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Anthropocene 

Short communication 

 

Humans as the third evolutionary stage of biosphere engineering 

of rivers 

 

ABSTRACT 

We examine three fundamental changes in river systems induced by innovations of 

the biosphere, these being: 1) the evolution of oxygenic photosynthesis; 2) the 

development of vascular plants with root systems; and 3) the evolution of humans. 

The first two innovations provide context for the degree of human-induced river 

change. Early river systems of the Precambrian Archean Eon developed in an 

atmosphere with no free oxygen, and fluvial sediments accumulated ‘reduced detrital’ 

minerals such as uraninite, siderite, gersdorffite and pyrite. By 2.4 Ga the evolution of 

oxygenic photosynthesis produced an oxygenated atmosphere and ‘reduced detrital’ 

minerals mostly disappeared from rivers, affording a distinct mineralogical difference 

from subsequent fluvial deposits. Rivers of the Precambrian and early Phanerozoic 

were dominantly braided, but from 0.416 Ga, the evolution of vascular plants with 

roots bound floodplain sediments and fostered fine-grained meandering rivers. Early 

meandering river deposits show extensive animal activity including fish and 

arthropod tracks and burrows. Homo sapiens, appearing about 150 Ka BP, has, in 

recent millennia, profoundly modified river systems, altering their mineralogical, 

morphological and sedimentary state. Changes in sediment fluxes caused by human 

‘reverse engineering’ of the terrestrial biosphere include deforestation, irrigation and 
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agriculture. Sediment retention has been encouraged by the construction of dams. 

Modern river systems are associated with extensive human trace fossils that show a 

developing complexity from ancient civilizations, through to the gigantic metro 

systems beneath rivers in modern megacities. Changes induced by humans rank in 

scale with those caused by earlier biosphere innovations at 2.4 and 0.416 Ga, but 

would geologically soon revert to a “pre-human” state were humans to become 

extinct.  

 

Key words:  Anthropocene, Earth evolution, biosphere, bioturbation, river 

engineering  

 

Introduction 

Water may have been delivered to the surface of Earth largely by comets and 

hydrous carbonaceous chondrite meteorites in the Hadean Eon (e.g. Albarède, 2009) 

after the planet’s accretion at 4.54 Ga (4.54 billion years ago). However, early oceans 

and rivers were likely vaporized by the continued influx of large asteroids (Kasting 

and Ono, 2006). After the ‘late heavy bombardment’ of Earth (finishing about 3.9 Ga), 

water oceans have persisted at the surface, to provide water vapour for rainfall (Fig. 

1). From then until the present, rivers have flowed across the evolving landscape of 

Earth (with the possible exception of the most severe ‘Snowball’ glaciations of the 

Proterozoic Eon: see Hoffman et al., 1998). Rivers were and remain a key component 

of the silicate rock weathering cycle and thus a control on the atmospheric level of 

carbon dioxide (see, for example, Dessert et al., 2003), and they also provide a source 

of nutrients from weathered terrestrial minerals to supply the ocean biosphere with 

biologically important materials (e.g. see Meybeck, 2003). There is an extensive 



	   3	  

geological record of sedimentary deposits formed from rivers, extending back in time 

to the Archean Eon of the Precambrian (Fig. 1). Examination of river systems in the 

geological and archaeological record suggests three major step changes in river 

evolution produced by innovations of the biosphere, involving the evolution of 

oxygenic photosynthesis at 2.4 Ga (Blankenship, 2010), the development of a 

terrestrial biosphere with vascular plants, beginning about 0.416 Ga (Davies and 

Gibling, 2010, 2013), and the geologically recent evolution of Homo sapiens (Fig. 1). 

In this paper we examine human impacts on global river system change using the 

context of major global changes of the past.  

