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CHAPTER 1 INTRODUCTION

This dissertation is concerned with the so-called stochastic hybrid systems, which are

featured by the coexistence of continuous dynamics and discrete events and their interactions.

Such systems have drawn much needed attentions in recent years. One of the main reasons

is that such systems can be used to better reflect the reality for a wide range of applications

in networked systems, communication systems, economic systems, cyber-physical systems,

and biological and ecological systems, among others.

Our main interest in this dissertation is centered around one class of such hybrid systems,

known as switching diffusions; see [34, 52] and references there in. In such a system, in

addition to the driving force of a Brownian motion as in a stochastic system represented

by a stochastic differential equation (SDE), there is an additional continuous-time switching

process that models the environmental changes or other random factors due to random events

not represented in the usual stochastic differential equations. For example, in a financial

market model, the switching process (e.g., a Markov chain) depicts such changes as market

switches from a bull market to a bear market. In a cyber-physical system of a platoon of

un-manned vehicles, the switching process represents the random communication capacity

changes because of the interference. People have realized that such switching processes are

much more realistic than the fixed configuration counterparts. Because their prevalence,

stochastic hybrid systems have been studied extensively. To further our understanding and

to treat such systems effectively, this dissertation is devoted to switching diffusions from

several angles. In what follows, we give the organization of the dissertation.

In Chapter 2, we develops numerical schemes for stochastic differential equations with
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Markovian switching (Markovian switching SDEs). By Markovian switching we meant that

the switching process in fact, is a continuous-time Markov chain independent of the driving

Brownian motion. Inspired by the well-known Milstein algorithms for solutions of stochastic

differential equations, our effort is devoted to designing approximation algorithms with faster

convergence rates than the commonly used Euler-Maruyama procedures. Compared to the

diffusion case, the presence of the random switching component makes the design of the

algorithms and the analysis much more complex. By utilizing a special form of Itô’s formula

for switching SDEs and special structural of the jumps of the switching component we

derived a new scheme to simulate switching SDEs and develop a new approach to establish

the convergence of the proposed algorithm. In contrast to the existing literature of numerical

solutions for stochastic differential equations and Markovian switching stochastic differential

equations, a new approach incorporating martingale methods, quadratic variations, and

Markvian stopping times is developed. Detailed and delicate analysis is carried out. Under

suitable conditions which are natural extensions of the classical ones, the convergence of the

algorithms is established. The rate of convergence is also ascertained. In addition, numerical

examples are provided to show the agreement with the theoretical convergence order. The

content of this chapter is based on the work [37].

In Chapter 3, we study a limit theorem for general stochastic differential equations with

Markovian regime switching. To begin, assume that we have a sequence of stochastic regime

switching systems where the discrete switching processes are independent of the continuous

state of the systems. The continuous-state component of these systems are governed by

stochastic differential equations where the time t and the driving processes B(·) are replaced

by An(·) and Mn(·), which are non-negative continuous increasing processes and square
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integrable martingales, respectively. We try to establish the convergence of the sequence of

systems to the one described by a state independent regime-switching diffusion process when

the two sequence of processes {An(·)} and {Mn(·)} converge to the usual time t and the

Brownian motion B(·) in suitable sense. Compared to the corresponding problem of usual

SDEs, the presence of the random switching component in our model makes the analysis

much more complex. Our model also incorporates very general driving processes and thus

makes it different from the existing literature for Markovian regime-switching SDEs. Under

suitable conditions, the desired limit theorem is established. Though our motivation stems

partially from many approximation schemes for regime-switching SDEs where each sequence

of simulations resulted in a sequence of approximation processes of the above mentioned

form, our result goes far beyond this situation. The result, besides of the purely theoretical

interest, may provide a sort of general theorem to establish the convergence in some other

situations as well. The results of this chapter are taken form the work [10].

Chapter 4 is concerned with controlled hybrid systems that are good approximations

to controlled switching diffusion processes. The rational is as follows. Although Brownian

motion based models are good approximation to the real models, and are easily dealt with

in terms of analysis. In real applications, the noise is often non-Markovian and the so-called

“white noise” is only an idealization and simplification. The best that one may hope is an

approximation of the Brownian motion. Therefore, in lieu of a Brownian motion noise, we

use a wide-band noise formulation, which facilitates the treatment of non-Markovian models.

The wide-band noise is one whose spectrum has band width wide enough. We work with

a basic stationary mixing type process. On top of this wide-band noise process, we allow

the system to be subject to random discrete event influence. The discrete event process is a
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continuous-time Markov chain with a finite state space. Although the state space is finite,

we assume that the state space is rather large and the Markov chain is irreducible. We

are interested in optimal and equilibrium controls of such systems. Due to the complexity

and non-Markovian of the system, obtaining the desired controls is extremely difficult, if

not impossible, we therefore contend ourselves with getting the nearly optimal and nearly

equilibrium controls. Using a two-time-scale formulation and assuming the Markov chain also

subjects to fast variations, combine with weak convergence and singular perturbation test

function method we first proved that the when controlled by nearly optimal and equilibrium

controls, the state and the corresponding costs of the original systems would “converge”

to those of controlled diffusions systems. Using the limit controlled dynamic system as

a guidance, we construct controls for the original problem and show that the controls so

constructed are near optimal and nearly equilibrium.

The dissertation is concluded with Chapter 5, where we summarize the central themes of

the dissertation, provide further discussions and remarks. We also present some directions

for future work.
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CHAPTER 2 MILSTEIN-TYPE PROCEDURES

FOR NUMERICAL SOLUTIONS

OF STOCHASTIC DIFFERENTIAL

EQUATIONS

2.1 Introduction

In this chapter, we develop numerical algorithms for stochastic differential equations with

Markovian switching (in short Markovian switching SDEs). We aim to designing numerical

schemes of Milstein type, proving the convergence, and obtaining convergence rate that is

better than the commonly used Euler-Maruyama procedures. Our effort is largely motivated

by the pressing need of treating hybrid stochastic models involving continuous dynamics

and discrete events represented by stochastic differential equations modulated by Markov

chains. Recently, much effort has been devoted to the study of switching diffusions [34, 40,

47, 52]. Random switching models have been used in applications as option pricing, jump

linear systems in automatic control, hierarchical decision making in production planning [44],

estimation in hybrid systems [54], stock liquidation [55], and competitive Lotka-Volterra

models in random environments [2], among others.

Because such systems are often highly nonlinear together with the coupling due to the

random switching, closed-form solutions are virtually impossible to obtain. Thus significant

effort has been devoted to designing feasible and efficient numerical solutions. Nevertheless,

to the best of our knowledge, most of the work on numerical methods for Markovian switching

diffusion to date has been focusing on Euler-Maruyama schemes; see [12,40,47,48,53], where

different algorithms have been considered under various conditions and convergence modes.

In spite of its simplicity, the convergence rate of Euler-Maruyama method is at most of order

1/2.
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In numerical methods for stochastic differential equations, a scheme due to Milstein came

into being; see [22,36]. The main idea is to use Itô formula for the drift and diffusion coeffi-

cients to get a better approximation in each step of the algorithm. The convergence rate was

proved to be of order 1. One question naturally arises. For Markovian switching diffusions,

can we design Milstein-type schemes? If we can, will such procedures still provide faster

(order 1) convergence? There has been no decisive answer to this question to date. In fact,

the study on the corresponding numerical algorithms of Milstein type have been scarce or

virtually none for switching diffusions. Since the random switching and the discrete and

continuous states are tangled together, the analysis is very difficult. Our aim in this chapter

is devoted to improving the rates of convergence of numerical solutions for Markovian switch-

ing diffusions. To obtain a better convergence rate, we construct a Milstein-type scheme for

diffusions with Markovian switching. In contrast to the case of diffusions, the appearance

of the discrete component in the regime-switching diffusion leads to some additional terms

represented by double stochastic integrals driven by both Brownian motions and discontin-

uous martingales due to the switching process. This requires special handling of these terms

and makes the analysis more complicated. To overcome the difficulties, we use a crucial

observation that multiple jump changes (more than two jumps) of the Markov chain in each

small interval is of high order in reference to the size of the interval, which enables us to

simplify the calculations.

In this chapter,

(1) we design and construct a Milstein-type procedure for numerical solutions of stochastic

differential equations with Markovian switching;
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(2) we establish the convergence of the algorithm;

(3) we demonstrate order 1 convergence rate and confirm that as in the case of diffusions,

the faster convergence of the Milstein-type procedures is preserved;

(4) we numerically verify the convergence rate by providing numerical experimental results.

The rest of the chapter is arranged as follows. Section 2.2 begins with the formulation

and preliminaries. Section 2.3 presents the numerical algorithms and states the main result.

Section 2.4 is devoted to the study of the convergence of the numerical algorithms. First,

we obtain an estimate relating the total number of jumps of the switching process on small

intervals and the bound of the moments of the numerical solutions. Next, we use the Itô

formula to present the difference between the exact and numerical solutions. The error

bounds are then estimated to prove the main result. The performance of the numerical

schemes is illustrated by several examples in Section 2.5. Finally, the chapter is concluded

with Section 2.6 giving some concluding remarks.

2.2 Formulation and Preliminaries

This section provides the set up of our problem and gives the assumptions and notation as

well as some preliminary results regarding the Markovian switching diffusions. Throughout

this chapter, we use the same notion | · | to denote the different norms in Rd, Rd×m, or

Rd×d for some fixed positive integers d and m. In this chapter, vectors are column vectors

unless specified otherwise, and 〈·, ·〉 denotes the inner product in Rd. For z ∈ Rl1×l2, we

use z′ to denote its transpose. We will use C to denote a generic constant whose value may

change from appearance to appearance in this chapter and use 11 to denote the usual zero-one

indicator function. For T > 0 and positive integers k and l, we use Ck(R) to denote the set
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of real-valued functions that are k-times continuously differentiable and use Ck,l([0, T ]×Rd)

to denote the set of real-valued functions that are k-times continuously differentiable with

respect to the first variable and l-times continuously differentiable with respect to the second

variable.

Stochastic differential equations with Markovian switching. Let (Ω,F ,P) be a

complete probability space. Let B(·) =
(

B1(·), B2(·), . . . , Bm(·)
)′

be a standard Brownian

motion in Rm, and {α(t), t ≥ 0} be a Markov chain that takes values in the finite set M =

{1, 2, . . . , m0}. The dynamic behavior of the Markov chain α(t) is specified by the generator

Q = (qi0j0 : i0, j0 ∈ M) satisfying: qi0j0 ≥ 0 for i0 6= j0 ∈ M and qi0i0 = −∑j0 6=i0
qi0j0 for

each i0 ∈ M. We study the numerical approximation to the following stochastic differential

equation with Markovian switching

dX(t) = b(t, X(t), α(t))dt+ σ(t, X(t), α(t))dB(t), X(0) = X0, (2.1)

where b(·, ·, ·) : R×Rd×M → Rd, σ(·, ·, ·) : R×Rd×M → Rd×m are vector-valued functions

satisfying suitable conditions that will be specified later and 0 ≤ t ≤ T , a finite time horizon.

The initial condition X0 is a Rd-valued random variable. We assume that X0, B(·), and α(·)

are independent. Thus, the transition probability of Markov chain α(t) satisfies the following

equation

P
(

α(t+∆t) = j0
∣

∣α(t) = i0, α(s), X(s), 0 ≤ s ≤ t
)

= qi0j0∆t + o(∆t) i0, j0 ∈ M, i0 6= j0.

(2.2)
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We write

X(t) = (X1(t), X2(t), . . . , Xd(t))
′

b(t, x, i0) = (b1(t, x, i0), b2(t, x, i0), . . . , bd(t, x, i0))
′

and

σ(t, x, i0) = (σ1(t, x, i0), σ2(t, x, i0), . . . , σm(t, x, i0)) ∈ Rd×m

for (t, x0, i0) ∈ [0, T ] × Rd ×M, and σl = (σ1,l, σ2,l, . . . , σd,l)
′ ∈ Rd for 1 ≤ l ≤ m. Denote

FB
t = σ{X0, Bl(s), 0 ≤ s ≤ t, 1 ≤ l ≤ m}, Fα

t = σ{α(s), 0 ≤ s ≤ t} and Ft = FB
t ∨Fα

t for

t ≥ 0. Assume that X0, b(·, ·, ·), and σ(·, ·, ·) satisfy the following conditions.

Assumption (A). There is a constant C such that for x, y ∈ Rd, t ∈ [0, T ] and i0 ∈ M,

E|X0|2 < C, and

|b(t, x, i0)− b(t, y, i0)|+
∣

∣σ(t, x, i0)− σ(t, y, i0)
∣

∣ ≤ C|x− y|,

|b(t, x, i0)|+ |σ(t, x, i0)| ≤ C(1 + |x|)

Assumption (A) requires the initial data having finite second moment together with the

usual Lipschitz continuity and linear growth condition. It follows from Theorem 3.3.13 in [34]

that under Assumption (A), equation (2.1) has a unique global solution. In addition, we

have the following result regarding the moments of X(t). The proof is similar to those of

Theorem 3.3.23 and Theorem 3.3.24 in [34] and is therefore omitted.

Lemma 2.1. Under Assumption (A) the following inequalities hold true with probability one

E

[

sup
t∈[0,T ]

|X(t)|2
∣

∣

∣
Fα

T

]

≤ C and E

[

sup
t∈[s,s+h]

∣

∣X(t)−X(s)
∣

∣

2
∣

∣

∣
Fα

T

]

≤ Ch,

where the constant C depends only on T and E|X0|2.
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Martingale associated to the Markov chain and Itô formula. For each pair (i0, j0)

in M×M, i0 6= j0, and t ≥ 0, we define

[Mi0j0](t) =
∑

0≤s≤t

11(α(s−) = i0)11(α(s) = j0), 〈Mi0j0〉(t) =
∫ t

0

qi0j011(α(s−) = i0)ds.

(2.3)

Then it follows from Lemma IV.21.12 in [43] that the process Mi0j0(t), 0 ≤ t ≤ T , defined

by

Mi0j0(t) = [Mi0j0 ](t)− 〈Mi0j0〉(t) (2.4)

is a purely discontinuous and square integrable martingale with respect to Fα
t , which is

null at the origin. The processes [Mi0j0](t) and 〈Mi0j0〉(t) are the optional and predictable

quadratic variations, respectively. For convenience, we denote Mi0i0(t) = 0 for i0 ∈ M and

0 ≤ t ≤ T . We have the following orthogonality relations from the definition of optional

quadratic covariations (see [33], Section 1.8):

[Bl1 , Bl2] = 0 for 1 ≤ l1, l2 ≤ m, l1 6= l2,

[Mi0j0 , Bl] = 0 for i0, j0 ∈ M, 1 ≤ l ≤ m,

[Mi0j0 ,Mi1j1] = 0 for i0, j0, i1, j1 ∈ M, (i0, j0) 6= (i1, j1).

Let L denote the generator of system (2.1). For a function f(·, ·, ·) : [0, T ]×Rd×M → R

such that for each i0 ∈ M, f(·, ·, i0) ∈ C1,2([0, T ]× Rd),

Lf(t, x, i0) =
∂

∂t
f(t, x, i0) + Li0f(t, x, i0) +Qf(t, x, ·)(i0) (2.5)
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for all (t, x, i0) ∈ [0, T ]× Rd ×M, where

Li0f(t, x, i0) = b′(t, x, i0)∇xf(t, x, i0) +
1

2
tr
(

∇2
xxf(t, x, i0)A(t, x, i0)

)

,

Qf(t, x, ·)(i0) =
∑

j0∈M

qi0j0
(

f(t, x, j0)− f(t, x, i0)
)

.

Here, ∇x and ∇2
xx denotes the gradient and Hessian matrix with respect to x, respectively,

and A(t, x, i0) = σ(t, x, i0)σ
′(t, x, i0) ∈ Rd×d. We will use the following form of Itô’s lemma

to find the stochastic expansion of the solution to (2.1) in Section 2.3. A proof of it will be

given in the Appendix.

Lemma 2.2. For a function f(·, ·, ·) : [0, T ] × Rd × M → R such that for each i0 ∈ M,

f(·, ·, i0) ∈ C1,2([0, T ]× Rd) we have

f(t, X(t), α(t)) = f(s, x(s), α(s)) +

∫ t

s

Lf(u,X(u), α(u))du

+
m
∑

l=1

∫ t

s

〈

∇xf(u,X(u), α(u)), σl(u,X(u), α(u))
〉

dBl(u)

+
∑

i0 6=j0

∫ t

s

(

f(u,X(u), j0)− f(u,X(u), i0)
)

dMi0j0(u), 0 ≤ s ≤ t ≤ T.

(2.6)

2.3 Numerical Methods

In this section we provide the details of our numerical scheme with constant step size

denoted by h. For n = 0, 1, 2, . . ., we use tn = nh to denote the time mesh points and

∆n = (tn, tn+1] to denote the time intervals in the scheme.

Construction of the Markov chain α(t). For generation of a continuous-time Markov

chain, with a given generator Q = (qi0j0) ∈ Rm0×m0 , we quote the method of constructing

the Markov chain from [51], Section 2.4. To construct the sample paths of α(t) requires
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determining its sojourn time at each state and its subsequent moves. The chain sojourns

in any given state i0, i0 ∈ M, for a random length of time, ηi0 , which has an exponential

distribution with parameter −qi0i0 . Subsequently, the process will enter another state. Each

state j0 (with j0 ∈ M, j0 6= i0) has a probability qi0j0/(−qi0i0) of being the chain’s next

residence. The post-jump location is determined by a discrete random variable Zi0 taking

values in {1, 2, . . . , i0 − 1, i0 + 1, . . . , m0}. Its value is specified by

Zi0 =















































1, if U ≤ qi01/(−qi0i0),

2, if qi01/(−qi0i0) < U ≤ (qi01 + qi02)/(−qi0i0),

...
...

m0, if
∑

j0 6=i0,j0<m0
qi0j0/(−qi0i0) ≤ U,

(2.7)

where U is a random variable uniformly distributed in (0, 1). Thus, the sample path of α(t)

is constructed by sampling from exponential and U(0, 1) random variables alternately. With

the α(t) generated above, for n = 0, 1, . . ., set αn = αh
n = α(tn) which is the h-skeleton of

the Markov chain.

Approximation of the jump times. To develop approximation derived from Milstein’s

approach for diffusions so as to obtain a better convergence rate than that of Euler-Maruyama

method, we need to use higher order Taylor expansion and add additional correction terms.

However, different from the diffusion case, the appearance of the discrete component in

Markovian switching diffusions makes the calculation of the terms (represented by stochastic

integrals driven by the discontinuous martingales associated with the Markov chain) more

complicated. To treat these terms, we analyze and approximate the jump times of the

Markov chain on each small interval ∆n.
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We observe that the stochastic integrals driven by the discontinuous martingales asso-

ciated with the Markov chain disappear on ∆n if there is no jump within the interval (see

Lemma 2.7). In addition, two or more jumps take places within this interval is only of order

O(h2), which is negligible. Therefore, we only need to consider the case that there is exactly

one jump occurs in each interval ∆n. In what follow, we will define the function ς(·) repre-

senting the jump time in ∆n when only one jump occurs. We will ignore the case of having

none or more than one jump in that interval by putting ς(n) = tn+1.

From the above construction of the Markov chain, we can compute the time of the k-th

jump denoted by τk for k ≥ 0. For convenience, define τ0 = 0. We denote the sojourn

time of the Markov chain at the state previous to the one of the (k + 1)-th jump by ηk, i.e.,

ηk = τk+1 − τk. For k ≥ 0 denote nk = nh
k =

⌈

τk
h

⌉

− 1, where ⌈x⌉ denotes the least integer

greater than or equals x (i.e., ⌈x⌉ − 1 < x ≤ ⌈x⌉). It follows that nkh < τk ≤ (nk + 1)h.

Next, we define the function ς(·) : N ∪ {0} → R+ as follow:

• If nk−1 < n = nk < nk+1 for some k ≥ 1 we define ς(n) = ςh(n) = τk.

• If nk−1 < n < nk or nk−1 < n = nk = nk+1 = · · · = nk+p < nk+p+1 for some k, p ≥ 1

we define ς(n) = ςh(n) = tn+1.

According to the definition of ς(·), for any n ≥ 0, ς(n) = tn+1 if there is none or there

are more than one jump occurring in ∆n, and tn < ς(n) < tn+1 if there is only one jump

occurring in ∆n. In the latter case, the Markov chain jumps from the state α(tn) to the state

α(tn+1) at the time ς(n).

Numerical scheme. For f : R × Rd ×M → R such that f(·, ·, i0) ∈ C1,2([0, T ]× Rd) for
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each i0 ∈ M, denote

Llf(t, x, i0) =

d
∑

k=1

σk,l(t, x, i0)
∂f

∂xk
(t, x, i0) =

〈

∇xf(t, x, i0), σl(t, x, i0)
〉

, l = 1, 2, . . . , m,

and

L0f(t, x, i0) =
∂f

∂t
f(t, x, i0) +

d
∑

k=1

[

bk(t, x, i0)−
1

2

m
∑

l=1

Llσk,l(t, x, i0)

]

∂f

∂xk
f(t, x, i0).

It follows that

Lf(t, x, i0) = L0f(t, x, i0) +
1

2

m
∑

l=1

LlLlf(t, x, i0) +Qf(t, x, ·)(i0). (2.8)

To approximate the solution to (2.1) we propose the following algorithm

Y h
n+1 = Y h

n + hb(tn, Y
h
n , αn) +

m
∑

l=1

σl(tn, Y
h
n , αn)∆nBl +

m
∑

l1,l2=1

Ll2σl1(tn, Y
h
n , αn)Il1,l2(n)

+
m
∑

l=1

[

σl(tn, Y
h
n , αn+1)− σl(tn, Y

h
n , αn)

][

Bl(tn+1)− Bl(ς(n))
]

, (2.9)

for h > 0, n = 0, 1, ..., where, for l, l1, l2 = 1, 2, . . . , m and n = 0, 1, . . .,

∆nBl = Bl

(

tn+1

)

−Bl(tn), Il1,l2(n) =

∫ tn+1

tn

∫ s1

tn

dBl2(s2)dBl1(s1). (2.10)

A detailed derivation of the above scheme is given in Section 2.4.

Remark 2.3. Similar to the Milstein scheme for stochastic differential equations without

switching, in algorithm (2.9), we implicitly assume that the terms Il1,l2(n) with 1 ≤ n ≤ T/h,

can be simulated. As shown in [22], Chapter 10, these multiple stochastic integrals cannot

be easily expressed in terms of ∆nBl1 and ∆nBl2 , the increments of the Brownian motions.

