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CHAPTER 1: INTRODUCTION 

In this dissertation research, the goal is to develop methods to facilitate charge transport in 

heterostructured materials that comprise a minimum of one nanoparticle component. Multicomponent 

semiconductor materials will be prepared by (1) spin coating nanoparticles on porous silicon (pSi) or (2) 

self-assembly of compositionally distinct nanoparticles. 

Spin-coating of colloidal quantum dot (QD) solutions will be employed to create prototype PbS QD-

based radiation detection devices using porous silicon (pSi) as an n-type support as well as a charge 

transport material (Approach 1). These devices will first be tested as a photodetector to ascertain the 

possibility of their use in high energy radiation detection. Sol-gel assembly routes will be employed to 

fabricate metal chalcogenide nanocrystal (NC) gels of different compositions with control of 

heterogeneity to create donor-acceptor networks potentially applicable to electronic and optoelectronic 

devices (Approach 2). In order to control the heterogeneity, the factors that underscore sol-gel oxidative 

assembly will be elucidated. The aggregation and gelation kinetics of metal chalcogenide QDs will be 

monitored through time-resolved dynamic light scattering (TR-DLS), and nuclear magnetic resonance 

spectroscopy (NMR) will be used to study surface speciation of metal chalcogenides during aggregation 

and gelation. Control over heterogeneity in a dual component CdSe-ZnS system, will be achieved through 

adjustment of the capping ligand, the native crystal structure, and the chalcogenide, thereby changing the 

relative rates of assembly for each component independently.  

1.1. Colloidal Semiconducting Quantum Dot Nanocrystals (NCs) 

Nanocrystals have a ratio of surface atoms to total atoms in the particle that is large relative to bulk 

phases, which affects the physical properties of the material (i.e. melting temperature, phase transition 

temperature). Colloidal QDs are nanocrystals made of semiconducting materials that have been 

suspended in solution. There has been considerable and steady interest in these materials for several 

decades due to the ease of processability in the solution phase, tunability of the light absorption within 
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the UV, Visible and near-IR range based on the particle size, shape and composition, and the ability to 

rationally design QD NCs for many applications.1 These QD nanocrystals are composed of hundreds to 

thousands of atoms and are usually sub-10 nm in size.2 Examples of semiconducting quantum dots include 

those from Group IV ( Si and Ge)3, Group I-VI (Ag2S, Ag2Se and Ag2Te)4,  Group II-V (Cd3P2
5 and Cd3As2

6), 

Group II-VI (ZnS7, ZnSe8, ZnTe9, CdS10, CdSe10 and CdTe10), Group III-V (GaAs,11 GaP,11 InP,12 InAs,12 and 

InSb13) and Group IV-VI (PbS,14 PbSe,15 PbTe16). QDs have been used to develop new light-emitting diodes 

(LEDs),17 photodetectors,18 photovoltaic devices19 and radiation detectors.20 The electronic and optical 

properties that make QDs of interest for such applications are determined by the density of states (DOS) 

of the materials at the Fermi level. As the size of the semiconductor NCs get close to, or smaller than, the 

size of the bound electron–hole pair (exciton), the charge carriers become restricted by the boundaries of 

the material. This is referred to as the quantum size effect and it leads to atomic-like optical behavior in 

nanocrystals as the bands are quantized. This confinement regime is based on the Bohr exciton radius of 

the material (Eq. 1.1), where in the strong confinement regime the nanocrystal radius (anc) is much smaller 

than the radius of the exciton (aexc). 

𝑎𝑏 =  휀
𝑚𝑒

𝑚∗  𝑎𝑜                                                (1.1) 

In Eq. 1.1 ε is the dielectric constant of the material, m* is the mass of the particle, 𝑚𝑒 is the mass of the 

electron and ao is the Bohr radius of the hydrogen atom.  

 The size dependent optical properties of semiconducting nanocrystals can be explained by the 

position of the Fermi level (Ef) in the band structure of these materials when compared to metals or even 

insulating materials. In the bulk, semiconductor materials have a large number of atomic orbitals; and 

their overlap allows them to form energy bands with continuous energy levels. Since the band levels 

develop concurrently to the bulk material formation, the center of the band develops before the band 

edge; so in the nanometer size regime, the energy level spacing is very small in the center of the band and 

gets larger at the edge of the bands (Figure 1.1).21 The excitons in a QD NC in the strong confinement 
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regime are squeezed in 3-D which causes the quantum confinement effects (QCE). QCE are predicted by 

the particle-in-a-box model where the energies of states depend on the length of the box.22  

 

Figure 1.1. Energy-level diagram showing the transition from bulk materials (continuous bands) to 
quantum dots (discrete states) (adapted from Reimann). 23 

 

1.2 QD NCs Electronic Structure and Optical Properties 

The bandgap (Eg) (Figure 1.1) is the energy difference from the top of the valence band to the bottom 

of the conduction band. For direct bandgap semiconductors, the absorption of a photon of energy greater 

than Eg excites an electron from the valence band to the conduction band, which produces a negatively 

charged electron in the conduction band and a positively charged hole in the valence band. An exciton 

has an effective reduced mass (𝜇) as shown in Eq. 1.2, where 𝑚𝑒
∗the effective is mass of the electron and 

𝑚ℎ
∗   is the effective mass of the hole.  

                                                                                     𝜇 =
𝑚𝑒

∗ 𝑚ℎ
∗

𝑚𝑒
∗ +𝑚ℎ

∗                                            (1.2) 

The exciton Bohr radius is defined in Eq. 1.3 where 휀0 is the permittivity of free space and 𝑚𝑒 is the mass 

of the electron. 
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            𝑎𝑒𝑥𝑐 =
4𝜋𝜀0ℏ2

𝑚𝑒𝑒2                                            (1.3) 

When the diameter of the spherical QD is below the diameter of the exciton Bohr radius, charge carriers 

are confined by the boundaries of the material. The quantum size effect results in a quantization of the 

bulk band as demonstrated in Figure 1.1, unlike in bulk semiconductors, which have a continuous 

absorption spectrum above the band gap. The reason metal nanoparticles have optical and electrical 

properties that are analogous to bulk material is due to the valence and conduction band overlap, with 

the Fermi level in the middle of a band, where the energy levels are closer together.21  

 Since the energy of the electron and hole of the QDs is based on the extent of quantum confinement,  

related to the size of the QD, there are three regimes of quantum confinement that can be defined based 

on the QD size: The strong confinement regime (r<ae,<ah<aexc), the intermediate confinement regime 

(ah<r<ar<aexc), and finally the weak confinement regime (ah, ae< r < aexc), in these comparisons r is the 

radius of the spherical QD, ae is the radius of the electron, ah is the radius of the hole and aexc is the exciton 

radius.24 

 Direct bandgap semiconducting materials have transitions allowed by the electrical dipole; conversely 

indirect bandgap materials have electrical dipole forbidden transitions where a photon is required for 

electrical transition (Figure 1.2). 
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Figure 1.2. Simple two band model for direct and indirect bandgap semiconducting material (adapted 
from Zhang).24 

 

The single-particle wave functions for the electrons and holes are linear combinations of the atomic 

orbitals (LCAOs) in the unit cell. When the dimensions of the cells enable the LCAOs to be in phase, the 

wave vector (Eq. 1.4.) is zero, when the LCAOs perfectly out of phase the wave vector is π/a, the highest 

value.  

              𝑘 =
2𝜋

𝜆
                                          (1.4) 

 Thus, in a simple one-dimensional model, the dependence of E on k is shown in Eq. 1.5 where α is the 

energy of the linear combination of atomic orbitals in the unit cell and 2β is the width of the band which 

is inversely proportional to the effective mass.   

           𝐸 =  𝛼 + 2𝛽 cos(𝑘𝑎)                                         (1.5) 
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The quantum size effect can be obtained using the particle-in-a-box model with a series of 

approximations. The band gap of the QD can be estimated using the effective mass approximation, in 

which conduction and valence bands are approximated as single parabolic conduction and valence bands 

(Figure 1.2), and the effective band gap of quantum dots can be approximated as in Eq 1.6, where  r is the 

QD radius.24 

                           𝐸𝑔(𝑄𝐷) =  𝐸𝑔 +  
ℏ2𝜋2

2𝜇𝑟2  (1.6) 

In the strong confinement regime, an additional term has to be used to account for the Coulombic 

interaction between electrons and holes (Eq. 1.7). 

                                                              𝐸𝑔(𝑄𝐷) = 𝐸𝑔 +  
ℏ2𝜋2

2𝜇𝑟2 −
1.8𝑒2

𝜀𝑟
                                         (1.7) 

 Another important factor affecting the electronic and structural properties of QD NCs is the shape 

effect. The unit of confinement decreases as the number of confined dimensions decreases (three (QD) > 

two (quantum wires) > one (quantum disks and wells)). Figure 1.3 illustrates the density of electronic 

states in one band of a 2-dimensional, 1-dimensional and 0-dimensional semiconductor.21 

 

Figure 1.3. Illustration of the density of states for semiconductor materials confined in 2D, 1D and 0D 
(adapted from Alivisatos).21 

 

 The density of states is the number of states per unit energy, which is determined by the crystal 

structure and electronic properties of the material, for example the density of states of an electron N(E) 

in a parabolic conduction band (Figure 1.3) is given in Eq. 1.8.25 
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                                                              𝑁(𝐸) =  
1

2𝜋2ℏ3
(2𝑚𝑒

∗)3/2(𝐸 − 𝐸𝑔)
1/2

                           (1.8) 

Alternatively, the density of states for a hole in the parabolic valence band is Eq. 1.9. 

                                                                   𝑁(𝐸) =  
1

2𝜋2ℏ3
(2𝑚ℎ

∗ )3/2𝐸1/2                                 (1.9) 

A fermion is an elementary particle (an electron in this case), which follows the Fermi-Dirac distribution 

function (Eq. 1.10) of the electron occupancy in the electronic states. 

                                                                             𝑓(𝐸) =  
1

exp
(𝐸−𝐸𝐹)

𝑘𝐵𝑇
+1

                                      (1.10) 

In which the Ef value is the Fermi energy (Fermi level), in this case, kB is the Boltzmann’s constant, and T 

is the absolute temperature. Conversely, the density of holes is based on the density of states, and the 

probability that the state is empty (Eq. 1.11). 

                                                                          1 − 𝑓(𝐸) =
1

exp
(𝐸𝐹−𝐸)

𝑘𝑇
+1

                               (1.11) 

 The energy level spacing and density of states for nanoscale semiconducting materials varies as a 

function of the size, based on the quantum confinement effect. As the particle size decreases, the spacing 

between the energy levels increases quadratically, making the equation for the effective bandgap of 

specifically a spherical particle with radius r, (𝐸𝑔,𝑒𝑓𝑓(𝑅)), Eq. 1.12. Since the bandgap is inversely 

proportional to r2, the bandgap will increase as the radius of the particle decreases. 

                                                     𝐸𝑔,𝑒𝑓𝑓(𝑅) =  𝐸𝑔,𝑏𝑢𝑙𝑘 +
ℏ2𝜋2

2𝑟2 (
1

𝑚𝑒
∗ +

1

𝑚ℎ
∗ ) −

1.8𝑒2

𝜀𝑟
                       (1.12) 

The crystal structure or lattice structure, i.e., the long range order of the material, also has an effect 

on the electronic and optical properties of semiconducting NCs. Phonons are collective excitations that 

occur in a periodic arrangement of atoms or molecules. Solid lattice structures have two types of phonons; 

acoustic phonons, which are high frequency vibrations of atoms in the lattice out of their equilibrium 

positions; and acoustic phonons which are lower frequency vibrations of atoms in phase.  
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Light absorption is defined as a relative rate of decrease in light intensity along the path of propagation 

(Eq. 1.13). 

          𝛼(ℎ𝜐) =
1

ℎ𝜐

𝑑𝐼(ℎ𝜐)

𝑑𝑥
                                      (1.13) 

In Eq. 1.13 the intensity is 𝐼(ℎ𝜐), and the path of propagation is defined as x. For the direct bandgap 

transitions based on electrical dipole allowed transitions, 𝛼𝑑(ℎ𝜐), in Eq. 1.14 for direct conversion 

bandgap materials, the constant 𝐴∗ is based on the index of refraction and effective mass of the electron 

and hole.25 

            𝛼𝑑(ℎ𝜐) =  𝐴∗(ℎ𝜐 − 𝐸𝑔)1/2                        (1.14) 

For indirect bandgap materials with electric dipole forbidden transitions, where phonon energy is required 

(Ep), the electron absorption coefficient is shown in Eq. 1.15.25 

                                                                            𝛼𝑖(ℎ𝜐) =
𝐴∗ (ℎ𝜐−𝐸𝑔+𝐸𝑝)2

𝑒𝑥𝑝
𝐸𝑝

𝑘𝑇
−1

                         (1.15) 

Eq. 1.15 shows that the absorption coefficient depends on the numerous transitions in the material, so 

the absorption spectrum is a means used to determine the bandgap energy and also the different types 

of transitions in the QDs. 

1.3 Quantum Dot Synthesis and Passivating Ligands 

There are two basic synthetic regimes for nanoparticle synthesis: chemical synthesis and physical 

synthesis. In the interest of brevity in this dissertation, only chemical synthetic methods, which are 

relevant to the work performed, will be covered in this thesis. In the category of chemical synthetic 

techniques there are solution based processes and gas-phase synthetic methods. Solution-based colloidal 

QD synthesis is commonly used because it allows the QD size to be tuned; this is because of the two main 

critical steps in solution based synthesis: 1) the initial nucleation step, and 2) the subsequent growth of 

the nanocrystals.26 Good quality NCs with a narrow size distribution are usually synthesized by hot-

injection techniques in which precursors are rapidly injected into a solution high temperature in the 
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presence of organic surfactants and stabilizing agents. At high temperature the inorganic salt precursors, 

(e.g. cadmium oxide, cadmium acetate, lead oxide, cadmium chloride, zinc chloride) chemically transform 

into reactive atomic or molecular species (monomers) leading to nucleation and growth of NCs.27-28 The 

rapid addition of the reagents will increase the precursor concentration above a known nucleation 

threshold, which starts the nucleation of the nanocrystals. The synthesis of a monodisperse solution of 

colloidal QDs, has been shown to start with discrete nucleation, which is then followed by a controlled 

growth cycle using existing nuclei. The la Mer model for the nucleation and growth is shown in Figure 1.4, 

where the initial concentration rises above the saturation concentration which is followed by short bursts 

of nucleation and the synthesis of a large number of nuclei in short time intervals. These aggregates grow 

rapidly and lower the concentration below the nucleation level, which allows for separate nucleation and 

growth phases.29-30 
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Figure 1.4. Scheme of the La Mer model for the stages of nucleation and growth for monodisperse 
semiconducting colloidal nanoparticles (adapted from Klimov).2 

 

Following this discrete nucleation event, there is rapid growth that is then followed by saturation and 

the slower Ostwald ripening. Ostwald ripening is due to the higher energy surfaces in the smaller particles, 

which promote their dissolution into solution. Once dissolved they can add and grow on the larger 

particles, thus promoting a more polydisperse particle size distribution.26 Particle size control can be 

achieved through several routes, including longer reaction times that promote larger particle sizes; higher 

synthesis temperatures that facilitate Ostwald ripening and produce larger, more polydisperse particles; 

and higher concentration of monomers that form fewer but larger nuclei and results in larger nanoparticle 

sizes.31 Most of these high temperature synthesis techniques involve the use of stabilizing agents to 
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promote the solvation of one precursor. Thus another synthetic route for increasing particle size is to have 

a low ratio of stabilizer-to-precursor in solution.32  

 The narrow growth regime that occurs before Ostwald ripening has a significant impact on the particle 

size distribution. The early stages of the NC growth are described by a “focusing of size distribution” 

model.33 The growth process of QD NCs occur in two different modes, ‘focusing’ and ‘defocusing’, based 

on the concentration of the monomer present prior to Ostwald ripening. At higher concentrations of the 

monomers, the critical size of the NCs will remain small so that all the particles in solution will grow. In 

this condition, the smaller particles grow faster than the larger ones, which allows for the size distribution 

to be focused to a nearly monodisperse solution. If the monomer concentration is below the critical 

threshold, the smaller NCs are solvated and the larger ones grow, thus the size distribution broadens.28, 34 

 Another preparation method that can be performed at moderate temperatures is the inverse-micelle 

synthetic method. This low-temperature synthetic route suffers from relatively poor size distributions and 

the QD products often have poor photoluminescence (PL) emission, or trap state emission due to poor 

crystallinity and surface defects.  These lower temperature (sometimes room temperature) synthetic 

methods have typically been limited in their applicability to more ionic materials. The most commonly 

used method for inverse micelle synthesis involves the preparation of two separate microemulsions using 

a surfactant and water-in-oil solution where the separate precursors are in small water droplets (e. g. 

CdCl2 and Na2S). The two  separate precursor solutions are combined and nucleation occurs on the micelle 

edges as the water inside is supersaturated with the co-reactants.35 The growth phase is continued around 

this nucleation point, with the influx of more co-reactants from intermicellar exchange (Figure 1.5).36 
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Figure 1.5. Possible mechanism for the formation of nanoparticles by the inverse micelle approach 
(adapted from Capek).36 

 

 For inverse micelle synthesis, the final particle size is controlled by the ratio of water to surfactant Eq. 

1.16, with a higher ratio of water leading to larger particle sizes in the resultant nanoparticles. 

                  𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑖𝑧𝑒 =  
[𝑊𝑎𝑡𝑒𝑟]

[𝑆𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡]
                                      (1.16) 
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1.4 Colloidal Aggregation and Sol-gel Synthesis 

A colloidal solution, or sol, is considered a suspension of materials in the size regime 1-1000 nm, 

dispersed in a solvent, that are very negligibly affected by the gravitational forces. The interactions 

between the particles is subjected to different types of short range forces, including van der Waals 

attractions and charges on the surface of the material. The materials display Brownian motion, which is 

the random motion of the particles in solution from their collision with other particles and molecules in 

solution. When a sol aggregates it forms fractal structures. If the mass (m) of the fractal increases with its 

radius (r) according to Eq. 1.17 it is considered a mass fractal. 37 

             𝑚 ∝ 𝑟𝑑𝑓                                               (1.17) 

In Eq. 1.17, 𝑑𝑓 is the mass fractal dimension for the object, which is different than for a Euclidian object 

where 𝑚 ∝ 𝑟3; because 𝑑𝑓 < 3  for a fractal, the density decreases as the radius increases.  

 A gel forms when particles assemble to form a macroscopic 3D network that extends throughout the 

volume of the medium. These linkages between primary particles, enclosing the solvent, make a gel a 

continuous solid phase enclosing a liquid phase on all sides of the sample. Gels can be formed from a sol 

when some form of attractive dispersion force acts on the particulates to make them stick together and 

form a 3D network. The formation of a gel begins with the fractal aggregates, which grow until they 

intrude into each other, then form a linkage. At the gel point (when the last bond is formed) bonds are 

formed randomly between clusters that cannot move, finally a single cluster extends through the entire 

sol.37 If the dimension of the gel is more than several millimeters the structure is termed a monolith. If the 

liquid phase of the gel is removed by destructive techniques such as evaporation, where the capillary 

forces deform the network structure, the resultant material is called a xerogel, as a large degree of 

porosity is removed. If instead the wet gel is dried using supercritical conditions (supercritical drying), 

where the boundary between liquid and gas is removed, the gel can be dried with little shrinkage, because 
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there are no capillary forces to destroy the porosity; the final resultant product is known as an aerogel 

(Figure 1.6). 

 

Figure 1.6. Schematic representation of the sol-gel synthesis followed by drying conditions (i.e. critical 
point or ambient drying) to form either aerogel or xerogel respectively (reproduced from Brock). 38 

 

 In oxide sol-gel assembly, alkoxide precursors in acidic or basic aqueous or alcohol solution undergo 

a series of hydrolysis and condensation reactions to form a colloidal sol solution. This is followed by the 

formation of a network of nanoparticles via controlled aggregation. Metal alkoxides hydrolyze following 

Scheme 1.1.37 
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For m = x total hydrolysis occurs, followed by either water condensation (Scheme 1.2) or alcohol 

condensation (Scheme 1.3) reactions. 