 

Rivers in a world with an oxygenated atmosphere 

The geological record of fossil rivers extends to the Mesoarchean (3.2 to 2.8 

Ga) part of the Precambrian (e.g. Rasmussen and Buick, 1999; see Fig. 1). The dearth 

of river deposits from yet older rocks may reflect the absence of large continental 

areas on which extensive rivers could flow; or, it may reflect the very incomplete 

record of sedimentary deposits from Paleo- and Eoarchean rocks. Earth’s Archean 

atmosphere likely comprised nitrogen, hydrogen, water vapour, methane, ammonia 

and carbon dioxide, with traces of other gases, but no free oxygen (Kasting and Ono, 

2006). Under this atmosphere rivers flowed but accumulated a different suite of 

minerals to those that formed in the post-Archean, oxygenated atmosphere. These 

‘reduced’ minerals include the uranium ore uraninite, the iron mineral pyrite, and the 

nickel-arsenic mineral gersdorffite (see Rasmussen and Buick, 1999). These minerals 

occur as detrital grains within sedimentary deposits of ancient Archean braided river 

systems from as far afield as Australia (Rasmussen and Buick, 1999), South Africa 

(e.g. Frimmel, 2005) and North America (Koglin et al., 2010). They are important 
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sources of uranium ore. The minerals were sourced from the weathering of yet more 

ancient Archean granitic intrusions or the pegmatitic mineralization associated with 

them (Depiné et al., 2013). After 2.4 Ga, these detrital minerals largely disappear 

from river deposits, reflecting a fundamental change in Earth’s biosphere caused by 

the evolution of oxygenic photosynthesis and the accumulation of free oxygen in the 

atmosphere (Blankenship, 2010). A mineralogical distinction thus exists between the 

river deposits of the Archean, and those of the later geological record. This distinction 

is pertinent to Anthropocene changes to fluvial systems, which have likewise 

accumulated a distinctive suite of human-induced mineral and chemical changes not 

found in the earlier record of rivers. This includes signatures of novel organic 

compounds (e.g., see Vane et al., 2011) and novel minerals and rocks. The minerals 

include metals rare or non-existent in nature such as aluminium fragments 

(Zalasiewicz et al., 2014a) and ‘mineraloids’ such as plastics, both only present as a 

distinctive and common component of many river sediments (Morritt et al., 2014; 

Rech et al., 2014) in significant amounts from the mid-20th century. There are also 

novel rock types including ceramic, brick and concrete fragments entering the 

sedimentary system in large and increasing amounts. In small amounts, versions of 

these have been present for millennia, but in recent decades they show rapid growth in 

quantity (>95% of the circa half-trillion tons of concrete made to date is post mid-20th 

century) and novel petrographies (such as the addition of fly ash from power stations 

as a major filler in concrete). Anthropocene river strata in the future will be as 

petrographically distinctive as we find Archean fluvial lithotypes to be today. 

 

Rivers in a world with a complex terrestrial biosphere  



	   5	  

The signatures of the coeval evolution of the terrestrial plant biosphere and its 

sedimentological and geomorphological impact on river systems have been 

summarized by Davies and Gibling (2010, 2013). The preserved sedimentary record 

suggests that many rivers of the Precambrian and Early Palaeozoic adopted a ‘sheet-

braided’ style formed by rapid channel switching and lateral migration of channels 

over kilometres of floodplain (Davies and Gibling, 2010). Precambrian meandering 

rivers have left a rare sedimentary record, with only a few known examples of sand-

bed or gravel-bed meanders and no proven examples of meandering rivers bounded 

by fine-grained floodplain deposits (Long, 2011). Precambrian rivers are 

characterized by sedimentary lithofacies that can be related to modern gravel and 

boulder beds forming in ephemeral braided systems and debris flows (Paszkowski and 