In many important practical problems, the diffusion coefficients have special properties that

allow the Milstein scheme to be simplified avoiding the use of double stochastic integrals in-

volving different components of the Brownian motions. For instance, with additive noise
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σk,l(t, x, i0) = σk,l(t, i0), or linear noise where σk,l(t, x, i0) = σk,l(t, i0)xk, l = 1, . . . , m,

k = 1, . . . , d and (t, x, i0) ∈ [0, T ] × Rd × M, the double stochastic integrals can be sim-

plified. Another special case is that of diagonal noise, where d = m and each component

Xk of the process X is disturbed only by the corresponding Brownian motion Bk and the

diagonal diffusion coefficient σk,k(t, x, i0) depends only on (t, xk, i0). A more general, but

important special case is that of commutative noise in which the diffusion matrix satis-

fies the commutativity condition Ll1σk,l2(t, x, i0) = Ll2σk,l1(t, x, i0) for all l1, l2 = 1, . . . , m,

k = 1, . . . , d and (t, x, i0) ∈ [0, T ]× Rd ×M.

We assume the following assumptions throughout this work. This set of assumptions is

a natural extension of those in Theorem 10.3.5 in [22] for the case SDE with Markovian

switching. In addition to Assumption (A), we assume that the initial approximation is close

to X0 in the second moments. This is hardly a restriction. In reality, we often take Y h
0 = X0

and even X0 is often not random. We use the current condition to accommodate more

complex cases. Moreover, we assume the growth condition for the partial derivatives, and

the local Hölder condition for the coefficients and appropriate derivatives.

Assumption (B). Assumption (A) holds. In addition, there is a constant C such that for

0 ≤ l0 ≤ m, 1 ≤ l, l1 ≤ m, x, y ∈ Rd, 0 ≤ s, t ≤ T and each i ∈ M, [E|X0 − Y h
0 |2]1/2 ≤ Ch,

|Ll1σl(t, x, i0)− Ll1σl(t, y, i0)| ≤ C|x− y|, and

|Ll0b(t, x, i0)|+ |Ll0σl(t, y, i0)|+ |Ll1Ll1b(t, x, i0)|+ |Ll1Ll1σl(t, x, i0)| ≤ C(1 + |x|),

|b(s, x, i0)− b(t, x, i0)|+|σl(s, x, i0)−σl(t, x, i0)|+|Ll1σl(s, x, i0)−Ll1σl(t, x, i0)| ≤ C(1 + |x|)|s− t| 12 .

Denote Xh
n = X(tn) for n = 0, 1, . . . , T/h where X(t) is the solution to (2.1) and T/h is

understood to be ⌊T/h⌋, the integer part of T/h. In what follows, for notational simplicity,
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we suppress the notation ⌊·⌋. We are now in a position to state our main theorem.

Theorem 2.4. Assume that Assumption (B) holds. Then there exists a constant C inde-

pendent of h such that E
[

sup0≤n≤T/h

∣

∣Xh
n − Y h

n

∣

∣

2
]

≤ Ch2.

2.4 Proof of Main Result

In this section, we provide the proof of our main result after establishing a number of

preliminary lemmas. We first provide a bound on the probability that the Markov chain α

has more than N jumps and prove the boundedness of the second moment of the approximate

solution Y h
n . These results are repeatedly used in the subsequent proofs. We next give a

detailed derivation of the proposed numerical scheme (2.9) and then proceed to give estimates

on various error terms and conclude the section with the proof of the main theorem.

2.4.1 Total Number of Jumps of the Markov Chain and the Boundedness of

the Second Moments

For a fixed number h, 0 < h < 1, and n = 0, 1, . . ., denote by Nn the total number of

jumps of the chain in the interval ∆n with the sequence of jump times tn = τn0 < τn1 < τn2 <

. . . < τnNn
< tn+1. We now provide a bound on the probability that the Markov chain α(·)

has more than N jumps on a time interval of length h.

Lemma 2.5. The following inequality holds true.

P
(

Nn ≥ N
)

≤ qNhN , N ≥ 1 (2.11)

where q = max{−qj0j0 : j0 ∈ M} and n = 0, 1, . . . As a consequence, if h < 1/(2q) there is

a constant C independent of n such that

ENn ≤ Ch. (2.12)
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Proof. Denote ηnp = τnp+1 − τnp for 0 ≤ p ≤ Nn. Then on the set {Nn ≥ 1}, ηn0 , ηn1 , . . . , ηnNn−1

are the times between the consecutive jumps and are conditionally independent random

variables. In addition, if Nn ≥ 1 and the chain jumps from state ip−1 to state ip at the time

τnp for 1 ≤ p ≤ Nn then ηnp has the exponential distribution with parameter −qipip. Since

q = max{−qj0j0 : j0 ∈ M}, by the strong Markov property of α(t), we have

P
(

Nn ≥ N
)

≤ P

(

N−1
∑

p=0

ηnp < h
)

≤
N−1
∏

p=0

P
(

ηnp < h
)

=

N−1
∏

p=0

(

1− eqipiph
)

≤
N−1
∏

p=0

(

− qipiph
)

≤ qNhN ,

(2.13)

for N ≥ 1 and n ≥ 0. Therefore, (2.11) follows. Inequality (2.12) is a consequence of (2.11)

and the identity ENn =
∑∞

N=1 P(Nn ≥ N).

Under Assumption (B), we obtain the boundedness of the second moments of Y h
n .

Lemma 2.6. Under Assumption (B), there exists a constant C independent of h such that

sup
0≤n≤T/h

E|Y h
n |2 ≤ C. (2.14)

Proof. For algorithm (2.9), we have

Y h
k,n+1 = Y h

k,n +
{

hbk(tn, Y
h
n , αn) +

m
∑

l=1

σk,l(tn, Y
h
n , αn)∆nBl (2.15)

+

m
∑

l1,l2=1

Ll2σk,l1(tn, Y
h
n , αn)Il1,l2(n)

+
m
∑

l=1

[

σk,l(tn, Y
h
n , αn+1)− σk,l(tn, Y

h
n , αn)

][

Bl(tn+1)− Bl(ς(n))
]

}

. (2.16)
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Thus, by the Cauchy-Schwarz inequality,

|Y h
k,n+1|2 ≤ |Y h

k,n|2 + 2Y h
k,n

{

hb(tn, Y
h
n , αn) +

m
∑

l=1

σl(tn, Y
h
n , αn)∆nBl

+
m
∑

l1,l2=1

Ll2σl1(tn, Y
h
n , αn)Il1,l2(n)

+
m
∑

l=1

[

σl(tn, Y
h
n , αn+1)− σl(tn, Y

h
n , αn)

][

Bl(tn+1)− Bl(ς(n))
]

}

+
(

m2 + 2m+ 1
){

h2|b(tn, Y h
n , αn)|2 +

m
∑

l=1

|σl(tn, Y
h
n , αn)|2|∆nBl|2

+

m
∑

l1,l2=1

|Ll2σl1(tn, Y
h
n , αn)|2|Il1,l2(n)|2

+

m
∑

l=1

∣

∣σl(tn, Y
h
n , αn+1)− σl(tn, Y

h
n , αn)

∣

∣

2[
Bl(tn+1)− Bl(ς(n))

]2
}

. (2.17)

Again, by virtue of algorithm (2.9), Y h
n is independent of ∆nBl, Il1,l2(n) and Bl(tn+1) −

Bl(ς(n)) for 1 ≤ l, l1, l2 ≤ m. Note that E
[

∆nBl

]

= E[Bl(tn+1)− Bl(ς(n))] = E
[

Il1,l2(n)
]

=

0. In addition, it follows from (2.10) that E|∆nBl|2 ≤ h, E|Bl(tn+1) − Bl(ς(n))|2 ≤ h,

E|Il1,l2(n)|2 = h2

2
. Thus, using these facts and Assumption (B) and taking the expectations

on both sides of (2.17) yields

E|Y h
n+1|2 ≤ E|Y h

n |2 + hCE
[

|Y h
n |
(

1 + |Y h
n |
)]

+ CE

{

h2
(

1 + |Y h
n |2
)

+

m
∑

l=1

(

1 + |Y h
n |2
)

|∆nBl|2

+
m
∑

l1,l2=1

(

1 + |Y h
n |2
)

|Il1,l2(n)|2 +
m
∑

l=1

(

1 + |Y h
n |2
)[

Bl(tn+1)−Bl(ς(n))
]2
}

≤ E|Y h
n |2 + Ch

(

1 + E|Y h
n |2
)

≤ E|Y h
0 |2 + Ch

n
∑

i=0

(

1 + E|Y h
i |2
)

. (2.18)

By the Gronwall inequality, (2.18) yields sup0≤n≤T/h E|Y h
n |2 ≤

(

CT + E|Y0|2
)

eCT .

2.4.2 Derivation of the Scheme

We are now in a position to provide a detailed derivation of the proposed scheme (2.9).

For n ≥ 0, denote Xh
n = X(tn) = (Xh

1,n, X
h
2,n, . . . , X

h
d,n)

′. Applying the Itô formula (2.6) to
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f = bk and f = σk,l for k = 1, 2, . . . , d and l = 1, 2, . . . , m, we have the following equation

for the k-th component of X(tn+1)

Xh
k,n+1 = Xh

k,n +

∫ tn+1

tn

[

bk
(

tn, X
h
n , αn

)

+

∫ s

tn

Lbk(u,X(u), α(u))du

+

m
∑

l=1

∫ s

tn

Llbk(u,X(u), α(u))dBl(u)

+
∑

i0 6=j0

∫ s

tn

(

bk(u,X(u), j0)− bk(u,X(u), i0)
)

dMi0j0(u)
]

ds

+

m
∑

l1=1

∫ tn+1

tn

[

σk,l1

(

tn, X
h
n , αn

)

+

∫ s

tn

Lσk,l1(u,X(u), α(u))du

+
m
∑

l2=1

∫ s

tn

Ll2σk,l1(u,X(u), α(u))dBl2(u)

+
∑

i0 6=j0

∫ s

tn

(

σk,l1(u,X(u), j0)− σk,l1(u,X(u), i0)
)

dMi0j0(u)
]

dBl1(s).

(2.19)

Rearranging terms in the last equation and making use of the identity Mi0j0 = [Mi0j0] −

〈Mi0j0〉 and the notation Il1,l2(n), we obtain

Xh
k,n+1 = Xh

k,n + hbk
(

tn, X
h
n , αn

)

+
m
∑

l=1

σk,l

(

tn, X
h
n , αn

)

∆nBl

+

m
∑

l=1

∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s)

+
m
∑

l1,l2=1

Ll2σk,l1(tn, X
h
n , αn)Il1,l2(n) +

6
∑

j=1

rk,n,j,

(2.20)
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for k = 1, 2, . . . , d and 0 ≤ n ≤ T/h, where

rk,n,1 =

∫ tn+1

tn

∫ s

tn

Lbk(u,X(u), α(u))duds, (2.21)

rk,n,2 =

m
∑

l=1

∫ tn+1

tn

∫ s

tn

Llbk(u,X(u), α(u))dBl(u)ds, (2.22)

rk,n,3 =
∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

bk(u,X(u), j0)− bk(u,X(u), i0)
)

dMi0j0(u)ds, (2.23)

rk,n,4 =
m
∑

l=1

∫ tn+1

tn

∫ s

tn

Lσk,l(u,X(u), α(u))dudBl(s), (2.24)

rk,n,5 =
m
∑

l=1

∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

σk,l(u,X(u), i0)− σk,l(u,X(u), j0)
)

d
〈

Mi0j0

〉

(u)dBl(s), (2.25)

rk,n,6 =

m
∑

l1,l2=1

∫ tn+1

tn

∫ s

tn

[

Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tn, X
h
n , αn)

]

dBl2(u)dBl1(s).

(2.26)

Guided by the Milstein scheme in the case of diffusion without switching, we should include

the first four terms on the right hand side of (2.20) into our numerical scheme. However,

different from the traditional Milstein schemes for stochastic differential equations, we need

to include the fifth term on the right hand side of (2.20), which involves the double stochastic

integrals with respect to the optional quadratic variation processes [Mi0j0] and the Brownian

motions. An explanation for the above choice is that, based on the definition of [Mi0j0],

the total contribution of the fifth term after all iterations in the scheme is O(h1/2). The

following lemma gives a more convenient representation for this double integral term. Its

proof is postponed to the appendix.
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Lemma 2.7. If Nn ≥ 1, for k = 1, 2, . . . , d and l = 1, 2, . . . , m we have

∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0 ](u)dBl(s)

=
Nn
∑

i=1

[

σk,l(τ
n
i , X(τni ), α(τ

n
i ))− σk,l(τ

n
i , X(τni ), α(τ

n
i−1))

](

Bl(tn+1)− Bl(τ
n
i )
)

. (2.27)

If Nn = 0 the left-hand side equals 0.

Since we have α(τn1 ) = αn+1 and α(τn0 ) = αn on the set {Nn = 1}, it follows from the

above Lemma that

∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s)

= 11
(

Nn = 1
)

[

σk,l(τ
n
1 , X(τn1 ), αn+1)− σk,l(τ

n
1 , X(τn1 ), αn)

](

Bl(tn+1)− Bl(τ
n
1 )
)

+ 11
(

Nn ≥ 2
)

∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0 ](u)dBl(s).

(2.28)

Denote

rk,n,7 =

m
∑

l=1

11
(

Nn = 1
)

[(

σk,l(τ
n
1 , X(τn1 ), αn+1)− σk,l(tn, X

h
n , αn+1)

)

−
(

σk,l(τ
n
1 , X(τn1 ), αn)− σk,l(tn, X

h
n , αn)

)](

Bl(tn+1)− Bl(τ
n
1 )
)

, (2.29)

rk,n,8 =

m
∑

l=1

11
(

Nn ≥ 2
)

∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s).

(2.30)
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We can rewrite (2.20) as

Xh
k,n+1 = Xh

k,n + hbk
(

tn, X
h
n , αn

)

+

m
∑

l=1

σk,l

(

tn, X
h
n , αn

)

∆nBl

+
m
∑

l=1

11
(

Nn = 1
)

[

σk,l(tn, X
h
n , αn+1)− σk,l(tn, X

h
n , αn)

](

Bl(tn+1)− Bl(τ
n
1 )
)

+
m
∑

l1,l2=1

Ll2σk,l1(tn, X
h
n , αn)Il1,l2(n) +

8
∑

j=1

rk,n,j.

(2.31)

Next, we write Y h
n =

(

Y h
1,n, Y

h
2,n, . . . , Y

h
d,n

)′
. Since ς(n) = τn1 on the set {Nn = 1} and

ς(n) = tn+1 on the set {Nn 6= 1}, we have Bl(tn+1) − Bl(ς(n)) = 11
(

Nn = 1
)[

Bl(tn+1) −

Bl(τ
n
1 )
]

. Thus, in view of (2.31), the consideration regarding the terms involving double

integrals with respect to the optional quadratic variation processes [Mi0j0] and the Brownian

motions, and the discussion on approximation of the jump times of the Markov chain α, the

component sequences (Y h
k,n, n ≥ 0) of the approximate solution should satisfy the following

recursive equation

Y h
k,n+1 = Y h

k,n + hbk(tn, Y
h
n , αn) +

m
∑

l=1

σk,l(tn, Y
h
n , αn)∆nBl +

m
∑

l1,l2=1

Ll2σk,l1(tn, Y
h
n , αn)Il1,l2(n)

+
m
∑

l=1

11
(

Nn = 1
)

[

σk,l(tn, Y
h
n , αn+1)− σk,l(tn, Y

h
n , αn)

](

Bl(tn+1)−Bl(τ
n
1 )
)

(2.32)

for k = 1, 2, . . . , d and n ≥ 0. That was how we came up with the proposed numerical

scheme (2.9).

We now give an estimate on the difference between the exact solution and the approximate

one at each grid point. For n ≥ 0, k = 1, 2, . . . , d and j = 1, 2, . . . , 8, denote

Rk,n,j =
n
∑

i=0

rk,i,j. (2.33)
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By applying recursively equations (2.31) and (2.32) we obtain

Xh
k,n+1 − Y h

k,n+1 = Xh
k,0 − Y h

k,0 + h

n
∑

i=0

(

bk
(

ti, X
h
i , αi

)

− bk
(

ti, Y
h
i , αi

)

)

+

n
∑

i=0

m
∑

l=1

[

σk,l

(

ti, X
h
i , αi

)

− σk,l

(

ti, Y
h
i , αi

)

]

∆iBl

+
n
∑

i=0

m
∑

l1,l2=1

[

Ll2σk,l1(ti, X
h
i , αi)− Ll2σk,l1(ti, Y

h
i , αi)

]

Il1,l2(i)

+
n
∑

i=0

m
∑

l=1

11(Ni = 1)
[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)

−
(

σk,l(ti, Y
h
i , αi+1)− σk,l(ti, Y

h
i , αi)

)][

Bl(ti+1)−Bl(τ
i
1)
]

+
8
∑

j=1

Rk,n,j.

This and the Cauchy-Schwarz inequality imply

E sup
0≤p≤n+1

|Xh
k,p − Y h

k,p|2 (2.34)

≤ CE|Xh
k,0 − Y h

k,0|2 + h2CE sup
0≤p≤n

∣

∣

∣

p
∑

i=0

(

bk
(

ti, X
h
i , αi

)

− bk
(

ti, Y
h
i , αi

)

)∣

∣

∣

2

+ CE sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l=1

[

σk,l

(

ti, X
h
i , αi

)

− σk,l

(

ti, Y
h
i , αi

)

]

∆iBl

∣

∣

∣

2

+ CE sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l1,l2=1

[

Ll2σk,l1(ti, X
h
i , αi)− Ll2σk,l1(ti, Y

h
i , αi)

]

Il1,l2(i)
∣

∣

∣

2

+ CE sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l=1

11(Ni = 1)
[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)

−
(

σk,l(ti, Y
h
i , αi+1)− σk,l(ti, Y

h
i , αi)

)][

Bl(ti+1)− Bl(τ
i
1)
]∣

∣

∣

2

+

8
∑

j=1

CE sup
0≤p≤n

∣

∣Rk,p,j

∣

∣

2
. (2.35)

To establish the convergence of the proposed scheme, we need to study the right-hand side

of (2.35). This is done in the remaining part of this section.
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2.4.3 Error Bounds

Lemma 2.8. Assume that Assumption (B) holds. For 1 ≤ n ≤ T/h and k = 1, 2, . . . , d, we

have the following inequality

h2E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

(

bk
(

ti, X
h
i , αi

)

− bk
(

ti, Y
h
i , αi

)

)∣

∣

∣

2

+ E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l=1

[

σk,l

(

ti, X
h
i , αi

)

− σk,l

(

ti, Y
h
i , αi

)

]

∆iBl

∣

∣

∣

2

+ E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l1,l2=1

[

Ll2σk,l1(ti, X
h
i , αi)− Ll2σk,l1(ti, Y

h
i , αi)

]

Il1,l2(i)
∣

∣

∣

2

+ E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l=1

11(Ni = 1)
[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)

−
(

σk,l(ti, Y
h
i , αi+1)− σk,l(ti, Y

h
i , αi)

)][

Bl(ti+1)−Bl(τ
i
1)
]∣

∣

∣

2

≤ Ch
n
∑

p=0

E sup
0≤i≤p

∣

∣Xh
i − Y h

i

∣

∣

2
, (2.36)

where C is a constant independent of h.

Proof. To bound the first term in the left-hand side of (2.36), we use the Cauchy-Schwarz

inequality and the Lipschitz continuity in Assumption (B) to obtain

h2E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

(

bk
(

ti, X
h
i , αi

)

− bk
(

ti, Y
h
i , αi

)

)∣

∣

∣

2

(2.37)

≤ nh2
n
∑

i=0

E

[

bk
(

ti, X
h
i , αi

)

− bk
(

ti, Y
h
i , αi

)

]2

≤ Ch
n
∑

i=0

E
∣

∣Xh
i − Y h

i

∣

∣

2 ≤ Ch
n
∑

p=0

E sup
0≤i≤p

∣

∣Xh
i − Y h

i

∣

∣

2
. (2.38)

Next, we deal with the last term in the left-hand side of (2.36). Denote Gp = Gh
p = FB

tp+1
∨Fα

T



25

and

Mp =

p
∑

i=0

m
∑

l=1

11
(

Ni = 1
)

[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)

−
(

σk,l(ti, Y
h
i , αi+1)− σk,l(ti, Y

h
i , αi)

)][

Bl(ti+1)− Bl(τ
i
1)
]

.

Since Bl(·) and α(·) are independent (Mp,Gp, p ≥ 0) is a martingale. By Lemma 2.1, Lemma

2.6 and Assumption (B), (Mp,Gp, p ≥ 0) is a square-integrable martingale. In addition,

τ i1 ∧ ti+1 is a stopping time with respect to Ft, τ
i
1 ∧ ti+1 = τ i1 on the set {Ni = 1} and

E

{[

Bl(ti+1)−Bl(τ
i
1 ∧ ti+1)

]2∣
∣

∣
Fτ i

1
∧ti+1

∨ Fα
T

}

= E

[

Bl(ti+1)− Bl(τ
i
1 ∧ ti+1)

]2

≤ Ch. (2.39)

Hence, by the Burkholder-Davis-Gundy inequality,

E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l=1

11(Ni = 1)
[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)

−
(

σk,l(ti, Y
h
i , αi+1)− σk,l(ti, Y

h
i , αi)

)][

Bl(ti+1)− Bl(τ
i
1)
]∣

∣

∣

2

= E sup
0≤p≤n

|Mp|2

≤ CE

n
∑

i=0

m
∑

l=1

∣

∣

∣
11
(

Ni = 1
)

[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)

−
(

σk,l(ti, Y
h
i , αi+1)− σk,l(ti, Y

h
i , αi)

)][

Bl(ti+1)− Bl(τ
i
1)
]∣

∣

∣

2

.

