reference
shear viscosity for the two-phase mixture. Finally, D5d=H where d is the compaction length and H is the
height of the domain. The compaction length is given by [McKenzie, 1984]:
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where Kref is the permeability in the reference state and lf is the magma viscosity. In this study, we assume
a compaction length that is much larger than the domain size (D5100). The deviatoric stress tensor s is:
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where g is the shear viscosity and _e is the deviatoric strain-rate tensor.
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The above model assumes that no melting or solidification takes place, buoyancy forces are negligible, and
that the fluid and solid phases have densities that are constant (but different from each other); these
assumptions are appropriate for the motivating laboratory experiments [e.g., Holtzman et al., 2003], though
a model for the Earth’s mantle clearly must be more general. The unknown fields in the model are /; us, pf,
and pc, which must satisfy equations (1)–(4), subject to the boundary conditions described below.

2.2. Rheology and Permeability
Closure conditions for the governing equations are prescribed as:

K/5
/
/0
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; g5 2 e
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where n and m depend on the melt geometry considered. We take n 5 2 and m 5 1, assuming a tubular
melt geometry. In these definitions, /0 is the reference porosity, a is a constant representing the sensitivity
of matrix shear viscosity to porosity, e_ is the second invariant of the deviatoric strain-rate tensor,

e
:
5

1
2

_e : _e
� �1=2

; (8)

and q is related to the power law exponent n by:

q512
1
n
: (9)

A power law exponent n51 gives the limit of Newtonian rheology.

In this study, we focus on the effects of the porosity sensitivity a, the reference bulk-to-shear-viscosity
ratio R, and the power law exponent n on compaction patterns around and away from an inclusion.
Laboratory experiments indicate that a is around 26 for a Newtonian rheology (diffusion creep) and
around 31=n for dislocation creep [Kelemen et al., 1997; Mei et al., 2002]. Several previous modeling
studies have used a value a 5 28 [e.g., Alisic et al., 2014; Katz et al., 2006]. The bulk-to-shear-viscosity
ratio, however, is poorly constrained. Theoretical and experimental studies place R between order one,
independent of the reference porosity [Takei and Holtzman, 2009], and �20 for a reference porosity
/050:05 on the basis of the expected relation R / /21 [Bercovici and Ricard, 2003; Simpson et al.,
2010]. In the simulations presented here, we vary a between zero and 50, and R between 5/3 and 20.
In simulations where we study the effect of strain-rate dependence of the shear and bulk viscosities,

Figure 1. The geometry of the model domain: a cylinder of height H51 and radius one (only a thin cut-out is shown in light gray), with a
rigid spherical inclusion of radius 0.1. On a two-dimensional slice through the cylinder and inclusion at x5 1

2, the instantaneous compaction
rate (r � us) is plotted for a simulation with bulk-to-shear-viscosity ratio R 5 20, and power law exponent n51 at time t50. The arrows at
the top, bottom, and side of the cylinder indicate the prescribed solid velocity on the cylinder boundaries.
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the power law exponent n has values between 1 and 6. The deformation mechanism of diffusion
creep corresponds to n51, resulting in Newtonian viscosities. A larger exponent of around 3–4 is rele-
vant for dislocation creep. Katz et al. [2006] showed that increasing the power law exponent is one
possible mechanism for reproducing the shallow angle of melt-rich bands as observed in laboratory
experiments. We therefore include simulations with n up to six.

2.3. Domain of Interest and Boundary and Initial Conditions
We compute solutions to equations (1)–(4) in a cylindrical domain X � R3 of height H 5 1 and radius 1,
where x21y2 � 1 and 0 � z � 1. A rigid spherical inclusion is centered at r05ð1=2; 0; 1=2Þ and has a radius

(a) (b)

(c) (d)

(e) (f)

α = 0 α = 28

Figure 2. Results for simulations with a uniform initial porosity field and Newtonian shear viscosity (n51). The local strain at the center of the inclusion corresponds to one half of the
reported model time. (a) Three-dimensional view of the porosity field for a simulation with porosity exponent a 5 0, bulk-to-shear-viscosity ratio R55, at time t 5 0.5 corresponding to a
local strain of 0.25 at the center of the inclusion. The pressure shadows around the inclusion are shown as porosity contours of 0.045 in blue and 0.055 in red. (b) Three-dimensional
view of the porosity field for a simulation with a 5 28 and R 5 5, at time t50:5, with porosity contours at 0.045 and 0.055. (c) Slice through the porosity field at x5 1

2, for the simulation
with a 5 0, R 5 5, at t50:5. (d) Slice through the porosity field, for the simulation with a 5 28, R 5 5, at t 5 0.5. (e) Radial integrals over porosity, for the simulation with a 5 0, R 5 5, at var-
ious times t. (f) Radial integrals over porosity, for the simulation with a528, R 5 5, at various times t.
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of 0.1, as shown in Figure 1. The inclusion is modeled as a spherical hole in the domain that cannot deform.
The boundary conditions are defined on the boundary @X as:

K/rpf � n50 on @X; (10)

us5w on @X; (11)

where the boundaries are taken to be impermeable (equation (10)), and w is a prescribed solid velocity. The
cylinder is placed under torsion. This torsion is enforced by Dirichlet boundary conditions of the form (11)
on the top and bottom (z 5 0 and z 5 1), and side boundaries of the cylinder (x21y251), such that on the
outside of the cylinder w5ucyl:

ucyl5 2y z2
1
2

� �
; x z2

1
2

� �
; 0

� �
: (12)