 

 

 It is known that in colloidal aggregation there are two limiting regimes for both the kinetics of 

assembly of the aggregates and the resultant fractal morphology of the aggregates. This is determined by 

the sticking probability R between NCs, clusters and aggregates. If R is equal to unity, diffusion limited 

cluster-cluster aggregation (DLCA) is expected. Values of R below unity will lead to the reaction-limited 

cluster-cluster (RLCA) aggregation regime.37 The solution to the Smoluchowski equation shows that in the 

DLCA regime, the growth of the average radius of gyration (Rg) or the distribution of the material 

components around an axis for a cluster, obeys a power law behavior as a function of time (Eq. 1.18).39-46

                                                                𝑅𝑔 (𝑡) = 𝑅𝑔(0) [1 + 𝛼
𝑡

𝜏
]

𝑧
𝑑𝑓

⁄
                               (1.18) 

 In Eq. 1.18, z is a dynamic exponent 𝑑𝑓 is the fractal dimension and R is the sticking probability in the 

collision between clusters and aggregates. The time constant that determines the aggregation reaction, 

τ, is the reciprocal Smoluchowski rate, which is inversely proportional to the particle concentration, N0, in 

Eq. 1.19. 

                                                                                        𝜏 =
3𝜂

4𝑘𝐵𝑇

1

𝑁0
                                (1.19) 

In this case, the viscosity, η, of the solvent is important and kBT is the thermal energy term. Alternatively 

the RLCA growth regime for the average radius of gyration is an exponential function, Eq. 1.20. 

             𝑅𝑔(𝑡) = 𝑅𝑔(0)𝑒𝑥𝑝 (2𝛼
𝑡

𝜏
)                              (1.20) 

1.5 Semiconductor Assemblies 

As more elaborate solution-phase synthetic strategies to produce semiconducting monodisperse NCs 

are developed, it opens the door to a wide variety of applications for these unique materials. As 
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mentioned previously, the novel size and shape dependent electrical and optical properties of 

semiconducting NCs make them potentially advantageous in many optoelectronic devices. A current 

problem with the use of semiconductor NCs for solid state optoelectronics is that the synthetic methods 

produce NCs with long-chain insulating ligands for surface passivation and solution-phase processing.  

Integrating NCs together require assembly processes that either exploit the long-chain ligands or 

remove/replace them.  

 One of the simplest assembly routes for colloidal QDs is to concentrate to dryness. QDs passivated 

with a long-chain ligand, which allows them to be stable to aggregation in solution, can be deposited 

through spin-coating or other printing techniques onto surfaces.47 With the evaporation of the solvent, 

the QDs form a thin film. One drawback of this method is the lack of control over the particle ordering. 

Achieving order depends on the QD size and shape, along with the evaporation rate of the solvent, and 

after deposition the QDs still remain separated by the long-chain insulating ligands. Similar assembly 

methods include layer-by-layer deposition and Langmuir-Blodget deposition techniques.48  

 For these common QD solids, the individual QDs are separated by the long-chain insulating ligands. 

For charge transport between these QDs, the carriers must transport through these interparticle distances 

with a tunneling rate (Γ) shown in Eq. 1.21.49 

                                                                    Γ ≈ 𝑒𝑥𝑝[−(2𝑚∗Δ𝐸/ℏ)1/2Δ𝑥]                        (Eq. 1.21) 

 Where 𝛥𝐸 and 𝛥𝑥 are the height and width of the tunneling barrier as determined by the capping ligands. 

This tunneling rate increases by decreasing the interparticle QD distance. It is important to note that 

charge transport in these QD solids will also depend on the size, polydispersity, and organization of the 

QDs in the material.50 

 One method developed by Brock et al. to overcome this separation in QD solids is to combine them 

into non-ordered three dimensional architectures, i.e. xerogels and aerogels, based on the sol-gel 

synthetic method, as described in Section 1.4.38  Gacoin et al. pioneered the original sol-gel process for 
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the assembly of discrete CdS NCs into wet gels.51 Brock et al. have extended this technique to assemble 

several types of metal chalcogenide NCs such as CdSe,52-53 CdTe,54 ZnS,38 PbS,38 PbSe,55 PbTe,56 and 

Bi2Te3.57 As shown in Figure 1.7, the controlled oxidation of a thiolate-capped metal chalcogenide NC sol, 

achieved by the use of a non-oxygen transferring oxidant (tetranitromethane), leads to aggregation of 

NCs. This is considered to occur as a three-step process: 1) surface deprotection through the oxidative 

removal of the surface thiolate ligands; 2) the removal of some of the surface metal ions into solution; 3) 

oxidative formation of di- and polychalcogenide linkages (2Q2- Q2
2- + 2e-).58 These inter-NC networks, 

formed through this sol-gel synthesis, would predictably provide better electronic communication in these 

NC assemblies while maintaining the important quantum confinement effects of the original QDs.  

 

Figure 1.7. Proposed gelation mechanism for cadmium chalcogenide NCs (adapted from Pala et. Al.).58 

 

1.6 Heterogeneous Semiconductor QDs  

An important development in the field of colloidal nanocrystal synthesis, was the development of 

effective synthetic routes using strongly coordinating ligands to stabilize QDs in solution.10 This is well 

known for II-VI QDs, but has also been used to synthesize IV-VI, III-V, and Group IV QDs. The next logical 

step to create complex functional materials is to fabricate high-quality heterostructured NCs. Much 

research has been focused on techniques for NC shape control, but some of these have yielded new levers 

for controlling the electronic and optical properties, as well as new methods to control their assembly into 

NC structures.33, 59  
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 Initial studies focused on the synthesis of heterostructured QDs, allowing further tailoring of 

bandgaps, stability, photophysical properties and crystal structures. The early and most commonly 

studied heterostructured QDs include gradient alloys (Figure 1.8a) such as, ZnxCd1−xSe,60 CdS1−xSex 61 and 

InGaP2 QDs. 62 These heterostructured QDs can have more complex properties including improvement in 

photoluminescence (tunable wavelengths) and solution phase stability; conversely the synthetic 

techniques involved can lead to compositional fluctuations throughout a single particle.60 

 Another type of heterostructured QD type is the core shell structure (Figure 1.8b), starting with a NC 

core, followed by introduction of the precursors for the shell material, it is important that nucleation of 

the shell happens separately from the core.63-65  

 

Figure 1.8. Heterogeneous quantum dots a) ternary phase materials and b) core-shell materials. 
 

 The respective carrier spatial localization is heavily influenced by the relative positions of the valence 

and conduction bands of the heterostructured material making up the core@shell QD, these positions are 

used to categorize the main types of heterojunctions. The Type-I core@shell heterostructures (Figure 

1.9a) has two semiconductor materials with bandgaps of different size; the most common example is 

CdSe@ZnS QDs. One of the component materials has a higher lying valence band and lower lying 

conduction band than the other; this forces the excited carriers to localize in the narrower bandgap 
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material. Opposite to most type-I heterostructures, type-II heterostructures tend toward components 

with bandgaps that are moderately wide (>1.3 eV). These Type-II materials have a staggered band-

alignment in which the conduction and valence bands of one material are higher-lying than those of the 

other component (Figure 1.9b).  This band alignment means that excited carriers or the electron will be 

localized in the material (either core or shell) with the lower-lying conduction band; an example of this is 

CdS@ZnSe. The drawbacks to these type of structures include mismatched core-shell structures which 

causes interface strain.60 

 

Figure 1.9. Schematic of a) Type-I QDs where the band alignment causes both the electron and hole to 
reside in either the core or shell and (b) Type-II QDs the band alignment means the electron and hole 

separate between the core and shell in the QD (adapted from Klimov).66 

 

 Other types of heterostructured nanocrystals include the combination of two types of nanostructures, 

such as Type II-VI NCs combined with noble metal nanoparticles grown or deposited on their surface. 

These hybrid structures are used mainly as photocatalysts, based on the light-harvesting capabilities of 

the semiconducting NC portion. These semiconducting NCs can be programmed to have long singlet 

exciton lifetimes, then the free carriers that result from the exciton dissociation are used to catalyze the 

generation of either H2 (2H+
H2) with a reduction catalyst or (2OH- O2) with an oxidation catalyst, as 

shown in Figure 1.10.67-71 
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Figure 1.10. Schematic of a metal-semiconductor heteromaterial, showing both reductive and oxidative 
catalysis (adapted from Zamkov).72 

 

1.7 Thesis Statements 

The oxidative sol-gel synthesis method described previously in this dissertation work (Section 1.4) is 

a well-known and robust method for linking semiconductor NCs into a 2- or 3-D architecture (i.e., thin 

films, gels, xerogels, and aerogels) while conserving the properties of the individual NC QDs.38, 51, 73 This 

makes the sol-gel synthesis a unique method for introducing QDs into electronic and optoelectronic 

devices,  such as field-effect transistors (FETs),74-75 photodetectors,76-77 light emitting diodes (LEDs),78-79 

photovoltaics80-81 and radiation detectors.20, 82 This sol-gel synthesis technique has many built-in synthetic 

levers that could facilitate the formation of multicomponent materials, with possible synergistic affects. 

The main focus of this dissertation work is: 1) incorporating these MQ QDs into heterogeneous 

architectures 2) developing and studying further synthetic levers for control of the kinetics of aggregation 

of MQ (M=Cd, Zn and Pb, Q=S, Se and Te). 

The dissertation research has three specific goals in order to achieve these objectives. 

I. Improve interfacial charge transport of a QD/porous Si heterostructured device for radiation detection. 

II. Develop synthetic levers for control over kinetics of aggregation in oxidative gelation of MQ (M= Cd, Q= 

S, Se and Te) QDs. 
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III. Synthesize multicomponent MQ materials of CdSe/ZnS with controlled phase segregation.  

Aim I:  Improve interfacial charge transport of a QD/porous Si heterostructured device for radiation 

detection (presented in Chapter 3) 

 A combination of porous or micro-machined silicon infused with semiconducting lead sulfide (PbS) 

quantum dots (QDs) of high electron density has the potential to be used in radiation detection devices 

due to the high stopping power of PbS QDs combined with a thick Si support. Previous work has shown 

these heterostructured devices exhibit some charge transport, but are expected to benefit from short-

chain passivating thiolate capping ligands and anion passivation.20, 82 Modification of the surface of the 

PbS QDs through anion passivation at the interface of the heterostructure where the QDs interact with 

the Si, is expected to improve the charge transport properties of these devices. Accordingly, in this 

dissertation research, the combination of PbS QDs and pSi supports were studied as photodetectors, to 

study the charge transport properties of the device, to determine if they could potentially be used as 

future generation radiation detection devices. The resultant devices and components were characterized 

using transmission electron microscopy (TEM), and scanning electron microscopy (SEM), and the I-V 

response curves were measured to determine if these multicomponent architectures could be used as 

direct conversion detectors for radiation detection devices. 

Aim II: Develop synthetic levers for control over kinetics of aggregation in oxidative gelation of MQ (M= 

Cd, Q= S, Se and Te) QDs (presented in Chapter 4) 

 This dissertation work is motivated by the possible synergistic properties that can be achieved in 

complex materials comprising multicomponent metal chalcogenide nanostructures. There is considerable 

potential for these materials in optoelectronic and photovoltaic devices that require two types of 

materials with disparate properties, where a rational method for solution phase deposition would allow 

for easily tailoring of device components. We have established methods for single component metal 

chalcogenide (MQ) particle gels and now seek to develop a practical method for co-gelation of different 
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component particles with complimentary functionalities. This dissertation research seeks to monitor the 

kinetics of aggregation of single component systems, using time resolved dynamic light scattering (TR-

DLS) and nuclear magnetic resonance spectroscopy (NMR) to study the role of the native crystal structure 

(cubic and hexagonal) of the constituent nanocrystals on the assembly rate as well as the role of ligands. 

The kinetics of aggregation of the two most common crystal structures for CdQ nanocrystals was studied 

and it was determined that the hexagonal (wurtzite) crystal structure aggregated faster than the cubic 

(zinc blende) crystal structure. Once the crystal structure affects are accounted for, the relative redox 

properties of Q (Q= S, Se and Te) govern the reaction rate. Additionally, the chain length of the capping 

thiolate also affects the kinetics of aggregation, with longer chains leading to slower assembly rates. The 

synthetic levers studied in this section will be utilized in subsequent studies to form multicomponent gels, 

using the well-studied oxidative gelation of MQ NCs (M=Cd and Zn, Q= S, Se and Te).  

Aim III: Synthesize multicomponent MQ materials of CdSe/ZnS with controlled phase segregation 

(presented in Chapter 5)  

In this section, known synthetic levers to control kinetics of colloidal aggregation of single component 

systems, including concentration of NCs and oxidant, particle size, relative redox properties of Q (Q=S, Se 

and Te), steric bulk of the capping ligand, crystal structure and facet energy will be used to synthesize 

heterostructured MQ materials with two components (CdSe and ZnS NCs).54, 83-84 One of the steps in the 

sol-gel synthesis of these MQ particle gels is the oxidation of the surface thiolate ligand; using a bulkier 

more sterically hindered ligand allows for more control over the kinetics of aggregation of these MQ NCs 

in solution. Previous work on the formation of PbTe gels utilized a bulkier 16-mercapothexadecanoic acid 

and trioctylphosphine oxide capping ligand to control the aggregation kinetics and allow the formation of 

high-quality PbTe gels.54 When attempting to incorporate two MQ NCs with differing Q (Q=S and Se), the 

relative redox properties will control the rate of aggregation in solution, it is important for integrating two 

MQ components, that these affects be accounted for in the synthesis. In the present work, by adjusting 
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the steric bulk of the capping ligand, from a shorter-chain 11- carbon ligand, to a longer-chain 16-carbon 

ligand, the kinetics of colloidal aggregation, as defined by the redox properties of Q, can be modified. This 

allows for the synthetic tailoring of the resultant 3-D gel from a phase segregated co-gel to an 

intermingling of the two component materials.   
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CHAPTER 2: EXPERIMENTAL METHODS 

2.1 Experimental Methods 

 This chapter describes the materials and synthetic methods that were used to synthesize nanocrystals 

and their heterogeneous assemblies.  This chapter will include a discussion on the basic concepts of, and 

instrumentation for, material characterization. Metal chalcogenide (MQ) NCs were synthesized by several 

different variations of the solution phase synthesis, and structural, morphological and optical properties 

were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), energy 

dispersive spectroscopy (EDS), UV visible spectroscopy, photoluminescence (PL) spectroscopy, electron 

paramagnetic resonance spectroscopy (EPR), Fourier transform infrared spectroscopy (FT-IR) and 

inductively coupled plasma mass spectroscopy (ICP-MS). NC heterostructures with pSi wafers were 

characterized with scanning electron microscopy (SEM).  

 Kinetics of aggregation and gelation of NCs were studied by performing dynamic light scattering (DLS) 

and 1H and 19F nuclear magnetic resonance (NMR) spectroscopy. Wet gels were dried by supercritical CO2 

extraction to form aerogels and characterized by TEM, Diffuse-reflectance and PL spectroscopy.   

2.2 Materials 

Selenium powder (99.5%), stearic acid (95%), Bis(trimethylsilyl)sulfide (TMS), trioctylphosphine oxide 

(TOPO, 90%), tetranitromethane (TNM), 11-mercaptoundecanoic acid 95% (MUA), 1-

tetradecylphosphonic acid (TDPA, 98%),  tetramethylammonium hydroxide pentahydrate (TMAH, 97%,) 

1-octadecene (90%, tech), oleic acid (90%, tech), hexafluorobenzene, 4-fluorothiophenol, triethylamine 

and 16-mercaptohexadecanoic acid (MHA) were purchased from Sigma-Aldrich. Trioctylphosphine (TOP, 

97%), zinc chloride (97%), lead oxide, tellurium powder, cadmium oxide (99.999%) cadmium chloride and 

sodium sulfide were purchased from Strem Chemicals. Oleylamine (OAm, C18 content (80−90%) was 

purchased from ACROS. Ethanol (200 proof) was purchased from Decon Laboratories, Inc. Cadmium 

chloride (99.99%) was purchased from Alfa-Aesar. Toluene, methanol, hexane, acetone and ethyl acetate 
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were purchased from Mallinckrodt. d6-acetone was a purchase from Cambridge Isotopes Laboratory Inc. 

TOPO was distilled before use; all other chemicals were used as received.  

2.3 Synthetic Methods 

2.3.1 Synthesis of Metal Chalcogenide Nanocrystals  (MQ NCs), Ligand Exchange, and Sol-gel 

Assembly (Gel) Monoliths and Multicomponent Materials 

 The synthesis procedures for MQ NCs are described in Chapter 3-5 in detail along with purification, 

ligand exchange, and multicomponent material assembly procedures. Precursor materials were prepared 

in an inert-atmosphere glove box, and required synthetic steps were performed under inert atmosphere 

using Schlenk line techniques. 

2.3.2 Spin-Coating Deposition 

 Spin-coating is a deposition technique for uniform thin films on a flat substrate (i.e. silicon wafers). 

The spin coating process typically begins with a solution of desired concentration, being deposited on the 

substrate, usually through drop-cast techniques. The rapid acceleration of the substrate allows the 

solution to flow radially through centrifugal force while the excess solution can be ejected from the 

substrate.85 As the spin coating proceeds, the film continues to slowly thin-out due to solvent evaporation 

until pressure effects causes the film to reach an equilibrium thickness. A simple model of the spin coating 

process treats the film thinning process as two distinct steps starting with 1) film thinning specific to the 

solution radial flow which can be described using the equation for a Newtonian liquid on a rotating disk, 

Eq. 2.1:86 

                                                                                    
𝑑ℎ

𝑑𝑡
= −

2𝜌𝜔2ℎ3

3𝜂0
                                         (2.1) 

In Eq. 2.1, ℎ is the film thickness, 𝑡 is the time, 𝜌 is the density of the solvent, 𝜔 is the revolution per 

minute (rpm) of the device, and 𝜂0 is the viscosity of the solution. The next step 2) is following the thinning 

of the film to a certain level it is considered immobile on the substrate and solvent evaporation rate (E), 

will control the film thickness. This can be calculated using the mass transfer expression, where k is the 
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mass transfer coefficient, 𝑥1
0 is the initial solvent mass fraction of the coating solution, and 𝑥1∞ is the 

solvent mass fraction in equilibrium with the solvent mass fraction in the gas phase, in Eq. 2.2.87 

                                                                                𝐸 = 𝑘(𝑥1
0 − 𝑥1∞)                                        (2.2) 

 For this dissertation research, spin coating was performed on a Spin Coater Model P6700 series at 

2500 rpm for 15 second intervals. 

2.3.3 Physical Deposition Techniques for Thin Films 

 There are two different types of physical vapor deposition (PVD) techniques for growing thin films, 

both useful for thin film electrodes in device construction. The first and most common type of PVD for the 

deposition of metal thin films is evaporation, in which target atoms are removed from the source 

thermally. The second type is the sputter deposition of thin films, a type of physical vapor deposition 

method where materials are ejected from a source or target to a substrate by the impact of gaseous ions.88  

 During the thermal evaporation process, the maximum evaporation rate happens when the number 

of vapor molecules discharged corresponds to the number required to exert the equal vapor pressure 

with none of them returning to the source. This gives the equation for the rate of evaporation for solid 

surfaces as Eq. 2.3.88 

                                                                               Φ𝑒 =
𝛼𝑒𝑁𝐴(𝑃𝑒−𝑃ℎ)

√2𝜋𝑀𝑅𝑇
                                         (2.3) 

In Eq. 2.3, Φ𝑒, is the evaporation flux in number of atoms per unit area per unit time, and 𝛼 is the 

coefficient of evaporation (between 0 and 1). The maximum evaporation rate happens when α=1 

and 𝑃ℎ = 0, and Pe is the equilibrium pressure at temperature, T, and Ph is the hydrostatic pressure acting 

on the evaporant. The evaporation process takes place under high vacuum, to give high purity thin films. 

High energy sources (electron beam, molecular beam epitaxy, resistive evaporation) are used to 

evaporate the source, which is then deposited on the target Figure 2.1.  
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Figure 2.1. Schematic of the evaporative deposition chamber (adapted from Ohring).88 

 

 For PVD, It is vital to understand the different types of ion collisions with target surfaces, as shown in 

Figure 2.2. Each type of collision depends on the type of ion (mass, charge) and the energy of that ion. 