Conditioning on FB
τ i
1
∧ti+1

∨ Fα
T , using (2.39), and noting Ni, X

h
i and Y h

i being measurable
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with respect to FB
τ i
1
∧ti+1

∨ Fα
T , and the Lipschitz continuity in Assumption (B), we have

E sup
0≤p≤n

|Mp|2

≤ CE

n
∑

i=0

m
∑

l=1

∣

∣

∣
11
(

Ni = 1
)

[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)

−
(

σk,l(ti, Y
h
i , αi+1)− σk,l(ti, Y

h
i , αi)

)]∣

∣

∣

2

E

{[

Bl(ti+1)−Bl(τ
i
1 ∧ ti+1)

]2∣
∣

∣
Fτ i

1
∧ti+1

∨ Fα
T

}

≤ Ch

n
∑

i=0

m
∑

l=1

E

[(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, Y

h
i , αi+1)

)

(2.40)

−
(

σk,l(ti, X
h
i , αi)− σk,l(ti, Y

h
i , αi)

)]2

≤ Ch

n
∑

p=0

E sup
0≤i≤p

∣

∣Xh
i − Y h

i

∣

∣

2
. (2.41)

Similarly, we can use the Burkholder-Davis-Gundy inequality and the following inequality

E|∆iBl|2 ≤ Ch, E|Il1,l2(i)|2 ≤ Ch 0 ≤ i ≤ T/h; l, l1, l2 = 1, 2, . . . , m

instead of (2.39) to bound the remaining terms in the left-hand side of (2.36) and get

E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l=1

[

σk,l

(

ti, X
h
i , αi

)

− σk,l

(

ti, Y
h
i , αi

)

]

∆iBl

∣

∣

∣

2

+ E sup
0≤p≤n

∣

∣

∣

p
∑

i=0

m
∑

l1,l2=1

[

Ll2σk,l1(ti, X
h
i , αi)− Ll2σk,l1(ti, Y

h
i , αi)

]

Il1,l2(i)
∣

∣

∣

2

≤ Ch
n
∑

p=0

E sup
0≤i≤p

∣

∣Xh
i − Y h

i

∣

∣

2
. (2.42)

By combining (2.38), (2.41), and (2.42), the proof is complete.

Lemma 2.9. Assume that Assumption (B) is satisfied. Then, for k = 1, 2, . . . , d, there is a

constant C independent of h such that E sup0≤p≤T/h

∣

∣Rk,p,7

∣

∣

2 ≤ Ch2.

Proof. Let Gp,7 = Gh
p,7 = Fτp+1

1
∧tp+2

∨ Fα
T for p = 1, 2, . . .. It is clear from (2.29) and (2.33)
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that

Rk,p,7 =

p
∑

i=0

m
∑

l=1

11(Ni = 1)
[(

σk,l(τ
i
1, X(τ i1), αi+1)− σk,l(τ

i
1, X(τ i1), αi)

)

−
(

σk,l(ti, X
h
i , αi+1))− σk,l(ti, X

h
i , αi)

)][

Bl(ti+1)− Bl(τ
i
1)
]

is Gh
p,7-measurable. Note that τ p+1

1 = τ p+1
1 ∧ tp+2 on the set {Np+1 = 1}. In addition,

τ p+1
1 ∧ tp+2 is a stopping time with respect to Ft and E

[

Bl(tp+2)− Bl(τ
p+1
1 ∧ tp+2)

∣

∣Gp,7

]

= 0

because of the independence between Bl(·) and α(·). Therefore,

E

[

Rk,p+1,7 − Rk,p,7

∣

∣

∣
Gp,7

]

= E

{

11(Np+1 = 1)
[(

σk,l(τ
p+1
1 , X(τ p+1

1 ), αp+2)− σk,l(τ
p+1
1 , X(τ p+1

1 ), αp+1)
)

−
(

σk,l(tp+1, X
h
p+1, αp+2)− σk,l(tp+1, X

h
p+1, αp+1)

)][

Bl(tp+2)− Bl(τ
p+1
1 ∧ tp+2)

]∣

∣

∣
Gp,7

}

= 11(Np+1 = 1)
[(

σk,l(τ
p+1
1 , X(τ p+1

1 ), αp+2)− σk,l(τ
p+1
1 , X(τ p+1

1 ), αp+1)
)

−
(

σk,l(tp+1, X
h
p+1, αp+2)− σk,l(tp+1, X

h
p+1, αp+1)

)]

E

[

Bl(tp+2)− Bl(τ
p+1
1 ∧ tp+2)

∣

∣

∣
Gp,7

]

= 0.

This implies that (Rk,p,7,Gp,7, p ≥ 0) is a martingale. By Lemma 2.1 and Assumption (B),

it is a square integrable martingale. Hence, by the Burkholder-Davis-Gundy inequality, and
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then conditioning on Fτ i
1
∧ti+1

∨ Fα
T , we have

E sup
0≤p≤n

∣

∣Rk,p,7

∣

∣

2

≤
n
∑

i=0

E

{∣

∣

∣

m
∑

l=1

11(Ni = 1)
[(

σk,l(τ
i
1, X(τ i1), αi+1)− σk,l(τ

i
1, X(τ i1), αi)

)

−
(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)][

Bl(ti+1)− Bl(τ
i
1)
]∣

∣

∣

2}

≤ m

n
∑

i=0

m
∑

l=1

E

{∣

∣

∣
11(Ni = 1)

[(

σk,l(τ
i
1, X(τ i1), αi+1)− σk,l(τ

i
1, X(τ i1), αi)

)

−
(

σk,l(ti, X
h
i , αi+1)− σk,l(ti, X

h
i , αi)

)][

Bl(ti+1)− Bl(τ
i
1)
]∣

∣

∣

2}

= m

n
∑

i=0

m
∑

l=1

E

{

11(Ni = 1)
[(

σk,l(τ
i
1 ∧ ti+1, X(τ i1 ∧ ti+1), αi+1)− σk,l(ti, X

h
i , αi+1)

)

−
(

σk,l(τ
i
1 ∧ ti+1, X(τ i1 ∧ ti+1), αi)− σk,l(ti, X

h
i , αi)

)]2

× E

{[

Bl(ti+1)− Bl(τ
i
1 ∧ ti+1)

]2∣
∣

∣
Fτ i

1
∧ti+1

∨ Fα
T

}}

.

Using (2.39), the Cauchy-Schwarz inequality, and Lemma 2.1 and Assumption (B), we can

estimate further that

E sup
0≤p≤n

∣

∣Rk,p,7

∣

∣

2

≤ Ch
n
∑

i=0

m
∑

l=1

E

{

11(Ni = 1)
[(

σk,l(τ
i
1 ∧ ti+1, X(τ i1 ∧ ti+1), αi+1)− σk,l(ti, X

h
i , αi+1)

)

−
(

σk,l(τ
i
1 ∧ ti+1, X(τ i1 ∧ ti+1), αi)− σk,l(ti, X

h
i , αi)

)]2}

= Ch
n
∑

i=0

m
∑

l=1

E

{

E

{

11(Ni = 1)
[

∣

∣X(τ i1 ∧ ti+1)−Xh
i

∣

∣

2
(2.43)

+
(

1 + sup
0≤t≤T

|X(t)|2
)∣

∣τ i1 ∧ ti+1 − ti
∣

∣

]∣

∣

∣
Fα

T

}}

≤ Ch

n
∑

i=0

E

{

11(Ni = 1)E
{[

sup
ti≤t≤ti+1

∣

∣X(t)−X(ti)
∣

∣

2
+ h
(

1 + sup
0≤t≤T

|X(t)|2
)]∣

∣

∣
Fα

T

}}

≤ Ch2

n
∑

i=0

E11(Ni = 1) ≤ Cnh3 ≤ Ch2
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for any 0 ≤ n ≤ T/h, which is the desired result.

Lemma 2.10. Assume that Assumption (B) holds and h < 1/(2q). Then, for k = 1, 2, . . . , d,

there is a constant C independent of h such that E sup0≤p≤T/h

∣

∣Rk,p,8

∣

∣

2 ≤ Ch2.

Proof. According to (2.30) and (2.33), for p = 1, 2, . . ., we have Rk,p,8 =

∑p
i=0

∑m
l=1

∑

i0 6=j0
11(Ni ≥ 2)

∫ ti+1

ti

∫ s

ti

(

σk,l(u,X(u), j0) − σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s).

Denote Gp,8 = Gh
p,8 = Ftp+1

∨ Fα
T . Since Np is Gp,8-measurable, we can show that

(Rk,p,8,Gp,8, p ≥ 0) is a square integrable martingale.

By the Burkholder-Davis-Gundy inequality, the Cauchy-Schwarz inequality, and

Lemma 2.7, for any n ≥ 0 we obtain

E sup
0≤p≤n

∣

∣Rk,p,8

∣

∣

2

≤ C
n
∑

i=0

E

(∣

∣

∣

m
∑

l=1

∑

i0 6=j0

11(Ni ≥ 2)

∫ ti+1

ti

∫ s

ti

(

σk,l(u,X(u), j0)

− σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s)
∣

∣

∣

2)

≤ C

n
∑

i=0

m
∑

l=1

∞
∑

N=2

E

(∣

∣

∣
11(Ni = N)

∑

i0 6=j0

∫ ti+1

ti

∫ s

ti

(

σk,l(u,X(u), j0)

− σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s)
∣

∣

∣

2)

= C
n
∑

i=0

m
∑

l=1

∞
∑

N=2

E

(∣

∣

∣
11(Ni = N)

N
∑

j=1

[

σk,l(τ
i
j , X(τ ij), α(τ

i
j))− σk,l(τ

i
j , X(τ ij), α(τ

i
j−1))

]

×
(

Bl(ti+1)− Bl(τ
i
j )
)∣

∣

∣

2)

≤ C

n
∑

i=0

m
∑

l=1

∞
∑

N=2

N

N
∑

j=1

E

(

11(Ni = N)
∣

∣

∣

[

σk,l(τ
i
j , X(τ ij), α(τ

i
j))− σk,l(τ

i
j , X(τ ij), α(τ

i
j−1))

]

×
(

Bl(ti+1)− Bl(τ
i
j )
)∣

∣

∣

2)

.

Conditioning on Fτ ij∧ti+1
∨ Fα

T , using Lemma 2.7 and the fact that τ ij = τ ij ∧ ti+1 on the set
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{Ni = N} for 0 ≤ i ≤ n, j = 1, 2, . . . , N , and N ≥ 2, we have

E sup
0≤p≤n

∣

∣Rk,p,8

∣

∣

2

≤ C
n
∑

i=0

m
∑

l=1

∞
∑

N=2

N
N
∑

j=1

E

{

E

{

11(Ni = N)
[

σk,l(τ
i
j ∧ ti+1, X(τ ij ∧ ti+1), α(τ

i
j ∧ ti+1))

− σk,l(τ
i
j ∧ ti+1, X(τ ij ∧ ti+1), α(τ

i
j−1 ∧ ti+1))

]2

×
(

Bl(ti+1)− Bl(τ
i
j ∧ ti+1)

)2∣
∣

∣
Fτ ij∧ti+1

∨ Fα
T

}}

= C
n
∑

i=0

m
∑

l=1

∞
∑

N=2

N
N
∑

j=1

E

{

11(Ni = N)
[

σk,l(τ
i
j ∧ ti+1, X(τ ij ∧ ti+1), α(τ

i
j ∧ ti+1))

− σk,l(τ
i
j ∧ ti+1, X(τ ij ∧ ti+1), α(τ

i
j−1 ∧ ti+1))

]2

× E

{(

Bl(ti+1)− Bl(τ
i
j ∧ ti+1)

)2∣
∣

∣
Fτ ij∧ti+1

∨ Fα
T

}}

≤ Ch
n
∑

i=0

m
∑

l=1

∞
∑

N=2

N
N
∑

j=1

E

{

11(Ni = N)
[

σk,l(τ
i
j ∧ ti+1, X(τ ij ∧ ti+1), α(τ

i
j ∧ ti+1))

− σk,l(τ
i
j ∧ ti+1, X(τ ij ∧ ti+1), α(τ

i
j−1 ∧ ti+1))

]2}

≤ Ch
n
∑

i=0

∞
∑

N=2

N
N
∑

j=1

E

{

11(Ni = N)
[

1 + sup
0≤t≤T

|X(t)|2
]}

.

Note that we have used Assumption (B) in the last inequality. Next, by Lemma 2.1 and

Lemma 2.5, we obtain

E sup
0≤p≤n

∣

∣Rk,p,8

∣

∣

2 ≤ Ch
n
∑

i=0

∞
∑

N=2

N
N
∑

j=1

E

{

11(Ni = N)
[

1 + sup
0≤t≤T

|X(t)|2
]}

= Ch
n
∑

i=0

∞
∑

N=2

N
N
∑

j=1

E

{

11(Ni = N)E
[

1 + sup
0≤t≤T

|X(t)|2
∣

∣

∣
Fα

T

]}

≤ Ch

n
∑

i=0

∞
∑

N=2

N

N
∑

j=1

E11(Ni = N) ≤ Ch

n
∑

i=0

∞
∑

N=2

N

N
∑

j=1

(qh)N

= C

n
∑

i=0

∞
∑

N=2

N2(qh)N+1 ≤ Cnh3 ≤ Ch2

for any 0 ≤ n ≤ T/h and h < 1/(2q). We have used the fact that Ni is Fα
T−measurable in
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the first equation and Lemma 2.1 in the third inequality. This completes the proof.

Lemma 2.11. Assume that Assumption (B) holds and h < 1/(2q). Then there is a constant

C independent of h such that
∑6

j=1E sup0≤p≤n

∣

∣Rk,p,j

∣

∣

2 ≤ Ch2 for any 0 ≤ n ≤ T/h and

k = 1, 2, . . . , d.

Proof. The proof is carried out by establishing 4 claims.

Claim 1: Prove that E sup0≤p≤n

∣

∣Rk,p,1

∣

∣

2
+ E sup0≤p≤n

∣

∣Rk,p,4

∣

∣

2 ≤ Ch2. Note that from

(2.8) we have

Lbk(t, x, i0) = L0bk(t, x, i0) +
1

2

m
∑

l=1

LlLlbk(t, x, i0) +Qbk(t, x, ·)(i0).

It follows from Assumption (B) that for 0 ≤ t ≤ T ,

|Lbk(t, x, i0)| ≤ C(1 + |x|). (2.44)

Next, by the Cauchy-Schwarz inequality,

E sup
0≤p≤n

∣

∣Rk,p,1

∣

∣

2 ≤ n

n
∑

p=0

E

∣

∣

∣

∫ tp+1

tp

∫ s

tp

Lbk(u,X(u), α(u))duds
∣

∣

∣

2

≤ n

n
∑

p=0

h2

∫ tp+1

tp

∫ s

tp

E
∣

∣Lbk(u,X(u), α(u))
∣

∣

2
duds

≤ Cnh2
n
∑

p=0

∫ tp+1

tp

∫ s

tp

(

1 + E sup
0≤t≤T

|X(t)|2
)

duds ≤ Cn2h4 = Ch2.

We have used (2.44) in the third inequality and Lemma 2.1 in the last inequality. By a

similar way, we can use Burkholder-Davis-Gundy to prove that E sup0≤p≤n

∣

∣Rk,p,4

∣

∣

2 ≤ Ch2.

Claim 1 is therefore proved.

Claim 2: Prove that E sup0≤p≤n

∣

∣Rk,p,2

∣

∣

2
+ E sup0≤p≤n

∣

∣Rk,p,3

∣

∣

2 ≤ Ch2. Since Mi0j0(t) is a

martingale, we can prove that for each fixed k, (Rk,p,3,Gp,3, p ≥ 0) is also a square integrable
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martingale, where Gp,3 = Gh
p,3 = Ftp+1

. Thus, by the Burkholder-Davis-Gundy and the

Cauchy-Schwarz inequalities we have

E sup
0≤p≤n

∣

∣Rk,p,3

∣

∣

2

≤
n
∑

p=0

E

∣

∣

∣

∑

i0 6=j0

∫ tp+1

tp

∫ s

tp

(

bk(u,X(u), j0)− bk(u,X(u), i0)
)

dMi0j0(u)ds
∣

∣

∣

2

≤ C

n
∑

p=0

∑

i0 6=j0

E

∣

∣

∣

∫ tp+1

tp

∫ s

tp

(

bk(u,X(u), j0)− bk(u,X(u), i0)
)

dMi0j0(u)ds
∣

∣

∣

2

≤ Ch

n
∑

p=0

∑

i0 6=j0

∫ tp+1

tp

E

∣

∣

∣

∫ s

tp

(

bk(u,X(u), j0)− bk(u,X(u), i0)
)

dMi0j0(u)
∣

∣

∣

2

ds

= Ch
n
∑

p=0

∑

i0 6=j0

∫ tp+1

tp

E

∫ s

tp

∣

∣

∣

(

bk(u,X(u), j0)− bk(u,X(u), i0)
)

∣

∣

∣

2

d[Mi0j0](u)ds

≤ Ch
n
∑

p=0

∑

i0 6=j0

∫ tp+1

tp

E

∫ s

tp

[

1 + sup
0≤t≤T

|X(t)|2
]

d[Mi0j0](u)ds

= Ch
n
∑

p=0

∑

i0 6=j0

∫ tp+1

tp

E

∫ s

tp

[

1 + E
(

sup
0≤t≤T

|X(t)|2
∣

∣Fα
T

)

]

d[Mi0j0](u)ds

≤ Ch

n
∑

p=0

∑

i0 6=j0

∫ tp+1

tp

E

{

[Mi0j0](s)− [Mi0j0](tp)
}

ds

≤ Ch

n
∑

p=0

∑

i0 6=j0

∫ tp+1

tp

E
[

Np

]

ds ≤ Cnh3 ≤ Ch2.

Similarly, we obtain E sup0≤p≤n

∣

∣Rk,p,2

∣

∣

2 ≤ Ch2.

Claim 3: Prove that E sup0≤p≤n

∣

∣Rk,p,5

∣

∣

2 ≤ Ch2. By the definition of 〈Mi0j0〉, the Cauchy-
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Schwarz inequality, and Assumption (B), we have

E

∣

∣

∣

∫ s

tp

(

σk,l(u,X(u), i0)− σk,l(u,X(u), j0)
)

d〈Mi0j0〉(u)
∣

∣

∣

2

= E

∣

∣

∣

∫ s

tp

(

σk,l(u,X(u), i0)− σk,l(u,X(u), j0)
)

qi0j011(α(u−) = i0)du
∣

∣

∣

2

≤ (s− tp)E

∫ s

tp

∣

∣

∣

(

σk,l(u,X(u), i0)− σk,l(u,X(u), j0)
)

qi0j011(α(u−) = i0)
∣

∣

∣

2

du

≤ C(s− tp)E
∣

∣

∣

∫ s

tp

(

1 + sup
0≤t≤T

|X(t)|2
)

du
∣

∣

∣

2

≤ C(s− tp)
2 ≤ Ch2 (2.45)

for tp ≤ s ≤ tp+1. To proceed, we observe that for fixed k, (Rk,p,5,Gp,5, p ≥ 0) is a square

integrable martingale, where Gp,5 = Gh
p,5 = FB

tp+1
∨Fα

T . Thus, by the Burkholder-Davis-Gundy

inequality, the Cauchy-Schwarz inequality and (2.45)

E sup
0≤p≤n

∣

∣Rk,p,5

∣

∣

2

≤ C
n
∑

p=1

E

∣

∣

∣

m
∑

l=1

∑

i0 6=j0

∫ tp+1

tp

∫ s

tp

(

σk,l(u,X(u), i0)− σk,l(u,X(u), j0)
)

d〈Mi0j0〉(u)dBl(s)
∣

∣

∣

2

≤ Cmm2
0

n
∑

p=1

m
∑

l=1

∑

i0 6=j0

E

∣

∣

∣

∫ tp+1

tp

∫ s

tp

(

σk,l(u,X(u), i0)− σk,l(u,X(u), j0)
)

d〈Mi0j0〉(u)dBl(s)
∣

∣

∣

2

= Cmm2
0

n
∑

p=1

m
∑

l=1

∑

i0 6=j0

∫ tp+1

tp

E

∣

∣

∣

∫ s

tp

(

σk,l(u,X(u), i0)− σk,l(u,X(u), j0)
)

d〈Mi0j0〉(u)
∣

∣

∣

2

ds

≤ C

n
∑

p=1

m
∑

l=1

∑

i0 6=j0

∫ tp+1

tp

h2ds ≤ Cnh3 = Ch2.

Claim 4: Prove that E sup0≤p≤n

∣

∣Rk,p,6

∣

∣

2 ≤ Ch2. It is clear that (Rk,p,6,Gp,6, p ≥ 0) is a square

integrable martingale where Gp,6 = Gh
p,6 = FB

tp+1
∨ Fα

T . By the Burkholder-Davis-Gundy and
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the Cauchy-Schwarz inequalities, we have

E sup
0≤p≤n

∣

∣Rk,p,6

∣

∣

2

≤ C

n
∑

p=1

m
∑

l1,l2=1

E

∣

∣

∣

∫ tp+1

tp

∫ s

tp

(

Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tp, X
h
p , αp)

)

dBl2(u)dBl1(s)
∣

∣

∣

2

= C

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

E

∣

∣

∣

∫ s

tp

Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tp, X
h
p , αp)dBl2(u)

∣

∣

∣

2

ds

= C
n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E
∣

∣Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tp, X
h
p , αp)

∣

∣

2
duds

= C
n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np = 0)
∣

∣Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tp, X
h
p , αp)

∣

∣

2
]

duds

+ C
n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np ≥ 1)
∣

∣Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tp, X
h
p , αp)

∣

∣

2
]

duds.

(2.46)

To proceed, note that on {Np = 0}, α(u) = αp for tp < u < tp+1. Thus, by the Cauchy-

Schwarz inequality,

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np = 0)
∣

∣Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tp, X
h
p , αp)

∣

∣

2
]

duds

=
n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np = 0)
∣

∣Ll2σk,l1(u,X(u), αp)− Ll2σk,l1(tp, X
h
p , αp)

∣

∣

2
]

duds

≤ 2
n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np = 0)
∣

∣Ll2σk,l1(u,X(u), αp)− Ll2σk,l1(tp, X(u), αp)
∣

∣

2
]

duds

+ 2
n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np = 0)
∣

∣Ll2σk,l1(tp, X(u), αp)− Ll2σk,l1(tp, X
h
p , αp)

∣

∣

2
]

duds

≤ C

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

(u− tp)
[

1 + E sup
0≤t≤T

|X(t)|2
]

duds

+ C

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E
∣

∣X(u)−Xh
p

∣

∣

2
duds

≤ C

n
∑

p=1

∫ tp+1

tp

∫ s

tp

{

(u− tp)
[

1 + E sup
0≤t≤T

|X(t)|2
]

+ (u− tp)
}

duds ≤ Cnh3 ≤ Ch2. (2.47)
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We have used the Cauchy-Schwarz inequality in the first inequality, Assumption (B) in the

second inequality, and Lemma 2.1 in the third inequality. Next, by Assumption (B) and

Lemma 2.1, we have

C
n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np ≥ 1)
∣

∣Ll2σk,l1(u,X(u), α(u))− Ll2σk,l1(tp, X
h
p , αp)

∣

∣

2
]

duds

≤ C

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

[

11(Np ≥ 1)
(

1 + sup
0≤t≤T

|X(t)|2
)

]

duds

= C

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E

{

11(Np ≥ 1)E
[

1 + sup
0≤t≤T

|X(t)|2
∣

∣

∣
Fα

T

]}

duds

≤ C

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

E11(Np ≥ 1)duds

= C

n
∑

p=1

m
∑

l1,l2=1

∫ tp+1

tp

∫ s

tp

hduds ≤ Cnh3 = Ch2. (2.48)

Claim 4 now follows by combining (2.46), (2.47), and (2.48).