Formally, the boundary conditions on the rigid inclusion are conditions of no net force and no net torque
[see Alisic et al., 2014] (Appendix B). Here to simplify the construction of the numerical model, we instead
apply a Dirichlet boundary condition of the form (11) that approximates the zero net force and torque con-
ditions. In a uniform medium, a rigid sphere placed at the midplane of a torsion field should not translate,
but should rotate with an angular velocity equal to half the vorticity of the imposed torsion field (see sec-
tion B.1). Thus, we use a Dirichlet condition on the boundary of the inclusion with w5usphere,

usphere5X3 r2r0ð Þ; (13)

where r5ðx; y; zÞ is the position vector and r0 is the center of the sphere. The angular velocity X is given
by:

X5
1
2
r3ucyljr5r0

5 2
1
4
; 0; 0

� �
: (14)

In our Cartesian coordinate system and for the position of the inclusion, (13) can thus be written:
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4
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The placement of the inclusion at x 5 1/2 results in a local strain at the center of the inclusion equal to half
the total, outer-radius model strain, which scales to half the model time in a simulation.

We choose either a constant initial porosity field with /050:05, or a random initial porosity with uniformly
distributed values in the range /06531023. For the simulations with a randomly perturbed initial porosity
field, we produced one initial field and reused this for all simulations. This initial field is created by first gen-
erating a random field on a uniform mesh that has a slightly larger grid size than the largest elements in

(a) (b)

Figure 3. Radial integrals over porosity for simulations with uniform initial porosity field and n5 1, with various values of bulk-to-shear-viscosity ratio R. (a) Simulations with a 5 0 at
time t 5 0.5, for various values of R. (b) Simulations with a 5 28 at time t50:25 or a local strain of 0.125 at the center of the inclusion, for various values of R.
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the cylinder mesh; then this is interpolated onto the cylindrical mesh containing the spherical hole and vari-
able grid size. This approach ensures that the random perturbations are sufficiently resolved by the mesh
used in simulations and that the length scale of the perturbations does not vary with element size.

Throughout this paper, we present simulation results on a two-dimensional slice through the inclusion at
x 5 1/2, as shown in Figure 1. In this figure, the instantaneous compaction rate at time t 5 0 for a simulation
with bulk-to-shear-viscosity ratio R 5 20 is shown on the slice. The initial compaction rate is independent of
the porosity exponent a for uniform porosity initial conditions. Pressure gradients caused by flow past the
spherical inclusion induce two compacting lobes and two dilating lobes around the inclusion. This behavior
was described in detail by McKenzie and Holness [2000], Alisic et al. [2014], and Rudge [2014] and is discussed
further in section B1.

(a)

(b) (c)

(d) (e)

strain rate

Figure 4. Results for simulations with a uniform initial porosity field and a non-Newtonian shear viscosity. The local strain at the center of the inclusion corresponds to one half of the
reported model time. (a) Three-dimensional view of the porosity field for a simulation with porosity exponent a 5 0, bulk-to-shear-viscosity ratio R55, and power law exponent n54 at
time t 5 0.5 corresponding to a local strain of 0.25 at the center of the inclusion. The pressure shadows around the inclusion are shown as porosity contours of 0.045 in blue and 0.055 in
red. (b) Slice through the porosity field at x5 1

2, for the same simulation at t 5 0.5. (c) Second invariant of the strain-rate field at t 5 0. (d) Radial integrals over porosity, for the same simu-
lation at various times. (e) Simulations with a 5 0 and R 5 5 at time t 5 0.4, for various values of n.
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2.4. Discretization
The problem described in section 2.3 is solved by a finite element method on a mesh of tetrahedral cells
consisting of approximately 50 cells in the vertical dimension. The mesh is refined around the inclusion. The
smallest cell size is �331023 near the inclusion, and the largest cell size is �731022 away from it.

There are two main time stepping approaches to solving the two-phase flow equations (1)–(4), namely, as a
fully coupled system [Katz et al., 2007] or by decoupling the porosity evolution equation (1) from the com-
paction equations (2)–(4) [Katz and Takei, 2013]. We follow the second approach. At each time step, equa-
tions (2)–(4) are solved to find the solid velocity, fluid pressure, and compaction pressure, given the porosity
and viscosities from the previous iteration. The porosity is then updated by solving (1). To ensure a good
approximation of the coupling, we iterate this process. Furthermore, if a non-Newtonian rheology is used,
within each iteration a new strain rate is computed from the solid velocity and the viscosities are updated
accordingly.

The compaction system (2)–(4) is discretized with a continuous Galerkin finite element method using
Taylor-Hood type elements (piecewise quadratic polynomial approximation for the solid velocity and piece-
wise linear polynomial approximation for the fluid and compaction pressures, see Rhebergen et al. [2014]).
The system of linear equations resulting from this discretization is solved using Bi-CGSTAB in combination
with the block-preconditioners developed in Rhebergen et al. [2015].