Each of these types of collisions can be used for different analytical and deposition techniques, for 

example, Rutherford backscattering can be utilized to determine thickness and composition of films.88 
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Figure 2.2. Representation of the different types of ion collisions with a surface (adapted from 
(Ohring).88 

 

 One collision type that can follow the impact of an ion is a collision event, which results in the ejection 

of an atom from the source; this is referred to as sputtering. The sputtering event is related to momentum 

energy transfer from higher energy particles to the surface atoms of the source. To measure the efficiency 

of the sputter process, the term sputter yield is used and defined as the number of atoms or molecules 

ejected from the source’s surface per incident ion. There are four main types of sputter deposition 

processes dc, RF, magnetron and reactive sputtering. In a typical sputtering device (Figure 2.3) a target 

(the cathode) is in a high vacuum chamber (specifically RF sputtering), and high energy is used to generate 

the ion bombardment that strikes the substrate (the anode); the high energy metals that are released 

strike the target and coat it with a thin film of the desired metal. 88 
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Figure 2.3. Schematic diagram of an RF sputtering device. 
 

 For this dissertation research, an Al thin film was deposited using a Temescal BJD 1800 e-beam 

evaporator with an Al target on the unpolished side of a Si wafer. The programmed rate was 2 Å/sec for 

a final thickness of 1000 Å at a power of 20.3%. Finally, the ITO layer was deposited over the active layer 

of the devices, in an RF magnetron system CVC over 30 mins at a power of 200 W under argon gas, for a 

final thickness of 1500 Å. 

2.3.4 Synthesis of Porous Si (pSi) 

 The porous silicon was produced by anodizing a highly-doped silicon wafer, in this case, n-type, 0.002 

Ω-cm, <100> orientated, 375 µm thick, using a 1:3 HF: Ethanol solution. 89-92 Anodically etched porous 

silicon is a support used in LEDs93, photodetectors94 and photonic crystals95, due to their unique charge 

transport properties. The anodization of the Si wafer was performed in an open cell with an O-ring seal 

on a 0.5 cm2 active area (Figure 2.4a), where the Pt wire is the cathode and the Si wafer is the anode. 

During the electrochemical reaction there are several factors that influence the pore depth and diameter. 

The electrolyte is HF dissolved in ethanol, which increases the wettability of the hydrophobic Si allowing 

the HF solution to more easily infiltrate the pores in Si. The ethanol solution also more easily releases the 

H2 bubbles formed in the reaction when compared to an aqueous solution. 92 The second factor that 

affects the porosity is the constant current which allows for improved control of porosity relative to 

constant bias, pore thickness and sample reproducibility. Finally the cell where the anodic etching is 
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performed will affect the final quality of the pSi (smoother pore walls); the basic electrochemical cell uses 

a Teflon beaker (Figure 2.4b), which is inert to HF acid.  

 

Figure 2.4. a) Schematic of the anodization cell (adapted from Bisi) 92 b) diagram of the actual 
anodization chamber provided by Weinberg Medical Physics. 

 

 The mechanism of pSi formation is still being debated, but it is generally accepted that h+ are required 

for pore formation, where hydrogen evolves during the silicon dissolution. The stable product for Si in 

HF:ethanol solution is in the form H2SiF6, or possibly one of its ionized forms. This means that during pore 

formation, only two of the four available Si electrons participate in the charge transfer process, while the 

remaining two Si electrons participate in dihydrogen liberation as shown in Scheme 2.1. 

    (Scheme 2.1) 

If the sample is not forming pores it has moved into electropolishing, in which current efficiencies are  four 

electrons per dissolved Si atom shown in Scheme 2.2.96 

     (Scheme 2.2) 

The most widely accepted dissolution mechanism is based on the surface bound oxidization scheme 

where hole capture and electron injection leads to the Si2+ oxidization state as shown in Figure 2.5. One 

of the first steps is attack of the Si-H bond by the fluoride ion to produce a bound H2
- ion, then a second 
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attack by a fluoride ion, followed by hydrogen gas evolution. Finally, HF attack on the Si-Si bonds produces 

silicon tetrafluoride.97 

 

 

Figure 2.5. Proposed silicon dissolution scheme (adapted from Lehmann).97 

 

 The anodic etch times were adjusted to produce samples of varying pore depths based on a procedure 

developed at Weinberg Medical Physics.20 Due to specific limitations of the etching chamber, no more 

than 90 seconds at 100 mA/cm2 was used, which produced pSi samples with pore diameters between 80-

100 µm, and pore depths between 10-20 µm. 
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2.3.5 Oxidative Sol-gel Assembly 

 The oxidative sol-gel assembly process is useful in producing solid materials from nanomaterials in 

solution. The technique is common for the polymeric fabrication of metal oxides and involves the 

conversion of monomers or nanoparticles into a colloidal solution (sol) that acts as the precursor for a 

network (or gel). Typical precursors used in this synthetic technique are metal alkoxides as shown in the 

Scheme 1.1-1.3 in Chapter 1. The low dimensionalities of the resulting gels along with interconnected 

pores are desirable properties for applications, such as thermal/acoustic insulation, catalysis, and sensor 

devices.98 We have developed an oxidative sol-gel assembly method for metal chalcogenide 

nanomaterials. We have shown this technique is applicable a diverse group of metal chalcogenides, such 

as ZnS, CdS, CdSe, PbS and PbTe.38, 52-53, 56, 58, 99-104 The initial step is the oxidative ligand loss of surface 

thiolate groups from the metal chalcogenide nanoparticle by the addition of an appropriate oxidant (i.e. 

H2O2, tetranitromethane, and hν/O2) resulting in the oxidation of the thiolate (RS-) to form a disulfide by-

product. 51, 105  The next step is the removal of some of the surface metal ions into solution, followed by 

the oxidative formation of di- and polychalcogenide linkages (2Q2- Q2
2- + 2e-) (Figure 1.7).58  

2.3.6 Aerogel Formation via Supercritical Drying 

 Supercritical drying is a process of removing solvents from the monolithic wet gels in a controlled way, 

without destroying the 3D structure. In supercritical drying, the solvent is exchanged with liquid CO2 (or 

another applicable solvent), followed by the gel being heated above the critical temperature of the solvent 

(Tc), and above the critical pressure (Pc), of the pore liquid. The phase diagram in Figure 2.6 shows that 

above the Tc and the Pc of the liquid, the liquid-vapor phase boundary of the pore solvent does not exist 

and liquid and vapor densities are equal. The supercritical solvent is then slowly displaced as a gas without 

destroying the pore structure. Because of the lack of liquid-vapor interface there is an absence of the 

capillary forces on the pore walls that lead to the pore collapse during ambient drying. Liquid CO2 is 
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commonly used as the solvent for supercritical drying based on its low critical temperature (31 ˚C) and 

pressure (7.36 MPa).37   

 

Figure 2.6. A phase diagram for CO2 showing the liquid-vapor phase boundary and the critical point 
above which densities of the liquid and vapor are the same (adapted from Brinker).37 

 

In this dissertation research, a Tousimis Autosamdri-931 model critical pointer dryer was used to dry 

solvent-exchanged wet gel monoliths. The wet gel monoliths were placed in the 2.50 in. ID (internal 

diameter) drying chamber and the solvent (methanol, ethanol or acetone) were exchanged with liquid 
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CO2. During this cycle, the chamber was drained twice and refilled with liquid CO2 for 1 hour hold cycles, 

and then the temperature of the chamber was increased up to 39 ˚C and the pressure was maintained 

above the critical pressure of CO2 for 10 minutes. Finally, the pressure of the chamber was bled slowly 

while maintaining the temperature at 39 ˚C.  

2.4 Materials Characterization 

2.4.1 Dynamic Light Scattering 

 Dynamic light scattering (DLS) is an analytical technique that can be used to determine the size 

distribution profile of small particles, polymers or proteins in solution. Due to the interaction of 

electromagnetic radiation with materials, the absorption, scattering, or the combination of the absorption 

and scattering, depends on the wavelength of the incoming light and properties of the material. This 

phenomenon is exploited by various analytical techniques including UV-visible spectroscopy, 

photoluminescence spectroscopy, optical microscopy, etc. Specifically, for light scattering, the emission 

of light is due to the oscillation or agitation of the electron cloud of the material, which is produced by the 

electric-field constituent of the incident light.  For DLS, as the light passes through the sample of particles 

suspended in solution there is elastic or quasi-elastic scattering, which means the frequency of emitted 

light is very similar in energy to the incident light, but propagated in a different direction.106 

 Elastic scattering is based on the particle size, with two types of scattering processes occurring. If the 

particle diameter (d) is much smaller than the wavelength of the incident light (𝜆), the light scattering is 

described by the Rayleigh theory (Figure 2.7) where the scattering intensity, 𝐼, is equivalent in the forward 

and reverse directions, and is dependent on the wavelength of the incident light (𝐼 ∝ 1/𝜆4). For particles 

with diameters equal to or greater than the wavelength of the incident light, the Mie scattering is 

dominant, and more of the light is scattered in the forward direction, with the scattering more 

independent of incident wavelength.106 
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Figure 2.7. The two types of elastic scattering, Rayleigh scattering and Mie scattering. 
 

 In a typical DLS instrument setup, a monochromatic light source such as a He-Ne laser is directed 

through a polarizer and into a sample. The light is scattered and goes through a second polarizer at a 

specific angle where it is collected by a photomultiplier and the resulting image is collected by the detector 

(Figure 2.8). Since all of the materials in the solution are being bombarded with the incident light, 

diffracting the radiation in all directions, there is either constructive interference (light regions) or 

destructive interference (dark regions). When replicated at short time intervals, the resulting set of 

speckle patterns are analyzed by an autocorrelator that monitors the intensity of light at each spot over 

time. The correlator then constructs the autocorrelation function, which is then passed to the computer 

that performs the data analysis. 
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Figure 2.8. Schematic diagram of the dynamic light scattering instrument (adapted from Xu).107 

 

 The intensity of the scattered light varies with time, based on the Brownian motion of the 

nanoparticles and nanoparticle aggregates in the solvent. The normalized second-order intensity 

correlation function 𝑔(2) (𝜏) is attained with the digital correlator in the DLS instrument through auto-

correlation of these intensity fluctuations of the scattered light over a short time interval (Eq. 2.4). 

                                                                               𝑔(2)(𝜏) =
〈𝐼(0)𝐼(𝜏)〉

〈𝐼(0)〉2                                          (2.4) 

In Eq. 2.4, 𝐼(𝜏) is the scattering intensity over the short decay time interval, τ. To relate the first order 

electric field function 𝑔(1) (𝜏), to the second-order intensity correlation function 𝑔2 (𝜏) the Siegert 

relation is used (Eq. 2.5). 

                                                                    𝑔(2)(𝜏) = 𝐵 (1 + 𝛽|𝑔(1)(𝜏)|
2

)                           (2.5) 

For Eq. 2.5, B is the baseline of the correlation function and β is the coherence factor. A polydisperse 

solution is formed during the aggregation and gelation process, so 𝑔(1) must be denoted as a sum or 

distribution of exponentials (Eq. 2.6). 

                                                 𝑔(1)(𝜏) = ∫ 𝐺(Γ) exp(−𝛤𝜏) 𝑑Γ, 𝑤ℎ𝑒𝑟𝑒 ∫ 𝐺(Γ)𝑑Γ = 1                  (2.6) 
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Where 𝐺(𝛤) is the distribution function of 𝛤.106, 108-109 The autocorrelation functions utilize the method of 

cumulants yields for the mean decay rate Γ̅, which is equal to �̅�𝑞2. The value �̅� is the average translational 

diffusion coefficient and  𝑞 is the scattering vector (Eq. 2.7). 

                                                                                    𝑞 =
4𝜋𝑛

𝜆
sin 𝜃/2                                           (2.7) 

In Eq. 2.7, for the scattering vector (𝑞), 𝜃 is the scattering angle and 𝑛 is the refractive index of the solvent. 

The average hydrodynamic radius of the spherical particles (𝑅 ̅h) is calculated from the Stokes-Einstein 

relationship, Eq. 2.8. 

                                                                                       �̅�ℎ =
𝑘𝐵𝑇

6𝜋𝜂�̅�
                                          (2.8) 

Eq. 2.8, is based on the absolute temperature 𝑇, and the viscosity of the solution 𝜂. The particle radius, as 

measured by the DLS instrument, is denoted as the hydrodynamic radius (�̅�ℎ) because it is calculated 

based on the diffusion of the particles in a fluid. Therefore, the particle radius measured by DLS 

corresponds to the diameter of a sphere that has the same translational diffusion coefficient as the 

particle in the solvent.110 

 For this dissertation research, the time-resolved dynamic light scattering (TR-DLS) measurements 

were performed using a Zetasizer Nano ZS instrument (Malvern Instruments, Westborough, MA) with a 

He-Ne laser beam at 633 nm and the detector positioned at 173°. The Z-average hydrodynamic radius (Rh) 

was determined using the Zetasizer software (version 6.2) provided by Malvern. For the TR-DLS 

measurements the autocorrelation functions were accumulated for at least 30 s over different time 

periods after the addition of the oxidizing agent.  

2.4.2 Powder X-ray Diffraction 

 Light waves spread out as a result of passing through a narrow aperture; this is followed by 

interference between the wave forms produced, either constructive interference or destructive 

interference. The source for diffraction in a powdered crystalline material is often x-rays, neutrons or 

electron beams, because these sources have the correct frequency to match with inter-atomic-scale 
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diffraction. X-ray diffraction, based on the wide-angle elastic scattering of X-rays by the periodic electron 

densities of a crystal, is one of the most basic and widely used techniques to determine the structures of 

solids. Powder x-ray diffraction is mainly used for material identification in polycrystalline solids, as well 

as crystallite size and strain.111 

 When X-rays reach the material, the atoms of the sample react similarly to a diffraction grating, 

producing bright spots at particular angles based on the d-spacing between lattice planes. The angle 

where these peaks occur can be used to determine the spacing of the lattice planes of the crystal structure 

of the material using Bragg's law Eq. 2.9. 

                                                                                       𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃                                  (2.9) 

 The X-rays are incident on an atom and reemitted as Rayleigh scattering (or elastic scattering), where 

d is the lattice spacing in the Bragg diffraction. The two beams have identical wavelength and phase as 

they interact with the crystalline solid and are scattered off two different atoms in the material separated 

by distance d. The beam striking the lower lattice plane travels an extra length of 2dsinθ, to achieve 

constructive interference; this happens when the length is equal to an integer multiple of the wavelength 

(Figure 2.9). 111 
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Figure 2.9. Illustration of X-ray diffraction on a set of parallel crystal planes and Bragg’s Law (adapted 
from Pecharsky).111 

 

 Focusing powder diffractometers operate in the θ - 2θ scanning region where the incident beam forms 

the 2θ angle with the emission beam (Figure 2.10). The incident x-ray beams are produced in a sealed 

tube or rotating anode where high energy electrons collide with a metal target (Cu or Mo) that releases 

electrons from the material’s K shell. Electrons from the materials L and M shells transitioning to the K 

shell generate X-rays. This high energy X-ray spectrum passes through slits that limit the divergence of the 

beam perpendicular to the plane to increase the resolution (Soller Slits). The diffracted beam is 

monochromatized using a β-filter, since fluorescent X-rays need to be suppressed to reduce the 

background noise. The intensity of the diffracted X-rays as a function of angle is measured using a detector 

such as scintillation detector or position sensitive detector (PSD).111 
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Figure 2.10. Diffraction geometries specifically for reflection mode in PXRD (adapted from Pecharsky).111 

 

 The reflection mode geometry takes full advantage of the beam focusing on the sample, with the 

drawback being that the sample may exhibit preferred orientation if crystallites are anisotropic. This 

geometry is known as the Bragg-Brentano method and is used for high resolution and high diffraction 

intensity spectra, along with also enabling an easy and straight forward method for sample preparation.  

 In a typical XRD experiment, the solid sample is placed on a zero background holder and the intensity 

of the diffracted X-rays is measured as a function of the Bragg angle, 2θ. Multiple Bragg reflections occur 

from the different sets of crystal planes in the powdered material, which leads to the formation of multiple 

peaks in the XRD pattern.  The peak shape, position and intensity are affected by the structure and 

constituents of the powdered sample. The unit cell proportions determines the peak positions and the 

peak intensity depends on the atomic form factors and structure including the spatial distribution of 

atoms in the unit cell.111 This lets the phase of the powdered crystalline sample be assigned using a 

diffraction pattern database. 

 For nanoparticles, the smaller crystallite size results in peak broadening in the XRD pattern, this is 

because of a reduction in the amount of crystal planes, which means that there is incomplete destructive 

interference because of the short coherence lengths. The average nanocrystal size (D) can be determined 

using the Scherrer equation Eq. 2.10. 
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                                                                                    𝐷 =
𝑘𝜆

𝛽 cos 𝜃
                                       (2.10) 

In Eq. 2.10, 𝛽 is the full width at half maximum of the angle θ, and the k value is a shape factor that 

approaches unity; for spherical particles a value of 0.9 is typically used in the Scherrer equation.112 

 For this dissertation research, PXRD was performed on a Bruker D2 Phaser using the Kα line of a Cu 

anode source (30 kV, 10 mA). Samples were deposited on a zero background quartz holder, and data was 

collected over the 2θ range 20-60°. 

2.4.3 Nuclear Magnetic Resonance Spectroscopy 

 A common analytical technique to identify organic compounds, nuclear magnetic resonance 

spectroscopy (NMR) exploits the magnetic properties of certain atomic nuclei. It is used mostly for the 

determination of the physical and chemical properties of atoms, including structure, reaction states and 

chemical environment. The principle behind NMR spectroscopy is based on the nuclear spin (𝐼) of each 

atom, which causes a small magnetic dipole moment. The gyromagnetic ratio (𝛾) gives the correlation 

between the magnetic moment and the nuclear spin, which is a constant for every different nucleus. The 

spins are in multiples of 1/2 (𝐼 = 1/2, 1, 3/2 ……), but the most common is 𝐼 = ½ (Figure 2.11). For the 

spin to be zero, (S= 0) the atomic number and the atomic mass are both even numbers, and then the 

nucleus has no magnetic moment (it is NMR silent). For S=1/2, the nuclei is spherical in shape, and for 

higher spin quantum numbers the nuclei is quadrupolar.113 
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Figure 2.11. The three types of nuclei spin quantum number (adapted from Lambert).113 

 

 The dipole moment of the nuclei can orient itself in a magnetic field (B0). For 𝐼 = 1/2, the spin has two 

orientations, with or against the magnetic field (Figure 2.12).114 

 

Figure 2.12. Spin alignment in the external magnetic field for I=1/2 spin nuclei (adapted from Zerbe).115 

 

 As seen in Figure 2.12, the alignment in the magnetic field, gives rise to two separate energy levels, 

the nuclei with parallel alignment are slightly lower in energy. The two spin states, 𝛼 and 𝛽 are eigenstates, 

being either positively or negatively oriented to the magnetic field. The 𝛼 and 𝛽 spin states are filled 
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following the Boltzmann distribution in Eq. 2.11 which means that there is a slight excess of population in 

the lower energy 𝛼 states. 

                                                                                
𝑁(𝛽)

𝑁(𝛼)
= exp (

−Δ𝐸

𝑘𝑇
)                                             (2.11) 

 This excess of the lower energy states causes a macroscopic magnetic moment that is aligned with 

the external magnetic field at thermal equilibrium. When a radio frequency (RF) field is applied to this 

system, at 90° the magnetization is rotated into the xy plane, as the external magnetic field is considered 

the z direction (Figure 2.13). 

 

Figure 2.13. Image of the application of an RF pulse that rotates the magnetization in the xy plane 
(adapted from Simon).115 

 

 Precession is the magnetic moment rotating around its axis, because it is not coaligned with the 

external magnetic field. The frequency of the procession is the Larmor frequency (𝜔0 𝑟𝑎𝑑/𝑠) which is 

what NMR spectroscopy measures as described in Eq. 2. 12. 

                                                                                  𝜔0 = −𝛾𝐵0                                       (2.12) 
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 The precession of the magnetization in the xy plane due to the application of the RF pulse at 90° 

(Figure 2.14), makes an oscillating signal in the detection coil called the free induction decay (FID), so 

signal frequency is proportional to the spin precession frequency.  