2.4.4 Proof of Main Theorem

Proof. By Lemma 2.1 and Lemma 2.6, it suffices to prove the inequality in Theorem 2.4 for

0 < h < 1/(2q) where q = max{−qi0i0 : i0 ∈ M}. By (2.35) and the results of Lemmas 2.8,

2.9, 2.10 and 2.11, we have

E

[

sup
0≤p≤n+1

∣

∣Xh
p − Y h

p

∣

∣

2
]

≤ CE|X0 − Y h
0 |2 + Ch

n
∑

i=0

E

[

sup
0≤p≤i

|Xh
p − Y h

p |2
]

+ Ch2

≤ Ch2 + Ch
n
∑

i=0

E

[

sup
0≤p≤i

∣

∣Xh
p − Y h

p

∣

∣

2
]

for 0 ≤ n ≤ T/h and 0 < h < 1/(2q). Thus, by Gronwall’s inequality we conclude that

E

[

sup0≤p≤T/h

∣

∣Xh
p − Y h

p

∣

∣

2
]

≤ Ch2eC(T/h)h ≤ Ch2, which is the desired claim.

2.5 Numerical Examples

In this section, we consider several examples. They are for demonstration purposes.



36

Example 2.12. The first example is a modification of the Ornstein-Uhlenbeck process which

is used, as one of several approaches, to model the interest rates, currency exchange rates,

and commodity prices under the influence of the randomness.

dX(t) =

(

α(t)− 1

2

)

(1−X(t))dt+
1

2

(

α(t)− 1

2

)

X(t)dB(t),

X(0) = 0.5, α(0) = 1, 0 ≤ t ≤ 1,

(2.49)

where B(t) is a one-dimensional standard Brownian motion and α(·) is a Markov chain whose

the generator matrix Q of α is given by Q =









−0.5 0.5

0.5 −0.5









, and the α is independent

with B. The state space of the Markov chain is M = {0, 1}. The solution to (2.49) can

be written as a closed-form expression involving a stochastic integral. However, for the

sake of simplicity, we construct the Milstein-type scheme with h = δ = 2−17 to be a good

approximation of the exact solution and compare this with the Milstein-type approximations

using h = 128δ, h = 64δ, h = 32δ, and h = 16δ. The simulation was carried out by first

generating 200 realizations of the Markov chains α and then, for each fixed realization of α,

we simulated 500 sample paths of X . The resulting solid line log-log error plot is shown with

a reference line of slope 1 (the dashed one) in Fig. 2.12. For the plotted trial, the empirical

rate of convergence which is the slope of the least squares regression line for the solid line is

1.0496 and is closed to the expected one. The least squares residual is 0.0751.

Example 2.13. In the second exam, we consider the following highly non-linear switching

diffusion

dX(t) = b (X(t), α(t)) dt+ σ(X(t), α(t))dB(t),

X(0) = 5, α(0) = 1, 0 ≤ t ≤ 1,

(2.50)

where B(·) is a one-dimensional standard Brownian motion and α(·) is a Markov chain whose
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Figure 1: log-log plot for Example 1

generator Q and state space are given as in Example 2.12; α is independent with B. The

drift b(·, ·) and the diffusion coefficient σ(·, ·) are given as follows

b(x, 0) = 3(2 + sin x), b(x, 1) = 2(2 + sin x cosx), σ(x, 0) = −0.2x, σ(x, 1) = −0.3x.

It is easy to verify that the Assumption (B) holds for this equation. Due to the nonlinear

nature of equation (2.50), a closed-form solution to it is hardly, if not impossible, to obtain.

We therefore, as already did in the previous example, construct the Milstein-type scheme

with h = δ = 2−17 to be a good approximation of the exact solution and compare this with

the Milstein approximations using h = 128δ, h = 64δ, h = 32δ, and h = 16δ. The simulation

procedure was carried out in similar manners as in Example 2.12. The resulting log-log

error plot is shown in Fig. 2.13. For the plotted trial, the least squares regression gives the

empirical rate of convergence to be 0.9995 and the least squares residual to be 0.0382. Hence,

our results are consistent with a strong order of convergence equal to one. We observe that
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Figure 2: log-log plot for Example 2

the proposed scheme is quite sensitive to the high oscillation in the diffusion coefficient.

It seems that the Assumption (B) might be weakened in some practical situations where

the equation of interest has some special structures. The last example gives an instance of

such a situation.

Example 2.14. In the last example, we consider a variant of the Lotka-Volterra equation

that arises in population dynamics and is given as follows

dX(t) = (α(t)− 1

2
)X(t)(1−X(t))dt+

1

2
(α(t)− 1

2
)X(t)dB(t),

X(0) = 0.5, α(0) = 1, 0 ≤ t ≤ 1.

(2.51)

In this equation the Markov chain α represents the random changes in the biology system

and has the state space M = {0, 1}. One may consult [52] for a discussion on this model.

In this example we construct the Milstein-type scheme with h = δ = 2−21 to be a good

approximation of the exact solution and compare this with the Milstein approximations

using h = 213δ, h = 210δ, h = 27δ, and h = 24δ. The log-log error plot is given in Fig. 2.14.
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Figure 3: log-log plot for Example 3

lower than one. The least squares residual in this case is 0.0157. We can easily see that

some Assumptions in (B) do not hold true for the above equation. The performance of the

proposed scheme is however still very good in this case. This is probably due to the negative

nonlinear term −x2 in the drift that helps pull the system back to stable and somehow helps

to ensure the convergence of the numerical scheme as well.

2.6 Concluding Remarks

This chapter developed Milstein-type numerical procedures for diffusions modulated by

a Markovian switching process. We demonstrated order 1 rate of convergence, which shows

that in case of regime-switching diffusion processes, Milstein-type schemes still outperform

the well-known Euler-Maruyama method. The appearance of the discrete component repre-

sented by the Markovian switching process makes the analysis as well as the actual compu-

tation much more difficult. In constructing the algorithm and proving the convergence, we



40

use the martingale characteristics of the Markovian switching process. We also rely on the

fact that more than one jumps occur in a small interval being negligible to approximate the

stochastic integrals. We hope that the numerical procedures will provide viable alternatives

for many applications and open up new avenue for further investigation.

2.7 Appendix

We now give a proof for the Lemma 2.2 and Lemma 2.7.

Proof of Lemma 2.2. Let s < ρ1 < . . . < ρν < t be the jump times of the Markov chain

α(u) in the interval (s, t). For convenience, we denote ρ0 = s and ρν+1 = t. Note that for

u ∈ (ρn, ρn+1), 0 ≤ n ≤ ν, X(u) behaves as a diffusion with drift term b(·, ·, α(ρn)) and

diffusion term σ(·, ·, α(ρn)). Thus, applying the Itô formula to f(·, ·, α(ρn)) on the interval

(ρn, ρn+1), 0 ≤ n ≤ ν, we have

f(ρn+1, X(ρn), α(ρn))− f(ρn, X(ρn), α(ρn)) =

∫ ρn+1

ρn

[

∂

∂u
+ Lα(ρn)

]

f(u,X(u), α(ρn))du

+

m
∑

l=1

∫ ρn+1

ρk

〈∇xf(u,X(u), α(ρn)), σl(u,X(u), α(ρn))〉 dBl(u).

Since α(u) = α(ρn) for u ∈ (ρn, ρn+1), 0 ≤ n ≤ ν, adding the above equations we get that

f(t, X(t), α(t))− f(s,X(s), α(s)) =

∫ t

s

[

∂

∂u
+ Lα(u)

]

f(u,X(u), α(u))du

+
m
∑

l=1

∫ t

s

〈∇xf(u,X(u), α(u)), σl(u,X(u), α(u))〉dBl(u)

+
ν
∑

n=1

[

f(ρn, X(ρn), α(ρn))− f(ρn, X(ρn), α(ρn−))
]

.

(2.52)

We now work on the last term of the above sum. Let g : (s, t] × M × M × Ω → R be

a random function defined by g(u, i0, j0, ω) = f(u,X(u, ω), j0) − f(u,X(u, ω), i0), for any
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(u, i0, j0, ω) ∈ (s, t]×M×M× Ω. Recall from (2.4)

Mi0j0(t) =
∑

0<u≤t

11i0(α(u−))11j0(α(u))−
∫ t

0

qα(u−),j011i0(α(u−))du

and take the integral we have that

∑

i0 6=j0

∫ t

s

g(u, i0, j0)dMi0j0(u) =
∑

s<u≤t

g(u, α(u−), α(u))−
∑

j0

∫ t

s

qα(u−),j0g(u, α(u−), j0)du.

Using the definition of g and note that the first sum on the right-hand side of the above

equation is exactly the last term in the equation (2.52) we can rewrite the above equation

as
ν
∑

n=1

[

f(ρn, X(ρn), α(ρn))− f(ρn, X(ρn), α(ρn−))
]

=
∑

j0∈M

∫ t

s

qα(u−),j0

(

f(u,X(u), j0)− f(u,X(u), α(u−))
)

du

+
∑

i0 6=j0

∫ t

s

(

f(u,X(u), j0)− f(u,X(u), i0)
)

dMi0j0(u)

=

∫ t

s

Qf(u,X(u), ·)(α(u))du+
∑

i0 6=j0

∫ t

s

(

f(u,X(u), j0)− f(u,X(u), i0)
)

dMi0j0(u).

Substituting this equation into equation (2.52) we have the desired result.

Proof of Lemma 2.7. It is trivial that on the event {Nn = 0},

∑

i0 6=j0

∫ tn+1

tn

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s) = 0.

Next, denote τ̂ni = τni for 1 ≤ i ≤ Nn and τ̂nNn+1 = tn+1. Note that on the event {Nn ≥ 1}
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we have

∑

i0 6=j0

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0](u)

=























0 if tn ≤ s < τ̂n1 ,

i
∑

j=1

[

σk,l(τ̂
n
j , X(τ̂nj ), τ̂

n
j )− σk,l(τ̂

n
j , X(τ̂nj ), τ̂

n
j−1)

]

if τ̂ni ≤ s < τ̂ni+1, i ≥ 1.

Thus,

∑

i0 6=j0

∫ tn+1

tn

∫ s

t

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0](u)dBl(s)

=
Nn
∑

i=0

∑

i0 6=j0

∫ τ̂ni+1

τ̂ni

∫ s

tn

(

σk,l(u,X(u), j0)− σk,l(u,X(u), i0)
)

d[Mi0j0 ](u)dBl(s)

=

Nn
∑

i=1

[

i
∑

j=1

(

σk,l(τ̂
n
j , X(τ̂nj ), τ̂

n
j )− σk,l(τ̂

n
j , X(τ̂nj ), τ̂

n
j−1)

)

](

Bl(τ̂
n
i+1)− Bl(τ̂

n
i )
)

=

Nn
∑

i=1

[

σk,l(τ̂
n
i , X(τ̂ni ), α(τ̂

n
i ))− σk,l(τ̂

n
i , X(τ̂ni ), α(τ̂

n
i−1))

](

Bl(τ̂
n
Nn+1)− Bl(τ̂

n
i )
)

=
Nn
∑

i=1

[

σk,l(τ
n
i , X(τni ), α(τ

n
i ))− σk,l(τ

n
i , X(τni ), α(τ

n
i−1))

](

Bl(tn+1)− Bl(τ
n
i )
)

since τ̂nNn+1 = tn+1 and τ̂ni = τni for 1 ≤ i ≤ Nn. This implies (2.27).
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CHAPTER 3 A LIMIT THEOREM FOR STOCHAS-

TIC DIFFERENTIAL EQUATIONS

WITH MARKOVIAN REGIME

SWITCHING

3.1 Introduction

Owing to their wide range of applications, Markov hybrid switching diffusions or Markov

switching diffusions have become more popular recently and have been drawn growing at-

tention. In many applications, we have to deal with stochastic hybrid systems in which the

dynamics are given by the following stochastic differential equations

dX(t) = b(t, X(t−),Λ(t−))dt + σ(t, X(t−),Λ(t−))dW (t),

P(Λ(t+ δ) = j|Λ(t) = i, X(s),Λ(s), 0 ≤ s ≤ t) = qij(t)δ + o(δ),

(3.1)

where Λ is a continuous-time Markov chain with generator Q(t) = (qi,j(t)) representing the

configuration change of the system. We assume that Λ and the Brownian motion W are

independent throughout this chapter. Under suitable conditions, the coupled process Z =

(X,Λ) is a Markov process and possesses many interesting features. Due to the interactions

between the discrete and continuous components, the coupled process is highly nonlinear

and it is very difficult, if not impossible, to obtain an analytic solution of the system in most

of the cases. It is therefore important to be able to use some kind of approximations to the

process with the hope that the approximations give us valuable insights about the process

itself. Many approximation schemes for (3.1) can be put into the form

dXn(t) = bn(t, X
n(t−),Λn(t−))dAn(t) + σn(t, X

n(t−),Λn(t−))dMn(t),

P(Λn(t + δ) = j|Λn(t) = i, Xn(s),Λn(s), 0 ≤ s ≤ t) = qij(t)δ + o(δ),

(3.2)
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where {Mn} are square integrable martingales and {An} are non-negative continuous in-

creasing processes. The approximating process Zn = (Xn,Λn) is then used to assist us in

studying the original process. The scheme (3.5) is indeed quite general and covers many

cases in practice. We emphasize here that Λn does not depend on Xn, the first component.

The purpose of this chapter is to give some sufficient conditions under which Zn converges

in the weak sense to a stochastic process Z. Our work is inspired by [46] for the work on

diffusion processes. In [46], the coefficient of the systems (3.2) and (3.1) are assumed to be

uniformly bounded. We are able to relax these strict assumptions by replacing them with

the Lipschitzian of the coefficients. It appears that assumptions can be relaxed further but

we do not pursuit this direction to avoid complicating the proofs. Moreover, due to the

presence of the discrete component, the analysis here is more delicate and difficult.

The rest of the chapter is arranged as follows. Section 3.2 begins with the formulation,

preliminaries and states our main results. Section 3.3 presents the proof of the main results.

Finally, the chapter is concluded with Section 3.4 on some concluding remarks.

3.2 Formulation and Preliminaries

Throughout this chapter, we use 1A(·) to denote the characteristic function of the set

A. We use K to denote generic constants whose value may change from appearance to

appearance. We denote by D([0, T ],Rd) the space of all functions α : [0, T ] 7→ Rd that are

right continuous and have left limit. We equip D([0, T ],Rd) with Skorokhod J1 topology. As

usual, if α ∈ D([0, T ],Rd) we denote by α(t) the value of α at time t and by α(t−) its left-

hand limit at time t. We use D0
t (R

d) to denote the σ-field generated by all maps α 7→ α(s),

for s ≤ t, and Dt(R
d) =

⋂

s>t D
0
t (R

d) and thus D(Rd) =
(

Dt(R
d)
)

0≤t≤T
is a filtration.

All the processes are assumed to be realized in D([0, T ],Rd) for suitable d. A stochastic
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process Z with its trajectories belong to D([0, T ],Rd) can be considered as a D([0, T ],Rd)-

valued random variable. The law L (Z) is defined by Q
.
= L (Z|P) = (P) ◦ (Z)−1. We say

that a sequence of stochastic processes {Zn}n≥1 converges in distribution or weakly to Z,

denoted by Zn ⇒ Z, if Qn → Q weakly in P
(

D([0, T ],Rd)
)

, the space of all probability

measures on D([0, T ],Rd) with the topology of weak convergence. A sequence {Zn} is tight

if the sequence of distribution Qn = L (Zn) is tight.

We assume that the iterations of approximation are carried out on a sequences of proba-

bility spaces (Ωn,Fn = {Fn
t }0≤t≤T ,P

n), n ≥ 1 where each of them is a complete probability

space with the families of increasing sub-σ-fields {Fn
t }, t ≥ 0, n = 1, 2, . . ., which satisfies the

usual hypothesis, i.e., {Fn
0 } contain all Pn-negligible sets and Fn

t = Fn
t+. We also assume

that, on each of the above-mentioned probability spaces, we have a family of Fn
t -adapted

processes

{

An,Mn,
{

Nn
i0,j0

}

: i0, j0 ∈ M, i0 6= j0

}

=
{

An(t),Mn(t), {Nni0, j0(t)} : i0, j0 ∈ M, i0 6= j0, t ≥ 0
}

.

Where {Mn} are square integrable Fn
t -martingales and {An} are continuous increasing Fn

t -

mesurable processes. For simplicity we assume that An(0) = Mn(0) = 0 for all n. We shall

denote by µn = µn(dt, dx) the integral random measure of jumps of the martingale Mn

µn ((0, t],Γ) =
∑

0<s≤t

1Γ(∆Mn(s)),Γ ∈ B(R\{0}), (3.3)

where ∆Mn(s) = Mn(s) − Mn(s−). We use νn = νn(dt, dx) to denote the compensator,

or the dual predictable projection of the random measure µn. For each n ∈ N, i0, j0 ∈ M,

i0 6= j0, N
n
i0,j0

is a counting point process with intensity qi0,j0(t) where qi0,j0 : R → R+ is a
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bounded continuous function. This implies that for each fixed (i0, j0) the process

Ln
i0,j0

(t) = Nn
i0,j0

(t)−
∫

(0,t]

qi0,j0(u)du (3.4)

is a martingale. Moreover, we require that Nn
i0,j0

(0) = 0 and the process Nn
i0,j0

does not have

common jump with Mn, i.e.

∆Mn(t)∆Nn
i0,j0(t) = 0, Pn a.s.,

and for all (i1, j1) 6= (i2, j2) we have

∆Nn
i1,j1(t)∆Nn

i2,j2(t) = 0, Pn a.s.

The approximation sequence is a family of Fn
t -adapted processes {Zn = (Xn,Λn), n ≥ 1}

satisfy the following stochastic differential equations:

dXn(t) = bn(t, X
n(t−),Λn(t−))dAn(t) + σn(t, X

n(t−),Λn(t−))dMn(t),

dΛn(t) =

m
∑

i0,j0=1

(j0 − i0)1{i0}dN
n
i0,j0(t),

(3.5)

with supEn((Xn)(0))2 < ∞, and the functions bn(·, ·, ·) : [0,∞) × R ×M → R, σn(·, ·, ·) :

[0,∞)× R×M → R satisfy some conditions that will be specified later. The limit process

lives on the probability space (Ω,F = {Ft},P) which is also a complete probability support-

ing a {Ft}-Brownian motion W and jump processes N i0,j0, i0, j0 ∈ M, i0 6= j0. The limit

process Z = (X,Λ) satisfies the following stochastic differential equation

dX(t) = b(t, X(t−),Λ(t−))dt + σ(t, X(t−),Λ(t−))dW (t),

dΛ(t) =

m
∑

i0,j0=1

(j0 − i0)1{i0}dNi0,j0(t).
(3.6)

The jump processes Ni0,j0, i0, j0 ∈ M, i0 6= j0 are counting point processes with intensities

qi0,j0(·). We emphasize here that qi0,j0 is the same for Ni0,j0 and Nn
i0,j0

, n ∈ N. Similar to
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(3.4), this also gives us that the process

Li0,j0(t) = Ni0,j0(t)−
∫

(0,t]

qi0,j0(u)du (3.7)

is a martingale for each fixed (i0, j0). We also require that for all (i1, j1) 6= (i2, j2) we have

∆Ni1,j1(t)∆Ni2,j2(t) = 0, P a.s.

From (3.5) and (3.6), it is clear that the trajectories of Zn and Z belong to D([0, T ],R2)

and as a result Zn and Z are D([0, T ],R2) random variables. Note that (3.5) and (3.6) are

just another interpretations of (3.2) and (3.1) respectively. The current interpretations and

the proof of Lemma 3.5 are inspired by the papers [3] and [19]. We prefer this representation

in the current chapter since it makes the analysis more convenient.

We assume the following assumptions throughout the chapter.

(A1) The quadratic variation process 〈Mn〉 of Mn satisfies that for any t ≥ 0, ε > 0,

Pn (|〈Mn〉(t)− t| > ε) → 0 as n → ∞ and supn E
n〈Mn〉(t) < ∞.

(A2) For any t > 0, ε > 0 and δ > 0, Pn
(∣

∣

∣

∫ t

0

∫

{|x|>ε}
x2νn(dsdx)

∣

∣

∣
> δ
)

→ 0 as n → ∞.

(A3) One of the following conditions (A3-i) or (A3-ii) holds:

(A3-i) For any t > 0 and ε > 0, Pn
(∣

∣

∣

∫ t

0

∫

R\{0}
x2νn(dsdx)− t

∣

∣

∣
> ε
)

→ 0 as n → ∞.

(A3-ii) For any t > 0 and ε > 0, Pn
(∣

∣

∣

∫ t

0

∫

R\{0}
x2νn(dsdx)

∣

∣

∣
> ε
)

→ 0 as n → ∞.

(A4) For measurable functions bn(·, ·, ·) : [0,∞)×R×M → R, σn(·, ·, ·) : [0,∞)×R×M →

R, there exists a constant K such that

|bn(s, x, i0)− bn(t, y, i0)|+ |σn(s, x, i0)− σn(t, y, i0)| ≤ K|t− s|+ |y − x|, (3.8)
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for each i0 ∈ M, n ≥ 1 and there exists functions b(·, ·, ·) : [0,∞) × R × M → R,

σ(·, ·, ·) : [0,∞)× R×M → R satisfying that for any i0 ∈ M

σn(s
n, xn, i0) → σ(s, x) if sn → s and xn → x,

bn(s
n, xn, i0) → b(s, x) if sn → s and xn → x.