The porosity evolution equation (1) is discretized in space by a discontinuous Galerkin finite element
method using a linear polynomial approximation. A Crank-Nicolson time stepping scheme is used to discre-
tize in time (but using only the most recently computed velocity). To stabilize the simulation, a porosity-
gradient-dependent artificial diffusion is added to the porosity evolution equation (1) of the form
�r � ðjr/j3r/Þ, with �50:1. To solve the resulting discrete system, we use restarted GMRES preconditioned
by algebraic multigrid. Simulations are terminated when the porosity becomes smaller than zero or larger
than unity.

Instead of solving (2)–(4), it is possible to eliminate the compaction pressure by substituting (3) into (4). The
reduced system has fewer unknowns, but solving it is numerically less robust and less efficient than solving
the expanded system (2)–(4). We refer to Rhebergen et al. [2015] for more details.

Our simulation code is developed within the finite element software framework FEniCS/DOLFIN [Logg et al.,
2012; Logg and Wells, 2010], in conjunction with the PETSc linear algebra and solver library [Balay et al.,
2015a,b].

3. Results

We group our results into two categories. In the first, the porosity is initially uniform. This means that the ini-
tial growth rate of the melt-banding instability is zero, and hence that changes in porosity are initially due
solely to the presence of the inclusion. We consider the sensitivity of the compaction pattern to problem
parameters, including the stress-dependence of the viscosity. The second category uses an initial condition

(a) (b)

Figure 5. Example of a simulation with a random initial porosity field, with a 5 28 and R 5 1.7. (a) Initial porosity field. (b) Porosity field at
t 5 0.25.
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with a random porosity perturbation. Melt-rich bands can potentially develop from the outset in this class
of simulations. We explore in detail how and when such melt-rich bands develop, and how they interact
with pressure shadows around the inclusion.

3.1. Uniform Initial Porosity
3.1.1. Newtonian Viscosity
We investigate the effect of the porosity exponent a and bulk-to-shear-viscosity ratio R on the porosity evo-
lution in time-dependent simulations with a uniform initial porosity of /050:05 and Newtonian viscosity.
When a 5 0 and n51, the shear viscosity is constant and uniform. In this case, the pressure shadows around
the inclusion that are identified by perturbations in the porosity field rotate and advect with the matrix,
with the top moving to the right and the bottom to the left, as shown in Figures 2a and 2c (note that all

(c) (d)

(a) (b)

(e) (f)

R = 1.7 R = 20

Figure 6. Results for simulations with a random initial porosity field and Newtonian viscosity. The local strain at the center of the inclusion corresponds to one half of the reported model
time. (a) Slice through the porosity field on the inclusion side of the cylinder at x 5 1/2, for a simulation with a 5 28, R 5 1.7, at t 5 0.25. (b) Slice through porosity field on the inclusion
side of the cylinder, for a simulation with a 5 28, R 5 20, at t51:0. (c) Slice through the porosity field on the side of the cylinder opposite the inclusion at x52 1

2, with a 5 28, R 5 1.7, at
t 5 0.25. (d) Slice through the porosity field on the side of the cylinder opposite the inclusion, with a 5 28, R 5 20, at t 5 1.0. (e) Radial integrals over porosity, for the simulation with
a 5 28, R 5 1.7, at various times t. The solid lines are fits with Fourier functions with the lowest nine coefficients included. (f) Radial integrals over porosity, for the simulation with a 5 28,
R 5 20, at various times t.
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cross sections presented in this paper are oriented to have the same direction of shear). In contrast, in a sim-
ulation with a 5 28 and n51, shown in Figures 2b and 2d, the pressure shadows change shape in the oppo-
site direction over time, following the orientation of expected bands in an inhomogeneous model [e.g.,
Spiegelman, 2003].

To study the behavior of pressure shadows in more detail, we compute integrals of porosity on the two-
dimensional slice through the inclusion. Integration is from the local radius of the edge of the inclusion
r 5 a to one inclusion radius outward at r52a, for a series of azimuths between 0 and 2p around the circular
cross section of the inclusion [Qi et al., 2013; Alisic et al., 2014]:

1
a

ð2a

a
/dr: (16)

Such radial integrals of porosity around the inclusion help expose the effect of a on the time evolu-
tion of pressure shadows. For the a 5 0 simulation, the peaks become sharper over time, and the
troughs become wider (see Figure 2e). The opposite happens for the a 5 28 model (see Figure 2f),
with widening peaks. These differences are more pronounced for smaller bulk-to-shear-viscosity ratios
R, as seen in Figure 3. These results are consistent with the two-dimensional results presented in
Alisic et al. [2014].

3.1.2. Non-Newtonian viscosity
We introduce a non-Newtonian,
power law rheology in time-
dependent simulations with uniform
initial porosity. In these simulations,
the power law exponent n is larger
than one. The geometry of pressure
shadows around the inclusion is
affected by this strain-rate depend-
ence, and ‘‘spokes’’ form on either side
of each pressure shadow quadrant in
a simulation with a50, as shown in
Figures 4a and 4b. This pattern is simi-
lar to the shape of pressure anomalies
in non-Newtonian materials under
simple shear found by Tenczer et al.
[2001]. The second invariant of the
strain rate, shown in Figure 4c and
which controls the viscosity variations,

(a) (b)

Figure 7. Radial integrals over porosity for simulations with a random initial porosity field and Newtonian viscosity, with various values of bulk-to-shear-viscosity ratio R. The solid lines
are fits with Fourier functions with the lowest nine coefficients included. (a) Simulations with a 5 15 at t 5 0.5, for various values of R. (b) Simulations with a 5 28 at t 5 0.5, for various
values of R.