 

Figure 2.14. Image of the magnetic moment of an individual spin precessing around the external 
magnetic field (adapted from Zerbe).115 

 

 For solution phase NMR spectroscopy, a glass tube with deuterated solvent along with the sample 

being measured, is placed into the instrument, between the RF coils as they are used for both pulsing the 

RF field and receiving the signal. The current collected by the coil is next sent to the receiver and converted 

by the analog-to-digital converter to give the FID signal. The FID signal, which corresponds to the 

intensity/time pairs, is converted through Fourier transform into an intensity/frequency signal (Figure 

2.15). When the sample is placed in the magnetic field of the instrument, NMR active nuclei will absorb 

the electromagnetic radiation at a frequency distinctive to each isotope.114 The magnetic field strength 

directs the resonant frequency and strength of the signal.  
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Figure 2.15. Schematic design of the NMR spectroscopy instrument (adapted by Zerbe).115 

 

 Chemical shifts are related to the electron density around the nucleus, these shifts in the NMR 

spectrum are used for chemical identification. Application of RF frequency to the sample with energy 

corresponding to the energy spin state separation of specific nuclei will cause excitation of those set of 

nuclei from the lower energy spin state to the higher energy spin state. Even if all the nuclei in the material 

have the same magnetic moments, they do not give resonant signals of the same frequency, due to the 

different electronic environments of the nucleus of interest. Since each atom electron cloud will also 

generate a local magnetic field, the protons can be shifted, affecting the resonant frequency. Different 

functional groups will affect the resonant frequency of the nucleus. For example, electron-withdrawing 

groups which can deshield the protons in a molecule by reducing the local electron density. Since the 

frequency of a specific nucleus is proportional to magnetic field, it is common to report chemical shift 

relative to a known standard. The chemical shift of a nucleus (x) is described by Eq. 2.13, where 𝜔𝑟𝑒𝑓, is 

the frequency of a standard, usually tetramethylsilane (TMS), and the values are given in parts-per-million 

(ppm). 
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                                                                            𝛿(𝑥) =
𝜔𝑥−𝜔𝑟𝑒𝑓

𝜔𝑟𝑒𝑓
× 106                              (2.13) 

 To describe whether a certain shielding effect will shift the frequency to a lower or higher ppm value, 

an upfield shift describes a move to lower ppm, and a downfield shift is a move to higher ppm.  

 For this dissertation research, the 1H and 19F NMR spectroscopy measurements were performed on a 

Varian Mercury 400 NMR spectrometer in d6-acetone at room temperature. Chemical shifts were 

reported in parts per million. The solvent volume in the NMR tubes was held constant (750 µl) for each 

sample, and solid NCs were dispersed in the solvent. 

2.4.4 Electron Paramagnetic Resonance Spectroscopy 

 Electron paramagnetic resonance spectroscopy is similar to NMR spectroscopy, and is used to study 

unpaired electrons in a material. Electrons have a spin quantum number (𝑆 = 1/2), with the two 

magnetic constituents 𝑚𝑠 = +
1

2
𝑎𝑛𝑑 𝑚𝑠 = −

1

2
, for the antiparallel and parallel electron alignment with 

an external magnetic field (𝐵0) respectively, as shown in Figure 2.16.  
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Figure 2.16. Energy level diagram of an electron placed in an external magnetic field (adapted from 
Reiger).116 

 

 An electron in an external magnetic field has the degeneracy of the spin energy levels shifted as shown 

in the spin Hamiltonian in Eq. 2.14.   

                                                                                     Ĥ𝑔 = 𝑔𝜇𝐵𝐵Ŝ𝑧                                      (2.14) 

 In this equation, 𝑔 is the g-value (free electron = 2.0023), 𝜇𝐵 is the Bohr magneton and B is the 

magnetic field strength (Gauss). The z-component of the spin angular momentum (Ŝ𝑧) defined by the 

magnetic field is also used to determine the spin Hamiltonian. To determine the specific electron spin 

energy levels, a spin Hamiltonian (Ĥ𝑔) is determined for the electron spin eigenfunctions for both 𝑚𝑠 =

±
1

2
, as shown in Eq. 2.15. 

                                                                                  𝐸± = ± (
1

2
) 𝑔𝜇𝐵𝐵                                      (2.15) 

The difference between the two energy levels (Δ𝐸) is described in Eq. 2.16.116  
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                                                                       𝐸 = 𝐸+ − 𝐸− = 𝑔𝜇𝐵𝐵 = ℎ𝜈                        (2.16) 

 The energy differences between these two energy levels in a typical magnetic field are in the range of 

microwave frequencies (9-10 GHz). Normal EPR spectra are determined by varying the microwave 

frequency and holding the magnetic field constant. Once again, since there are more electrons in the 

lower energy state, there will be a net energy absorption, which is monitored. 

 In this dissertation research, EPR spectroscopy was performed in a Bruker EMX X-band spectrometer 

with an Oxford variable-temperature cryostat. The acquisition temperature was 110 K, with a microwave 

frequency of 9.4 GHz, and a microwave power of 1.99 mW. Data was acquired at a modulation frequency 

of 100 kHz, receiver gain of 30 dB, and modulation amplitude of 1.0 G (with 10 points per modulation 

amplitude). The sample was prepared by dispersing NCs or aerogels in acetone in a suprasil quartz 

capillary tube with 4 mm outer diameter and frozen in liquid nitrogen prior to being placed in the 

instrument. 

2.4.5 Electron Microscopy 

 Electron microscopy is the most common analytical tool for characterizing nanoscale materials and 

specifically quantum dots. Electron microscopy uses the unique interaction of high energy electrons to 

give comprehensive information about the nanoscale material. The energy of electrons is based on the 

principle of conservation of energy from a region where the potential varies from 0 to V0 is defined by Eq. 

2.17. 

                                                                                 𝑒𝑉0 =
𝑝2

2𝑚
=

ℎ2

2𝑚𝜆2                                      (2.17) 

 Here p is the electron momentum, which, if the de Broglie relation is used (𝑝 = 𝑚𝑣 = ℎ/𝜆) then the 

equation can be simplified to Eq. 2.18 for the 𝜆 of the electron. 

                                                                                    𝜆 =
ℎ

√2𝑚𝑒𝑉0
                                       (2.18) 

Due to the high energy relativistic variation for electron mass, a correction is applied using Eq. 2.19. 
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                                                                               𝑚 = 𝑚0/(1 −
𝜐2

𝑐2)1/2                               (2.19) 

 By plugging this correction into the original Eq. 2.17, the equation for the corrected electron 

wavelength is given in Eq. 2.20. 

                                                                                    𝜆 =
ℎ

√2𝑚0𝑒𝑉𝑟
                                       (2.20) 

 The relativistic accelerating voltage,  𝑉𝑟, is based on the microscope accelerating voltage (𝑉0), Eq. 2.21. 

                                                                             𝑉𝑟 = 𝑉0 + (
𝑒

2𝑚0𝑐2) 𝑉0
2                               (2.21) 

 These high energy electrons can interact with the specimen in several different ways; the electrons 

are scattered elastically or inelastically. Rutherford scattering is elastic scattering where the direction of 

the primary electron beam changes due to the Coulombic interactions between the imposing electrons 

and the atoms in the specimen, with no energy change of the primary electrons; this can give structural 

analysis and high resolution images. There are several types of inelastic scattering where the energy of 

the primary electron beam is lost to the electrons and atoms in the sample. This includes phonon 

scattering, plasmon scattering or the excitation of a valence electron or inner shell electron in the sample. 

This excitation in the sample can result in emission of a photon for the outer shell electron called 

cathodoluminescence. When the electron beam excites an inner shell electron in the sample, the 

relaxation can emit an X-ray of a characteristic energy. Instead of X-ray emission, an outer shell electron 

can be ejected which is known as Auger emission. The primary electron beam can also cause the sample 

to emit X-rays without electron ejection from the inner shell, called Bremsstrahlung. The primary electron 

beam interacting with the sample also causes the emission of secondary and backscattered electrons 

(Figure 2.17). 
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Figure 2.17. Consequences from the interaction of primary electron beam with the specimen (adapted 
from Goodhew).117 

 

2.4.5.1 Transmission Electron Microscopy 

 A common analytical technique to obtain structure and particle size of nanocrystals, is transmission 

electron microscopy (TEM), used because of the ability to directly image at high magnifications (50 to 

106).117 For TEM instruments, a high energy electron beam is formed in the electron gun (usually either a 

thermionic gun or field emission gun). The electron gun generates electrons either through thermionic 

emission or a high electric field (either LaB6 or W filament). The electrons are accelerated from 40-400 

KeV to the anode with a higher potential. 117 The high energy electrons emitted by the electron gun are 

focused on the sample by the electromagnetic condenser lens system. A side entry double tilt sample 

holder is used to support a thin grid where the sample has been deposited, into the TEM chamber, which 

is normally under high vacuum. The electrons transmitted and diffracted from the sample enter the 
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objective system, and form the first image and the diffraction pattern. Image resolution is determined by 

the diameter of the objective aperture, with most common TEMs having resolution on the order of 

nanometer length scale (Figure 2.18).  

 
Figure 2.18. Schematic of a conventional TEM instrument (adapted from Goodhew).117 

 

 The TEM instrument can be operated under two modes. The bright field imaging mode is where the 

objective aperture allows the transmitted electrons to the detector. The bright field mode is typically used 

for particle size analysis and shape determination; the projector lenses magnify this image, while a final 

copy is projected onto a fluorescent screen. In dark field imaging, the objective aperture allows diffracted 

electrons to pass through, which gives information on the samples lattice parameters and crystallinity.117 

 In this dissertation research the TEM images and measurements were carried out on a JEOL 2010 

transmission electron microscope operated at an accelerating voltage of 200 kV using carbon coated Cu 
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TEM grids as sample supports. Samples were first dispersed in solvent and drops containing the 

nanoparticles or aerogels dispersed, were placed onto the grids and dried in air.  

2.4.5.2 Scanning Electron Microscopy 

 Scanning electron microscopy (SEM) is normally used to obtain surface and near surface structural 

information of a sample. Figure 2.19 shows the schematic diagram for a typical SEM instrument. As in the 

TEM instrument, electrons are generated by an electron gun (most commonly a thermionic gun or field 

emission gun (FE-SEM)) and are accelerated at lower voltages (1-30 keV).117 Besides the lower accelerating 

voltage, the difference between SEM and TEM are the two sets of coils that are used to deflect the beam 

in order to raster across the surface of the sample in SEM.  The image obtained by the rastering in SEM 

maps the varying intensity of signals as a function of position and acquires the signal gradually to build 

the image pixel by pixel.  Condenser and objective lenses focuses the electron beam into a fine beam onto 

the sample. The electron beam interacts with the sample, as discussed in section 2.3.5.1. The commercial 

SEMs utilize both secondary electrons (for surface analysis) detected by an Everhart-Thornley detector, 

and back scattered electrons (for surface and compositional analysis) detected with either a scintillation 

detector, a solid-state detector, or a through-the-lens detector in imaging the sample.117 
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Figure 2.19. Schematic diagram for scanning electron microscopy (adapted from Goodhew).117 

 

 For this dissertation research the SEM images and lattice planes were obtained using a JEOL JSM-

7600F field emission scanning electron microscope. The microscope was operated at an accelerating 

voltage of 15 kV in the high-vacuum mode. 

2.4.5.3 Energy Dispersive X-ray Spectroscopy 

 As mentioned in section 2.4.5, the collision of high energy electrons with sample atoms will result in 

the emission of X-ray radiation of characteristic wavelengths for each material. These X-rays can be used 

to identify the component atoms in a sample and determine their concentration semi-quantitatively. In 

the ground state, an atom in the sample has electrons in discrete energy levels around the nucleus. When 

the electron beam excites an inner shell electron, an electron can be ejected from the sample, leaving a 
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hole; this hole is filled by an outer shell electron while at the same time releasing a characteristic X-ray 

energy. The transitions that give rise to the X-ray emission are shown in Figure 2.20. The EDS detection 

system usually has detector crystals such as lithium doped with Si, or germanium, with the detector 

positioned very close to the sample.117 One of the drawbacks to this analytical technique is that the lighter 

elements such as O, C and H, have very low energy peaks that are difficult to detect. 

 

Figure 2.20. Some of the most common X-ray transitions that produce lines in an EDS spectrum. 
 

 This dissertation research utilized EDS analysis with EDS detectors (EDAX inc.) coupled to both TEM 

(JEOL 2010 transmission electron microscope) and FESEM (JEOL JSM-600F field emission scanning electron 

microscope) instruments. 

2.4.6 Optical Spectroscopy 

 Optical spectroscopy is defined as the study of the interaction of light (ultra-violet, visible and 

infrared) with matter, this interaction results in absorption and emission of light. This can provide 

important structural, bandgap and concentration information for a nanomaterial.  
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2.4.6.1 UV-Visible Absorption Spectroscopy 

 The bandgap of many common semiconducting quantum dots falls within the energy range of ultra-

violet/visible light (300-800 nm). This makes UV-visible absorption spectroscopy an ideal tool for 

characterizing these materials. UV-vis spectroscopy is based on the principle that visible and/or ultraviolet 

light is absorbed by the sample causing electronic transitions due to the absorption of these photons. The 

absorbance of a material (A) is shown in Eq. 2.22. 

                                                                         𝐴 = log (
𝐼0

𝐼
) = − log 𝑇                                     (2.22) 

 This equation compares the intensity of the incident light (𝐼0) to the intensity of the light that is 

transmitted (𝐼) through the sample, which can be compared to the total transmittance (𝑇) of the light 

through the material. The detector collects the light that is transmitted through the sample, and it is 

digitized to give an absorption spectrum. The absorption spectrum can be used to determine the 

concentration of a material with a known extinction coefficient, ε, through the Beer-Lambert law in Eq. 

2.23. 

                                                                                        𝐴 = 휀𝑙𝑐                                               (2.23) 

In this equation, 휀 is the extinction coefficient of the material, which is a parameter to define how much 

light a material absorbs on a per mole basis at the wavelength of maximum intensity, 𝑙 is the path length 

of the solution and 𝑐 is the molar sample concentration. For semiconducting quantum dots, the electronic 

transition seen in UV-Vis spectroscopy occurs from the valence band to the conduction band, 

corresponding to the bandgap, as discussed in Chapter 1 Section 1.2. Accordingly, UV-visible absorption 

spectroscopy is useful for determining the NC size based on the bandgap (E*) using the effective mass 

approximation model Eq. (2.24). 

                                                                  𝐸∗ ≅ 𝐸𝑔 +
ℏ2𝜋2

2𝑟2 (
1

𝑚𝑒
+

1

𝑚ℎ
) −

1.8𝑒2

𝜖𝑟
                              (2.24) 
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In Eq. 2.24, 𝐸𝑔is the bandgap for the bulk material, and 𝑟 is the radius of the semiconductor NCs, 𝑚𝑒 is 

the effective mass of the electron, 𝑚ℎ is the effective mass of the hole and 𝜖 is the dielectric constant of 

the semiconductor.118 

 In this dissertation research the UV-visible spectroscopic measurements were performed on a 

Shimadzu UV-1800 spectrometer in a quartz cuvette. 

2.4.6.2 Diffuse-Reflectance Spectroscopy 

 One method used to determine the bandgap of solids and powders is by diffuse reflectance 

spectroscopy. Due to the fact that light cannot penetrate opaque samples, it is reflected from the surface 

of the powder sample. When light hits the powder sample, it is reflected in all directions as shown in 

Figure 2.21. A portion of the light is refracted as it enters the powder, and is scattered due to internal 

reflection. Diffuse reflection is the reflection of light from the sample surface at all angles from the 

incident light ray, and is therefore unlike specular reflection, where reflection occurs at one angle from 

the incident light angle. An ideal diffuse reflection surface will have equal reflected luminance in all 

directions. The principle of this analytical technique is that as the diffuse reflected light is reflected from 

the solid powder sample, some of the reflected light will be weaker as the powder sample absorbs the 

incident light at a characteristic wavelength. In the energy range that the powder sample strongly absorbs 

the incident light, only the diffuse reflected light from short light paths is emitted. This causes the main 

difference between the relative intensity of the peaks in the transmission spectrum and the diffuse-

reflectance spectrum, where peaks that are weak in the transmission spectrum are stronger in the diffuse-

reflectance spectrum.119  
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Figure 2.21. Comparison of specular reflection and diffuse reflection. 
 

 The Kubelka-Munk theory is used to model the reflected and transmitted spectrum of a colored solid 

material based on the scattering and absorption function.119 The Kubelka-Munk theory started as a model 

to explain light propagation in parallel colorant layers.120 Starting with a horizontal colorant layer, any 

incident light traveling parallel to the boundaries of this layer are only considered if they are at the edge 

of that layer. The flux of light traveling in any direction is separated into its vertical and horizontal 

component and only the vertical component is considered in the calculation.121 A thin section of the 

sample with a thickness dx is considered at a distance x from the illuminated surface of the material, 

where the total sample thickness is d (Figure 2.22). After scattering and absorption, only two intensities 

of light, I and J, travel upwards and downwards through the thickness dx. The limiting factor of the light 

absorption per unit of thickness is defined as the value K, and S is the scattering coefficient equal to the 

limiting fraction of light energy scattered backwards per unit thickness which tends towards zero.121 



58 
 

 
 

 

Figure 2.22. Schematic of the reflectance and transmittance of a solid layer (adapted from Nobbs).122 

 

 The downward flux intensity is decreased by  𝐽  (𝑆 +  𝐾)𝑑𝑥 (absorption and scattering) and increased 

by  𝐼 𝑆𝑑𝑥, whereas in the reverse the upward flux is decreased by 𝐼 (𝑆 +  𝐾)𝑑𝑥 and increased by 𝐽 𝑆𝑑𝑥. 

The total net change in each flux component can be obtained by adding the energy lost and gained as the 

flux goes through the thin section 𝑑𝑥 which can be conveyed in Eq. 2.25 and 2.26. 

                                                                   𝑑𝐼 = −(𝑆 + 𝐾)𝐼𝑑𝑥 + 𝐽𝑆𝑑𝑥                               (2.25) 

                                                                −𝑑𝐽 = −(𝑆 + 𝐾)𝐽𝑑𝑥 + 𝐼𝑆𝑑𝑥                               (2.26) 

 In Eq. 2.26, the negative sign in front of the equation indicates that the direction of the J flux is 

opposite to that of x. The two differential equations obtained when each of these equations is divided by 

dx are shown in Eq. 2.27 and Eq. 2.28. 

                                                                        
𝑑𝐼

𝑑𝑥
= −(𝑆 + 𝐾)𝐼 + 𝐽𝑆                                (2.27) 

                                                                        
𝑑𝐽

𝑑𝑥
= −𝑆𝐼 + (𝑆 + 𝐾)𝐽                                (2.28) 

 The reflectance ratio (𝑟𝑥) in Eq. 2.29 is the ratio of the upward to the downward flux at the point x 

from the top of the surface layer.  

                                                                                     𝑟𝑥 =
𝐽

𝐼
                                               (2.29) 
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 Taking the differential of Eq. 2.26 with respect to x, gives the change in 𝑟𝑥 with the position in the 

layer, Eq. 2.30. 

                                                                              
𝑑𝑟𝑥

𝑑𝑥
=

(𝐼(
𝑑𝐽

𝑑𝑥
)−𝐽(

𝑑𝐼

𝑑𝑥
))

𝐼2                                       (2.30) 

By plugging in the equation for 
𝑑𝐽

𝑑𝑥
 and 

𝑑𝐼

𝑑𝑥
 (Eq. 2.27 and 2.28) into Eq. 2.30, Eq. 2.31 is obtained. 

                                                                    
𝑑𝑟𝑥

𝑑𝑥
= −𝑆𝑟𝑥

2 + 2(𝐾 + 𝑆)𝑟𝑥 − 𝑆                        (2.31) 

 As the thickness of the sample becomes infinitely thicker, there is no appreciable increase in the 

reflectance, so there will be no change in the reflectance ratio (𝑟𝑥) with 𝑥, where now 𝑟𝑥 would be 𝑅∞ in 

Eq. 2.32. 

                                                              
𝑑𝑟𝑥

𝑑𝑥
= 0 = −𝑆𝑅∞

2 + 2(𝐾 + 𝑆)𝑅∞ − 𝑆                              (2.32) 

The quadratic equation in Eq. 2.29 can be rearranged and solved to give Eq. 2.33. 

                                                                  𝑅∞ = 1 +
𝐾

𝑆
− [(1 +

𝐾

𝑆
)

2
− 1]

1/2

                             (2.33) 

Finally, the equation can be reduced to the more common Kubelka-munk approximation Eq. 2.34. 

                                                                                     
𝐾

𝑆
=

(1−𝑅∞)2

2𝑅∞
                                              (2.34) 

This shows that the reflectance of an opaque layer depends on the ratio of K (absorption coefficient) to S 

(scattering coefficient) and not the individual values.121 

 For this dissertation research, diffuse-reflectance measurements were performed on a JASCO V-570 

UV/VIS/NIR Spectrometer with integrating sphere. The solid samples were mixed with barium sulfate 

before being placed in the JASCO powder sample holder. 