(A5) {An} is a sequence of continuous increasing Fn
t -measurable processes such that for any

ε > 0,

Pn

(

sup
0≤t≤T

|An(t)− t| > ε

)

→ 0, for any T > 0.

(A6) For i0, j0 ∈ M, i0 6= j0, the functions qi0,j0(·) are bounded continuous.

We have following remarks regarding the assumptions we made above

Remark 3.1. Since

〈Mn〉(t) = 〈(Mn)c〉(t) +
∫ t

0

∫

R\{0}

x2νn(dsdx), (3.9)

where {(Mn)c} is the continuous part ofMn (Jacod [15, Proposition 3.77, p105]), when {Mn}

are purely discontinuous martingales, assumptions (A1) and (A3-i) are equivalent. It is also

clear from the above equation that (A3-ii) holds when {Mn} are continuous martingales.

Remark 3.2. Conditions (A1) and (A2) were used in Liptser and Shiryayev [20] to show

weak convergence of {Mn} to W , the standard Brownian motion.

Remark 3.3. Condition (A4) also implies that the function b and σ are Lipschitz continuous.

From Remark 3.3 we can show that there exists a unique global solutions for (3.5) and

(3.6). Moreover, the solution of (3.6) and satisfies the following property.
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Proposition 3.4. Assume that (A1)-(A5) hold. Then there exists a constant K, depends

only on T and X(0), such that

E

[

sup
0≤s≤T

|X(s)|2
]

≤ K.

The reader may consult [52, Proposition 3.2, page 31] for a proof of the above result.

This result then implies that

P (|X(t)| > N) → 0 as N → ∞. (3.10)

Let L denote the generator of system (3.6). For a function f(·, ·) : R×M → R such that

for each i0 ∈ M, f(·, i0) ∈ C2
c (R), the set of twice continuously differentiable functions with

compact support

Lf(x, i0) = Lt,i0f(x, i0) +Q(t)f(x, ·)(i0) (3.11)

for all (x, i0) ∈ R×M, where

Lt,i0f(x, i0) = b(t, x, i0)
∂

∂x
f(x, i0) +

1

2

∂2

∂x2
f(x, i0)σ

2(t, x, i0),

Q(t)f(x, ·)(i0) =
∑

j0∈M

qi0j0(t)
(

f(x, j0)− f(x, i0)
)

.

Here, ∂
∂x
f and ∂2

∂x2 denote the first and second derivative of f with respect to x, respectively.

We will use the following form of Itô’s lemma to find the differential of functionals of the

solution of (3.5). A proof of it will be given in the Appendix. Let (X,Λ) be a solution of

the stochastic differential equation

dX(t) = b(t, X(t−),Λ(t−))dA(t) + σ(t, X(t−),Λ(t−))dM(t),

dΛ(t) =
∑

i0,j0∈M

(j0 − i0)1{i0}dNi0,j0(t).
(3.12)

Then the following lemma holds.
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Lemma 3.5. For a function f(·, ·) : R × M → R such that for each i ∈ M, f(·, i) ∈

C2
c ([0, T ]× R) we have

f(X(t),Λ(t)) =f(X(s),Λ(s))

+

∫ t

s

∂

∂x
f(X(u−),Λ(u−))b(u,X(u−),Λ(u−))dA(u)

+

∫ t

s

∂

∂x
f(X(u−),Λ(u−))σ(u,X(u−),Λ(u−))dM(u)

+
1

2

∫ t

s

∂2

∂x2
f(X(u−),Λ(u−))σ2(u,X(u−),Λ(u−))d〈M c〉(u)

+
∑

s<u≤t

[

f(X(u),Λ(u−))− f(X(u−),Λ(u−))− ∂

∂x
f(X(u−),Λ(u−))∆X(u)

]

+
∑

j∈M

∫ t

s

[f(X(u−), j)− f(X(u−),Λ(u−))] qΛ(u−),j(u)du

+
∑

j∈M

∫ t

s

[f(X(u−), j)− f(X(u−),Λ(u−))] dLΛ(u−),j(u).

(3.13)

Equation (3.12) represents the common form for the equations that the approximation

sequences satisfy and the coupled process (X,Λ) in Lemma 3.5 should not be confused with

the limit in (3.6).

3.3 Proof of Main Results

In this section, we prove our main results. We first note that with the given assumptions

we can always reduce our problem to the case that bn(·, ·, ·) and σn(·, ·, ·) are uniformly

bounded for all n by using the truncation method (see, for example, [45]). In our case the

method works as follows. For an arbitrary N ≥ 0, we define a function IN (x) by

IN (x) =



















0, |x| > N + 1,

1, |x| ≤ N,
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and IN smooth on R. We define on D([0, T ],R2) the stopping times ̺N given by ̺N(α) =

inf{t : |α(t)| ≥ N} with the usual convention inf{∅} = ∞. We also define the sequences of

stopping times τnN on (Ωn,Fn,Pn), where

τnN (ω) = inf{t : |Xn(t, ω)| ≥ N}, n ≥ 1.

We define the truncated process Zn
N = Zn(t ∧ τnN ). Then Zn

N = (Xn
N ,Λ

n
N) satisfies the

following stochastic equation

dXn
N(t) = IN(X

n
N(t−))bn(t, X

n
N(t−),Λn

N(t−))dAn(t)

+ IN (X
n
N(t−))σn(t, X

n
N(t−),Λn

N(t−))dMn(t),

dΛn
N(t) =

∑

i0,j0∈M

(j0 − i0)1{i0}dN
n
i0,j0

(t).

(3.14)

The procedure for proving our main result is: first verify the tightness of {Zn
N , n ≥ 1} and

then show that any weak limit of ZN = (XN ,ΛN) of the sequence satisfies the equation

dXN(t) = b(t, XN(t−),ΛN(t−))dt + σn(t, XN(t−),ΛN (t−))dW (t),

dΛN(t) =
∑

i0,j0∈M

(j0 − i0)1{i0}dNi0,j0(t),
(3.15)

where t ≤ τN and W (t) is a standard Brownian motion and τN = inf{t : |X(t, ω)| ≥ N}.

Denote the law of Zn
N and ZN by Qn

N and QN , respectively. Then by the uniqueness of the

equation (3.5) and (3.6), the process Zn
N(·) and ZN(·) coincide in the law with the process

Zn(·) and Z(·) respectively until Xn
N(·) and XN(·) hit the boundary of the set {x : |x| ≤ N}.

Thus the Qn
N and QN agree with Qn and Q respectively on F̺N . Moreover, since the

sequence ̺N is a non-decreasing, lower semicontinuous stopping times. By the virtue of

Lemma 11.1.1 in [45], we get that Qn → Q weakly. Following the above procedure, we note

that b̃n(s, x) = IN(x)bn(s, x) and σ̃n(s, x) = IN (x)σ(s, x) are bounded uniformly in n and,
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as long as |x| ≤ N , b̃n(s, x) = bn(s, x) and σ̃n(s, x) = σ(s, x). For these reasons it suffices to

prove our results in the case that bn and σn are uniformly bounded.

3.3.1 Tightness of the Approximation Sequence

We first obtain the following lemma.

Lemma 3.6. Let

Y n =

{(

Xn(t),Λn(t), An(t),

∫ t

0

bn(s,X
n(s−),Λn(s−))dAn(s),

Mn(t),

∫ t

0

σn(s,X
n(s−),Λn(s−))dMn(s))

)

: t ≥ 0

}

, n = 1, 2, . . . .

(3.16)

Then for each T > 0, {Y n} is tight in D([0, T ],R6).

Proof. It suffices to verify that the following conditions are satisfied:

(a) for any ε > 0, there is a > 0 such that

sup
n

Pn

(

sup
0≤t≤T

|Y n(t)| > a

)

≤ ε,

(b) for any ε > 0, η > 0, there are n0 and δ > 0 such that for any Fn
t -adapted stopping

time τn with τn ≤ T a.s.

sup
n≥n0

Pn

(

sup
0≤s≤δ

|Y n(τn + s)− Y n(τn)| ≥ η

)

≤ ε.

But for this, it suffices to show (a) and (b) for each component of Y n and we will verify them

for the processes Λn and Xn only since the same argument applies to the other components

of Y n.

We now prove that the processes Λn satisfies (a) and (b). Since M is finite (a) trivially
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holds for Λn. To verify (b) we note that for η > 0

Pn

(

sup
0≤s≤δ

|Λn(τn + s)− Λ(τn)| ≥ η

)

= Pn
(

∃t ∈ (0, δ] : Λn(τn + t) 6= Λn(τn)
)

= 1− Pn
(

Λn(τn + ·) does not jump in the interval (0, δ]
)

= 1−
∑

i∈M

exp

{
∫ δ

0

qii(τ
n + s)ds

}

Pn (Λn(τn) = i)

≤ 1− eqδ,

(3.17)

where q is the lower bound of qii(·). Since the last quantity can be made arbitrarily small

by choosing δ small enough we conclude that {Λn} is tight.

We next verify that {Xn} satisfy (a) and (b). For any Fn
t -stopping time τ , we have

En

(
∫ τ

0

σn(s,X
n(s−),Λn(s−))dMn(s)

)2

≤ En

∫ τ

0

σn(s,X
n(s−),Λn(s−))d〈Mn〉(s)

≤ KEn〈Mn〉(τ),
(3.18)

where K is the bound for σ2
n. Then it is easy to see that

En|Xn(τ)|2 ≤ 3 sup
n

En(Xn)2(0) + 3KEn(An)2(τ) + 3KEn〈Mn〉(τ).

Thus the process X̄n(·) defined by

X̄n(t) = K + 3KEn(An)2(t) + 3KEn〈Mn〉(t)

is a process dominating (Xn)2(·) in the sense of Lenglart (see [18, page 35, lemma 3.30])

and hence it holds that

Pn

(

sup
0≤t≤T

(Xn)2(t) > a2
)

≤ 1

a2
EnX̄n(T ) ∧ b+ Pn

(

X̄n(T ) ≥ b
)

,
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for any b > 0. Here a ∧ b = min{a, b}. By assumption (A1) and (A5),

X̄n(T ) → K1 + 3KT 2 + 3KT,

if we take b = K1 + 3KT 2 + 3KT , there exists n1 such that Pn(X̄n(T ) ≥ b) ≤ ε for all

n > n1. Hence,

sup
n

Pn

(

sup
0≤t≤T

|Xn(t)| > a

)

≤
n1
∑

n=1

Pn

(

sup
0≤t≤T

|Xn(t)| > a

)

+
b

a2
+

ε

2

and thus (a) holds for {Xn} by taking a sufficiently large. We next show that (b) holds for

{Xn}. We can verify that

|Xn(τn + t)−Xn(τn)|2 ≤ 2K2 (An(τn + t)−An(τn))2 + 2K2 (〈Mn〉(τn + t)− 〈Mn〉(τn)) .

Repeat the argument in verifying (a), we have, for any b > 0,

Pn

(

sup
0≤s≤δ

|Xn(τn + s)−Xn(τn)|2 > η2
)

≤ 1

η2
En
[

2K2 (An(τn + δ)− An(τn))2 + 2K2 (〈Mn〉(τn + δ)− 〈Mn〉(τn))
]

∧ b

+ Pn
[

2K2 (An(τn + δ)− An(τn))2 + 2K2 (〈Mn〉(τn + δ)− 〈Mn〉(τn)) ≥ b
]

≤ 1

η2
En

[

2K2

{

sup
0≤t≤T

(An(t+ δ)− An(t))

}2

+ 2K2

{

sup
0≤t≤T

(〈Mn〉(t+ δ)− 〈Mn〉(t))
}

]

∧ b

+ Pn

[

2K2

{

sup
0≤t≤T

(An(t+ δ)− An(t))

}2

+ 2K2

{

sup
0≤t≤T

(〈Mn〉(t+ δ)− 〈Mn〉(t))
}

≥ b

]

.

(3.19)

Noting that (A1) implies that, for any ε > 0

Pn

(

sup
0≤t≤T

|〈Mn〉(t)− t| > ε

)

→ 0, as n → ∞.

This is proved by imitating the proof of [35, Lemma 1] with only slightly changes. It then
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implies

Pn

(∣

∣

∣

∣

sup
0≤t≤T

(〈Mn〉(t+ δ)− 〈Mn〉(t))− δ

∣

∣

∣

∣

> ε

)

→ 0 as n → ∞.

We also have

Pn

(∣

∣

∣

∣

sup
0≤t≤T

(An(t+ δ)− An(t))− δ

∣

∣

∣

∣

> ε

)

→ 0 as n → ∞.

Combining these two facts and (3.19) we conclude that (b) holds for Xn.

We will use frequently the following result in what follows. One may consult Liptser and

Shiryaev [20] for a proof.

Lemma 3.7. Under (A1) and (A2), Mn ⇒ W in D([0, T ],R), T arbitrary, where W is a

standard Brownian motion.

The following lemma establishes the continuity of some limit processes.

Lemma 3.8. Let

Un = (Λn(t), Xn(t), Rn
1 (t), R

n
2 (t))

=

(

Λn(t), Xn(t),

∫ t

0

bn(s,X
n(s−),Λn(s−))dAn(s),

∫ t

0

σn(s,X
n(s−),Λn(s−))dMn(s))

)

.

(3.20)

Then Y n converges weakly to a process U = (Λ, X,R1, R2), where X,R1 and R2 are contin-

uous processes and satisfy X = X(0) +R1 +R2.

Proof. As a consequence of the previous lemma {Un} is tight in D([0, T ],R4) and thus there

exists a sub-sequence, still indexed by n for notation simplicity, such that Un ⇒ U =

(Λ, X,R1, R2) in D([0, T ],R4). Let g : D([0, T ],R) → R defined by g(α) = sup0≤t≤T |∆α(s)|

where ∆α(s) = α(s)− α(s−). By Proposition 2.4 in [18, page 339], g is continuous. Noting
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that

∆Rn
2 (t) = σ(t, Xn(t−),Λn(t−))∆Mn(t)

and combining with the fact that σ is bounded, we deduce that g(Rn
2 ) ≤ Kg(Mn). Since

Mn(t) ⇒ W (t) and Rn
2 ⇒ R2, we have that g(R2) ≤ Kg(W ) = 0 and this implies that

R2 is continuous. Using the same arguments, we also get that R1 is continuous. Because

Xn ⇒ X(0) +R1 +R2 = X , X is continuous.

3.3.2 Weak Convergence of the Approximation Sequence

In this section we prove the following main convergence theorem

Theorem 3.9. Assume conditions (A1)-(A6) and suppose that Zn(0) = (Xn(0),Λn(0)) ⇒

Z(0) = (X(0),Λ(0)). Then Zn = (Xn,Λn) ⇒ Z = (X,Λ) in D([0, T ],R2), T arbitrary.

Before proceeding further, let us make two remarks. First, by Lemma 3.6 the sequence

of process Zn is tight thus by Prohorov’s theorem we can select a convergent subsequence.

For notation simplicity, we still denote the subsequence by Zn with the limit denoted by

Z̃ = (X̃, Λ̃). Therefore, to prove the weak convergence of Zn to Z, we need only prove that

the law of Z and Z̃ coincide. Second, by Skorohod’s representation [6, Theorem 1.8, page

102], we can assume that there is a common probability space (Ω0,F0,P0) and there are

sequence of D([0, T ],R6)-valued variables Ȳ n and Ȳ with same distributions as those of Y n

and Y , i.e.,

P0(Ȳ n ∈ ·) = Pn(Y n ∈ ·), P0(Ȳ ∈ ·) = P(Y ∈ ·).

To keep the notation simple, we still use {Y n} and Y to denote Ȳ n and Ȳ . Moreover,

Y n(·) converges to Y (·) with respect to Prokhorov’s metric on D([0, T ],R6) P0 almost surely.
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In view of [18, Lemma 1.31, page 331], there exists a sequence of continuous functions

λn : R+ → R+ that are strictly increasing, with λn(0) = 0, λn(t) ↑ T as t → T and satisfy

sup
0≤s≤T

|λn(s)− s| → 0, and sup
0≤s≤T

|Y n(λn(s))− Y (s)| → 0, P0 a.s.

We will fix the sequence of functions λn and use the two previous properties without explicitly

mentioning them in the subsequent proofs.

Proof. By the uniqueness of equation (3.6), we just need to prove that the law of the coupled

process Z̃ is the same as the law of Z, the solution of (3.6). We shall prove that for any

f(·, ·) : R×M → R such that for each i0 ∈ M, f(·, i0) ∈ C2
c (R),

Ξ(t) = f(X̃(t), Λ̃(t))− f(X̃(s), Λ̃(s))−
∫ t

s

Lu,Λ̃(u)f(X̃(u), Λ̃(u))du

−
∫ t

s

Q(u)f(X̃(u), ·)(Λ̃(u))du

is a martingale. To do this we shall prove that, for each n,

Ξn(t) =f(Xn(t),Λn(t))− f(Xn(s),Λn(s))

−
∫ t

s

∂

∂x
f(Xn(u−),Λn(u−))bn(u,X

n(u−),Λn(u−))dAn(u)

− 1

2

∫ t

s

∂2

∂x2
f(Xn(u−),Λn(u−))σ2

n(u,X
n(u−),Λn(u−))d〈(Mn)c〉(u)

−
∫ t

s

∫

R\0

[

f
(

Xn(u−) + σn(u,X
n(u−),Λn(u−))x,Λn(u−)

)

− f(Xn(u−),Λn(u−))

− ∂

∂x
f(Xn(u−),Λn(u−))σn(u,X

n(u−),Λn(u−))x

]

νn(dudx)

−
∑

j∈M

∫ t

s

[f(Xn(u), j)− f(Xn(u−),Λn(u−))] qΛn(u−),j(u)du

(3.21)

is a martingale, Ξn(t) converges to Ξ(t) in probability at each fixed t and the sequence {Ξn}

is uniformly integrable and thus the limit Ξ is indeed a martingale. These steps will be
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carried out in the several following lemmas.

Lemma 3.10. Let Ξn be defined as in (3.21). Then Ξn is an Fn martingale.

Proof. By Lemma 3.5, we have

f(Xn(t),Λn(t)) =f(Xn(s),Λn(s))

+

∫ t

s

∂

∂x
f(Xn(u−),Λn(u−))bn(u,X

n(u−),Λn(u−))dAn(u)

+

∫ t

s

∂

∂x
f(Xn(u−),Λn(u−))σn(u,X

n(u−),Λn(u−))dMn(u)

+
1

2

∫ t

s

∂2

∂x2
f(Xn(u−),Λn(u−))σ2

n(u,X
n(u−),Λn(u−))d〈(Mn)c〉(u)

+
∑

s<u≤t

[

f(Xn(u),Λn(u−))− f(Xn(u−),Λn(u−))

− ∂

∂x
f(Xn(u−),Λn(u−))∆Xn(u)

]

+
∑

j∈M

∫ t

s

[f(Xn(u−), j)− f(Xn(u−),Λn(u−))] qΛn(u−),j(u)du

+
∑

j∈M

∫ t

s

[f(Xn(u−), j)− f(Xn(u−),Λn(u−))] dLn
Λn(u−),j(u),

(3.22)

where (Mn)c is the continuous part of the martingale Mn. Since f is twice continuous

differentiable function with a compact support and supn E
0〈Mn〉(t) < ∞, the integral with

respect to Mn is a martingales. Similarly, we also have the stochastic integrals with respect

to Ln
i0,j0

, i0, j0 ∈ M, i0 6= j0 are martingales. Therefore, in order to prove that Ξn(t) is a
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martingale, it is sufficient to prove that

Γn(t) =
∑

s<u≤t

[

f(Xn(u),Λn(u−))− f(Xn(u−),Λn(u−))− ∂

∂x
f(Xn(u−),Λn(u−))∆Xn(u)

]

−
∫ t

s

∫

R\0

[

f
(

Xn(u−) + σn(u,X
n(u−),Λn(u−))x,Λn(u−)

)

− f(Xn(u−),Λn(u−))

− ∂

∂x
f(Xn(u−),Λn(u−))σn(u,X

n(u−),Λn(u−))x

]

νn(dudx)

(3.23)

is a martingale. Let us define

Gn(u, x, ω) =f
(

Xn(u−) + σn(u,X
n(u−),Λn(u−))x,Λn(u−)

)

− f(Xn(u−),Λn(u−))

− ∂

∂x
f(Xn(u−),Λn(u−))σn(u,X

n(u−),Λn(u−))x.

(3.24)

Note that

Gn(u, x, ω) =
1

2

∂2

∂x2
f
(

Xn(u−)+θn(ω)σn(u,X
n(u−),Λn(u−))x,Λn(u−)

)

σ2
n(s,X

n(u−),Λn(u−))x,

where θn is a random variable taking value in [0, 1]. By the assumption supn E
0〈Mn〉(t) < ∞

and the fact that

〈Mn〉(t) = 〈(Mn)c〉(t) +
∫ t

0

∫

R\0

x2νn(dudx),

we have

E0

∫ t

s

∫

R\0

x2νn(dsdx) < ∞,

for each fixed t. By the boundedness of σn and ∂2

∂x2f , this implies

E0

∫ t

s

∫

R\0

|Gn(u, x, ω)|νn(dudx) < ∞. (3.25)
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Since

E0

∫ t

0

∫

R\0

|Gn(u, x, ω)|µn(dsdx) = E0

∫ t

0

∫

R\0

|Gn(u, x, ω)|νn(dudx)

and note that ∆Xn(t) = σn(t, X
n(t−),Λn(t−))∆Mn(t) we have

∫ t

s

∫

R\0

Gn(u, x, ω)µn(dudx)

=
∑

s<u≤t

[

f(Xn(u),Λn(u−))− f(Xn(u−),Λn(u−))− ∂

∂x
f(Xn(u−),Λn(u−))∆Xn(u)

]

.

(3.26)

The finiteness in (3.25) also implies that

Γn(t) =

∫ t

s

∫

R\0

Gn(u, x, ω)µn(dudx)−
∫ t

s

∫

R\0

Gn(u, x, ω)νn(dudx)

is an Fn-martingale. the desired result is obtained.

Lemma 3.11. Assume conditions (A1)–(A5). Then

f(Xn(t),Λn(t))− f(Xn(s),Λn(s)) → f(X̃(t), Λ̃(t))− f(X̃(s), Λ̃(s))

in probability for each 0 ≤ s ≤ t ≤ T .