Figure 8. Summary of parameter study of bulk-to-shear-viscosity ratio R versus
porosity exponent a. Red circles indicate that no significant development of melt-
rich bands takes place during a simulation with the specified combination of R
and a; green squares indicate the presence of melt-rich bands. Blue triangles indi-
cate development of melt-rich bands only away from the inclusion. The black con-
tours denote the maximum strain achieved at the outer edge of the cylinder
before the porosity goes out of bounds and the simulations end (/ < 0 or / > 1).
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exhibits a complex pattern around the inclusion, without significant temporal variation throughout the
simulation time.

An increase in the power law exponent n results in more pronounced spokes in the pressure shadows.
However, these spokes mostly develop further than one inclusion radius away from the edge of the inclu-
sion, and therefore the spoke shape is not reflected in the radial integrals (see Figures 4d and 4e). Figure 4e
further indicates that there is a decrease in amplitude of the peaks and troughs of the radial integrals for an
increase in n. This implies that the strain-rate dependence of the viscosity does not enhance porosity
growth rates.

Increasing the porosity exponent a up to 28 (not shown here) does not result in a significant change of
geometry of the pressure shadows in simulations with a total strain up to 0.2, indicating that the strain-rate
dependence of the rheology is dominant over the porosity dependence at low strains. It is to be expected
that at larger strains, when porosity anomalies have developed larger amplitudes, the porosity dependence
becomes more significant. This could then lead to larger differences in geometry for a 5 0 and 28. In con-
trast to porosity gradients, gradients in the strain-rate are large from the onset of simulations, as illustrated
by Figure 4c. The localized distribution of the strain-rate variations around the inclusion presents a signifi-
cant resolution challenge for the numerical simulations. It has therefore proven difficult to model high
strains for large values of n.

3.2. Nonuniform Initial Porosity
We now present simulations with a Newtonian rheology and initial porosity perturbations with a maximum
amplitude of 6531023 about a background porosity /0 of 0.05. The initial porosity field, shown in Figure
5a, is the same for all simulations presented in this section.

In a simulation with porosity exponent a 5 28 and bulk-to-shear-viscosity ratio R 5 1.7, melt-rich bands
develop throughout the cylinder over time at an angle of �458 with respect to the top and bottom of the
domain (Figure 5b). Larger band amplitudes are found toward the outside of the cylinder, as the local strain
is proportional to the radius. Melt-rich bands develop both around the inclusion and away from it as shown
in cross sections at x 5 1/2 through the inclusion and at x521=2 through the opposite side of the cylinder
in Figures 6a and 6c. In contrast, a simulation with the same a and R 5 20 does not display the formation of
melt-rich bands, as shown in Figures 6b and 6d.

The integrals in Figures 6e and 6f illustrate the difference in behavior between the R 5 1.7 and R 5 20 simu-
lations: the widening and flattening of the high-porosity peaks is much more visible in the R 5 1.7 case than
in the R 5 20 case. In the latter case, the porosity shadows even display an advected pattern at large strains
(represented by sharp peaks much like the simulation with a uniform initial porosity field in Figure 2c), indi-
cating that the growth of porosity is less dominant than its advection for such large R.

Melt-rich bands only develop in simulations with sufficiently large a and small R, as illustrated by the more
pronounced widening and flattening of high-porosity peaks in the integrals in Figure 7. This is in line with
the expected growth rates of melt-rich bands derived using linear stability analysis and presented in Appen-
dix B.2. The linear stability analysis predicts melt bands to grow initially exponentially (/ exp ð_stÞ) at a
dimensionless rate:

_s5
a 12/0ð Þ

R1 4
3

; (17)

which indicates that melt-rich bands are expected to grow faster for larger a and smaller R.

3.3. Model Regimes
Figure 8 summarizes the results of our parameter study of porosity exponent a and bulk-to-shear-viscosity ratio R
for simulations with a random initial porosity field and Newtonian rheology. The overall pattern is similar to that
found in the two-dimensional study of Alisic et al. [2014]: melt-rich bands only develop for R � 5 and large a. The
region of the parameter space in which bands develop is slightly larger for the three-dimensional geometry com-
pared to a two-dimensional case [see, Alisic et al., 2014, Figure 10], and the maximum strain achieved in the simula-
tions is significantly larger. This might be explained by the fact that the amplitudes of pressure shadows decay
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faster away from the inclusion in three dimensions compared to two dimensions (as r23 rather than r22, Rudge
[2014]), resulting in less dominant pressure shadows compared to other features developing in the porosity field.

4. Discussion

The simulations in this study display several of the main features observed in the laboratory experiments by
Qi et al. [2013], such as the pressure shadows around the spherical inclusion. For small bulk-to-shear-
viscosity ratios, melt-rich bands develop throughout the medium, including in the vicinity of the inclusion.
However, these bands do not have the dominance observed in the laboratory experiments, where they
grow as very straight and pervasive features directly adjacent to the inclusion, overprinting the pressure
shadows around the inclusion. In contrast, the bands found in the numerical simulations grow to shorter
lengths and do not overprint the porosity structure around the inclusion. Furthermore, simulations with and
without random initial porosity perturbations using a given combination of a and R and a Newtonian rheol-
ogy run to the same maximum model strain before going out of bounds. This behavior, along with the fact
that melt bands form for a larger ða; RÞ parameter space away from the inclusion than near it, are indica-
tions that in our models the pressure shadows around the inclusion are dominant over any bands that form
in simulations with random heterogeneities. Several recent studies investigate alternative constitutive rela-
tions [Takei and Katz, 2013; Katz and Takei, 2013; Rudge and Bercovici, 2015] that could potentially affect the
balance of pressure shadows and melt-rich band formation near the inclusion.