2.4.6.3 Fourier Transform Infrared Spectroscopy 

 Fourier transform infrared spectroscopy (FTIR) is used to probe vibrational excitations of molecules, 

and specifically functional groups in the molecules. In FTIR spectroscopy, infrared radiation is transmitted 
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through a sample and radiation of a specific wavelength (for the vibrational energy) is absorbed, and the 

resulting transmittance is measured.  

 The basic components of an FTIR instrument are pictured in Figure 2.23, where a source generates 

the infrared radiation that is passed through an interferometer and then the sample. The transmitted 

signal is captured, amplified and then converted to a digital signal by the detector, amplifier, and analog-

to-digital converter. The data is Fourier transformed to give the final infrared spectrum that shows the 

transmitted intensities for each frequency. 123 

 

Figure 2.23. Schematic of an FTIR spectrometer (adapted from Stuart). 123 

 

 For this dissertation research, powdered samples were measured using a Shimadzu IR Affinity-1 FT-IR 

spectrometer with a MIRacle10 attenuated total reflectance accessory with a monolithic diamond stage 

and pressure clamp, using the IRsolution software. 

2.4.6.4 Photoluminescence Spectroscopy 

 In photoluminescence (PL) spectroscopy, electromagnetic radiation is used to irradiate a sample to 

excite an electron to higher electronic states. The emission released during the relaxation of excited states 

is measured as shown in Figure 2.24. The light generated by the excitation source passes through the 

sample, where light at a specific wavelength is absorbed by the sample, and light is emitted into a detector 

at 90° from the source. This is then converted into an electric signal by the detector and processed by the 

electronic devices. Finally a plot of intensity as a function of wavelength of the light is produced.  
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Figure 2.24. Schematic diagram of a photoluminescence spectroscopy instrument (adapted from 
Lakowicz).124 

 

 The typical molecular emissions measured in photoluminescence spectroscopy are shown in the 

Jablonski diagram in Figure 2.25. Once the sample absorbs a photon and excites an electron from singlet 

ground state, S0, to a higher molecular vibrational level such as the singlet first, S1, or second, S2, state 

there are several paths for the electron. Available paths include relaxing back to a lower vibrational energy 

level, S1, which is called internal conversion. Another path is the fluorescence emission, which happens 

upon the relaxation of the electron from the lowest vibrational level in the S1 state to a vibrational level 

of the S0 vibrational energy state. A third option for an excited electron is undergoing a spin conversion 

to the triplet state, T1, called intersystem crossing. This is called phosphorescence and it is a transition 

from the T1 state to the lower S0 state, with slow emission since it is a spin-forbidden transition.124 
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Figure 2.25. The Jablonski diagram highlighting the absorption and emission of light from a molecule 
(adapted from Lakowicz). 124 

 

 Alternatively, for PL emission in QDs, the sample absorbs light leading to an electron being excited 

from the valence to the conduction band. When the electron resumes its ground state, energy can be 

emitted as light, or fluorescence. In a perfect QD model the energy of photon emission would be equal to 

the band gap energy (Eg) from the valence band and the conduction band. However sometimes anomalous 

features in PL spectra of colloidal QDs can be observed. Figure 2.26 shows the PL emission from a bare-

QD and a QD with surface passivation. These surface trap states can cause broadening in the PL emission 

or surface state emission. These trap states can lower the quantum yield of the QD samples.125 
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Figure 2.26. Schematics on the effect of surface states on the PL emission recombination process 
(reproduced from Char).125 

 

 For this dissertation research the photoluminescence spectra of specimen dispersed in solution was 

determined using a Cary Eclipse (Varian, Inc.) fluorescence spectrometer using a quartz cuvette. Solid 

samples were dispersed in solvent and sonicated prior to being placed in the instrument.  

2.4.7 X-ray Photoelectron Spectroscopy 

 A surface specific analytical technique, X-ray photoelectron spectroscopy (XPS) is used to measure 

the elemental composition (even at low concentrations), the empirical formula, and the chemical and 

electronic state of the elements in the sample. XPS is performed by irradiation of the sample with 

monoenergetic soft X-rays and recording the kinetic energy and number of electrons emitted from the 

sample, Figure 2.27.  The sample chamber is under ultra-high vacuum (10-9 millibar) for the data collection. 

The source X-rays only penetrate 1-10 µm into the sample depth, and emitted electrons have kinetic 

energy according to Eq. 2.35.126 

                                                                       𝐾𝐸 = ℎ𝜈 − 𝐵𝐸 − 𝜙𝑠                                     (2.35) 
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For Eq. 2.35, the binding energy of the electron in the atomic orbital (BE) and the spectrometer work 

function (𝜙𝑠) are subtracted from the energy of the photon to give the kinetic energy (KE). The Fermi 

level is considered the zero binding energy level. Each element in a sample has a unique set of binding 

energies in XPS spectra that can identify the chemical shifts, which give information on the chemical state, 

chemical potential and polarizability.126 

 

Figure 2.27. Schematic diagram for an X-Ray Photoelectron Spectroscopy instrument (adapted from 
Walls).126 

 

 The main components of an XPS instrument include an X-ray source, extraction optics and a detector. 

It is important that the X-ray source emit x-rays that are monochromatic; the most common source for 

XPS is achieved by using a high energy electron beam directed at a metal, commonly Al, which is called 

the X-ray anode. The high energy electron beam ejects an Al 1s electron, the hole is filled by a 2p electron, 

and an X-ray is released.127 
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 For this dissertation, XPS measurements were performed with a Kratos Axis Ultra XPS with a 

monochromatic Al Kα X-ray source in spectrum mode at 10 mA and 15 kV.  A low energy electron flood 

gun was used for charge neutralization of nonconducting samples. The pressure in the analytical chamber 

during spectral acquisition was approximately 1 × 10−9 Torr. The pass energy for survey spectra was 160 

eV, and the pass energy for high-resolution scans was 20 eV. The binding energy scales were calibrated 

based on the most intense C 1s high-resolution peak binding energy. The solid powder sample was put on 

tape before being introduced into the instrument.  
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CHAPTER 3: POROUS SILICON BASED DEVICES WITH ANION PASSIVATED LEAD SULFIDE QUANTUM 
DOTS (QD) FOR RADIATION DETECTION 

 

3.1  Introduction 

 Direct conversion radiation detectors produce an electrical signal through the direct interaction with 

incoming radiation. Once an electrical bias is applied to the detector, the photon interacts with the 

semiconducting device to produce an electron-hole pair. Direct conversion radiation detectors are 

capable of improved energy and spatial resolution, but the trade-off is reduced detection efficiency.128 

For direct conversion devices, detection efficiency is proportional to the fifth power of the effective atomic 

number. So, a device based on a semiconducting material with a high effective atomic number Zeff, (Eq. 

3.1) would have potential as efficient direct-conversion radiation detectors. 

𝑍𝑒𝑓𝑓 = √𝑓𝑛1
× (𝑍𝑛1

)
2.94

+ 𝑓𝑛2
× (𝑍𝑛2

)
2.942.94

                                           (3.1) 

 In Eq. 3.1, fn is the fraction of the total number of electrons from each element in the material, and Zn 

is the atomic number of each element in the material.129 Examples of semiconductors with high effective 

atomic number, and the relative dose requirements (normalizing to LaBr3= 100%) are shown in Table 3.1. 

The use of materials such as lead sulfide quantum dots with an effective atomic number of Z=77, would, 

as seen in Table 3.1, decrease the dosage required to collect a proper image using radiologic diagnostic 

equipment.130 

Table 3.1. Effective atomic number and relative dose requirements for materials used in direct 
conversion X-ray detection devices. 

Material Effective Atomic Number Relative Dose Requirement 

Lanthanum Bromide 47 100% 

Cadmium zinc telluride 48 95% 

Cadmium telluride 50 86% 

Lutetium yttrium orthosilicate 66 43% 

Lead sulfide 77 29% 
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To make devices useful for direct radiation detection, a thick active layer will be needed to stop the 

high energy radiation in medical devices. Therefore, a novel approach was proposed using a thick (10-12 

µm) porous silicon matrix as the n-type material and support for the p-type lead sulfide quantum dots, 

which should be able to stop higher energy radiation (e.g., 4.4 MeV) due to the total thickness of the Si 

wafer being 375 µm, as well as improve charge transport properties, which can be an issue with these 

passivated quantum dots. The combination of lead sulfide quantum dots and machined porous silicon 

resulted in devices as shown schematically in Figure 3.1. The final constructed device contains electrodes 

at the top and the bottom faces, and a reverse bias is applied to the electrodes. This will cause depletion 

in the semiconductor material as electrons and holes are collected at the electrodes.89 

 

 

 

Figure 3.1. Final device showing the machined pores in the n-type silicon support. 
 

 Solution-phase lead sulfide (PbS) colloidal quantum dots are passivated with a long chain organic 

ligand such as oleic acid. These long chain passivating ligands make an insulating layer between 

nanocrystals that inhibits charge transport.26 Colloidal quantum dot films have been synthesized using a 

variety of short chain mono- and bidentate organic ligand capping agents, including short alkylthiols, 

aromatic thiols, alkylamines, and mercaptopropionic acid, which have all shown promise in achieving 

effective passivation while reducing interparticle spacing, thus promoting charge transport in the 

system.14-15, 131-135 Previous work in our group focused on machining pores in the silicon support and drop-

casting oleate-capped PbS quantum dots for X-ray detection device preparation.20, 77 The focus of the 

present work is to utilize anion-passivated PbS quantum dots with shorter chain thiolate ligands to 

increase charge transport in our devices.  

 

n-Type Si Wafer 

PbS Quantum Dots 

Silicon Pores 
Kapton Tape 

Al Electrode 

ITO Electrode 

SiO2 Layer 
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3.2 Experimental Methods 

All the chemicals used in the syntheses described in this chapter are listed in Chapter 2. Transmission 

electron microscopy (TEM), UV vis spectroscopy, powder X-ray diffraction (PXRD), scanning electron 

microscopy (SEM) and energy dispersive X-ray spectroscopy, as described in Chapter 2, were utilized for 

characterization of the constituent materials and I-V curves were performed as described in Chapter 2.  

3.2.1 Synthesis of Anion-Passivated PbS Quantum Dots and Ligand Exchange with 4-

fluorothiophenolate 

 The PbS quantum dots employed in the experiment were synthesized following solution-phase 

methods under inert atmosphere conditions using Schlenk line techniques.26, 131 In a typical synthesis, 2 

mmol of Pb(II)O is combined with 18.25 ml octadecene and 1.75 ml oleic acid and the sample is stirred 

under Ar at 110° C until a clear Pb-oleate solution forms. This is followed by an injection of 1 mmol of 

hexamethyldisilathiane in 10 ml octadecene to form the PbS QDs. A solution of 1.6 mM 

CdCl2/tetradecylphosphonic acid solution in oleylamine was injected into the oleate capped PbS QDs and 

stirred over-night to make anion-passivated QDs. Oleate-capped PbS QDs were isolated by precipitation 

with acetone and centrifugation. Oleate-capped PbS QDs were redissolved in hexane to 50 mg/ml. The 

ligand exchange was performed by adding a 10 ml solution of acetone, 20 mmol 4-fluorothiophenol and 

20 mmol trimethylamine. The sample was precipitated with n-pentane and redissolved in acetone to 50 

mg/ml. 

3.2.2 Deposition of  Anion-Passivated Oleate-Capped and 4-fluorothiophenolate-Capped PbS QDs 

 The PbS QDs were spin-coated onto the pSi surface starting with a solution of oleate-capped (4-

fluorothiophenolate-capped) anion-passivated PbS QDs in hexane (acetone) at 50 mg/ml using a Spin 

Coater Model P6700 series at 2500 rpm for 15 second intervals. Each device was supplied with 20 layers 

of 1 ml/layer PbS quantum dots. Between layers of PbS quantum dots, the samples were washed with 

methanol (n-pentane). 
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3.2.3 Mercaptopropionoic Acid Ligand Exchange on PbS  

 The porous silicon sample was initially spin coated with 20 layers of a 50 mg/ml oleate-capped PbS 

QD solution, followed by a 1% mercaptopropionic acid (MPA) solution. The sample was then washed with 

methanol to remove excess ligands. This was repeated until a desired thickness of QDs was achieved.  

3.2.4 Device Fabrication 

 Following the addition of PbS quantum dots into the pores of the pSi sample, each sample was coated 

with Kapton tape; the Kapton tape was used in an attempt to decrease the dark current, caused by shorts 

in the device. Shorts were likely produced during the anodic etching of the silicon wafer. The tape is to 

replace the SiO2 passivation layer that could have been destroyed in the anodic etch process.  

 Al and ITO thin films were deposited as described in Section 2.3.2, by evaporative deposition or RF 

sputtering, respectively, to form the electrodes on either side of the devices.  

3.3 Results and Discussions 

Near-IR-absorbing anion-passivated PbS QDs were synthesized according to literature methods with 

slight modifications.14 As-prepared anion-passivated PbS QDs were purified by two cycles of dispersion in 

hexane and precipitation with acetone and then exchanged in the solution phase with 4-fluorothiophenol 

or after film-deposition with mercaptopropionic acid. Figure 3.2 shows a high-resolution TEM image of 

the oleate-capped anion-passivated PbS QDs, with the insert showing the particle size analysis. According 

to the TEM images, the particle size for the anion passivated PbS quantum dots was 5.0±0.4 nm (N=90). 
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Figure 3.2. TEM images for the PbS quantum dots: the inset is the particle size analysis. 
 

 The EDS spectrum in Figure 3.3 shows the presence of Cd in the sample, with the unlabeled peaks 

correlating to Cu in the TEM grid. This Cd is presumed to form a surface passivating layer for the dangling 

anions on the particle surface to improve charge transport in the lead sulfide quantum dots, as previously 

reported.131  
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Figure 3.3. The EDS spectra for the anion-passivated PbS QDs showing the presence of Cd. 
 

 The structural characteristics of lead sulfide quantum dots were determined by powder X-ray 

diffraction (PXRD) performed on a Bruker D2 Phaser using the Kα line of a Cu anode source with 30 kV and 

10 mA. Figure 3.4 shows the PXRD pattern for the anion-passivated lead sulfide quantum dots, showing 

they crystallize in the cubic phase, with an absence of peaks for any other material. 
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Figure 3.4.  The PXRD pattern for anion-passivated cubic lead sulfide quantum dots, with the red lines 
corresponding to the powder diffraction file pdf #005-0592 for cubic lead sulfide. 

 

 The UV-Visible spectrum of the PbS samples show an absorption peak, as expected, at 825 nm in the 

near-IR region, and PL emission at 915 nm for the PbS quantum dots dispersed in hexane (Figure 3.5).  

 

Figure 3.5. UV-visible absorbance spectra and PL emissions, for anion-passivated PbS QDs. 
 

 Scanning electron microscopy (SEM) of the pSi supports indicates pore depths of 10-15 µm, and pore 

diameters between 80-100 nm were achieved with the as-developed anodic etching process, as shown in 

Figure 3.6. 
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Figure 3.6. SEM images of the anodized n-type silicon wafer prior to addition of PbS QDs. 
 

 Following the spin-coating of the oleate-capped PbS QDs onto the pSi support, the SEM image (Figure 

3.7a) along with EDS mapping of Pb (green line) and Si (red line) (Figure 3.7b) show Pb throughout the 

pores of the sample. Unfortunately they also show a gradient of Pb from the top to the bottom of the 

pores in the Si wafer, which indicates that although there was some infiltration of PbS QDs into the pores 

there is also clearly a thick layer of PbS on top of the device, which could have detrimental effects on 

device performance. 
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Figure 3.7. The a) SEM micrograph and b) EDS Mapping for pSi after addition of oleate-capped PbS QDs. 
 

3.3.1 Probing the Effect of the Anion-Passivated PbS QDs on the Standard I-V Curves for Completed 

Devices 

To verify the charge transport properties of these devices a response to visible radiation (in addition 

to infrared), is expected based on the band gap of the PbS quantum dots employed. This photodetector 

response is the initial test to determine if the devices would be suitable for radiation detection. The first 

step in testing these devices was to measure the detector response to white light (white-LED flashlight) 

as a function of bias, and look for a strong dependence on the illumination, especially in the forward bias 

condition. 

 The I-V curves for the completed devices were determined using a Keithley 236 Source Measurement 

unit. Samples were measured under dark conditions and visible radiation as a measure to determine initial 

device performance prior to testing with high energy radiation. Each sample was measured with a forward 

and reverse applied bias. Figure 3.8 shows the standard curve of a device without the addition of PbS 

quantum dots. This standard graph of the detector current versus applied voltage for the device devoid 
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of quantum dots shows a resistor-like response, with a straight line in the measured current density as 

the applied bias is adjusted. 

 

Figure 3.8. Detector current vs. applied voltage under illumination for a device containing no lead sulfide 
quantum dots. 

 

 The samples with the long chain insulating oleate ligand which were spin-coated showed similar 

graphs of detector current versus applied voltage as the standard upon irradiation with the white LED 

light source, suggesting that these devices are also resistor-like (Figure 3.9). This means that these devices 

have poor charge transport properties, and would not be suitable for radiation detection devices. 
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Figure 3.9. Detector current vs. applied voltage in the dark and under illumination for a device with 
oleate-capped anion-passivated PbS QDs. 

 

 The device samples where the long chain insulating oleate ligand were exchanged with 

mercaptopropionic acid post-deposition, measuring the current output with a change in applied voltage, 

revealed non-linear I-V curves. This would make the devices closer to a photodetector (Figure 3.10). These 

devices also highlight the lack of reproducibility seen in the samples, where upon illumination (forward 

and reverse bias) the sample shows a decrease in the current density with an increase in the applied bias. 

This could be due to a change over-time in the sample with the applied bias; it is impossible to tell if this 

is a light-effect or a current affect in the device.  
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Figure 3.10. Detector current vs. applied voltage for a device with anion-passivated MPA capped (post-
deposition) PbS QDs. 

 

 The device samples with anion passivated surface and 4-fluorothiophenolate-capped PbS quantum 

dots in the pores of the silicon showed non-linear I-V curves and also had a very slight interaction with the 

incoming light (Figure 3.11). This indicates that the device is a photodetector, and implies that these 

devices could possibly be used for X-ray detection. 
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Figure 3.11. Detector current vs. applied voltage in the dark and under illumination for a device with 
anion-passivated 4-fluorothiophenolate-capped PbS QDs. 

 

With the addition of the anion passivated 4-fluorothiophenolate capped PbS quantum dots to the 

devices, the samples show clear differences from the straight line or the more resistor-like devices, 

indicative of a photo-response. Short chain thiolate ligands (4-fluorothiophenolate) and anion passivation 

at the particle interface show promise as the semiconducting material for our devices, being the only 

samples that show any appreciable interaction with our light source. The standard sample shows an 

improved dark current relative to samples manufactured previously for Weinberg Medical Physics. 