Proof. It is sufficient to prove that f(Xn(u),Λn(u)) → f(X̃(u), Λ̃(u)) in probability for each

0 ≤ s ≤ u ≤ t ≤ T . We have

∣

∣

∣
f
(

Xn(u),Λn(u)
)

− f
(

X̃(u), Λ̃(u)
)

∣

∣

∣

≤
∣

∣f
(

Xn(u),Λn(u)
)

− f
(

Xn ◦ λn(u),Λ
n(u)

)∣

∣ +
∣

∣

∣
f
(

Xn ◦ λn(u),Λ
n(u)

)

− f
(

X̃(u),Λn(u)
)

∣

∣

∣

+
∣

∣

∣
f
(

X̃(u),Λn(u)
)

− f
(

X̃(u),Λn ◦ λn(u)
)

∣

∣

∣
+
∣

∣

∣
f
(

X̃(u),Λn ◦ λn(u)
)

− f
(

X̃(u), Λ̃(u)
)

∣

∣

∣
.

(3.27)

By the continuity of f and the property of λn, the second and fourth term on the right-hand

side of the last expression converges to zero in probability as n → ∞. For the third term,
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one has

P0 (|Λn(u)− Λn ◦ λn(u)| > ε)

≤ P0
(

|Λn(u)− Λn ◦ λn(u)| > ε/2, |λn(u)− u| ≤ δ
)

+ P0
(

|λn(u)− u| > δ
)

≤ 1− P0
(

Λn(u+ ·) has no jump on the interval of length δ
)

+ P0
(

|λn(u)− u| > δ
)

.

(3.28)

By first choosing δ to make the first term in the last expression small enough and then

selecting n large enough, we can make the left-hand side as mall as we want. Using the

continuity of f , we can make the third term of (3.27) to be arbitrarily small in probability.

Using similar arguments, we can also prove that the second term in (3.27) converges to zero

in probability. Therefore f
(

Xn(u),Λn(u)
)

→ f
(

X̃(u), Λ̃(u)
)

in probability.

Lemma 3.12. Assume conditions (A1)–(A5). Then

∫ t

s

∂

∂x
f(Xn(u−),Λn(u−))bn(u,X

n(u−),Λn(u−))dAn(u)

→
∫ t

s

∂

∂x
f(X̃(u−), Λ̃(u−))b(u, X̃(u−), Λ̃(u−))du

(3.29)

in probability for each 0 ≤ s ≤ t ≤ T .

Proof. By the change variable formula of the Lebesgue-Stieljes integral, we have that

∫ λn(t)

λn(s)

f(Xn(u−),Λn(u−))bn(u,X
n(u−),Λn(u−))dAn(u)

=

∫ t

s

f(Xn ◦ λn(u−),Λn ◦ λn(u−))bn(λn(u), X
n ◦ λn(u−),Λn ◦ λn(u−))dAn ◦ λn(u−).

(3.30)
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Let γn(t) = inf{s : An(λn(s)) > t}, by [5, page 91], we have that

∫ t

s

f(Xn ◦ λn(u−),Λn ◦ λn(u−))bn(λn(u), X
n ◦ λn(u−),Λn ◦ λn(u−))dAn ◦ λn(u−)

=

∫ An◦λn(t)

An◦λn(s)

f(Xn ◦ λn ◦ γn(u−),Λn ◦ λn ◦ γn(u−))bn(γn(u), X
n ◦ λn ◦ γn(u−),Λn ◦ λn ◦ γn(u−))du.

(3.31)

We note that with probability one, γn(u) → u for each u. Then by convergence of Xn ◦ λn

and Λn ◦ λn we have that Xn ◦ λn ◦ γn(u−) → X̃(u−) and Λn ◦ λn ◦ γn(u−) → Λ̃(u−).

Combine with assumptions (A4-5) we get

f(Xn ◦ λn ◦ γn(u−),Λn ◦ λn ◦ γn(u−))bn(γn(u), X
n ◦ λn ◦ γn(u−),Λn ◦ λn ◦ γn(u−))

→ f(X̃(u−), Λ̃(u−))b(s, X̃(u−), Λ̃(u−)).

Then by bounded convergence theorem it follows that with probability one

∫ t

s

f(Xn ◦ λn ◦ γn(u−),Λn ◦ λn ◦ γn(u−))bn(γn(u), X
n ◦ λn ◦ γn(u−),Λn ◦ λn ◦ γn(u−))du

→
∫ t

s

f(X̃(u−), Λ̃(u−))b(s, X̃(u−), Λ̃(u−))du.

We also have that with probability one

∫ An(λn(t))

t

f(Xn◦λn◦γn(u−),Λn◦λn◦γn(u−))bn(γn(u), X
n◦λn◦γn(u−),Λn◦λn◦γn(u−))du → 0.

Thus the claim is proved.

Lemma 3.13. Assume (A1) – A(5). Then

1

2

∫ t

s

∂2

∂x2
f(Xn(u−),Λn(u−))σ2

n(u,X
n(u−),Λn(u−))d〈(Mn)c〉(u) → 0,

in probability for 0 ≤ s ≤ t ≤ T .

Proof. We prove the claim under the Assumption (A3-i). The proof under Assumption (A3-
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ii) can be carried out in the similar manner. We first note that, by the uniform boundedness

of σn(·), we have

∣

∣

∣

∣

∫ t

s

∂2

∂x2
f(Xn(u−),Λn(u−))σ2

n(u,X
n(u−),Λn(u−))d〈(Mn)c〉(u)

∣

∣

∣

∣

≤ K〈(Mn)c〉(t).

Since

〈Mn〉(t) = 〈(Mn)c〉(t) +
∫ t

0

∫

R\0

x2νn(dsdx),

assumptions (A1) and (A3-i) imply that 〈(Mn)c〉(t) → 0 in probability for each t and the

above estimate gives us the desired result.

Lemma 3.14. Assume (A1) – (A6). Then

In(t) =

∫ t

s

∫

R\0

[

f
(

Xn(u−) + σn(u,X
n(u−),Λn(u−))x,Λn(u−)

)

− f(Xn(u−),Λn(u−))

− ∂

∂x
f(Xn(u−),Λn(u−))σn(u,X

n(u−),Λn(u−))x

]

νn(dudx)

→ 1

2

∫ t

s

∂2

∂x2
f(X̃(s), Λ̃(s))σ2(s, X̃(s), Λ̃(s))ds

in probability for 0 ≤ s ≤ t ≤ T .

Proof. We shall prove the result under the Assumption (A3-i). The proof under the assump-

tion (A3-ii) can be done similarly. Using Taylor’s expansion, we have

∣

∣

∣

∣

In(t)− 1

2

∫ t

s

∂2

∂x2
f(X̃(s), Λ̃(s))σ2(s, X̃(s), Λ̃(s))

∣

∣

∣

∣

≤
6
∑

i=1

Jn
i (t),



64

where

Jn
1 (t) =

1

2

∫ t

s

∫

R\0

∣

∣

∣

∂2

∂x2
f
(

Xn(u−) + θn(ω)σn(u,X
n(u−),Λn(u−))x,Λn(u−)

)

− ∂2

∂x2
f
(

Xn(u−) + θn(ω)σn(u,X
n(u−),Λn(u−))x, Λ̃(u−)

)

∣

∣

∣

× σ2
n(s,X

n(u),Λn(u−))x2νn(dudx),

Jn
2 (t) =

1

2

∫ t

s

∫

R\0

∣

∣

∣

∂2

∂x2
f
(

Xn(u−) + θn(ω)σn(u,X
n(u−),Λn(u−))x, Λ̃(u−)

)

− ∂2

∂x2
f(Xn(u−), Λ̃(u−))

∣

∣

∣
× σ2

n(s,X
n(s),Λn(s−))x2νn(dudx),

Jn
3 (t) =

1

2

∫ t

s

∫

R\0

∣

∣

∣

∂2

∂x2
f(Xn(u−), Λ̃(u−))− ∂2

∂x2
f(X̃(u−), Λ̃(u−))

∣

∣

∣

× σ2
n(u,X

n(u−),Λn(u−))x2νn(dudx),

Jn
4 (t) =

1

2

∫ t

s

∫

R\0

∣

∣

∣

(

σ2
n(s,X

n(u−),Λn(u−))− σ2(s, X̃(u−),Λn(u−))
)∣

∣

∣

×
∣

∣

∣

∂2

∂x2
f(X̃(u−), Λ̃(u−))

∣

∣

∣
x2νn(dudx),

Jn
5 (t) =

1

2

∫ t

s

∫

R\0

∣

∣

∣

(

σ2
n(s, X̃(u−),Λn(u−−))− σ2(s, X̃(u−), Λ̃(u−))

)∣

∣

∣

×
∣

∣

∂2

∂x2
f(X̃(u−), Λ̃(u−))

∣

∣

∣
x2νn(dudx),

Jn
6 (t) =

1

2

∣

∣

∣

∫ t

s

∫

R\0

σ2(s, X̃(u−), Λ̃(u−))
∂2

∂x2
f(X̃(u−), Λ̃(u−))x2νn(dudx)

−
∫ t

s

σ2(s, X̃(u−), Λ̃(u−))
∂2

∂x2
f(X̃(u−), Λ̃(u−))du

∣

∣

∣
.

(3.32)

We will prove that each of those above terms converges to zero in probability for each fixed

t and the desired claim then follows.

The proof for Jn
1 can be carried out in a similar manner to that of Lemma 3.11. We now

give a proof for the convergence to zero of Jn
2 . Since ∂2

∂x2 f(·) is uniformly continuous and

σn(·) is uniformly bounded, for an arbitrary ε > 0, there exists δ(ε) > 0 such that, for all x,
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if |x| ≤ δ(ε) then

∣

∣

∣

∂2

∂x2
f
(

Xn(u−) + θn(ω)σn(u,X
n(u−),Λn(u−))x, Λ̃(u−)

)

− ∂2

∂x2
f(Xn(u−), Λ̃(u−))

∣

∣

∣
≤ ε.

We therefore can estimate Jn
2 by

Jn
2 ≤ 1

2
K

(
∫ t

0

∫

0<|x|≤δ(ε)

εx2νn(dsdx) + 2K

∫ t

0

∫

|x|>δ(ε)

x2νn(dsdx)

)

≤ ε

2
K

∫ t

0

∫

0<|x|≤δ(ε)

x2νn(dsdx) +K2

∫ t

0

∫

|x|>δ(ε)

x2νn(dsdx) → ε

2
K

(3.33)

in probability by assumption (A2). Since ε is arbitrary we conclude that Jn
2 converges to 0

in probability for each t. For Jn
3 (t), we have

Jn
3 (t) ≤ K sup

s≤u≤t

∣

∣

∣

∂2

∂x2
f(Xn(u−), Λ̃(u−))− ∂2

∂x2
f(X̃(u−), Λ̃(u−))

∣

∣

∣

∫ t

0

∫

R\{0}

x2νn(dudx)

≤ K sup
s≤u≤λ−1

n (t)

∣

∣

∣

∂2

∂x2
f(Xn ◦ λn(u−), Λ̃(u−))− ∂2

∂x2
f(X̃(u−), Λ̃(u−))

∣

∣

∣

∫ t

0

∫

R\{0}

x2νn(dudx)

+K sup
s≤u≤λ−1

n (t)

∣

∣

∣

∂2

∂x2
f(X ◦ λn(u−), Λ̃(u−))− ∂2

∂x2
f(X̃(u−), Λ̃(u−))

∣

∣

∣

∫ t

0

∫

R\{0}

x2νn(dudx)

→ 0

(3.34)

in probability. Using quite similar arguments we can also prove that Jn
4 (t) and Jn

5 (t) are all

convergent to zero with probability one. Indeed, we have

Jn
4 (t) ≤ K sup

s≤u≤t

∣

∣σ2
n(u,X

n(u−),Λn(u−))− σ2(u, X̃(u−),Λn(u−))
∣

∣

∫ t

0

∫

R\{0}

x2νn(dudx),
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and

sup
s≤u≤t

∣

∣σ2
n(u,X

n(u−),Λn(u−))− σ2(u, X̃(u−),Λn(u−))
∣

∣

≤ sup
s≤u≤t

∣

∣σ2
n(u,X

n(u−),Λn(u−))− σ2
n(u, X̃(u−),Λn(u−))

∣

∣

+ sup
s≤u≤t

∣

∣σ2
n(u, X̃(u−),Λn(u−))− σ2(u, X̃(u−),Λn(u−))

∣

∣

≤ sup
s≤u≤λ−1

n (t)

∣

∣σ2
n(u,X

n ◦ λn(u−),Λn(u−))− σ2
n(u, X̃(u),Λn(u−))

∣

∣

+ sup
s≤u≤λ−1

n (t)

∣

∣σ2
n(u, X̃(u−),Λn(u−))− σ2

n(u, X̃ ◦ λn(u−),Λn(u−))
∣

∣

+ sup
s≤u≤t

∣

∣σ2
n(u, X̃(u−),Λn(u−))− σ2(u, X̃(u),Λn(u−))

∣

∣→ 0

(3.35)

in probability.

We now work with the last term Jn
6 (t). Let

h(u, ω) = σ2(u, X̃(u−, ω), Λ̃(u−, ω))
∂2

∂x2
f(X̃(u−, ω), Λ̃(u−, ω)),

and for each N > 0 we define hN by

hN(u, ω) = h(um, ω), um ≤ u < um+1 where um = s+
t− s

N
m,m = 0, 1, 2, . . . , N.

We have

Jn
6 (t) ≤

∫ t

s

∫

R\{0}

|h(u, ω)− hN(u, ω)|x2νn(dudx)

+

∣

∣

∣

∣

∫ t

s

∫

R\{0}

hN(u, ω)x
2νn(dudx)−

∫ t

s

hN(u, ω)du

∣

∣

∣

∣

+

∫ t

s

|hN(u, ω)− g(u, ω)|du

≤ sup
s≤u≤t

|h(u, ω)− hN (u, ω))|
∫ t

s

∫

R\{0}

x2νn(dudx)

+

∣

∣

∣

∣

∫ t

s

∫

R\{0}

hN(u, ω)x
2νn(dudx)−

∫ t

s

hN(u, ω)du

∣

∣

∣

∣

+ sup
s≤u≤t

|h(u, ω)− hN(u, ω))|t

= Un
6,1 + Un

6,2 + Un
6,3.

(3.36)
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We first prove that for each n, Un
6,1 and Un

6,3 converge to zero in probability as N → ∞.

By assumption (A3), to do so it is sufficient to prove that sups≤u≤t |h(u, ω) − hN(u, ω))|

converges to zero in probability when N goes to infinity. Note that

sup
s≤u≤t

|h(u, ω)− hN(u, ω))| = max
0≤m≤N−1

sup
um≤u≤um+1

|h(u, ω)− hN(um, ω)|, (3.37)

and

sup
um≤u≤um+1

|h(u)− hN(um)|

≤ sup
um≤u≤um+1

∣

∣

∣
σ2(u, X̃(u−), Λ̃(u−))− σ2(um, X̃(um−), Λ̃(u−))

∣

∣

∣

∂2

∂x2
f(X̃(u−), Λ̃(u−))

+ sup
um≤u≤um+1

∣

∣

∣
σ2(um, X̃(um−), Λ̃(u−))− σ2(um, X̃(um−), Λ̃(um−))

∣

∣

∣

∂2

∂x2
f(X̃(u−), Λ̃(u−))

+ sup
um≤u≤um+1

∣

∣

∣

∂2

∂x2
f(X̃(u−), Λ̃(u−))− ∂2

∂x2
f(X̃(um−), Λ̃(um−))

∣

∣

∣
σ2(um, X̃(um), Λ̃(um))

≤ K sup
um≤u≤um+1

|X̃(u−)− X̃(um−)|

+K sup
um≤u≤um+1

∣

∣

∣

∂2

∂x2
f(X̃(u−), Λ̃(u−))− ∂2

∂x2
f(X̃(um−), Λ̃(um−))

∣

∣

∣

+K sup
um≤u≤um+1

∣

∣

∣
σ2(um, X̃(um−), Λ̃(u−))− σ2(um, X̃(um−), Λ̃(um−))

∣

∣

∣
,

(3.38)

where we have used the Lipschiz continuity of σ and the boundedness of f and σ to derive
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the last inequality. Therefore,

sup
s≤u≤t

|h(u)− hN (u))|

≤ K max
0≤m≤N−1

sup
um≤u≤um+1

|X̃(u−)− X̃(um−)|

+K max
0≤m≤N−1

sup
um≤u≤um+1

∣

∣

∣

∂2

∂x2
f(X̃(u−), Λ̃(u−))− ∂2

∂x2
f(X̃(sm−), Λ̃(sm−))

∣

∣

∣

+K max
0≤m≤N−1

sup
um≤u≤um+1

∣

∣

∣
σ2(um, X̃(um−), Λ̃(u−))− σ2(um, X̃(um−), Λ̃(um−))

∣

∣

∣

= V1 + V2 + V3.

(3.39)

By Lemma 3.8, X̃ is a continuous processes and thus uniformly continuous. Therefore V1

converges to zero a.e and hence in probability when N large enough. For V3, we have

sup
um≤u≤um+1

∣

∣

∣
σ2(um, X̃(um−), Λ̃(u−))− σ2(um, X̃(um−), Λ̃(um−))

∣

∣

∣
≤ K1∆,

where

∆ = {∃u ∈ [um, um+1) such that Λ̃(u) 6= Λ̃(um−)}.

Hence by the Tchebyshev inequality,

P0

{

sup
um≤u≤um+1

∣

∣

∣
σ2(um, X̃(um−), Λ̃(u))− σ2(um, X̃(um−), Λ̃(um−))

∣

∣

∣
≥ ε

}

≤ K

ε

{

1− P0

(

Λ̃(um + ·) does not jump in the interval

[

0,
t− s

N

))}

=
K

ε

{

1−
∑

i∈M

exp

{

∫ (t−s)/N

0

qii(um + u)du

}

P0
(

Λ̃(um) = i
)

}

≤ K

ε

(

1− eq(t−s)/N
)

.

(3.40)

This implies

P0{V3 > ε} ≤ NK

ε

(

1− eq(t−s)/N
)

,
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which can be arbitrarily small when N is sufficiently large enough, thus V3 converges to

zero in probability. The proof that V2 converges in probability to zero can be carried out

by combining the arguments in the proofs that V1 and V3 converge in probability to zero.

Therefore sups≤u≤t |h(u, ω)− hN(u, ω))| converges to zero in probability.

We now prove that Un
6,2 converges to zero in probability as n → ∞. Indeed, for an

arbitrary ε > 0,

P0

{∣

∣

∣

∣

∫ t

s

∫

R\{0}

hN (u, ω)x
2νn(dudx)−

∫ t

s

hN (u, ω)du

∣

∣

∣

∣

≥ e

}

= P0

{∣

∣

∣

∣

∣

N−1
∑

i=0

hN(ui, ω)

[
∫ t

s

∫

R\{0}

x2νn(dudx)− (ui+1 − ui)

]

∣

∣

∣

∣

∣

≥ ε

}

≤ P0

{

K
N−1
∑

i=0

∣

∣

∣

∣

∫ t

s

∫

R\{0}

x2νn(dudx)− (ui+1 − ui)

∣

∣

∣

∣

≥ ε

}

≤
N−1
∑

i=0

P0

{∣

∣

∣

∣

∫ t

s

∫

R\{0}

x2νn(dudx)− (ui+1 − ui)

∣

∣

∣

∣

≥ ε

KN

}

,

(3.41)

and the desired convergence follows. Since for each n, Un
6,1 and Un

6,3 converge to zero in

probability when N → ∞ , for each ε > 0, by first choose n and then N , we can make

P{Jn
6 ≥ ε} arbitrarily small. Hence Jn

6 converges to zero in probability as desired. This

finished the proof of the lemma.

Lemma 3.15. Assume conditions (A1)–(A5). Then

∑

j0∈M

∫ t

s

[f(Xn(u−), j0)− f(Xn(u−),Λn(u−))] qΛn(u−),j0(u)du

→
∫ t

s

∑

i0,j0∈M

qi0,j0

(

X̃(u−)
)

1i0

(

Λ̃(u−)
)(

f(X̃(u−), j0)− f(X̃(u−), i0)
)

du

in probability for each 0 ≤ s ≤ t ≤ T .
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Proof. We first note that

∑

j0∈M

∫ t

s

[f(Xn(u−), j0)− f(Xn(u−),Λn(u−))] qΛn(u−),j0(u)du

=

∫ t

s

∑

i0,j0∈M

qi0,j0 (X
n(u−))1i0 (Λ

n(u−))
(

f(Xn(u−), j0)− f (Xn(u−), i0)
)

du.

In addition, using similar arguments as we did in Lemma 3.11, we can prove that

f(Xn(u−), j0)− f(Xn(u−),Λn(u−)) → f(X̃(u−), j0)− f(X̃(u−), i0)

in probability for i0, j0 ∈ M, i0 6= j0. Moreover, for each i0 ∈ M

P0
(

|1i0(Λ
n(s))− 1i0(Λ̃(s))| > ε

)

≤ P0
(

|Λn(s)− Λ̃(s)| > ε
)

,

thus 1i0(Λ
n(s)) → 1i0(Λ̃(s)) in probability. These imply, for each i0, j0 ∈ M,

qi0,j0 (u)1i0 (Λ
n(u−))

(

f(Xn(u−), j0)− f (Xn(u−), i0)
)

→ qi0,j0 (u)1i0

(

Λ̃(u−)
)(

f(X̃(u−), j0)− f(X̃(u−), i0)
)

(3.42)

in probability. By the uniformly integrable of the family

{

qi0,j0 (u)1i0 (Λ
n(u−))

(

f(Xn(u−), j0)− f (Xn(u−), i0)
)}

,

we then have

E0
∣

∣

∣
qi0,j0 (u)1i0 (Λ

n(u−))
(

f(Xn(u−), j0)− f (Xn(u−), i0)
)

− qi0,j0 (u)1i0

(

Λ̃(u−)
)(

f(X̃(u−), j0)− f(X̃(u−), i0)
)∣

∣

∣
→ 0.