Shone, 1994; Long, 2011). Although a terrestrial biosphere of microbial mats in soils 

may have existed since the late Archean (Watanabe et al., 2000), this biosphere 

probably impinged little on the morphology of rivers and was inconsequential in 

preventing fluvial erosion. From about 0.472 Ga (Middle Ordovician), the terrestrial 

biosphere evolved non-vascular plants (Wellman et al., 2003) followed by the first 

vascular plants at 0.436 Ga (early Silurian), and later (at 0.416 Ga, Early Devonian), 

vascular plants with root systems. As land plants evolved and diversified from small 

embryophytes in the Ordovician through to arborescent forests in the Devonian, 

alluvial sedimentary rocks show increasing evidence for production (due to enhanced 

chemical weathering) and retention (due to baffling and binding) of muddy sediment, 

the disappearance of architecture indicative of the ‘sheet-like’ braided style of rivers, 

and, coeval with the oldest evidence for deep rooting, the first heterolithic lateral 

accretion sets, signifying the expansion of fine-grained meandering rivers (Davies and 

Gibling, 2010). With the further evolution of arborescent vegetation in the 
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Carboniferous, the first anabranching river deposits are suggested to appear in the 

rock record; their formation and preservation was promoted by the evolution of more 

stable vegetated floodplains and new avulsion triggers such as stabilized levees, in-

channel riparian vegetation and log jams (Davies and Gibling, 2013). This 

sedimentary record of a Palaeozoic diversification of river styles is accompanied by 

new suites of trace fossils; the trackways, burrows, feeding and faecal traces of 

animals - especially arthropods (e.g. Rolfe, 1985), but also other invertebrates and 

fish (Fig. 2; see also Wisshak et al., 2004). This trace fossil record illustrates the 

Palaeozoic establishment of non-marine ecosystems and, in rivers particularly, the 

success of land plants as ecosystem engineers that created new biogeomorphic 

alluvial habitats for a range of plant and animal life (Davies and Gibling, 2013). The 

oldest unequivocal alluvial trace fossil assemblages are dominated by arthropod 

trackways and appear globally in the rock record in Silurian (circa 0.423 Ga) alluvium 

(Davies et al., 2006; Hunter and Lomas, 2003; Trewin and McNamara, 1995), 

followed by fish traces and arthropod and other invertebrate burrows which appear 

and then diversify from the latest Silurian and Devonian (circa 0.419 Ga) onwards 

(Allen and Williams, 1981; Marriott et al., 2009; Minter et al., in press). The 

biogeomorphic effects of land plants and the burrowing of alluvial sediments by 

animals have largely persisted since their first occurrences in the geological record. A 

perturbation in these effects has been suggested to occur during widespread reduction 

and turnover of non-marine flora and fauna during the Permian-Triassic Mass 

Extinction Event at 0.252 Ga (e.g., Benton and Newell, 2014), but even this can only 

be suggested to have had a temporary effect on river functioning on a geological 

timescale. Modifications to rivers by plants and animals occur throughout the 

Mesozoic and Cenozoic and can be considered to be fundamental characteristics of 
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‘pristine’ river systems throughout most of the Phanerozoic, providing context to 

understanding the increasing influence of humans on river morphology through the 

past 5000 years. 

 

Rivers in a world with humans  

Meybeck (2003) has convincingly argued that rivers have been profoundly 

influenced by humans through wetland drainage, agriculture, the construction of 

artificial water bodies, and the development of artificial water storage and flow 

regulation structures. He considered these changes to be a product of the 

‘Anthroposphere’, the sum of human economic activities (including mining, 

agriculture, industrialization, forestry, and urbanization), and he regarded the degree 

of change important enough to discuss the ‘Anthropocene era’. In combination with 

the global regulation of water bodies by humans, Meybeck (op. cit., and references 

therein) also noted a global-scale chemical and biogeochemical modification of 

terrestrial water bodies. He traced the origins of the human modification of river 

systems to the third millennium BC, beginning in major rivers associated with the 

earliest civilizations of the Euphrates	  (e.g.,	  see	  Besançon and Geyer, 1996) and Tigris 

river systems in Mesopotamia (e.g., see Heyvaert et al., 2012), the Nile in Egypt, the 

Indus in Pakistan, and the Huang He in China. In medium-sized rivers of Western 

Europe Meybeck (op. cit., fig. 2) traced the introduction of organic contaminants and 

of metals back into the first and second millennia BC, and he identified similar 

patterns in South America. Later, in the 20th century, new contaminants, nitrates and 

pesticides became a significant factor in rivers.  