The dominance of pressure shadows also points to a key deficiency in current models of two-phase-flow:
the models contain no physics that sufficiently limit porosity growth, which results in the porosity field in
our models growing until reaching unity, at which time the simulations are terminated. Realistically, the
governing equations are only valid for porosities much smaller than unity. A second consequence of the
porosity weakening rheology in our model is the lack of a minimum length scale (width) to which melt-rich
bands will evolve. This means that the thickness of bands in simulations is ultimately dictated by the grid
spacing, and therefore the solutions are resolution dependent.

It should be noted that our numerical simulations have a different velocity boundary condition on the sides
of the cylinder than the experiments by Qi et al. [2013]. In those experiments, velocity is only prescribed on
the top and bottom of the cylinder, and the side boundary can slip freely. In contrast, in our simulations the
velocity is fully prescribed on all outside boundaries, leading to a potentially more constrained model.

In simulations with a rheology that is also strain-rate-dependent, limitations on numerical resolution near
the inclusion prevented evolution to high strains. Therefore, the regime where amplitudes of porosity varia-
tions were large enough to allow the porosity-weakening to become dominant over strain-rate effects was
typically not reached, and bands would not develop within the simulation time.

In future numerical studies, it would be helpful to utilize a significantly higher resolution near the inclusion
in such simulations, so that the strain-rate gradients can be better resolved. In addition, much could be
gained from obtaining higher-resolution images of pressure shadows in experiments: the details of the
shape of the shadows could help with identification of the prevailing deformation mechanism (diffusion
creep or dislocation creep with large power law exponent n).

5. Conclusions

We have modeled the behavior of partially molten material with an inclusion under torsion using three-
dimensional numerical solutions to the equations of two-phase flow. Recent laboratory experiments with a
similar setup display a competition between pressure shadows forming around the inclusion and melt-rich
bands that develop throughout the partially molten medium. In our numerical simulations, the pressure
shadows around the inclusion are reproduced for all tested combinations of bulk-to-shear-viscosity ratio
and porosity exponent of the shear viscosity. In contrast, melt-rich bands only develop for small bulk-to-
shear-viscosity ratios of five or less. We conclude that it is more difficult to form melt-rich bands near the
inclusion, which provides a strong perturbation to the pressure field in the form of pressure shadows. Com-
paring this study with our earlier work in two dimensions, we show that the pressure shadows are less dom-
inant in three dimensions, resulting in more pervasive development of melt-rich bands. For strain-rate
dependent viscosity, the shape of the pressure shadows is significantly different compared to Newtonian
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cases. This variation in shape could be utilized to pinpoint the dominant deformation mechanism around
the inclusion in future experiments.

Appendix A: Pressure Splitting and Nondimensionalization of the
Governing Equations

The dimensional equations for two-phase flow are:

@/
@t

2r � 12/ð Þus50; (A1)

r � u50; (A2)

/ðuf 2usÞ52
K/

lf
rpf ; (A3)

r � r50; (A4)

where / denotes porosity, t time, and us and uf the solid and fluid velocities, respectively. Bulk properties
are denoted with an overbar, where a bulk quantity �a5/af 1ð12/Þas. Furthermore, K/ is the permeability,
lf the fluid viscosity, pf the fluid pressure, and r is the bulk stress tensor.

We define the bulk stress tensor in terms of the fluid pressure pf, compaction pressure pc, and the deviatoric
stress tensor s:

r52pf I2pcI1s; (A5)

pc52fr � us; (A6)

s52g _e5g rus1 rusð ÞT 2
2
3
r � usð ÞI

� �
; (A7)

where I is the identity tensor, f the bulk viscosity, g the shear viscosity, and _e the deviatoric strain-rate tensor.

We can now write a new system of equations using us, pf, pc, and / as unknowns:

@/
@t

2r � 12/ð Þus50; (A8)

2r � us1r �
K/

lf
rpf

� �
50; (A9)

2r � us2f21pc50; (A10)

2r � s 1rpf 1rpc50: (A11)

Constitutive properties are defined in this study as follows:

K/5Kref
/
/0

� �n

; (A12)

g5gref
_e

_eref

� �2q

e2að/2/0Þ; (A13)

f5fref
_e

_eref

� �2q

e2að/2/0Þ /
/0

� �2m

5Rg
/
/0

� �2m

; (A14)

where n 5 2, m 5 1, and a is the porosity exponent and Kref denotes the permeability at the reference
porosity /0. The second invariant of the deviatoric strain-rate tensor _e is given by:

e
:
5

1
2

_e : _e
� �1=2

; (A15)

and q is related to the power law exponent n by:
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q512
1
n
: (A16)

The reference value of the second invariant is chosen as:

_eref5
_cq
2H

; (A17)

which is the value the second invariant takes on the curved boundary of the cylinder under the imposed
torsion field. H is the radius of the cylinder and _c is the imposed shear strain rate on the curved boundary.
gref and fref thus represent the shear and bulk viscosities at the curved boundary when the porosity is uni-
form and equal to /0. The bulk-to-shear-viscosity ratio R is given by fref=gref .