(3.43)



71

By virtue of Chebyshev’s inequality and the bounded convergence theorem we obtain

P0
(∣

∣

∣

∫ t

s

qi0,j0 (u)1i0 (Λ
n(u−))

(

f(Xn(u−), j0)− f (Xn(u−), i0)
)

du

−
∫ t

s

qi0,j0 (u)1i0

(

Λ̃(u−)
)(

f(X̃(u−), j0)− f(X̃(u−), i0)
)

du
∣

∣

∣
> ε
)

≤ 1

ε
E0
∣

∣

∣

∫ t

s

qi0,j0 (u)1i0 (Λ
n(u−))

(

f(Xn(u−), j0)− f (Xn(u−), i0)
)

du

−
∫ t

s

qi0,j0 (u)1i0

(

Λ̃(u−)
)(

f(X̃(u−), j0)− f(X̃(u−), i0)
)

du
∣

∣

∣

≤ 1

ε

∫ t

s

E0
∣

∣

∣
qi0,j0 (u)1i0 (Λ

n(u−))
(

f(Xn(u−), j0)− f (Xn(u−), i0)
)

− qi0,j0 (u)1i0

(

Λ̃(u−)
)(

f(X̃(u−), j0)− f(X̃(u−), i0)
)∣

∣

∣
→ 0.

(3.44)

From this we can easily get the claim and finish the proof.

Lemma 3.16. Under assumptions (A1)–(A6), (Ξ(t),F,P0) is a martingale.

Proof. Thanks to the result of Lemma 3.10–Lemma 3.15, to show that (Ξ(t),F,P0) is a

martingale, we need only prove that the sequence {Ξn} is uniformly integrable. From the

definition of Ξn, the boundedness of bn and σn and the fact that f is in C2
c (R) , we can easily

deduce that

|Ξn(t)| ≤ K +K〈(Mn)c〉(t) +K

∫ t

0

∫

R\{0}

x2νn(dsdx)

for a positive constant K independent of n. This implies

|Ξn(t)| ≤ K +K〈(Mn)c〉(t). (3.45)

By virtue of (3.45) and note that supn E
0〈Mn〉(t) < ∞, we have the desired result and thus

complete the proof.
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3.4 Final Remarks

In this chapter we work with one dimensional set up for simplicity in presentation. The

result in multidimensional set up can be obtained by repeating the arguments presented

here.

3.5 Appendix

We give here a proof of Lemma 3.5.

Proof. Let us define

Hi0(t) = 1{Λ(t)=i0},

Hi0,j0(t) =
∑

s<u≤t

1{Λ(u−)=i0}1{Λ(u)=j0} =
∑

s<u≤t

Hi0(u−)Hj0(u),
(3.46)

for i0, j0 ∈ M, i0 6= j0. The random variable Hi0(t) indicates whether or not Λ resides at i0

at the time t, and Hi0,j0(t) counts the number of jumps of Λ from i0 to j0 in the time interval

(s, t]. Using the definition of Hi0 and Hi0,j0 and the integration by part formula, we have

d(f(X(t),Λ(t))) =
∑

i0∈M

d(f(X(t),Λ(t))Hi0(t)) = I1 + I2 + I3,

where

I1 =
∑

i0∈M

Hi0(t−)df(X(t), i0), I2 =
∑

i0∈M

f(X(t−), i0)dHi0(t), I3 =
∑

i0∈M

∆f(X(t), i0)∆Hi0(t),

and ∆f(X(t), i0) = f(X(t), i0)− f(X(t−), i0). We first work with I2. Noting that

Hi0(t) =
∑

j0,j0 6=i0

Hj0,i0(t)−
∑

j0,j0 6=i0

Hi0,j0(t),
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hence we have

I2 =
∑

i∈M

f(X(t−), i)d

(

∑

j0,j0 6=i0

(Hj0,i0(t)−Hi0,j0(t))

)

=
∑

i0,j0∈M;j0 6=i0

f(X(t−), i0)dHj0,i0(t)−
∑

i0,j0∈M;j0 6=i0

f(X(t−), i0)dHi0,j0(t)

=
∑

i0,j0;j0 6=i0

f(X(t−), j0)dHi0,j0(t)−
∑

i0,j0,j0 6=i0

f(X(t−), i0)dHi0,j0(t)

=
∑

i0,j0;j0 6=i0

(f(X(t−), j0)− f(X(t−), i0)) dHi0,j0(t).

(3.47)

Next, from the fact that Hi0,j0 and M do not have common jump, for i0, j0 ∈ M, i0 6= j0, A

is continuous and

∆X(t) = b(X(t−),Λ(t−))∆A + σ(X(t−),Λ(t−))∆M = σ(X(t−),Λ(t−))∆M.

we deduce ∆X(t)∆Hi0,j0 = 0 for i0, j0 ∈ M, i0 6= j0. Therefore, using similar calculations as

in the case of I1, we have

I3 =
∑

i0∈M

∆f(X(t), i0)∆Hi0(t)

=
∑

i0,j0∈M;i0 6=j0

(∆f(X(t), j0)−∆f(X(t), i))∆Hi0(t) = 0.

(3.48)

For the term I1, using Itô’s lemma [42, page 79], we have

df(X(t), i0) =
∂

∂x
f(X(t−), i0)dX(t) +

1

2

∂2

∂x2
f(X(t−), i0)d〈Xc〉(t)

+

[

f(X(t), i0)− f(X(t−), i0)−
∂

∂x
f(X(t−), i0)∆X(t)

]

.

(3.49)
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Thus,

Hi0(t−)df(X(t), i0) =Hi0(t−)
∂

∂x
f(X(t−), i0)dA(t) +Hi0(t−)

∂

∂x
f(X(t−), i0)dM(t)

+
1

2
Hi0(t−)

∂2

∂x2
f(X(t−), i0)d〈M c〉(t)

+Hi0(t−)

[

f(X(t), i0)− f(X(t−), i0)−
∂

∂x
f(X(t−), i0)∆X(t)

]

.

(3.50)

Combining (3.47), (3.48), and (3.50), we arrive at

df(X(t),Λ(t)) =
∑

i0∈M

Hi0(t−)
∂

∂x
f(X(t−), i0)b(t, X(t−), i0)dA(t)

+
∑

i0∈M

Hi0(t−)
∂

∂x
f(X(t−), i0)σ(t, X(t−), i0)dM(t)

+
1

2

∑

i0∈M

Hi0(t−)
∂2

∂x2
f(X(t−), i0)σ

2(t, X(t−), i0)d〈M c〉(t)

+
∑

i0∈M

Hi0(t−)

[

f(X(t), i0)− f(X(t−), i0)−
∂

∂x
f(X(t−), i0)∆X(t)

]

+
∑

i0,j0;j0 6=i0

(

f(X(t−), j0)− f(X(t−), i0).
)

dHi0,j0(t).

(3.51)

Using (3.4) and the definition of Hi0 , Hi0,j0, we can rewrite

(

f(X(t−), j0)− f(X(t−), i0)
)

dHi0,j0(t)

=
(

f(X(t−), j0)− f(X(t−), i0)
)

Hi0(t−)dLi0,j0(t)

+
(

f(X(t−), j0)− f(X(t−), i0)
)

Hi0(t−)qi0,j0(X(t−))dt.

Substituting this into equation (3.51) and rewriting the resulted equation in the integral

form we get the desired claim.
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CHAPTER 4 NEAR OPTIMALITY AND NEAR

EQUILIBRIUM FOR CONTROLLED

SYSTEMS WITH WIDEBAND NOISE

FOR HYBRID SYSTEMS

4.1 Introduction

This chapter focuses on controlled hybrid systems being good approximations to con-

trolled switching diffusion processes. Even though Brownian motion based models are good

approximation to the real models, and are easily dealt with in terms of analysis. In real

applications, the noise is often non-Markovian and the so-called “white noise” is only an

idealization and simplification. So in lieu of the true “white noise”, one may have an ap-

proximation of the Brownian motion. In lieu of a Brownian motion, we use a wide-band

noise formulation, which facilitates the treatment of non-Markovian models. The wide-band

noise is one whose spectrum has band width wide enough. We work with a basic stationary

mixing type process. We conveniently introduce a small parameter ε so that as ε → 0, the

band width goes to that of the white noise. On top of this wide-band noise process, we allow

the system to be subject to random discrete event influence. The discrete event process is a

continuous-time Markov chain with a finite state space. Although the state space is finite,

we assume that the state space is rather large and the Markov chain is irreducible. Using a

two-time-scale formulation and assuming the Markov chain also subjects to fast variations,

we obtain a limit controlled process.

Working with the original process is rather involved.

(1) The original process is non-Markov. Thus, the usual stochastic control techniques

cannot be used. For example, in optimal stochastic control problems, we normally
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obtain the associate Hamilton-Jaccobi-Bellman (HJB) equations using a dynamic pro-

gramming approach. Because it is non-Markovian, it is not clear how we can get the

corresponding HJB equations.

(2) Because the random environment, the Markov chain, has a large state space, the

computational complexity is a main issue.

(3) The wide-band noise process makes the noise part varying fast. It makes handle the

original problem even more difficult.

To face the challenges, we show that as the small parameter goes to 0, we obtain a limit

system that is a controlled diffusion. Assuming that the limit problem has controls of desired

type, we then plug such controls into the original system and show the resulting system is

nearly optimal.

In this chapter, we first provide the formulation of the problem followed by some pre-

liminary results regarding relaxed controls, weak convergence, and perturbed test functions

method. We next establish weak convergence of the wide-band width noise control process

to the suitable controlled diffusion. This result is interesting in its own right. This work is

different from [28] in three aspects. First, our controlled process is not homogeneous in time.

This leads to the use of different perturbed test functions. Second, our controlled process is

also governed by a random discrete component. The third one is that, beside the optimal

control problem, we also consider the equilibrium problem. Similar to [28], we first obtain a

limit controlled system. Based on the optimal or near-optimal controls of the limit system,

we then construct controls for the original problem. We further show that the controls so

constructed lead to near optimality. Section 4.2 begins with the formulation of our problem.
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Section 4.3 gives some preliminary results. Section 4.4 presents the weak convergence and

near-optimal controls. Section 4.6 concentrates on linear quadratic problems.

4.2 Problem Setup

This section formulate an optimal control problem and a stochastic game involving a

perturbed Markov chain and a wideband noise. Let β(t), t ≥ 0, be an ergodic Markov chain

on the state space M = {1, 2, . . . , m0} with the invariant measure ν = (ν1, ν2, . . . , νm0) and

the generator Q = (qi0j0)1≤i0,j0≤m0
satisfying qi0j0 ≥ 0 if i0 6= j0 and

∑m0

j0=1 qi0j0 = 0 for each

1 ≤ i0 ≤ m0. For each ε > 0 denote βε(t), t ≥ 0, the perturbed Markov chain with the

same the state space M and generator Q
ε
. Let r and N be positive integers, T a positive

real number. In this chapter, the vectors are always column vectors and for a given vector

or matrix M , M ′ denotes its transpose.

Let ξ(t), t ≥ 0, be a stationary zero mean process taking values in Rr and U is a compact

set in Rr. In general, the dimension of ξ and the Euclidean space that contains U can be

arbitrary. However, for conveniently keeping track the dimensions, we assume here that they

both live in Rr. The process ξ(t) is bounded, right continuous and strongly mixing with the

mixing rate function φ(t) defined by

φ(t) = sup
{

∣

∣P(B|A)− P(B)
∣

∣ : A ∈ σ(ξ(u) : u ≤ s),

B ∈ σ(ξ(u) : u ≥ s+ t), s ≥ 0
}

, t ≥ 0.

For each ε > 0 denote ξε(t) = ξ(t/ε2), t ≥ 0 the wideband noise process (the band width

tends to infinity as ε → 0). Throughout this chapter, we assume that the perturbed Markov

chain βε(t) and the wideband noise process ξε(t) are independent. Denote P(R) the space

of all probability measures on R. We are now in a position to setup the two problems.
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Control problem (CPε). Let b(·, ·, ·, ·) : [0, T ]× Rr ×M× U → Rr and g(·, ·, ·) : [0, T ]×

Rr × Rr → Rr be two functions of the forms

b(t, x, β, u) =
(

b1(t, x, β, u), b2(t, x, β, u), . . . , br(t, x, β, u)
)′

,

g(t, x, ξ) =
(

g1(t, x, ξ), g2(t, x, ξ), . . . , gr(t, x, ξ)
)′

,

where t ∈ [0, T ], x ∈ Rr, β ∈ M, ξ ∈ Rr, and u ∈ U .

We consider the system of the following type

dxε(t) =
[

b
(

t, xε(t), βε(t), uε(t)
)

+
1

ε
g
(

t, xε(t), ξε(t)
)

]

dt, 0 ≤ t ≤ T,

xε(0) = x0,

(4.1)

where i0, j0 ∈ M, the initial condition x0, the Markov chain βε(t) and Rr-valued stationary

process ξε(t) defined above are independent, and the control uε(t) ∈ U for all t ∈ [0, T ]. The

control uε(·) is said to be admissible if uε(t) ∈ U for 0 ≤ t ≤ T and uε(·) is progressively

measurable with respect to the σ−algebras σ{x0, β
ε(s), ξε(s), s ≤ t}. It can be shown that

under some mild conditions that are given in the next section and are assumed throughout

this chapter, this ODE system has a unique solution.

The finite time horizon objective function is given by

Jε(uε) = E

[
∫ T

0

h(xε(s), uε(s))ds+ k(xε(T ), uε(T ))

]

, (4.2)

where uε is an admissible control, and h(·, ·) and k(·, ·) : Rr × U → R are bounded and

continuous functions. The stochastic optimal control problem to be studied is to choose

ut to minimize the objective function over the finite time horizon [0, T ], subject to (4.1).

Next, we consider a stochastic mean-field game with N -players whose dynamics involve a

perturbed Markov chain and a wideband noise.
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Game problem (GPε). The problem setup is motivated by recent advances in mean-field

game problems (see [4, 29, 30, 39, 41] among others). Let b̂(·, ·, ·, ·, ·) : [0, T ] × R × P(R) ×

M × R → R, ĝ(·, ·, ·, ·) : [0, T ] × R × P(R) × M → R and U = U1 × U2 × . . . × UN be a

compact set in RN . Assume that the dynamics of player i, i = 1, 2, . . . , N , is given by

dxi,ε(t) =
[

b̂
(

t, xi,ε(t), µN,ε(t), βε(t), ui,ε(t)
)

+
1

ε
ĝ
(

t, xi,ε(t), µN,ε(t), ξi,ε(t)
)

]

dt, (4.3)

for 0 ≤ t ≤ T with the initial condition xi,ε(0) = xi
0, where

µN,ε(t) =
1

N

N
∑

j=1

δxj,ε(t) ∈ P(R), 0 ≤ t ≤ T

is the mean-field coupled term that shows the weak interactions between the players, δx

denotes the Dirac measure centered at x for each x ∈ R, βε(t) is a perturbed Markov chain,

ξε(t) =
(

ξ1,ε(t), ξ2,ε(t), . . . , ξN,ε(t)
)′

is an RN -valued stationary process, and the strategy

ui,ε(t) ∈ U i. We assume that the initial conditions xi
0, i = 1, 2, , . . . , N are independent,

identically distributed with bounded second moments and that ξε(·) and βε(·) are indepen-

dent. In addition, we assume that the components of ξε(·) (i.e., ξ1,ε(·), ξ2,ε(·), . . . , ξN,ε(·)) are

also independent.

A strategy (control) ui,ε(·) of player i is said to be admissible if ui,ε(t) ∈ U i for 0 ≤ t ≤ T

and ui,ε(·) is progressively measurable with respect to the σ-algebras σ{βε(s), ξε(s), s ≤

t; xj
0, 1 ≤ j ≤ N}. The set of strategies uε(·) =

(

u1,ε(·), u2,ε(·), . . . , uN,ε(·)
)

is

said to be admissible if ui,ε(·) is admissible for each i = 1, 2, . . . , N . For each

set of strategies uε =
(

u1,ε, u2,ε, . . . , uN,ε
)′

and each strategy vi,ε we denote u−i,ε =

(

u1,ε, . . . , ui−1,ε, ui+1,ε, . . . , uN,ε
)′

and (vi,ε, u−i,ε) =
(

u1,ε, . . . , ui−1,ε, vi,ε, ui+1,ε, . . . , uN,ε
)′

.
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Define the cost functional of the ith player by

J i,ε(uε) = E

[

∫ T

0

ĥ
(

xi,ε(s), µN,ε(s), ui,ε(s)
)

ds+ k̂
(

xi,ε(T ), µN,ε(T ), ui,ε(T )
)

]

(4.4)

where uε(t) =
(

u1,ε(t), u2,ε(t), . . . , uN,ε(t)
)′

is a set of admissible strategies, and ĥ(·, ·, ·) and

k̂(·, ·, ·) : R× P(R)× R → R are continuous functions.

A set of admissible strategies uε(t) =
(

u1,ε(t), u2,ε(t), . . . , uN,ε(t)
)′

is called a δ-Nash

equilibrium if for any admissible strategy vi,ε,

J i,ε(uε) ≤ J i,ε(vi,ε, u−i,ε) + δ, i = 1, 2, . . . , N.

The game problem to be studied in this case is to find a decentralized set of admissible

strategies which is a δ-Nash equilibrium.

Because those two problems are non-Markovian, the usual stochastic control techniques

do not work. Similar to [28] (see also [1, 50, 56]), our approach to solve these problems

is based on the observation that if uε(·) is a sequence of “nice” admissible controls in the

optimal control problem or a set of “nice” strategies in the game problem then as ε tends

to 0 (and N is fixed in the game problem), the corresponding dynamics xε(t) (which is

(x1,ε(t), x2,ε(t), . . . , xr,ε(t))
′

in the optimal control problem and (x1,ε(t), x2,ε(t), . . . , xN,ε(t))
′

in

the game problem) converges weakly to that of controlled diffusion process. The convergence

of corresponding costs also hold. The convergence of xε(t) in both problems can be proved

using the relaxed controls and perturbed test function method. The following remark shows

the similarity between the dynamics and cost functions in two problems in many cases which

leads to only one proof of the weak convergence of xε(t) in both problems and we emphasize

that we only discuss the problems when those similarities are applied.
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Remark 4.1. We note the following points.

(i) Suppose for the moment that r = N , uε(t) =
(

u1,ε(t), u2,ε(t), . . . , uN,ε(t)
)′

is an ad-

missible set of strategies, xε(t) =
(

x1,ε(t), x2,ε(t), . . . , xN,ε(t)
)′

is the corresponding

dynamics, ξε(t) =
(

ξ1,ε(t), ξ2,ε(t), . . . , ξN,ε(t)
)′

are the wideband noises and

bi
(

t, xε(t), βε(t), uε(t)
)

= b̂
(

t, xi,ε(t), µN,ε(t), βε(t), ui,ε(t)
)

, (4.5)

gi
(

t, xε(t), ξε(t)) = ĝ
(

t, xi,ε(t), µN,ε(t), ξi,ε(t)
)

, (4.6)

h
(

xε(t), uε(t)
)

= ĥ
(

xi,ε(t), µN,ε(t), ui,ε(t)
)

,

k
(

xε(t), uε(t)
)

= k̂
(

xi,ε(t), µN,ε(t), ui,ε(t)
)

,

for i = 1, 2, . . . , N then (4.3) and (4.4) are respectively represented in exactly the same

way as (4.1) and (4.2).

(ii) A typical situation of (4.3) and (4.4) is the case that the functions b̂(·, ·, ·, ·, ·), ĝ(·, ·, ·, ·),

ĥ(·, ·, ·) and k̂(·, ·, ·) have the following forms (see [13, 14, 23, 41]).

b̂(t, x, µ, β, u) =

∫

R

b̃(t, x, y, β, u)µ(dy),

ĝ(t, x, µ, ξ) =

∫

R

g̃(t, x, y, ξ)µ(dy),

ĥ(x, µ, u) =

∫

R

h̃(x, y, u)µ(dy),

k̂(x, µ, u) =

∫

R

k̃(x, y, u)µ(dy)

for (t, x, µ, β, u, ξ) ∈ [0, T ]× R× P(R)×M× R× R, where b̃(·, ·, ·, ·, ·) : [0, T ]× R ×

R ×M× R → R, g̃(·, ·, ·, ·) : [0, T ]× R× P(R) × R → R, h̃(·, ·, ·) : R × R × R → R,

k̃(·, ·, ·) : R × R × R → R. It is easy to see that in this case the dynamics and cost
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functional of player i becomes

dxi,ε(t) =
[ 1

N

N
∑

j=1

b̃(t, xi,ε(t), xj,ε(t), βε(t), ui,ε(t))+

+
1

Nε

N
∑

j=1

g̃
(

t, xi,ε(t), xj,ε(t), ξi,ε(t)
)

]

dt,

J i,ε(uε) = E

[

∫ T

0

1

N

N
∑

j=1

h̃
(

xi,ε(s), xj,ε(s), ui,ε(s)
)

ds+

+
1

N

N
∑

j=1

k̃
(

xi,ε(T ), xj,ε(T ), ui,ε(T )
)

]

.

To give a heuristic explanation for our approach, let us suppose that as ε tends to 0,

the dynamics xε(t) of the optimal control problem (CPε) given by (4.1) are “close” to a

controlled diffusion process (modeled by (4.7) below) in the sense that if uε(·) is a sequence

of “nice” controls for (4.1), then there is a control u(·), and a corresponding controlled

diffusion x(u, ·) such that (as ε tends to 0) xε(uε, ·) converges weakly to x(u, ·) that satisfies

the following equation

dx(t) = b̄(t, x(t), u(t))dt+ σ̄(t, x(t))dw(t), (4.7)

where b̄ and σ̄ will be specified later (in (4.15) and (4.14)). Let ūδ(·), δ > 0, be a “smooth”

δ-optimal feedback control for the limit diffusion (4.7). Now apply ūδ(·) to (4.1) in the

problem (CPε). We will show that under quite broad conditions

inf
u∈Rε

Jε(u) ≥ Jε(ūδ)− δ

for ε > 0 small enough, where we used Rε to denote the admissible relaxed controls for (4.1).

Similarly, for the mean field game problem, using some known results in mean field game

theory, we will be able to construct ûδ(·), δ > 0, a set of δ-Nash equilibrium feedback
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strategies for the limiting mean field game problem. Applying ûδ(·) to (4.1) in the problem

(GPε), we can show that

J i,ε(vi, û−i,δ) ≥ J i,ε(ûδ)− δ

for i = 1, 2, . . . , N , sufficiently small ε > 0, sufficiently large N , and any admissible feedback

strategy vi. Since ūδ, ûδ are only functions of x and t, it would be considerably simple to

find a nearly optimal control for (4.1) or nearly equilibrium for (4.3).

4.3 Preliminaries

In this section we present some preliminary results regarding the relaxed control and

weak convergence needed for our problem.