 The human influence on rivers is evident from classical civilizations bordering 

the Mediterranean Sea and has been investigated in detail on the coast adjacent to 
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classical Rome (e.g., Goiran et al., 2010). The ancient port of Ostia, for example, 

shows a clear anthropogenic signature, with the eventual silting-up of the harbour and 

its abandonment before the start-up of the successor harbour at Portus (Goiran et al., 

2014). Near the mouth of the River Tiber, downstream from Rome, construction of 

the Claudius and Trajanic Canals (Salomon et al., 2012), and of Portus also, 

significantly altered the sedimentary motif of the naturally formed sediments where 

the river enters the Tyrrhenian Sea (Bellotti et al., 2007) (Fig. 3). Here there is a clear 

signal of anthropogenic influence through the development of brackish water 

conditions in the Claudius harbour signaled by a changing fauna and flora (Sadori et 

al., 2010), a mineralogical signal from gypsum, a changed sedimentary motif to one 

dominated by silts and organic mud, and introduced potsherds, wood fragments and 

bone that signal human activity (Mazzini et al., 2011, fig. 2).  

 The sedimentological and geomorphological effects of human settlement on 

river systems can be profound and are often associated with enforced changes to 

vegetation within river catchments. In northern Europe, floodplain deforestation has 

continued since 6000 BP, and some medium to large rivers that presently adopt a 

meandering planform appear to have formerly possessed an anabranching form when 

forested (Brown, 2002; Davies and Sambrook Smith, 2006). In Australia, the 

neighbouring Thurra and Cann river catchments provide direct evidence of this effect: 

the former has retained a ‘pristine’ natural state, whilst the latter has seen extensive 

logging, riparian deforestation and removal of woody snags since being settled by 

European colonizers from 1860 onwards (Brooks et al., 2003). During this interval, 

the Cann River has seen a 360% increase in channel depth, a 240% increase in 

channel slope, a 700% increase in channel capacity and a very large increase in the 

rate of lateral channel migration, with the net effect that it is now more straight and 
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wide than the neighbouring Thurra River and its current state is dramatically out of 

phase with the geomorphic and sedimentary regime that it had maintained for the 

previous 27 ka (thousand years). In North America, a similar post-colonial effect is 

seen in the spike in sedimentation rate in alluvium of the Delaware River valley with 

agricultural land clearance from circa 1600, but even this was preceded by an earlier 

anthropogenic increase in sedimentation rate around circa 1100, associated with 

intensified deforestation and maize cultivation during the Medieval Climate 

Anomaly–Little Ice Age transition (Stinchcomb et al., 2011). In each of these 

particular instances, changes in alluvial regime have been mediated through 

anthropogenically-forced vegetation changes, partly inversely analogous to the 

Palaeozoic rise in influence of land plants in alluvial systems. 

 During modern times, the human modification of river systems has been 

accelerating, as succinctly illustrated in the images of dam construction on the rivers 

of the USA between 1850 and 2000 (Syvitski and Kettner, 2011), and by dams and 

irrigation systems developing along the river Nile (Woodward et al., 2007). River 

modification by humans is also associated with the growth of a new phase of “trace 

fossils”, the towns, cities and megacities that arise along their banks, and the 

sewerage treatment plants and canals that are associated with these developments. 

These structures also include the tunneling that is undertaken beneath rivers.  

Distinctively, the tunnels extend well beyond the immediate river deposits of 

alluvium, but nevertheless are part of the urban systems that strongly modify rivers. 