Unfortunately, it is still an order of magnitude larger when compared to the early positive results seen by 

Weinberg Medical Physics.20 

3.4 Conclusion 

Functional devices using PbS quantum dots as detection for visible light have been previously 

demonstrated, indicating promise for radiation detectors.77 It was important for these devices to focus on 
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using short-chain ligands passivating the PbS QD surface, for improvement in charge transport among the 

NCs. Improvement in the anodic etching process of the Si wafer, will allow for pore depths closer to 100 

µm, as well as smoother pore walls; these device improvements will be the focus for future generations 

of these X-Ray radiation detection devices. Future work should focus on improvement in the charge 

transport of the PbS QDs, including different passivating ligand systems allowing for concentrated 

nanoparticle inks to be deposited into the devices. Most importantly, for this system it is important to 

have synthetic techniques that afford reproducibility between samples, including the formation of porous 

silicon, which will allow improvement in device tailoring and sample comparisons.  
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CHAPTER 4: TOWARDS PROGRAMMABLE ASSEMBLY OF QUANTUM DOTS: ROLE OF CRYSTAL 
STRUCTURE AND CHALCOGENIDE REDOX PROPERTIES ON THE SOL-GEL ASSEMBLY OF CADMIUM 

CHALCOGENIDE QUANTUM DOTS 
 

4.1 Introduction 

As mentioned in Chapter 1 Section 1, semiconducting nanocrystals (NC) based on metal chalcogenides 

demonstrate considerable promise for the optoelectronic device industry, due to their easily tunable band 

gap throughout the visible spectrum, modulated by the size and shape of the nanocrystals. This class of 

semiconducting quantum dots (QDs) is of considerable interest for optoelectronic device applications 

such as field-effect transistors (FETs),15, 75, 136 photodetectors,76-77 light emitting diodes (LEDs),78, 137-138 solar 

cells80-81 and radiation detectors.20, 82, 139 

The cadmium chalcogenide NCs, CdS, CdSe and CdTe (CdQ), are expected to benefit from 3D assembly, 

which would allow for their use in NC based devices, specifically where electron or hole transport is 

needed. Accordingly, considerable work has been done on exchanging the long-chain insulating ligands 

typically employed in NC synthesis, with shorter and more labile passivating ligands for the improvement 

of charge transport in devices.140-142 Other passivation techniques have been studied to improve the 

properties of these NCs, such as the use of molecular metal chalcogenide complexes as ligands for 

colloidal NCs, or halide passivation on the NC surface for solution based passivation.30, 143-144 

As discussed in Chapter 1, heterostructured devices are a useful way to incorporate two materials 

with complimentary functionalities into one device. These heterostructured materials have previously 

been shown to improve photoluminescence yields, such as a shell surrounding NC QD particles being used 

to reduce trap states.145-148 Heterostructured materials, including the CdS/CdSe and CdSe/CdTe system, 

have also been used to improve stability and charge separation, including improvement in the emissive 

properties of the materials.149-150 Strong electronic coupling is achieved in carbon nanotube/Au 

nanoparticle composites; MoS2 grown on graphene has demonstrated an improvement in the catalytic 

hydrogen evolution reaction relative to the common MoS2 catalysts.30, 151 



81 
 

 
 

The sol−gel assembly method discussed in Chapter 1, can provide a reproducible and robust approach 

for linking NCs into three-dimensional architectures (i.e., gels, xerogels, and aerogels). The absences of 

intervening ligands in the macrostructure promotes facile charge extraction while maintaining the 

quantum confinement effects of the individual NCs.38, 152 Gelation is achieved by a two-step sol-gel 

process: 1) irreversible ligand removal (deprotection) by the oxidation of surface thiolate ligands (2RS-  

RS-SR + 2 e-) and 2) oxidative assembly by formation of di- or polychalcogenide cross-linkages between 

NCs.58 To assemble multiple components together in such a way as to control the extent of phase 

segregation we need to understand the kinetic factors that govern assembly in single component systems. 

Previous work has shown that the kinetics of aggregation of CdSe NCs are directly affected by the NC 

concentration, NC size, and oxidant concentration.73, 83 Qualitatively, we noted that the rates of CdQ 

gelation also depend on Q, with tellurides gelling rapidly relative to sulfides.54 For this dissertation 

research it was  hypothesized that differences in the rate of aggregation and gelation would be directed 

by the redox characteristics of Q (S = 0.48 V, Se = 0.92 V, and Te = 1.14 V), leading to heterogeneity in 

multicomponent systems comprising different chalcogenides.84 In the dissertation study a new and 

unexpected contributor to the kinetics of assembly was found: the crystal structure adopted by CdQ (cubic 

zinc blende vs. hexagonal wurtzite) has a profound effect on the rate of gelation. Additionally, it is possible 

to tune the kinetics in a single metal chalcogenide system by altering steric bulk of the ligand, thus 

enabling independent variation of kinetic factors for control of heterogeneity in multicomponent 

assemblies. 

4.2 Experimental Section 

All the chemicals used in the synthetic methods in this chapter are listed in Chapter 2. Transmission 

electron microscopy (TEM), UV vis spectroscopy and powder X-ray diffraction (PXRD) were employed for 

characterization of the NCs, and time resolved-dynamic light scattering (TR-DLS), nuclear magnetic 
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spectroscopy (NMR), electron paramagnetic resonance spectroscopy (EPR) and Fourier transform infrared 

spectroscopy (FTIR) were carried out as described in Chapter 2. 

4.2.1 Synthesis of CdQ NCs 

 zb-CdS NC Synthesis. The zb-CdS NCs were synthesized following a literature procedure, with slight 

modification.153 In a common procedure, 0.086 g CdCl2 (0.5 mmol) was stirred in methanol under Ar gas 

flow until a clear solution was formed. A solution of 0.125 g Na2S (0.5 mmol) in methanol was injected, 

followed by a solution of 4-fluorothiophenolate and triethylamine (Cd:S molar ratio 1:10, based on 

starting Cd concentration). NCs were dispersed in acetone and isolated by precipitation with n-heptane 

and centrifugation, this process was repeated one time. 

 w-CdS NC Synthesis. The w-CdS NCs were synthesized by modification of literature procedures.10, 33, 

154 0.060 g CdO (0.47 mmol), 0.23 g TDPA, and 3.0 g TOPO were heated to 320 °C (with the thermocouple 

placed in the heating mantle adjacent to the flask exterior) under argon flow. Once a clear and colorless 

solution was produced, the sample was injected with 2 ml TOP, the temperature was increased to 370 °C, 

and a solution containing 86 µl (0.41 mmol) of TMS in 2.4 ml TOP was injected. The temperature was held 

at 370 °C for 10 minutes before being cooled to 75 °C and annealing for 24 hrs. 4 ml of toluene was 

injected, followed by two cycles of dispersion in toluene and precipitation with ethanol.38 

 CdSe NC Synthesis. CdSe NCs were synthesized by a modified literature preparation.27, 33, 53, 154-156 In 

this NC synthetic procedure 0.05 g (0.4 mmol) of CdO was combined with 0.200 g TDPA and 4.0 g TOPO in 

a round-bottom flask under Ar. The mixture was heated to 320° C until a clear solution was produced, and 

then the temperature was reduced to 150 °C. A solution containing 0.032 g (0.4 mmol) Se in 2.4 ml TOP 

was injected to the Cd solution, and the temperature was slowly increased to 220-260 °C depending on 

desired crystal structure (lower temperature for zinc blende and higher temperature for wurtzite). Finally 

the solution temperature was reduced to 75 °C and 4 ml of toluene was injected. CdSe NCs were isolated 

as described for w-CdS NCs. 
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 CdTe NC Synthesis. CdTe NCs were synthesized following a literature procedure with slight 

modification.54 0.050 g (0.4 mmol) of CdO was combined with 0.200 g TDPA and 3.75 g TOPO in a round-

bottom flask under Ar. The mixture was heated to 320° C until a clear solution was produced and then the 

temperature of the solution was reduced to 150 °C. A solution containing 0.060 g (0.4 mmol) Te in 2.4 ml 

TOP was injected to the Cd solution, and the temperature was slowly increased to 270 °C and then quickly 

cooled. Finally the solution temperature was reduced to 75 °C. CdTe NCs were isolated as described for 

w-CdS NCs.  

4.2.2 MHA (MUA) Ligand Exchange for CdQ NCs 

For all the CdQ NCs used in the DLS studies a solution of MHA (MUA) and tetramethylammonium 

hydroxide in methanol was added to solid CdQ NCs (Cd:thiol ratio 1:4, based on original moles of Cd 

employed in the synthesis) and shaken vigorously. The resulting MHA (MUA)-capped CdQ NCs were 

precipitated with ethyl acetate and finally dispersed in methanol to form the nanocrystalline sol.  

4.2.3 4-fluorothiophenolate Ligand Exchange 

A solution of 4-fluorothiophenolate and triethylamine in acetone was added to solid w-CdS NCs (Cd:S 

ratio 1:10, based on original moles of Cd employed in the synthesis) and sonicated. The resulting 4-

fluorothiophenolate capped CdS NCs were precipitated with n-heptane and dispersed in acetone to form 

the nanocrystalline sol.38 

4.3 Results and Discussion 

Previous work in our group verified that, for a constant NC and oxidant concentration, smaller NCs 

aggregate faster than the larger NCs (CdSe and CdSe@ZnS).  Likewise, increasing oxidant concentration 

decreases the time required to achieve a gel, while resulting in larger aggregate sizes at the gel point, thus 

decreasing the transparency of the final macroscopic gel.83  Thus, in order to evaluate the effect of Q, CdQ 

NCs of similar size were generated from literature preparations and a constant volume of oxidant was 

employed. NC size was determined by high resolution TEM imaging (Figure 4.1). The average particle size 
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of CdQ NCs was found to be 4.5 ± 0.6 nm (CdS), 4.7 ± 0.5 nm (CdSe) and 4.6 ± 0.8 nm (CdTe).  The kinetics 

of aggregation of sols of CdS, CdSe and CdTe capped with 16-mercaptohexadecanoic acid (MHA) at a NC 

concentration of 3 x 10-7 M were studied using TR-DLS. The NC concentration was calculated using the 

first absorption peak in the UV-Visible spectrum to determine the size dependent extinction coefficients, 

as published by Yu et al.157  

 

Figure 4.1. The TEM micrographs for 4-fluorothiophenolate-capped a) CdS NCs b) CdSe NCs c) CdTe NCs 
and the corresponding particle size analysis. The scale bar corresponds to 20 nm. 

 

4.3.1 Initial Time Resolved-Dynamic Light Scattering Studies 

For all the TR-DLS measurements, the CdQ sol volumes were held constant (3 mL) and the sol was 

pipetted into a disposable cuvette. After adding TNM, the disposable cuvette was vigorously shaken and 

immediately placed in the DLS instrument. The average hydrodynamic radius (Rh) was calculated as 

described previously.83 

The TR-DLS graph of the hydrodynamic radius, R̅h as a function of time after the addition of the 

oxidizing agent is shown in Figure 4.2.  The initial hypothesis was that the kinetics of aggregation would 
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follow the redox characteristics of Q2-, with Te>Se>S.  As expected, the R̅h for CdTe NCs grows rapidly, 

achieving a value of ca 1μm by 10 min, indicative of rapid aggregation (the DLCA regime), whereas CdS 

NCs are slower, taking nearly 20 min to achieve a similar aggregate size (the RLCA regime).  However, 

instead of the CdSe demonstrating intermediate kinetics, these NCs were found to react much slower 

than CdS, with little upturn prior to 20 min.  

 

Figure 4.2. Time evolution for R̅hof CdQ nanocrystals as a function of Q. 
 

Evaluation of PXRD patterns for the three samples reveals a possible explanation (Figure 4.3). The 

CdSe pattern is indicative of cubic (zb) as the major structure type, whereas CdS and CdTe are distinctively 

hexagonal (w). CdSe is known to suffer from polytypism between the zb and w crystal structures, which 

differ only by the close-packed layer stacking patterns (ABCABC for zb and ABAB for w). 

 

Figure 4.3. PXRD patterns for CdQ NCs a) CdS NCs and corresponding pdf for w-CdS b) CdSe NCs with 
corresponding pdf for zb-CdSe and c) CdTe NCs with corresponding pdf for w-CdTe. 
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There is a very low energy difference between the two crystal structure types, within a few 

millielectronvolts per atom, making interconversion and intergrowth between the two crystals a common 

occurrence.158-159 To test the hypothesis that kinetic differences are driven by structure, we chose to 

compare w-CdS to zb-CdS because the energy difference between cubic and hexagonal CdS is greater, 

which could reduce the occurrence of the secondary phase at synthesis temperatures chosen to target 

the primary phase.160   

4.3.2 Effect of Structure on Kinetics 

Cubic (zb-CdS) and hexagonal (w-CdS) NCs were prepared following literature procedures and capped 

with 4-fluorothiophenolate in acetone.38 Figure 4.4 a-b shows the HRTEM image of the 4-

fluorothiophenolate capped zb-CdS and w-CdS NCs. NC sizes were determined through HRTEM.  

 

Figure 4.4. The TEM micrographs for a) 4-fluorothiophenolate-capped zb-CdS NCs and b) 4-
fluorothiophenolate-capped w-CdS NCs, scale bar corresponds to 5 nm. 

 

The NC size was 4.1±0.4 nm for zb-CdS and 4.5±0.6 nm for w-CdS NCs, the histograms and size analyses 

for both zb- and w-CdS are shown in Figure 4.5 a-b.  

a b 
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Figure 4.5. The particle size analysis for the a) zb-CdS NCs and b) w-CdS NCs, based on TEM images 
shown in Fig. 4.4. 

 

 To confirm structure, the PXRD data is shown for the 4-fluorothiophenolate-capped w- and zb-CdS 

NCs along with a line diagrams corresponding to the two phases. Formation of w-CdS is evidenced by 

peaks at 37 and 45° 2θ. Comparison of the UV-visible absorption spectra also reveals clear distinctions, 

with zb-CdS having a broad first exciton peak at 455 nm whereas w-CdS has a sharper excitonic feature at 

415 nm (Figure 4.6 a-b).  

 

Figure 4.6. a) PXRD patterns comparing 4-fluorothiophenolate-capped zb- and w-CdS NCs along with 
pdf’s corresponding to wurtzite (006-0314) and zinc blende (010-0454) and b) the UV-Vis spectra for the 

zb- and w-CdS NCs. 
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 TR-DLS measurements were performed as described in 4.3.1 on the w- and zb-CdS sol. Figure 4.7 

shows the aggregation kinetics of the zb- and w- CdS NCs over-time. It is clear that for w-CdS, the 

aggregation is so rapid it occurs within several minutes of introduction of the TNM oxidant. Conversely, 

the zb-CdS NCs have much slower aggregation kinetics, over several hours. Thus the thermodynamics of 

Q2- oxidation are not sufficient to describe the reactivity; structure must be playing an important role. 

Given the similarity of the two structure types, we turned our attention to surface effects and considered 

whether the kinetics of ligand loss (oxidation), which precedes oxidative gelation, contributes to the rate 

of gelation.  

 

 

Figure 4.7. Time evolution of R̅has a function of crystal structure for zb-CdS and w-CdS. Inset: the R̅h as 
a function of time for w-CdS NCs at short time intervals. 

 
Since the w-CdS lattice lacks inversion symmetry about the c axis, the (0001) and (0001̅) surfaces are 

crystallographically nonequivalent.28, 33, 159-162 This difference results in a surface polarity, not present in 

zb-CdS NCs, which are otherwise structurally very similar.163 It has been postulated that the surface 

coverage of the capping ligands occurs in islands, which reflect surface facets of the crystals.164 Gacoin et 

al. employed the 4-fluorothiophenolate capping ligand to monitor the aggregation and gelation using 1H 

and 19F NMR spectroscopy.51, 105 Assuming a two-step process for the colloidal aggregation starting with 
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1) oxidative loss of the surface thiolate capping agent followed by 2) formation of surface chalcogenide 

linkages between NCs, monitoring this process in-situ with 1H and 19F NMR would enable us to learn 

whether a contributing factor in the kinetics of colloidal aggregation was loss of surface thiolate ligand, 

possibly due to the differences in the surface facets between the two crystal structures. 

The solvent volume in the NMR tubes was held constant (750 µl d6-acetone), for each sample and 9 

mg of solid NCs was dispersed. For mechanistic studies of the sol-gel process, 20 µl of a 10% oxidant (TNM) 

solution was injected into the NMR tubes. NMR spectroscopic studies were performed to probe the 4-

fluorothiophenolate loss from zb- and w- CdS NCs and formation of oxidized products (primarily disulfide). 

Figure 4.8 shows the 19F NMR spectra for the w-CdS NCs before and after the addition of the oxidizing 

agent, with a broad peak at -124 ppm indicative of the 4-fluorothiophenolate ligand on the surface of the 

CdS NC clearly evident before addition. There is also a peak corresponding to the disulfide that is centered 

at -115 ppm and already evident prior to the addition of the oxidant, which we ascribe to photooxidation 

of the 4-fluorothiophenolate ligand.51, 105 Upon the addition of the TNM (oxidant) there is a decrease in 

the peak intensity located at -124 ppm which also shifts downfield and splits into two peaks, with a 

simultaneous increase in the disulfide peak at -115 ppm, this is indicative of the sol-gel process where 

surface thiolate ligand oxidation forms the disulfide by-product in solution by Scheme 4.1 and 4.2. The 

peak shifts for all the spectra that occur upon the addition of the oxidant are likely due to electrostatic 

charges at the surface of the particle and possibly the formation of the aggregates in solution.142 During 

the aggregation and subsequent gelation from time t=0 h to t= 24 h, the NMR peaks corresponding to 

ligand on the surface of the particle decrease in intensity and broaden as the NCs undergo gelation. 
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Figure 4.8. Time evolution of the 19F NMR spectra for w-CdS NCs upon the addition of TNM (oxidant). 
 

The formation of two peaks in the 19F NMR spectrum at -122 and -124 ppm (at time t=0 h to t=24 h) 

has been attributed to two species on or near the surface of the NCs, the bridging and terminal thiolate 

ligand respectively (Figure 4.9).165 
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Figure 4.9. The two surface bonding types of the 4-fluorothiophenolate ligand on the CdS surface a) 
terminal species b) bridging species. 

 

Initially there is a peak at -124 ppm visible prior to the addition of the oxidant. After addition, then a 

second peak grows in downfield, at the expense of the first, implying a transformation in the nature of 

the bound thiolate. This may be rationalized by the terminal thiolate species converting to bridging as 

surfaces are depopulated. Other smaller peaks between -110 ppm and -115 ppm, are likely due to the 

isomerization shown in Scheme 4.3, which leads to the sulfinate, sulfonate and sulfonic acid derivatives 

of the 4-fluorothiophenol.166 

 

At the gel stage, no peak due to bound 4-fluorothiophenolate is apparent, but it is not clear if it is all 

removed, or if the formation of the gel prevents tumbling and the peak broadened into the background. 

Similar chemical transformations are evident in the proton NMR spectra (Figure 4.10). Prior to the addition 

of the oxidant, peaks centered around 6.63 and 7.43 ppm can be identified for the ortho- and meta- 

protons of the 4-fluorothiophenolate-capping ligand on the NC surface, respectively. Following addition 
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of the oxidant, triplet peaks centered around 7.16 and 7.56 ppm, indicate the formation of the disulfide 

byproduct.  

 

Figure 4.10. 1H NMR spectra of w-CdS sols at different times after TNM (oxidant) addition. 
 

Figure 4.11 shows the 19F NMR spectra of the zb-CdS NCs sol and gel after the addition of the oxidizing 

agent, which also shows that while there is some disulfide formation with an indicative peak in the 19F 

NMR spectra at -116 ppm, a large amount of 4-fluorothiophenolate ligand remains on the surface of the 

zb-CdS NCs post-gelation, manifesting as a broad peak at -123 ppm. Another peak at -112 ppm (which is 

also seen in the w-CdS) is attributed to the sulfonate species which is a by-product of the oxidation of the 

surface 4-fluorothiphenolate, which can form when the RSNO2 species reaction with RSH is limited 

(Scheme 4.3), suggesting the concentration of available thiolate may be smaller in the zb-CdS samples 
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than in the w-CdS sample. The NMR studies seemed to indicate that the surface ligand loss for the zb-CdS 

NCs after the addition of the oxidant is slower than for the w-CdS, which correlates with the TR-DLS studies 

and may well indicate that one of the factors in the slower kinetics of aggregation with zb-CdS may be 

slower surface thiolate ligand loss.  

 

Figure 4.11. Time evolution of the 19F NMR spectra for zb-CdS NCs upon the addition of TNM (oxidant). 
 

 Figure 4.12 is the 1H NMR spectra of the zb-CdS NCs sol before addition of the TNM and after gelation, 

only one intermediate spectra was included as they showed little change over-time. The broad triplet 

centered at 6.8 ppm and 7.3 ppm corresponds to the thiolate capping on the surface of the particles, there 

is no evidence for the formation of disulfide. 
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Figure 4.12. 1H NMR spectra of zb-CdS sols for different times after TNM (oxidant) addition. 
 