To complete the problem, boundary conditions are applied as follows:

2
K/

lf
rpf � n50 on @X; (A18)

us5w on @X; (A19)

where w is a prescribed solid velocity, and the boundaries are taken to be impermeable.

We must now define a convention for nondimensionalizing the governing equations, using primes for
dimensionless quantities:

x5Hx0; us5H _cu
0
s; t5 _c21t0;

pf 5gref _cp
0

f ; pc5gref _cp
0
c;

K/5Kref K
0

/; g5grefg
0; f5freff

0:

(A20)

The dimensionless system of equations then becomes, after dropping the primes, equations (1)–(4) in the main text.

Appendix B: Analysis and Code Benchmarks

B1. Instantaneous Compaction Around an Inclusion
The instantaneous rate of compaction around a spherical inclusion in an unbounded medium with uniform
porosity can be derived analytically [McKenzie and Holness, 2000; Rudge, 2014], which therefore lends itself
for benchmarking our numerical method.

In Rudge [2014], analytical solutions were presented for compacting flow past a sphere in far-field simple
shear. Here we generalize this solution to the case of a far-field torsional flow. We follow the approach of
Rudge [2014] in this appendix, which has a different set of coordinates to the main body of this paper, with
the center of the sphere being the origin of the coordinate system. In Cartesian coordinates the far-field tor-
sional flow takes the form:

u1s 5 C
:

2ðy2y0Þðz2z0Þ; ðx2x0Þðz2z0Þ; 0ð Þ; (B1)

where the origin of the torsional flow is at ðx0; y0; z0Þ and _C is the twist rate. The above can be decomposed
into irreducible Cartesian tensors as:

u1s 5V1X3x1E�x2
1
3

x3 h�xð Þ; (B2)

where

V5 C
:

2y0z0; x0z0; 0ð Þ; (B3)

X5 C
: x0

2
;

y0

2
; 2z0

� 	
; (B4)

E5 C
:

0 0 y0=2

0 0 2x0=2

y0=2 2x0=2 0

0
BB@

1
CCA; (B5)
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h5 C
:

21 0 0

0 21 0

0 0 2

0
BB@

1
CCA; (B6)

and x5ðx; y; zÞ is the position vector. According to the Fax�en laws a sphere placed at the origin in such a
flow will translate with velocity V and rotate with angular velocity X, provided that there is no net force or
torque on the sphere. The compacting flow past the sphere can be calculated as a linear superposition of
the flow due to pure strain E � x [Rudge, 2014, section 5] and that due to the vortlet flow 2 1

3 x3 h � xð Þ (a
quadratic flow, not considered in Rudge [2014]). The vortlet flow is characterized by the second-rank pseu-
dotensor h which is equal to the vorticity gradient. The perturbation flow satisfies boundary conditions:

~usjr5a5
1
3

x3 h � xð Þ; $~pf � njr5a50; (B7)

~us ! 0; ~pf ! 0; as r !1; (B8)

where r5jxj is distance from the center of the sphere, and a is the radius of the sphere. The solution to the
governing equations with these boundary conditions does not involve compaction and is simply a Stokes
flow, given by:

~us5
a5

3r5 x3 h � xð Þ; (B9)

~pf 50: (B10)

Since the quadratic flow does not involve compaction, the instantaneous compaction rate for a sphere in a
torsional field is the same as that for pure and simple shear, given by Rudge [2014, equations (5.51) and
(5.63)]. When the compaction length is large compared to the domain size, the behavior can be well
described by the large-compaction-length asymptotic limit of the equations, where the instantaneous com-
paction rate and fluid pressure are given by:

r � us5
15m

2m13
a
r

� 	3 x � E � x
r2

; (B11)

pf 5
lf a2

Kref

5m
6 2m13ð Þ

a
r

� 	3
2

3a
r


 �
x � E � x

r2 ; (B12)

where m � gref= fref14gref=3ð Þ5 R14=3Þ21�
. The above solution is identical to that given in equations (30)

and (32) of McKenzie and Holness [2000].

In Figure 9, we show the numerically calculated instantaneous compaction pressure and fluid pressure on
the two-dimensional slice indicated in Figure 1b, resulting from the imposed torsion. We use a large com-
paction length with D 5 100, and the same cylindrical mesh as outlined in Section 2.3. The numerically cal-
culated compaction pressure, shown in Figure 9a, very closely matches the analytical expression in (B11).

(a) (b)

Figure 9. Instantaneous pressure fields for a simulation with inclusion size 0.1, porosity exponent a 5 28, bulk-to-shear-viscosity ratio R 5 5/3, and stress exponent n5 1. (a) Compaction
pressure. (b) Fluid pressure.
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The fluid pressure, shown in Figure 9b,
matches less well, with the expected
quadrupole pattern of (B12) disturbed
at the top and bottom boundaries of
the finite computational domain. That
the fluid pressure is affected more
by the boundaries than the compaction
pressure is to be expected from the
analytical expressions in (B11) and
(B12); compaction pressure decays rap-
idly away from the inclusion, as r23,
whereas fluid pressure decays much
more slowly, as r21, and thus the fluid
pressure feels effects at larger
distances.