This reached a monumental scale for the first time in the mid nineteenth century with 

the construction of the Thames Tunnel under the river in London (Fig. 4). Built 

between 1825 and 1843, the tunnel is 11 m wide, 6 m high and 396 m long, a feat of 

human engineering guided by the engineers Thomas Cochrane, Marc Isambard Brunel, 
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and Isambard Kingdom Brunel. The tunnel reflects the increasing complexity of 

human interaction with rivers through technology in the 19th century. It represents a 

scale of biosphere burrowing many orders of magnitude larger than the burrows seen 

in ancient river strata (see Fig. 2). Burrowing under the Thames culminated in the vast 

trace fossil network of the London (Underground) Metro, which began construction in 

1861, and now has several lines passing beneath the river Thames. These structures, a 

visible example of the complexity of modern human structures around rivers, have 

been considered as marking a key event in the evolution of the biosphere comparable 

to changes in animal behaviour witnessed by trace fossils in marine deposits at the 

Precambrian-Cambrian boundary (see Williams et al., 2014) and later in alluvial 

sediments during the Siluro-Devonian (Minter et al., in press). Human burrow 

systems are characteristic of many of the world’s great cities from New York to 

Tokyo. 

Though a recognizable stratigraphy can be formulated for changes to rivers 

over time based on influences from agriculture, transportation, pollution, mining and 

mineral input, urbanization and reservoir development (e.g. in the UK, see Lewin, 

2013), these human-induced changes to rivers cannot be used to define an 

Anthropocene Series boundary in sedimentary deposits. Unlike some other potential 

geological markers of the Anthropocene (see Zalasiewicz et al., 2014b), changes to 

rivers have been progressive (and so diachronous between regions), having unfolded 

over several millennia (even in a single region like the UK, e.g. Macklin et al. 2014), 

and in part (as in the tunneling phenomena) cross-cut earlier rocks.  

 

Rate or state change in global rivers? 
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One can argue that progressive human changes to rivers over the past 5000 

years represent a gradual but accelerating rate change to fluvial processes, particularly 

the increased flux of sediments (200 km3 per year) as a product of deforestation, 

agriculture, mining and transportation systems, or the increased retention of sediment 

(170 km3 per year) through the construction of dams (Syvitski et al., 2005; Syvitski 

and Kettner, 2011). Contemporary human re-engineering of rivers has no real parallel 

in Earth history. The nearest counterparts are the dams built across streams by beavers, 

which are themselves geologically recent ecological innovations, with phylogenetic 

analysis of woodcutting beavers suggesting that they evolved no earlier than the late 

Oligocene (circa 24 million years ago) (Rybczynski, 2008). Beaver dams are a 

significant control on sedimentation in particular alluvial settings (Kramer et al., 

2012), but the scale and (especially) the complexity of human constructions is orders 

of magnitude greater. In effect, entire fluvial systems have been integrated within the 

technosphere (see Haff, 2014) that simultaneously maintains human existence and 

drives the global changes that have taken the Earth system into the Anthropocene 

state. Given the importance of fresh water to human existence, it is not surprising that 

rivers have been more thoroughly re-engineered by humans than any other 

geomorphic feature. It is this change that we suggest to be of comparable importance 

to the fundamental transitions of the fluvial system in Earth history. Nevertheless, 

many of the changes induced by humans would revert to a pre-human ‘natural state’ 

were humans to become extinct. Analogues exist in tropical South America, where 

Pre-Colombian societies were decimated by the arrival of Europeans in the sixteenth 

century, and where ancient ditches and canals built by extensive civilizations have 

been obliterated by the subsequent accumulation of river alluvium (e.g., Rostain, 

2010). Nonetheless, even in these areas, convex structures such as habitation mounds, 
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or raised fields have persisted, providing a clear indication of human modification 

along the margin of rivers pre-1500 AD (Rostain, op. cit.) that includes a faunal and 

floral signature (Bush and Silman, 2007 and references therein). Thus, a signal of 

human interference remains, especially in low-lying areas, and includes a well-

defined stratigraphic interval of trace fossils along the banks of rivers, especially in 

megacities (Williams et al., 2014), or chemical signatures from pollutants (Vane et al., 