4.3.3 Surface Effects 

 A characteristic feature of the zb-CdS NMR spectra was the peak broadening, possibly indicative of a 

paramagnetic center in this sample. We considered whether this might have an effect on oxidative 

gelation.  To verify the presence of a paramagnetic impurity, electron paramagnetic resonance 

spectroscopy (EPR) was performed on samples of “uncapped” zb-CdS, without the addition of the capping 

ligand (4-fluorothiophenolate) and samples of the zb-CdS synthesized with the 4-fluorothiophenolate 

capping ligand. Figure 4.13a shows the EPR spectrum of the uncapped (no addition of the 4-

fluorothiolphenol ligand) zb-CdS NCs, which shows a clear EPR signal with a g value of 2.004 that matches 

with known values for anionic vacancies in similar zb-CdS NCs.167 Figure 4.13b is the EPR spectrum for 4-

fluorothiophenolate capped zb-CdS NCs, which showed the same g=2.004 signal, along with a new signal 

in the EPR spectrum that we could not identify, but which seems to be a product of the 4-

fluorothiophenolate addition.  In contrast, the EPR spectrum for the w-CdS showed no EPR signal (Figure 

4.13c). Finally, Figure 4.13d shows the EPR spectrum for the zb-CdS upon gelation (following the addition 

of the oxidizing agent, TNM), which showed no peak in the EPR spectrum, indicating that paramagnetic 

centers are no longer present. We surmise that the oxidative gelation process eventually leads to 

passivation of these defects. 
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Figure 4.13. EPR Spectrum for the a) uncapped zb-CdS nanocrystals b) 4-fluorothiophenolate-capped zb-
CdS nanocrystals c) w-CdS nanocrystals capped with 4-fluorothiophenolate ligand and d) the zb-CdS gels. 

 
Table 4.1 gives the known literature g-values for vacancies in bulk and single-crystal CdS and ZnS. The 

specific anionic vacancy for CdS crystals behaves as a double donor, with a paramagnetic singly occupied 

state.167-170 

Table 4.1. Parameters for Native Defect Centers in CdS and ZnS. 

  Vacancy Type g-value Ref. 

CdS VCd 2.0018 168 

ZnS VZn 2.0019 169 

ZnS VS 2.0034 170 

CdS VS 2.004 167 

 

If these are considered anionic vacancies at or near the surface of the zb-CdS nanocrystals, this could 

explain at least a trivial amount of the slower onset and kinetics of aggregation. If there was a decrease in 

surface chalcogenides then there would be a decrease in the sticking probability of these nanocrystals in 

solution. 



96 
 

 
 

Alternatively, we considered whether the surface is more oxidized in the zb-CdS.  A recent paper by 

Thomas et al. discussed the role of the surface composition of CdSe QDs on the luminescence properties 

between zb-CdSe and w-CdSe, which indicated that zb-CdSe NCs with a surface layer of CdO showed 

improvement in the PL emission.171 To determine if our zb-CdS QDs could also have an oxide layer, which 

could prevent the formation of dichalcogenide linkages and arrest the aggregation and gelation in 

solution, XPS studies were conducted. The binding energies of cadmium 3d5/2 and 3d3/2 electrons for CdS 

bulk are reported to be 405 and 412 eV respectively.172 The Cd spectra for zb-CdS QDs is presented in 

Figure 4.14a, and the w-CdS QDs in Figure 4.14b. Following the Shirley background subtraction, the peaks 

were deconvoluted into Gaussian components, which offer insight into the structure of these CdS QDs. 

For both cases, the peaks for the Cd bound to sulfur for the Cd 3d5/2 and Cd 3d3/2, are seen at 405 and 412 

eV in Figure 4.13. Both the spectra have peaks corresponding to the oxidized form of Cd for both the 

3d3/2 and 3d5/2 signals, which are shifted 2 eV from the original Cd signal. However the XPS indicates 

that the zb-CdS NCs do not have a significant CdO layer when compared to the w-CdS, which would have 

affected the kinetics of aggregation of the nanocrystals in solution.  
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Figure 4.14. XPS elemental analysis of two CdS QD samples capped with 4-fluorothiophenolate ligand a) 
zb-CdS; the peak corresponding to the Cd atom bound to S is represented by the pink trace, while the 
peak bound to O is represented by the red trace. b) w-CdS; the peak corresponding to the Cd atoms 

bound to S is represented by the blue trace and the peak corresponding to the Cd bound to O is 
represented by the black trace. The red star indicates the oxidized Cd peaks, which are blue-shifted from 

the peaks seen for the CdS signals for both the 3d3/2 and the 3d5/2. 
 

Finally, we considered whether the extent of surface capping might be playing a role in the kinetics; 

perhaps due to better passivation of zb-CdS. To determine the capping group concentration in each case, 

we removed all the organics by treatment with excess TNM and the concentration of disulfide was 

determined by 19F NMR (Figure 4.15). Peaks corresponding to the organic 4-fluorothiophenolate capping 

ligand (-124 ppm) are absent after treatment with excessive TNM, indicating removal of surface ligands. 

A common standard for 19F NMR spectroscopy, hexafluorobenzene, with a known concentration of 0.447 

M was added to each test tube containing the CdS samples (zb- and w-) that had been over-oxidized using 

excess TNM oxidant to remove all the thiolates as disulfide from the NC surface. The concentration of 
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disulfide by-product was determined based on the standard hexafluorobenzene concentration; this did 

not include the other reaction by-products, which, due to noise, could not accurately be accounted for in 

the determination. 

 

Figure 4.15. The 19F NMR spectrum for the over-oxidized a) w-CdS NC sol and b) zb-CdS NC sol. 
 

The IR spectra performed for the CdS NCs before and after treatment with TNM oxidizing agent, 

indicated the removal of a majority of the surface ligands (Figure 4.16).  The peak at 1222 cm-1 for the C-

F stretching vibration of the 4-fluorothiophenolate ligand on the NC surface is initially present but 

disappears, following the oxidative ligand removal and gelation.  
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Figure 4.16. The IR spectrum for (zb and w) CdS NCs prior to, and following, treatment with TNM 
oxidant. 

 
For the zb-CdS NCs there were an average of 75 4-fluorothiophenolate ligands per particle (5.68 

ligands/nm2); the w-CdS NCs had much higher surface ligand coverage with an average of 300 4-

fluorothiophenolate ligands per particle (18.9 ligands/nm2). It is known that ligand surface coverage can 

affect the assembly of NCs into heterostructures.173 The more symmetric crystal structure of the zb-CdS 

NCs would a result in facets of similar surface energies, whereas in w-CdS, the (0001) surface facets have 

considerably higher surface energy requiring more ligands to achieve passivation.164 Indeed catalytic H2 

evolution using CdS occurs at a greater rate for w- vs zb-CdS NCs. The reactivity of the w-CdS crystals is 

ascribed to the higher energy (0001) surface facets. Such higher energy surfaces could attract more of the 

capping 4-fluorothiophenolate ligand.174 Another known feature of NCs having facets of different 

energies, such as occurs in the wurtzite crystal structure, is that they can undergo oriented attachment 

resulting in anisotropic structures. However, we do not see any evidence of oriented attachment in our 

gels.175 
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4.3.4 Effect of Q on Gelation Kinetics in w-CdQ NCs 

 In this dissertation research we have demonstrated that the crystal structure types for CdQ will have 

an effect on the kinetics of colloidal aggregation in solution. Accordingly, sols of w-CdS, CdSe and CdTe 

capped with 16-mercaptohexadecanoic acid (MHA) at a NC concentration of 3 x 10-7 M were evaluated to 

determine whether relative redox properties of Q would affect kinetics of aggregation as originally 

postulated when the structures are all the same. PXRD data and HRTEM images are shown in Figures 4.17 

and 4.18, respectively, indicating the NCs are in the wurtzite crystal structure.  

 

Figure 4.17. PXRD spectrum for TOPO-capped a) w-CdS b) w-CdSe and c) w-CdTe. 
 

 

Figure 4.18. TEM micrographs for TOPO-capped a) CdS NCs b) CdSe NCs and c) CdTe NCs. The scale bar 
corresponds to 5 nm. 

 

The average particle size for each CdQ NC was determined using HRTEM, the histograms and particle size 

analysis are shown in Figure 4.19, and indicate the NCs are similar in size. 
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Figure 4.19. Particle size analysis of TOPO-capped a) CdS NCs b) CdSe NCs and c) CdTe NCs. 
 

 Figure 4.20 shows the change in hydrodynamic radius as a function of time in w-CdQ (Q= S, Se and Te) 

NCs, after the addition of 20 µl 3% TNM solution (oxidant). Once the crystal structure effects are 

accounted for, the onset of gelation follows the relative redox properties of the Cd-chalcogenides. 

Specifically w-CdTe has the fastest onset and aggregation kinetics in solution, followed by CdSe and finally 

CdS. Thus, correcting for the crystal structure effects, the relative redox properties do affect the kinetics 

of aggregation in solution.  

 

Figure 4.20. Time evolution as a function of chalcogenide, for R̅h in w-CdQ NCs. 
 

4.3.5 Bulkier Capping Ligands as a Control Lever over Kinetics of Colloidal Aggregation 

The initial studies to test how the capping ligand would affect the kinetics of aggregation in solution 

were performed on the well-studied w-CdS NC system, due to the ease of synthesis and reproducibility of 
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these nanocrystals, as well as their relative stability in solution. The CdS nanocrystals were characterized 

using TEM to determine their particle size of 4.3 nm (Figure 4.21a), and PXRD to verify that they 

crystallized in the wurtzite (hexagonal) crystal structure (Figure 4.21b). In the PXRD pattern the peaks for 

the (100), (101) and the (102) reflections, indicative of the wurtzite crystal structure are visible.  

 

Figure 4.21. The a) TEM micrograph image for the TOPO-capped CdS NCs, with the inset for the particle 
size analysis (scale bar corresponds to 5 nm) and the b) PXRD pattern for the CdS NCs showing they 

crystallize in the wurtzite (hexagonal) crystal structure. 
 

Once the nanocrystals were characterized, the TOPO-capping ligands were exchanged with either 16-

mercaptohexadecanoic acid (MHA) or 11-mercaptoundecanoic acid (MUA) (Figure 4.22). As seen in the 3-

D models of the two ligands, when comparing the 11-carbon chain MUA ligand to the 16-carbon chain 

MHA ligand, it is clear that the MHA is a longer ligand, making for a thicker barrier for the oxidant to get 

to the surface and initiate the ligand removal process.  



103 
 

 
 

 

Figure 4.22.The 3D models of the chemical structure for the 11-mercaptoundecanoic acid capping ligand 
and the 16-mercaptohexadecanoic acid capping ligand. 

 

Time resolved-dynamic light scattering was used to monitor the kinetics of aggregation in solution 

based on the capping ligand. In the graph of the hydrodynamic radius (R̅h ) over-time for both the MUA 

(MHA) capped nanocrystals, the nanocrystals with the larger or more sterically bulky capping ligand (MHA) 

displayed the slowest kinetics of aggregation in solution (Figure 4.23). 

 

Figure 4.23. The graph of hydrodynamic radius (R̅h) over-time for w-CdS as a function of the capping 
ligand (MHA vs MUA). 
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4.4 Conclusion 

Through TR-DLS studies, NMR spectroscopy and EPR spectroscopy, we show that the crystal structure 

and characteristics of Q in CdQ NCs both affect the kinetics of oxidative colloidal aggregation. Using NMR 

spectroscopy, the surface ligand loss differences between the w-CdS and the zb-CdS NCs has been 

identified as a possible reason for the extreme differences in the kinetics of colloidal aggregation, with 

the larger concentration of surface ligand coverage possibly reflecting the higher surface reactivity of the 

w-CdS. Our results suggest that the surfaces of the NCs, either surface structure of facets, surface ligand 

coverage and/or surface vacancies, will affect rate of gelation of CdQ NCs. For identical structures and 

sizes, the gelation kinetics followed the thermodynamic trend with respect to the redox properties of Q2
2- 

for Q= S, Se and Te. The ability to tune the kinetics of colloidal aggregation through changing the crystal 

structure and surface ligand characteristics enabling development of heterostructured gels as described 

in the next chapter. 
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CHAPTER5: THE SOL-GEL SYNTHESIS OF MULTICOMPONENT MATERIALS WITH PROGRAMMABLE 
CONTROL OF HETEROGENEITY 

 
5.1 Introduction 

  As discussed in Chapter 1, colloidal II-VI MQ (M=Cd and Zn, Q=S, Se and Te) quantum dots have been 

developed for use in practical solid-state applications including optoelectronic devices, lasers and LEDs.81, 

176-177 To improve photostability in these nanomaterials, and expand the device application properties, 

colloidal heterostructures have been developed. QD heterostructures include core-shell structures, 

gradient alloys, and heteronanocrystal composites, with the latter generally encompassing a combination 

of semiconducting NCs and noble metal nanoparticles.67-69, 145-146, 178-180 These heterostructures are 

colloidal in nature, thus issues pertaining to charge transport in the solid state are unaddressed.181 

 In the dissertation research we once again utilize our sol-gel assembly process to provide an approach 

to linking nanocrystals into three-dimensional architectures (i.e., gels, xerogels, and aerogels) and thin 

films this time applying the method to a mixture of two different metal chalcogenide quantum dots.38, 100, 

102, 182   

 Work in our group has shown that the kinetics of aggregation of II-VI type colloidal NCs is directly 

affected by the NC concentration, NC size, crystal structure, surface passivating ligand, oxidant 

concentration and the chalcogenide (Q) relative redox properties (see Chapter 4).83 The redox properties 

of Q, have been shown to be an important lever for controlling the kinetics of aggregation, with tellurides 

gelling rapidly relative to sulfides.57 All of these tools allow us to tailor the kinetics of aggregation in 

solution to favor heterobonding between dissimilar particles (Figure 5.1), leading to well-mixed 

composites or favor homobonding, leading to extensive phase-segregation.  

 

Figure 5.1. Scheme for colloidal sol-gel synthesis of mixed metal chalcogenide heterostructures 
(specifically CdSe/ZnS system). 
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 Accordingly, the focus of Chapter 5 is on creating multicomponent nanoparticle systems, using CdSe 

and ZnS as a test case, and tuning the extant of hetero- and homobonding to control the nature of mixed 

systems (Figure 5.2). 

 

Figure 5.2. Types of hetero- or homogeneous systems that can be produced through tuning the kinetics 
of colloidal aggregation. 

 

 The intrinsic kinetics of colloidal aggregation governed by Q and the native structure will be changed 

by altering the sterics of the surface passivating ligand. By adjusting the assembly rate of the CdSe and 

ZnS NPs to be similar, intimately mixed composites will be formed, whereas if the rates are quite different, 

phase-segregated materials will be produced). 

5.2 Experimental Section 

All the materials and chemicals used in the syntheses defined in this chapter are described in Chapter 

2. Transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), UV-

vis spectroscopy, powder X-ray diffraction (PXRD) and photoluminescence spectroscopy (PL) were utilized 

for characterization of materials. Time resolved-dynamic light scattering (TR-DLS) and studies of 

aggregation kinetics were performed as described in Chapter 2. 
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5.2.1 Synthesis of MQ (M= Cd and Zn, Q=S and Se) Quantum Dots 

5.2.1.1 Synthesis of zb-ZnS NCs 

 The procedure for ZnS NC synthesis was performed on a Schlenk line under air free conditions. ZnS 

NCs were synthesized following literature procedures, with slight modification.183 For a typical synthesis, 

0.054 g (0.4 mmol) of ZnCl2 was combined with 10 ml oleylamine and 3.75 g TOPO in a round-bottom flask 

under Ar. The mixture was heated to 170 °C and then the temperature was reduced to 150 °C. A solution 

containing 0.013 g (0.4mmol) S in 2.4 ml oleylamine was injected to the Zn solution, and the temperature 

was slowly increased to 320 °C for 10 mins. The sample was precipitated with ethanol once, to give solid 

zb-ZnS NCs.  

5.2.1.2 Synthesis of zb-CdSe NCs 

 CdSe NCs were synthesized following literature procedures, with slight modification.27, 33, 162, 184 In a 

typical synthesis, 0.05 g (0.4 mmol) of CdO were combined with 0.200 g TDPA and 4.0 g TOPO in a round-

bottom flask under Ar using Schlenk line techniques. The mixture was heated to 320 °C until a clear 

solution was produced, and then the temperature was reduced to 150 °C. A solution containing 0.032 g 

(0.4mmol) Se in 2.4 ml TOP was injected to the Cd solution, and the temperature was slowly increased to 

200 °C and held for 4 h at which point the solution turned a reddish-orange color. Finally the solution 

temperature was reduced to 75 °C and injected with 4 ml toluene was injected. zb-CdSe NCs were isolated 

by precipitation with ethanol. 

5.2.1.3 Ligand Exchange (11-mercaptoundecanoic acid or 16-mercaptohexadecanoic acid) 

 A solution of MHA (MUA) and tetramethylammonium hydroxide in methanol was added to solid MQ 

NCs (metal:thiol ratio 1:4, based on original moles of Cd employed in the synthesis) and shaken vigorously. 

The resulting MHA (MUA) capped MQ NCs were precipitated once with ethyl acetate and finally dispersed 

in methanol as a nanocrystalline sol. 
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5.2.1.4 Wet Gel/Aerogel Synthesis 

MQ NC sols were prepared in methanol with a concentration of 4.8 x 10 -6 M (concentration for CdSe 

NCs was determined using the method developed by Yu et. al. and concentration for ZnS NCs was 

determined through ICP-MS). For each sample, a 2 ml aliquot of NC sol (1 ml CdSe and 1 ml ZnS) was used 

and 20 µl of 3% TNM solution was added, followed by shaking. Gels were allowed to age for 3-5 days 

during which time syneresis occurred, producing a yellow-colored liquid above the gel; the color is 

attributed to the by-products of TNM oxidation of surface thiolates. The liquid volume was exchanged 

with methanol until a clear solution above the gel was obtained. The gels were dried using supercritical 

CO2 in a Tousimis Autosamdri-931 critical point dryer. 

5.3 Results and Discussion 

5.3.1 Co-gelation of CdSe and ZnS QDs 

 To probe whether the change in steric bulk of the capping ligand could be used to affect the degree 

of mixing in a macroscopic gel structure, CdSe and ZnS QDs were chosen for study based on the anticipated 

ease of characterization; specifically, as they have different metal cations and chalcogenides, and the 

optical properties are distinct. Additionally, the same zinc blende structure is targeted for each so that 

kinetics will depend only on Q and the ligand steric bulk. The starting zb-CdSe (ZnS) NCs were synthesized 

as described previously and characterized using TEM to determine the average particle size: 4.2±0.5 nm 

(4.0±0.6 nm) as shown in Figure 5.3 a,b (Figure 5.3 e,f). PXRD confirmed that both CdSe and ZnS 

crystallized in the zinc blende (cubic) form (Figure 5.3c and 5.3g). Single component gels were prepared 

by oxidative sol-gel synthesis and transformed to aerogels by supercritical CO2 solvent removal. The 

diffuse-reflectance measurements for the resultant aerogels for CdSe NCs and ZnS NCs show an 

absorption onset of 2.3 eV and 3.5 eV, respectively (Figure 5.3d and 5.3h).  



109 
 

 
 

 

Figure 5.3.  a) TEM micrograph of TOPO-capped CdSe NCs b) size distribution histogram c) PXRD pattern 
for the CdSe with the pdf line diagram corresponding to the zinc blende (cubic) CdSe d) diffuse-

reflectance measurements of the resulting CdSe aerogel e) TEM micrograph corresponding to TOPO-
capped ZnS NCs f) size distribution histogram g) PXRD pattern for ZnS NCs with the pdf line diagram 

corresponding to zinc blende (cubic) ZnS h) the diffuse-reflectance measurements of the resultant ZnS 
aerogel. The scale bar in a) and e) corresponds to 5 nm. 

 

 To monitor the kinetics of aggregation for the MUA (MHA) capped zb-CdSe and the MUA-capped zb-

ZnS nanocrystals that will be used for these heterostructured materials, TR-DLS experiments were run for 

all three samples using a nanocrystal sol concentration of 3 x 10-7 M (ZnS concentration determined 

through ICP-MS). 3 ml of each sol was placed in a disposable cuvette and upon addition of 20 µl of 3% 

TNM (oxidant) solution the cuvette was shaken once and placed in the instrument. The MHA-capped CdSe 

NCs had slower kinetics of aggregation than the MUA-capped CdSe NCs (Figure 5.4), as expected. 

However, both of these samples showed faster kinetics of aggregation relative to the zb-ZnS. This is 

attributed to the relative redox properties of selenium (-0.92 V) as compared to sulfur (-0.48 V).84  
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Figure 5.4. Time evolution as a function of metal and capping ligands, for  R̅h in zb-MQ NCs. 
 

 Having confirmed the ability to manipulate the kinetics of aggregation for CdSe NCs by changing the 

steric bulk of the ligand, the kinetic difference relative to MUA-capped ZnS can be exploited to synthesize 

co-gels with different degrees of mixing.  

5.3.2 Phase-segregated Gels 

 Based on large kinetic differences between MUA-capped CdSe and ZnS we expect the resultant co-

gels to exhibit a high degree of phase segregation. The concentration for each sample was determined to 

be 4.8 x 10-6 M, and 1 ml of MUA-capped CdSe and MUA-capped ZnS sols were combined in a glass vial. 