For further validation of the numerical
simulations, we compute L2 error norms for the fluid pressure pf, compaction pressure pc, and solid velocity
us, with respect to the analytical solutions. We define the following error for a field v:

eL2 5
jjvN2vAjj2
jjvAjj ; (B13)

where the numerical field is denoted by vN and the analytical solution by vA. We compute this for a series of
inclusion radii between 0.05 and 0.2, as shown in Figure 10. The L2 error decreases with decreasing inclusion
radius. This indicates that the error with respect to the analytical solution results from the presence of boun-
daries in the numerical domain, which do not exist in the analytical solution. This effect becomes less domi-
nant when the inclusion is further away from the outside cylinder boundaries, i.e., for smaller inclusions. In
addition, the L2 error is larger for the fluid pressure than for the compaction pressure. This is due to the
same boundary effects as observed in Figure 9.

B2. Linear Stability Analysis of Melt Bands Under Torsion
Linear stability analysis provides important insight into the expected growth rate of melt bands [e.g.,
Stevenson, 1989; Spiegelman, 2003; Katz et al., 2006; Butler, 2009; Takei and Katz, 2013; Rudge and Bercovici,
2015]. The solutions arising from linear stability analysis can also be used as a check on numerical solutions
of the full set of governing equations [see Alisic et al., 2014, Appendix C2]. In this appendix, we present a lin-
ear stability analysis of melt bands under torsion in an infinite cylinder for our chosen rheology, and use the
solutions to benchmark our numerical code. The analysis closely follows an earlier linear stability analysis of
melt bands under torsion by Takei and Katz [2013]. In Takei and Katz [2013], it was assumed that perturba-
tion wave numbers are large, which allows the neglect of various radial derivatives in the analysis. We do
not make this assumption here, and instead solve numerically for the radial variation.

The base state solution has a uniform porosity /0 and solid velocity u0 given in cylindrical coordi-
nates ðq;w; zÞ as:

u05 C
:
qzŵ; (B14)

where _C is the twist rate. The twist rate _C is related to the shear strain rate _c on the cylinder edge by
_c5 _CH. The base state solution has zero pressure everywhere (p050), is not compacting such that
C0 � $ � u050, and has a strain-rate-tensor with only the ðw; zÞ component nonzero,

_e05 C
: q

2
ŵẑ1ẑŵ
� 	

: (B15)

We seek small perturbations about this base state of the form:

/5/01�/11 � � � ; (B16)

us5u01�u11 � � � ; (B17)

Figure 10. L2 error norms computed for simulations with different inclusion radii,
for fluid pressure pf, compaction pressure pc, and solid velocity perturbation Dus

with respect to a torsional velocity field without an inclusion.
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pf 501�p11 � � � : (B18)

Substituting (B16)–(B18) into the governing equations (A1)–(A4) leads to equations at first order in �

given by:

D0/1

Dt
5ð12/0ÞC1; (B19)

C12
K0

lf
r2p150; (B20)

r � r150; (B21)

r152p1I1f0C1I12g0 _e112g1 _e0; (B22)

where D0
Dt � @

@t 1u0 � $.

When the rheology is non-Newtonian, the base state viscosities vary with radius according to:

g05gref q=Hð Þ2q; (B23)

f05fref q=Hð Þ2q: (B24)

Expanding the rheological law (A13) to first order in � yields:

g15g0 2a/12q
_e1 : _e0

2_e2
0

 !
5g0 2a/12q

_e1wz

_e0

� �
: (B25)

The expected growth rate of bands can be determined by replacing (B19) by:

_s/15ð12/0ÞC1; (B26)

and solving the eigenvalue problem described by (B20)–(B22) and (B25)–(B26) for the instantaneous growth
rate _s. The finite element method can be used to numerically solve for the eigenfunctions and eigenvalues
of the linear stability equations. Equations (B20)–(B22) and (B25) and (B26) can be cast into a weak form for
trial functions ðu; pÞ and test functions ðv; qÞ as:ð

V
2g0 _eu : _ev

1f0CuCv2pCv2qCu2
K0

lf
$p � $q24g0q _eu

wz _ev
wzdV5k

ð
V

4g0 _e0Cu _ev
wzdV ; (B27)

_eu � 1
2

�
$u1ð$uÞT

	
2

1
3

$ � uð ÞI; (B28)

Cu5$ � u; (B29)

where the subscripts 1 referring to the first order state have been neglected for clarity. The eigenvalue k is
related to the growth rate _s by:

k5
að12/0Þ

_s
: (B30)

The impermeable and no-slip boundary conditions (A18) and (A19) on the cylinder edge lead to the vanish-
ing of surface integral terms in the weak form (B27).