2011; Delile et al., 2014), or a record of altered sedimentary patterns, as for example 

in the Tiber River downstream of Rome (Mazzini et al., 2011), the Rhone River 

(Bravard, 2010) or the Nile (Stanley and Warne, 1993). Rivers would likely rework or 

bury (depending on the relation of lateral to vertical accretion) all human 

constructions given time. Such a pattern is evident in a living megacity like Singapore, 

where the modern shopping thoroughfare of Orchard Road follows the course of a 

river. Orchard Road sits within a river valley, but the flow of the river today is 

controlled by the Stamford Canal, which runs beneath and alongside Orchard Road, 

and which floods during intense tropical rainstorms (e.g. in 2011). The authorities in 

Singapore are currently able to improve the drainage systems and manage the 

flooding; but, were humans to disappear, it is likely that the river would eventually 

overrun its human constraints (Fig. 5). Fluvial systems can thus, once human forcing 

of them ceases, rapidly (from a geological perspective) revert to their original patterns. 

This contrasts with the behaviour of large-scale chemical cycles such as the carbon 

cycle and associated climate and ocean chemistry perturbations, which will take tens 

to hundreds of millennia to regain equilibrium once human pressure on them stops. 

There is an even greater contrast with anthropogenically perturbed global biota, which 

may ultimately retain its diversity (if human impact ceases), but with a radically 
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different assemblage of animal and plant taxa, as was the case after each mass 

extinction event in Earth’s history. 

  There is another scenario too, with geological analogy to the persistence of the 

influence of vegetation in rivers after the Permian-Triassic extinction: one in which 

humans, or if humans were to become extinct, their technological constructions (Haff, 

2014), continue to evolve and develop the surface of planet Earth over geological 

timescales. In this scenario the change to rivers would represent a geologically long-

lived state change and departure from the pre-human world. A fundamental character 

of this state (if it resembles the history of the Anthropocene to date) is one of 

continuing rapid evolution of form and process, given the inherent impetus of 

technological systems towards change. In this scenario, the change to river systems 

induced by humans would fully resemble the great events of the past, the 

mineralogical changes in fluvial systems induced by the oxygenation of Earth’s 

atmosphere at 2.4 Ga, and the evolution of a terrestrial biosphere with vascular plants 

at 0.416 Ga. Earth’s rivers have undergone a fundamental state change; whether it is a 

geologically long-lived one, only time will tell. 
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Figures 

Fig. 1. Time-line of major events in the evolution of river systems from the 

Precambrian to present: data for the development of the terrestrial plant biosphere is 

taken from Davies and Gibling (2010, 2013). Steps 1 to 3 on the Earth events timeline 

signify the three stages of evolution of rivers identified here. Dates on the vertical 

axes are in Ga (billions of years). 

 

Fig. 2. Burrows of the trace fossil Beaconites antarcticus, thought to represent the 

activity of early terrestrial lungfish. This burrow is in sandstone interpreted to 

represent meandering river systems of Devonian age at Freshwater West, South 

Wales (image David Siveter, University of Leicester).  

 

Fig. 3. The human excavated Fiumicino Channel, connecting the ancient harbour at 

Portus to the River Tiber: constructed at the time of the emperor Claudius during the 

first century AD. The sedimentary motifs preserved in cored sediments from PTS5 in 

the Traverso Channel and PTS13 in the dock show the anthropogenic signature 
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clearly imposed through a change in sedimentary motif (above the dredging surface in 

PTS5, and the harbour foundation in PTS13), through mineral content, fauna and 

artefacts of wood, bone and pottery (see also Mazzini et al., 2011).  

 

Fig. 4. The interior of the Thames Tunnel in the mid-19th century. Image from 

Wikimedia Commons available at http://en.wikipedia.org/wiki/File:Thamestunnel.jpg 

 

Fig. 5. Rivers in a modern, technologically advanced megacity: beneath and alongside 

Singapore’s premier shopping thoroughfare of Orchard Road runs the human 

constructed Stamford Canal, itself a conduit for a natural stream. During severe 

tropical storms parts of Orchard Road flood, and whilst human constructs can keep 

the river contained, were humans to disappear, the natural river system here would 

eventually restore (image Stephanie Kane, Indiana University). 