Following the combination of the two nanocrystalline sols, 20 µl of 3% TNM solution was added to the 

CdSe/ZnS sol and the sample was shaken. Due to the faster kinetics of aggregation in the MUA-capped 

CdSe sample, since both NCs have the same capping ligand, the relative redox properties of Q-Q bond 

formation is the driving factor for the sol-gel synthesis. As the CdSe NCs form oxidative linkages more 

rapidly between particles, the CdSe forms a gel faster than ZnS (Figure 5.5). This results in the final gel 

having a top layer of ZnS and a bottom layer of CdSe gel. 
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Figure 5.5. The sol-gel formation of the phase-segregated CdSe/ZnS co-gel over time, the yellow solution 
on top (most evident at t=24 h) is the by-product of the tetranitromethane oxidant. The final image 

follows the solvent-exchange to remove by-products. 
 

 Due to the two distinct aggregation events, it appears that as the CdSe gel settles out of solution, 

followed by the formation of the ZnS NC gel on top. The yellow supernatant is due to the nitroformate 

anion, a by-product of the oxidation of the surface thiolate ligand by the TNM. 

 Following the gelation process, the solvent was exchanged to remove the disulfide and oxidant by-

products and the sample was dried using supercritical CO2 extraction. Following the drying procedure 

PXRD was obtained (Figure 5.6), which showed the peaks for both zb-CdSe and zb-ZnS, confirming that 

the phase-segregated co-gel contains both of the constituent NC materials.   

 

Figure 5.6. The PXRD spectrum for the phase-segregated co-gel with the pdf patterns for zb-CdSe and 
zb-ZnS shown below. 
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 To further verify that this multicomponent phase-segregated co-gel was formed of two homogenous 

regions of metal chalcogenide materials, ICP-MS was performed on a large section of material, while EDAX 

from TEM was performed on several smaller sections of the sample (200-300 nm sections). Based on the 

ICP-MS data, the goal of a 1:1 mol ratio of Cd:Zn was achieved for the bulk sample, but on closer inspection 

of small areas using the TEM EDAX it becomes clear that the amounts of Cd and Zn vary wildly within the 

material (Table 5.1), as would be expected for a phase-segregated material.  

Table 5.1. Atomic ratio of Cd:Zn using ICP-MS and small spot sizes (200-400 nm) in TEM EDAX analysis 
for the phase-segregated co-gel. Specimens for TEM were prepared by sonication of the bulk gel. 

Gel Structure 
Type  

ICP-MS Atomic 
Ratio (Cd:Zn) 

TEM EDS Spot 1 
(Cd:Zn) 

TEM EDS Spot 2 
(Cd:Zn) 

TEM EDS Spot 3 
(Cd:Zn) 

TEM EDS Spot 4 
(Cd:Zn) 

Phase-
Segregated Co-
gel 

1:1 0.2:1 0.8:1 1.4:1 0.7:1 

 

 The diffuse-reflectance measurements of the final aerogel powder were performed using a 

background of barium sulfate. The Kubelka-Munk approximation (Equation 2.32) for direct bandgap 

semiconductors was applied to give the onset of absorption for the material. As presented in Figure 5.7 

the co-gel shows two distinct absorption onsets at 2.3 eV and 3.6 eV which are consistent with starting 

CdSe and ZnS NCs, meaning they maintained the quantum confinement affects in the resultant phase-

segregated co-gels. 
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Figure 5.7. The diffuse-reflectance measurements of the phase-segregated CdSe/ZnS co-gel after the 
application of the Kubelka-Munk approximation for direct bandgap materials. 

 

 Finally the solution-phase emission data for the phase-segregated co-gels is shown in Figure 5.8. To 

prepare the sample, a suspension of the co-gel in methanol was sonicated for several minutes and placed 

in the photoluminescence spectrometer with an excitation wavelength of 300 nm. The emission for the 

phase-segregated co-gel shows two distinct peaks at 360 nm and 556 nm indicative of emission from the 

ZnS portion and the CdSe portion of the gel, respectively.   

 

Figure 5.8. The PL emission data for the phase-segregated co-gel of CdSe/ZnS (λexc= 300 nm). 
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5.3.3 Intimately Mixed Gels 

 In an attempt to slow down the kinetics of aggregation for the CdSe NCs, to ensure they are on a 

similar time-scale of the MUA-capped ZnS NCs, the longer 16-mercaptohexadecanoic acid ligand was used 

to passivate the surface of the CdSe particles. Starting with a concentration for each nanocrystal sol (ZnS-

MUA, CdSe-MHA) of 4.8 x 10-6 M, 1 ml of each sample was added to a glass vial, followed by the addition 

of 20 ul of 3% TNM (oxidant) solution. The final macroscopic gel (which forms within 4-5 hrs.) appears to 

be a well-mixed combination of the CdSe and ZnS nanocrystals (Figure 5.9). From the images of the final 

gel, there is no indication of phase-segregation. 

 

Figure 5.9. The sol-gel formation of the heterogeneous CdSe/ZnS co-gel over time a) 2 h and b) following 
the solvent exchange. 

 

 The color of the final wet gel (Figure 5.9), appears to be a mixture between the white-color seen in a 

ZnS wet gel (Figure 5.10a) and the darker-red color of the CdSe wet gel (Figure 5.10b), which is another 

indication of the good mixing in this multicomponent gel.  

 

Figure 5.10. The wet gel for a) ZnS and b) CdSe. 
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 The resultant composite gel was dried through supercritical CO2 extraction to produce an aerogel. The 

aerogel sample was characterized by PXRD which indicated the peaks for both zb-CdSe and zb-ZnS were 

present in the gel (Figure 5.11).  

 

Figure 5.11. The PXRD spectrum for the intimately mixed co-gel with the pdf line diagrams for zb-CdSe 
and zb-ZnS shown below. 

 

 The diffuse-reflectance measurements for the intimately mixed co-gels show two peaks for 

absorption onset at 2.3 eV and 3.6 eV for the CdSe nanocrystal and the ZnS nanocrystal composites, 

respectively (Figure 5.12). This is similar to what was seen in the phase-segregated gels (Figure 5.7), 

indicating little change in the NCs after assembly into the intimately-mixed composite gel. 
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Figure 5.12. The diffuse-reflectance spectrum for the intimately mixed co-gels of CdSe/ZnS. 
 

 The solution-phase emission data for the intimately mixed co-gel was obtained as described for the 

phase-segregated sample. As shown in Figure 5.13 the emission for the intimately mixed co-gel shows 

two distinct peaks at 362 nm and 554 nm indicative of emission from the ZnS portion and the CdSe portion 

of the gel, respectively. Intriguingly, the emission from CdSe QDs appears to be quenched, the weak 

emission could be due to poor gel quality, an interaction between the components, or a combination of 

these two factors.  

 

Figure 5.13. The photoluminescence emission data for the intimately mixed CdSe/ZnS co-gel composite 
(λexc=300 nm). 
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 To verify that this multicomponent co-gel was a more intimately mixed composite of the CdSe and 

ZnS NCs, ICP-MS was performed on an entire gel section of material, while EDAX from TEM was performed 

on several small sections of the sample (Table 5.2), ICP-MS gave an overall ratio 1:1 Cd:Zn. The TEM/EDS 

mol ratio of Cd:Zn obtained in several areas of the sample was 1:1, as would be expected for a well-mixed 

system, although some regions did show unequal compositions (spot 2 Table 5.2). This is not surprising as 

there are kinetic distinctions between the two NCs, so perfect mixing is not expected (Figure 5.4). 

Table 5.2. Atomic ratio of Cd:Zn using ICP-MS and small spot sizes (200-400 nm) in TEM EDAX analysis 
for the intimately mixed co-gel, specimen was prepared by sonication of the bulk gel. 

Gel Structure 
Type  

ICP-MS Atomic 
Ratio (Cd:Zn) 

TEM EDS Spot 1 
(Cd:Zn) 

TEM EDS Spot 2 
(Cd:Zn) 

TEM EDS Spot 3 
(Cd:Zn) 

TEM EDS Spot 4 
(Cd:Zn) 

Intimately 
mixed 
Co-gel 

1:1 1:1 0.7:1 1:1 1:1 

 

5.4 Conclusion 

An important concept in heterogeneous material design is the ability to control the spatial relationship 

between complimentary components in a solid state architecture using reliable synthetic methods, 

targeting precise compositions and controlling interfaces between the two-components in the hybrids. In 

our sol-gel synthesis, we have identified several levers to control the degree of mixing in composites, 

including oxidant concentration, crystal structure, chalcogenide redox properties and passivating ligand. 

Here we show that by adjusting the passivating ligand, the kinetics of aggregation can be tuned for 

dissimilar metal chalcogenides to synthesize a heterogeneous material that is either an intimate 

intermingling of the two components QD’s or has significant phase-segregation.  
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CHAPTER 6: CONCLUSIONS AND PROSPECTUS 

6.1 Conclusion  

Metal chalcogenide nanocrystals are an important class of materials due to their interesting optical 

and electrical properties that can be controlled through particle size and shape, capping ligand, synthesis 

techniques and incorporation into heterostructures. The tunability of these materials, especially within 

the region of visible and near-IR energy, makes them important for electronic and optoelectronic 

applications such as field-effect transistors (FETs),74-75photodetectors,76-77 light emitting diodes (LEDs),78-

79 photovoltaics80-81 and radiation detectors.20, 82 The incorporation of QDs into solid-state devices while 

enabling efficient carrier transport is a very important hurdle if MQ NCs are to be successfully used in the 

optoelectronics industry. Charge transport in thin films depends on the amount of electronic coupling 

between individual particles.185 However, common synthetic techniques for producing high-quality NCs 

that are stable in solution usually employ long-chain passivating surface ligands, which increases the 

interparticle distances, decreasing the charge transport between neighboring particles.  

Brock and co-workers have developed and utilized oxidative sol-gel methods to assemble metal 

chalcogenide NCs into gels, xerogels, aerogels and thin films.38, 73, 101 NCs are connected through oxidation 

of the surface chalcogenide to form di- and/or polychalcogenide linkages, producing 2 and 3-D  

structures.58 

This dissertation work is focused on achieving three main goals: 

Aim I. Improve interfacial charge transport of a QD/porous silicon heterostructured device for radiation 

detection. The combination of metal chalcogenide QDs and pSi supports produces a potentially useful 

heteromaterial for radiation detection devices due to the large X-ray stopping power of PbS QDs 

combined with the charge transport potential of pSi.20 Following the synthesis of anion-passivated PbS 

QDs and the exchange of the long chain oleic acid capping ligand with a shorter-chain 4-flurothiophenolate 

ligand, the QDs were spin-coated onto a pSi support that had been anodically etched to form pores with 
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a depth of 10 µm and diameter of 80-100 nm. To test whether the interface of anion-passivated PbS QDs 

and pSi would allow for charge transport in the device, an important factor in radiation detection, the 

heterostructured devices were first tested as photodiodes. I-V curves for the samples were measured with 

and without a light source. When comparing the samples with longer-chain passivating ligands on the PbS 

to the devices with the PbS QDs passivated with shorter-chain ligands, only the devices with short-chain 

passivating (4-fluorothiophenolate) ligands show any interaction with light. These results verify the 

importance of the interface between two materials in a heterostructured device, with the shorter-chain 

passivating ligand facilitating charge transport between the PbS QDs and the Si support. This suggests 

potential utility of these multicomponent devices in developing future direct conversion X-ray detection 

devices with a higher stopping power, allowing the patient X-ray dosage to be decreased.  

Aim II. Develop synthetic levers for control over kinetics of aggregation for the oxidative gelation of MQ 

(M= Pb and Cd, Q= S, Se and Te) QDs. Due to the complexity of sustainable energy device production, it 

has become more important for multiple components to be integrated to work together synergistically. 

These multiple components must interact with each other, enabling charge transport properties in 

optoelectronic devices. Chapter 4 discusses an important step towards developing heterostructured 

metal chalcogenide gels by focusing on new synthetic levers for the control of the sol-gel synthesis 

process. CdQ NCs were synthesized using common high temperature arrested-precipitation techniques, 

to produce the wurtzite or zinc blende CdQ NCs. The NCs were then capped with a thiolate ligand. Using 

time resolved dynamic light scattering (TR-DLS) and nuclear magnetic spectroscopy (NMR), the kinetics of 

colloidal aggregation for the sol-gel synthesis of CdQ NCs were found to depend on the relative redox 

properties of Q (Q=S, Se and Te) and the structure (cubic vs. hexagonal).  From TR-DLS studies, the increase 

in hydrodynamic radius as a function of time after the addition of oxidant (TNM) occurs in the order of 

the relative redox properties of the Q (S=0.48 V, Se=0.92 V and Te=1.14 V), with CdTe>CdSe>CdS. 

Interestingly, it appears that the native crystal structure of the QD (wurtzite vs. zinc blende) has a 
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considerable effect on the kinetics of the sol-gel synthesis with the zinc blende hydrodynamic radius 

growing slowly relative to wurtzite. The NMR studies following the addition of the oxidant (TNM), show 

the wurtzite CdS NCs lose the thiolate capping ligand faster than the zb-CdS, this can be seen by the rate 

of formation of the disulfide by-product in the NMR spectra. Further NMR studies showed that zb-CdS 

NCs have fewer passivating ligands/particle than the w-CdS NCs (zb-CdS NCs= 5.7 ligands/nm2 and w-CdS 

NCs= 18.9 ligands/nm2); this higher concentration of surface ligands can be attributed to higher surface 

facet energies on the w-CdS NCs, due to the polar nature of the crystal structure. Another feature of the 

zb-CdS NCs is possible surface anionic vacancies seen using electron paramagnetic resonance 

spectroscopy. Less surface chalcogenide sites to form polychalcogenide linkages between the particles 

could also explain the slower kinetics of aggregation for the zb-CdS NCs. These new tools, the relative 

redox properties of Q, and the crystal structure of the QDs, can be important levers in the toolbox of 

multicomponent nano-material design through sol-gel synthetic techniques.  

Aim III. Synthesize multicomponent MQ materials of CdSe/ZnS with controlled phase segregation. The sol-

gel synthetic technique can be used to make 2-and 3-D NC architectures, which would be a useful 

synthetic technique for incorporating two MQ QDs with complimentary functionalities into a 

heterostructured material. Several known synthetic levers can be used to control the kinetics of colloidal 

aggregation, including NC concentration, particle size, steric bulk of the passivating ligand, facet reactivity 

and the relative redox properties of the Q (Q=S, Se and Te).54, 73, 83 One step in the sol-gel synthesis of 

these MQ particle constituents is the oxidation of the surface thiolate ligand. Using a bulkier ligand when 

incorporating two MQ NCs with differing Q (Q=S and Se), allows the tuning of the kinetics of colloidal 

aggregation. This gives a control lever that allows tailoring the final 3D structure of the co-gel. 

6.2 Prospectus 

This dissertation research has provided vital knowledge of the conditions and possible levers 

required to optimize the incorporation of NCs into multicomponent materials, either through sol-gel 
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synthesis or spin coating onto a support.  Many optoelectronic, electronic and other device formats could 

be benefitted by the high surface area and unique quantum confinement affects inherent in these QDs if 

they can be combined in such a way as to enable facile charge transport. Furthermore this research has 

shown that relative redox properties of the anion (Q), the native crystal structure, and the sterics of the 

surface ligand can be utilized to affect the sol-gel synthesis for incorporation of different NC components 

into heterostructures. 

 Initial attempts to make radiation detection devices (Chapter 3) resulted in devices with poor 

performance due to the poor charge transport between the QDs in the devices. The synthesis methods 

required for these radiation detection devices meant that there was poor reproducibility between the 

samples. Therefore, a more reproducible synthetic techniques is required, possibly by switching from a 

porous Si support, to utilizing a thick film of PbS QDs, on-top of a Si wafer. However this dissertation work 

has introduced a successful strategy to improve charge transport properties between the QDs, by using 

short-chain thiolate ligands (4-fluorothiophenolate, solution-phase exchange) and anion-passivation on 

the NC surface, to make improved radiation detection devices. Further research should focus on surface-

passivation of the PbS QDs, including monitoring device improvement with even shorter-chain passivating 

ligands, such as thioglycolic acid. Film improvement will reduce likely aggregated regions in the devices, 

which will allow improved interfacial contacts with the electrodes. A larger NC loading has also been 

shown to increase electron transport.186 

 The poor charge transport between QD NCs has led us to develop an oxidative sol-gel synthesis to 

incorporate particles into a 3D matrix.38 To incorporate these NCs with complimentary functionalities it is 

important to study different possible levers for the control of the kinetics of aggregation. Now that these 

surface affects have been shown to have control of the kinetics it is important to the future research 

should focus on the effect of the cation (M) on the sol-gel synthesis. Since one of the important steps 

determined in the sol-gel synthesis is the solvation of the metal cation to expose chalcogenide surface 



122 
 

 
 

sites, it is likely that cation solvation affects may contribute to the kinetics of assembly.58 Since particle 

shapes are driven by the differences in surface energies, which favor growth along specific facets, it will 

also be important to study if the kinetics of colloidal aggregation can be adjusted based on particle shape. 

These different NC shape effects on the kinetics of colloidal aggregation can be studied through TR-DLS.  

 The oxidative sol-gel synthesis strategy can be extended to other chalcogenide NC systems to develop 

multicomponent materials. Multicomponent materials are of particular interest because of their ability to 

combine several materials with complimentary functionalities (e.g. n-type and p-type constituent 

materials) into one device or thin film. It would make this synthetic technique desirable for developing 

solar energy devices. This research has highlighted the ability to tune macroscopic properties of the final 

gel, using our oxidative sol-gel synthesis, through synthetic levers such as concentration (oxidant and NC), 

sterics of the capping ligand, particle size and Q.  Future studies can utilize these synthetic levers for thin 

film device formation. These early attempts to make multicomponent gels were performed in the solution 

phase, but for device incorporation it is important that future work focuses on thin film deposition 

techniques.   
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ABSTRACT 
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This dissertation work is focused on developing methods to facilitate charge transport in 

heterostructured materials that comprise nanoscale components. Multicomponent semiconductor 

materials were prepared by (1) spin coating of discrete nanomaterials onto porous silicon (pSi) or (2) self-

assembly. Spin-coating of colloidal quantum dot (QD) PbS solutions was employed to create prototype 

PbS QD based radiation detection devices using porous silicon (pSi) as an n-type support and charge 

transport material. These devices were initially tested as a photodetector to ascertain the possibility of 

their use in high energy radiation detection. Short chain thiolate ligands (4-fluorothiophenolate) and anion 

passivation at the particle interface were evaluated to augment interparticle transport. However, the 

samples showed minimum interaction with the light source possibly due to poor infiltration of the PbS 

QDs into the pSi.   

The second project was also driven by the potential synergistic properties that can be achieved in 

multicomponent metal chalcogenide nanostructures, potentially useful in optoelectronic devices. 

Working with well-established methods for single component metal chalcogenide (MQ) particle gels this 

dissertation research sought to develop practical methods for co-gelation of different component 

particles with complimentary functionalities. By monitoring the kinetics of aggregation using time 
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resolved dynamic light scattering and NMR spectroscopy the kinetics of aggregation of CdQ NCs adopting 

the two most common crystal structures was studied and it was determined that the hexagonal (wurtzite) 

crystal structure aggregated faster than the cubic (zinc blende) crystal structure. For gel coupling of 

nanoparticles with differing Q (Q=S, Se and Te), once we accounted for the crystal structure effects, it was 

determined that the relative redox characteristics of Q govern the reaction rate. This could be moderated 

by the sterics of the ligand. 

The oxidative sol-gel assembly routes were also employed to fabricate metal chalcogenide NC gels 

with different NC components with control over the degree of mixing. In order to control the degree of 

mixing, the factors that underscore sol-gel oxidative assembly (structure, redox properties of Q and ligand 

sterics) were exploited. Two component gels of zb-Zns and zb-CdSe were prepared in which both were 

capped with 11-mercaptoundecanoic acid (MUA), leading to very different assembly rates due to the 

faster gelation of zb-CdSe and in which zb-ZnS was capped with MUA and zb-CdSe capped with the longer-

chain 16-mercaptohexadecanoic acid (MHA) to slow down the rate for zb-CdSe. When the kinetics are 

similar, a uniformly mixed a gel is produced, when different, CdSe gels first giving a 2-layer macro gel.   
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