The three-dimensional weak form (B27) can be reduced to a weak form for the radial coordinate alone using
symmetry considerations. Invariance of the cylinder under rotation about its axis, and invariance under
translation in the z direction, suggests looking for eigenfunctions proportional to einw1ihz where n is the
angular wave number, and h is the vertical wave number. Substituting solutions of this form:

uq5UqðqÞeinw1ihz; (B31)

uw5iUwðqÞeinw1ihz; (B32)

uz5iUzðqÞeinw1ihz; (B33)
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p5PðqÞeinw1ihz; (B34)

and corresponding complex conjugates
for test functions into (B27) leads to
purely radial integrals where dV ! 2pqdq.
The integrands are real, and the resulting
radial eigenfunction problem was solved
using FEniCS/DOLFIN [Logg and Wells,
2010] and the eigenvalue solver SLEPc
[Hernandez et al., 2005]. An example eigen-
function calculated using this approach is
shown in Figure 11.
B2.1. A Special Case: Newtonian Melt
Bands Under Torsion in an Infinite
Domain
There is a special case of the linear stabil-
ity analysis for which a complete analyti-
cal solution can be obtained. This is the
case when the rheology is Newtonian
(n51), and the domain of interest is infi-
nite. In this case the solenoidal compo-
nent of the flow is decoupled from the

irrotational component, simplifying the analysis [Spiegelman, 1993, 2003]. The linear stability equations are:

@/1

@t
1 C

:
z
@/1

@w
5ð12/0ÞC1; (B35)

2r2C11d22C1522maC
: @2/1

@z@w
; (B36)

where (B35) follows from (B19), and (B36) is a result of combining the divergence of (B21) with (B20), (B22),
and (B25), d is the compaction length (5), and m5gref= fref14gref=3ð Þ. Solutions to (B35) and (B36) can be
found in the form of cylindrical harmonics (eigenfunctions of the Laplacian operator in cylindricals),

/15FðtÞJnðkqÞeinw1ihðtÞz; (B37)

C15CðtÞJnðkqÞeinw1ihðtÞz; (B38)

where JnðzÞ is a Bessel function of the first kind and h(t) is the vertical wave number, which varies with time
as:

hðtÞ5h02 C
:

nt; (B39)

due to the advection. Note that:

r2C152k2ðtÞC1; (B40)

k2ðtÞ5k21h2ðtÞ: (B41)

Substituting (B37) and (B38) into (B35) and (B36) yields:

_FðtÞ5ð12/0ÞCðtÞ; (B42)

ðd221k2ðtÞÞCðtÞ52ma C
:

nhðtÞFðtÞ; (B43)

which can be combined to give:

_FðtÞ5 2ma _Cð12/0ÞnhðtÞ
d221k2ðtÞ

FðtÞ; (B44)

and integrated to give:

Figure 11. Porosity field for a particular eigenfunction of the linear stability
equations. This eigenfunction has angular wave number n 5 5, and vertical
wave number h chosen such that the angle of the bands to the shear plane is
458 on the edge of the cylinder. The bulk-to-shear-viscosity ratio R 5 5/3 and
the power law exponent n51. The compaction length is large (100 times the
cylinder radius). The eigenfunction shown is the fastest growing mode with
this choice of n and h.
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FðtÞ5 d221k2ð0Þ
d221k2ðtÞ

� �mað12/0Þ

: (B45)

These expressions closely mirror the exp-
ressions for simple shear given by Spiegel-
man [2003]: compare (B44) and (B45) here
with equations (27) and (33), respectively,
from Spiegelman [2003]. The expressions are
identical, except with the appropriate
switch of angular wave numbers for planar
wave numbers, and the difference in non-
dimensionalization.

In a cylinder of finite radius, common choices
of boundary conditions on the cylinder edge
(including no-slip) lead to a coupling of the
solenoidal component of the flow and the
irrotational component, which complicates
the analysis given above. Nevertheless, this

special solution can be used as a check on the numerical approach to calculating the eigenfunctions
described in the preceding section. The special solution (B37) and (B44) was recovered numerically for a
choice of boundary conditions that decouples the solenoidal flow from the irrotational. This choice of
boundary condition is impermeable, and almost, but not quite, free-slip: on the cylinder edge uq50, �rqz50,
�rqw52 2muw=q, and @pf=@q50. These boundary conditions imply that @C=@q50 on the cylinder edge, and
restrict the allowable values of k to the roots of the derivative of the Bessel function. As is the case for sim-
ple shear, the fastest growing modes occur for infinite wave numbers. The maximum growth rate occurs as
n!1; h � n=H (i.e., bands at 458 to the shear plane on the cylinder edge) where _s ! mað12/0Þ _CH.
B2.2. Linear Stability Benchmark
We test the application code by numerically computing the instantaneous growth rate of porosity for an ini-
tial porosity field given by the eigenfunction shown in Figure 11. The numerically computed growth rate
can be compared with the expected growth rate of the eigenfunction determined from the eigenvalue.

Figure 12 shows an example of such a comparison, where an error norm for growth rate is plotted against
resolution for various mesh resolutions from approximately 10 to 50 elements in the vertical direction, to
study the effect of grid size on the accuracy of the numerical method. It is important to note that the eigen-
functions are determined for a cylinder of infinite extent, whereas the simulation domain is a cylinder of
finite extent. To mitigate the resulting boundary effects, the two are compared only on a slice through the
center-plane of the cylinder, at z 5 1/2. The L2 error norm is calculated for the local instantaneous growth
rate of porosity on the slice, using equation (B13). Generally, the error in growth rate on the center-plane
decreases with increasing resolution (i.e., with decreasing grid size), until a limit is reached at a grid size
around 0.03. For finer grids the error does not decrease any further, which we attribute to the effect of the
top and bottom boundaries on the growth of porosity. Computed growth rates are typically within a few
percent of the expected growth rates, which gives us confidence that the application code is solving the
compaction equations effectively.
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Erratum
In the originally published version of this article, several of the equations were missing parentheses. The errors have since been corrected,
and this version may be considered the authoritative version of record.
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