4.3.1 Relaxed Controls

Let U denote the set of controls and B([0,∞) × U) the σ-algebra of Borel subsets of

[0,∞)× U . We assume that U is a compact set in some Euclidean space and let Ft be any

given filtration, for example, Ft = σ{w(s) : 0 ≤ s ≤ t} where w(·) is a Brownian motion.

Let

R([0,∞)× U) =
{

m(·) : m(·) is a measure on B([0,∞)× U)

and m([0, t]× U) = t for all t
}

.

A random R([0,∞) × U)-valued measure m(·) is called an admissible relaxed control if for

each B ∈ B(U), the function defined bym(t, B) = m([0, t]×B) is Ft−adapted. An equivalent

formulation reads that m(·) is a relaxed control if

∫ t

0

h(s, α)m(ds× dα)
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is progressively measurable with respect to Ft for each bounded and continuous function

h(·).

If m(·) is an admissible relaxed control and B ∈ U then the mapping t 7→ m([0, t]×B) is

absolutely continuous and hence differentiable almost everywhere. Since B(U) is countably

generated, the time derivative of m exists almost everywhere and is a measurable mapping

mt(·) = d
dt
m(t, ·), the “derivative” process, such that mt(dα)dt = m(dt × dα) and m·(B) is

Ft−adapted for each B ∈ B(U) and for nice (for example smooth) function h(·),
∫

[0,∞)×U

h(s, α)m(ds× dα) =

∫ ∞

0

ds

∫

U

h(s, α)ms(dα).

As it is easier to work with [0,∞), we have defined above the relaxed controls on the interval

[0,∞). If the control problem is of interest on the finite interval [0, T ] only, then we define

m(·) in any admissible way on [T,∞). We topologize R([0,∞)×U) as follow (see [27]). For

a bounded continuous function f on [0,∞]× U and a measure m in R([0,∞)× U) denote

〈f,m〉 =
∫

f(s, α)m(ds× dα).

For each positive integer n let {fni
(·) : i = 1, 2, . . .} be a countable dense set (under the

sup-norm) of continuous functions on [0, n]× U and denote

dn(m1, m2) =

∞
∑

i=1

1

2i
|〈fni

, m1 −m2〉|
1 + |〈fni

, m1 −m2〉|
.

We can now define a metric on R([0,∞)× U). Define

d(m1, m2) =

∞
∑

n=1

1

2n
dn(m1, m2), m1, m2 ∈ R([0,∞)× U).

Then the weak convergence in R([0,∞)×U) is equivalent to the convergence in this metric

(i.e., mk(·) ⇒ m(·) if and only if d(mk, m) → 0 for any sequence {mk, k ≥ 1} and m in
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R([0,∞)× U)).

4.3.2 Formulation Using Relaxed Controls

For ε > 0, t ≥ 0, denote

F ε
t = σ{xε(0), xε(s), βε(s), ξε(s) : s ≤ t}. (4.8)

Following the notion of Section 4.3.1, an admissible relaxed control for (OPε) or (GPε)

is any R([0,∞) × U)-valued function m(·) such that for any collection {hγ(·)} of bounded

and continuous functions hγ(·) and for each t > 0, {
∫ t

0
hγ(s, α)m(ds× dα)} is progressively

measurable with respect to F ε
t .

We denote the set of admissible controls for the underlying problem with Ft = F ε
t by Rε,

Rε =
{

mε(·) ∈ R([0,∞)× U) : mε(·) is F ε
t −adapted

}

.

Owning to the relaxed control formulation, instead of (CPε) and (GPε), we consider the

following two relaxed problems.

Control problem with relaxed control representation (CPRε). Minimizing

Jε(mε) = E

[∫ T

0

∫

U

h
(

xε(s), α
)

mε
s(dα)ds+

∫

U

k
(

xε(T ), α
)

mε
T (dα)

]

, (4.9)

where xε(·) subjects to

dxε(t) =

[∫

U

b
(

t, xε(t), βε(t), α
)

mε
t (dα) +

1

ε
g
(

t, xε(t), ξε(t)
)

]

dt,

xε(0) = x0, βε(0) = β0,

(4.10)

and mε(·) ∈ Rε.

Game problem with relaxed control representation (GPRε). Find a set of admissible
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relaxed strategies mε = (m1,ε, . . . , mN,ε) such that the following inequality holds

J i,ε(vi, m−i,ε) ≥ J i,ε(mε),

for any admissible relaxed strategy vi and i = 1, 2, . . . , N , where

J i,ε(mε) =E

[

∫ T

0

∫

U

h
(

xi,ε(s), µN,ε(s), α
)

mi,ε
s (dα)ds

+

∫

U

k
(

xi,ε(T ), µN,ε(T ), α
)

mi,ε
T (dα)

]

,

(4.11)

where xε(·) subjects to

dxi,ε(t) =

[

∫

U

b
(

t, xi,ε(t), µN,ε(t), βε(t), α
)

mi,ε
t (dα)

+
1

ε
g
(

t, xi,ε(t), µN,ε(t), ξi,ε(t)
)

]

dt,

xi,ε(0) = xi
0, βε(0) = β0,

(4.12)

and mε(·) ∈ Rε.

We use the following assumptions throughout this chapter

Assumption (A).

(A1) ξε(t) = ξ(t/ε2), t ≥ 0, where ξ(t) is a stationary zero mean process that is strong

mixing, right continuous and bounded, with the mixing rate function φ(t) satisfying

∫∞

0
φ1/2(s)ds < ∞.

(A2) The following conditions hold.

(a) E
[

g(t, x, ξ(s))
]

= 0 for each fixed x ∈ Rr and t, s ≥ 0.

(b) b(·, ·, i0, u) is continuous for each fixed i0 ∈ M and u; g is continuous, gx(·, ·, y) is

continuous for each y.
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(c) b(·, ·, i0, ·) and g satisfy the linear growth condition and a Lipschitz condition in

x uniformly with respect to t, β and u for each fixed i0 ∈ M.

(d) h(·, ·) and k(·, ·) are bounded and continuous.

(A3) As 0 < T1, T2 → ∞,

∫ T2

−T1

Eg(t, x, ξ(s))g′(t, x, ξ(0))ds → 1

2
a(t, x),

∫ T2

0

E
∑

j

gixj
(t, x, ξ(s))gj(t, x, ξ(0))ds → c(t, x), 1 ≤ i ≤ r.

(4.13)

Denote

ā(t, x) =
1

2
(a(t, x) + a′(t, x)) ≥ 0,

then there exists a function σ̄(t, x) such that

ā(t, x) = σ̄(t, x)σ̄′(t, x). (4.14)

For (t, x, α) ∈ [0, T ]× Rr × U let

b̄(t, x, α) =
∑

i0∈M

b(t, x, i0, α)ν
i + c(t, x) (4.15)

where ν = (ν1, ν2, . . . , νm0) is the invariant measure of the Markov chain β(t) and c(t, x) is

defined in (4.13). Because of the scaling of the wide-band process ξε(·) and the assumption

on the mixing rate φ(·) in (A1) we can obtain a Brownian motion in the averaging for the

ξε(·) process. This leads to following two limit problems.

Limit optimal control problem (LCP). Assume Assumption (A). Let ā(·, ·) and b̄(·, ·, ·)

be respectively defined as in (4.14) and (4.15). Minimizing

J(m) = E

[∫ T

0

∫

U

h
(

x(s), α
)

ms(dα)ds+

∫

U

k
(

x(T ), α
)

mT (dα)

]

(4.16)
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where x(t) satisfies

dx(t) = dt

∫

U

b̄
(

t, x(t), α
)

mt(dα) + σ̄
(

t, x(t)
)

dw(t),

x(0) = x0

(4.17)

and m(·) ∈ R0 where

R0 =
{

m(·) ∈ R([0,∞)× U) : m(·) is F0
t −adapted

}

(4.18)

and F0
t = σ(x0, w(s) : 0 ≤ s ≤ t) for each t ≥ 0.

Next, we define the limit game problem. Let ξ(·) = (ξ1(·), ξ2(·) . . . , ξN(·))′, b̂(·, ·, ·, ·, ·),

ĝ(·, ·, ·, ·), ĥ(·, ·, ·) and k̂(·, ·, ·) be defined as in problem (GPε). Let r = N , b = (b1, b2, . . . , bN)

and g = (g1, g2, . . . , gN) where bi and gi are respectively defined in (4.5) and (4.6) for

i = 1, 2, . . . , N . We assume the Assumption (A) and let ā(·, ·) and b̄(·, ·, ·) be respectively

defined as in (4.14) and (4.15). Notice that as we assume that the components of ξ(·) are

independent it follows from (4.6) and (4.13) that ā and thus σ̄ are diagonal matrices. We

write σ̄ = diag(σ̄1, σ̄2, . . . , σ̄N).

Limit game problem (LGP). Find an admissible set of relaxed strategies m =

(m1, . . . , mN) such that the following inequality holds

J i(vi, m−i) ≥ J i(m),

for any admissible relaxed strategy vi and i = 1, 2, . . . , N , where

J i(m) = E

[

∫ T

0

∫

U

ĥ
(

xi(s), µN,ε(s), α
)

mi
s(dα)ds

+

∫

U

k̂
(

xi(T ), µN,ε(T ), α
)

mi
T (dα)

]

,

(4.19)
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and x(t) satisfies

dxi(t) = dt

∫

U

b̄i
(

t, xi(t), µN,ε(t), α
)

mi
t(dα) + σ̄i

(

t, x(t), µN,ε(t)
)

dwi(t),

xi(0) = xi
0,

(4.20)

where w = (w1, w2, . . . , wN)′ is an N -dimensional standard Brownian motion, m(·) ∈ R0,

and R0 is defined as in (4.18) with w = (w1, w2, . . . , wN)′. We sometimes write the solution

to (4.1) as x(u, ·) or x(m, ·). We have the following results regarding the limiting control

problem.

Theorem 4.2. Letm(·) be an admissible relaxed control (with respect to a Brownian motion

w(·)). The following assertions hold.

(i) There exists an adapted solution to

dx(t) = dt

∫

U

b̄
(

t, x(t), α
)

mt(dα) + σ̄
(

t, x(t)
)

dw(t), x(0) = x0, (4.21)

and

E

[

sup
t≤T

|x(t)|2
]

≤ K(1 + |x|2),

where K depends only on T and on the Lipschitz coefficient of the drift and diffusion coef-

ficients.

(ii) Define {x∆
n } by x∆

0 = x∆
1 = x0 and for n ≥ 1,

x∆
n+1 = x∆

n +

∫ n∆

n∆−∆

ds

∫

b̄(n∆, x∆
n , α)ms(dα) + σ̄(n∆, x∆

n )
[

w(n∆+∆)− w(n∆)
]

. (4.22)

Define x∆(·) to be the piecewise constant interpolation of {x∆
n }. Then there is a K∆ → 0 as

∆ → 0 such that

E

[

sup
t≤T

|x∆(t)− x(t)|2
]

≤ K∆(1 + |x|2).
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(K∆ does not depend on m(·)).

(iii) Let mn(·) ⇒ m̄(·), where the mn(·) are admissible with respect to some Brownian

process, and let xn(·) satisfy the equation (4.17) with m(·) = mn(·). Then (xn(·), mn(·)) con-

verges weakly to (x(·), m̄(·)) where x(·), m̄(·) satisfy the equation (4.17) for some Brownian

motion process w(·) and m(·) is admissible with respect to w(·).

Proof. Though there is t-dependence in the drift and diffusion coefficients, the proofs of (i),

(ii) follow the classical approximation method with slight modifications, details can be found

in [8]. The proof of (iii) can be found in [28].

Proposition 4.3. In the class of admissible relaxed controls for the problem (LCP) given

in (4.16) and (4.17), there is an optimal control.

Proof. The proof of this Proposition can be found in [28]. We however include it here for

the completeness of the presentation. The proof essentially follows from Theorem (4.2). We

chose a weak convergent sequence mδ(·), δ → 0 , such that J(mδ) → infm∈R0 J(m) = J̄ .

We denote the limit of {x(mδ, ·), mδ(·)} by (x(m̄, ·), m̄(·)). Then by Theorem 4.2, m̄(·) is

admissible for some Brownian motion w(·) and (x(m̄, ·), m̄(·), w(·)) solves (4.21). By weak

convergence and the boundedness of h and k, we thus have

E

∫ T

0

∫

U

h(xδ(s), α)mδ
s(dα)ds+

∫

U

k(xδ(T ), α)mδ
T (dα)

→ E

∫ T

0

∫

U

h(x(s), α)m̄s(dα)ds+

∫

U

k(x(T ), α)mT (dα) = J̄ = J(m̄).

Since we want to show (in the following sections) that any smooth and nearly optimal

feedback control for (4.7) is nearly optimal control of (4.1) for small ε > 0, therefore it is

important to know that there is a smooth nearly optimal control for (4.7).
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Proposition 4.4. [The chattering lemma] For each δ > 0, there is a piece-wise constant

admissible control uδ(·) for the problem (LCP) such that

J(uδ) ≤ inf
m∈R0

J(m) + δ.

Proof. The proof follows classical lines of arguments in [7], [8].

Proposition 4.5. For each δ > 0, there is a piece-wise constant (in t) and locally Lipschitz

continuous in x (uniformly in t) control ūδ(·) for the problem (LCP) such that ūδ(t) =

ūδ(x(i∆), i∆) for t ∈ (i∆, (i+ 1)∆] and

J(ū∆) ≤ inf
m∈R0

J(m) + δ.

Proof. The proof of this one is well-known in relaxed control but is long and technical so we

do not include the proof here. One may consult Theorem 5.2 page 59 in [26] for a detailed

proof.

Remark 4.6. Although we may not have a similar result to Proposition 4.5 for the game

problem (LGP), it would be worthy noting that general results on the existence of equilib-

rium for mean field games with diffusion can be found in [29, 30]. For these problems, in

order to reduce the complexity when there is a large population of players, the main concern

is to determine a set of δ−Nash equilibrium strategies such that each player only need to

know its state information. General results on the existence of this kind of strategies are

given in [4, 13, 14, 23] using a powerful method called Nash certainty equivalence principle.

4.3.3 Perturbed Test Function Method

This section is devoted to the perturbed test function method to be used to prove the

weak convergence result in the next section. Let Dr[0,∞) denote the space of Rr valued func-

tions which are right continuous and have left limits endowed with the Skorohod topology.
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Following the approach of Kushner [25], we define the notation of “p-lim” and an operator

L̂ε as follows. Let F ε
t denote the minimal σ-algebra generate by {xε(s), βε(s), ξε(s) : s ≤ t}

and let Eε
t denote the conditional expectation with respect to F ε

t . Let M̃ denote the set of

real valued function of (t, ω) that are nonzero only on a bounded t−interval. Let

M̄ε =

{

f ∈ M̃ : sup
t

E|f(t)| < ∞ and f(t) is F ε
t measurable

}

.

Let f(·), f δ(·) ∈ M̄ε, for each δ > 0. Then f = p − limδ f
δ if and only if the following to

conditions hold

sup
t,δ

E|f δ(t)| < ∞, lim
δ→0

E|f(t)− f δ(t)| = 0, ∀t > 0.

We say that f(·) is in D(L̂ε), the domain of the operator L̂ε and L̂εf = g if for each T < ∞

p− lim
δ→0

(

Eε
tf(t+ δ)− f(t)

δ
− g(t)

)

= 0.

If f(·) ∈ D(L̂ε) then

f(t)−
∫ t

0

L̂εf(s)ds is a martingale

and

Eε
tf(t+ s)− f(t) =

∫ t+s

t

Eε
t L̂εf(u)du.

The following theorem, which is a modified version of Theorem 4 page 44 of [25], gives a

criterion for tightness of singular perturbed systems via perturbed test function methods.

Theorem 4.7. Let xε(·) have paths in Dr[0,∞) and let

lim
K→∞

lim sup
ε→0

P{sup
t≤T

|xε(t)| ≥ K} = 0, for each T < ∞.

For each f(·, ·) ∈ C2,3
0 ([0, T ] × Rr) and T < ∞ let there be a sequence f ε(·) ∈ D(L̂ε) such
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that either (i) or (ii) below hold. Then {xε(·)} is tight in Dr[0,∞).

(i) For each T < ∞, {L̂εf ε(t) : ε > 0, 0 ≤ t ≤ T} is uniformly integrable and for each

δ > 0,

lim
ε→0

P{sup
t≤T

|f ε(t)− f(t, xε(t))| ≥ δ} = 0. (4.23)

(ii) Equation (4.23) holds and for each T < ∞ there is a random variable Bε
T (f) such that

sup
t≤T

|L̂εf ε(t)| ≤ Bε
T (f), lim

K→∞
lim sup

ε→0
P{Bε

T (f) ≥ K} = 0.

The following lemma provides a sufficient condition for weak convergence of a sequence

of processes using the perturbed test function techniques.

Lemma 4.8. Suppose that {zε(·)} is defined on [0, T ]. Let {zε(·)} be tight on Dr[0,∞).

Suppose that for each f(·, ·) ∈ C2,3
0 ([0, T ]× Rr) there exists f ε(·) ∈ D(Lε) such that

p− lim
ε→0

(f ε(·)− f(·, zε(·))) = 0,

and

p− lim
ε→0

(Lεf ε(·)− Lf(·, zε(·))) = 0.

Then zε(·) ⇒ z(·).

4.4 Weak Convergence and Approximation of Optimal and Equi-

librium Control for xε(·)
In this section, we consider control problem (CPε) and prove the main result of this

chapter. Theorem 4.9 states that the weak limit of any weak convergent sequence of admis-

sible relaxed control for the problem (CPε) is an admissible relaxed control for the problem
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(LCP) and that the corresponding costs converge. We show that any smooth “nearly opti-

mal” feedback control for (LCP) also is “nearly optimal” for (CPε) for ε small enough, and

that any “nearly equilibrium” feedback strategies for (LGP) is also “nearly equilibrium” in

some sense for (GPε) for ε small enough, N large enough.

4.4.1 Weak Convergence of xε(·)

Let δε → 0 and let m̂ε(·) be a δε-optimal admissible relaxed control for the problem

(CPRε) with the state process defined by

dxε(t) =

[
∫

U

b(t, xε(t), βε, αε(t))mt(dα) +
1

ε
g (t, xε(t), ξε(t))

]

dt,

and the cost function given in (4.9). As we mentioned before, we define all m(·) on [0,∞)

for convenience. Define Lα
t , the generator of the control diffusion (4.17), by

Lα
t f(t, x) = ft(t, x) + fx(t, x)

′b̄(t, x, α) +
1

2

∑

i,j

fxixj
(x)āij(t, x), (4.24)

where

b̄(t, x, α) =
∑

i0∈M

b(t, x, i0, α)ν
i0 + c(t, x)

as defined in (4.15).

Theorem 4.9. Assume (A). Then {xε(m̂ε, ·), m̂ε(·)} is tight in Dr[0, T ] × R([0,∞) × U).

Let (xε(m̂ε, ·), m̂ε) ⇒ (x(m̂, ·), m̂(·)). Then there is a w(·) such that m̂(·) is admissible with

respect to w(·) and

dx(t) = dt

∫

U

b̄(t, x(t), α)m̂t(dα) + σ̄(t, x(t))dw(t).
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Also

Jε(mε) = E

[
∫ T

0

∫

U

h(xε(s), α)mε
s(dα)ds+

∫

U

k(xε(T ), α(T ))mε
T (dα)

]

→ E

[
∫ T

0

∫

U

h(x(s), α)m̂s(dα)ds+

∫

U

k(x(T ), α(T ))m̂T (dα)

]

= J(m̂).

Proof. To prove the theorem we use the perturbed test function methods. The proof is di-

vided into several steps as described follows. We can assume that x(·) is bounded. Otherwise,

by using truncation methods, we can work out the details.

Step 1. Tightness of {xε(·)}. To establish the tightness of {xε(·)} we verify that the

conditions of Theorem (4.7) are satisfied. First we need to verify

lim
K→∞

lim sup
ε→0

P{sup
t≤T

|xε(t)| ≥ K} = 0, for each T < ∞.

However, direct verification of this claim is tedious; we thus instead use the truncation

method to prove the convergence. The method is described as follows: For each K > 0, let

BK = {x ∈ Rr : |x| ≤ K} be the ball of radius K.

Let xε,K(t) = xε(t) up until first exit time of xε from BK , and then it is clear that

lim
K→∞

lim sup
ε→0

P{sup
t≤T

|xε,K(t)| ≥ K} = 0, for each T < ∞,

xε,K is said to be the K−truncation of xε. Let

qK(x) =







































1 for x ∈ BK ,

0 for x ∈ Rr − BK+1,

smooth otherwise.
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Define

bK(t, x, i, u) = b(t, x, i, u)qK(x) and gK(t, x, ξ) = g(t, x, ξ)qK(x).

Let xε,K is the solution of (4.1) corresponding to the coefficients that are truncated as above,

then it is clear that xε,K(t) = xε(t) whenever |xε(t)| < K. To avoid the heavy notation, we

however will write xε,K(t) as x.

Since we are working with the truncated system, our work boils down to verify (i). We

also write β = βε(t) for notation simplicity. Let f(·, ·) ∈ C2,3
0 ([0, T ]× Rr). then

L̂εf(t, x) = ft(t, x) + fx(t, x)
′

[
∫

U

b(t, x, β, α)m̂ε
t(dα) +

1

ε
g (t, x, ξε(t))

]

.

For arbitrary T < ∞ and for t ≤ T define f ε
1 (t) = f ε

1 (t, x
ε(t)), where

f ε
1 (t, x) =

1

ε

∫ T

t

fx(t, x)
′

Eε
tg(t, x, ξ

ε(s))ds

= ε

∫ T/ε2

t/ε2
Eε
tfx(t, x)

′

g(t, x, ξ(s))ds,

in which we have used, and will use frequently from now on, the change variable s → ε2s in

the second equality. Thus, using the boundedness of fx, g and the mixing property of ξ, we

have

sup
t≤T

|f ε
1 (t, x)| ≤ εK

∫ T/ε2

t/ε2
|Eε

tg(t, x, ξ(s))|ds

≤ εK

∫ T/ε2

t/ε2
|Eε

tg(t, x, ξ(s))− Eg(t, x, ξ(s))| ds

≤ εK

∫ T/ε2

t/ε2
φ (s− t) ds

= O(ε),

uniformly in t and thus

sup
t≤T

|f ε
1 (t, x)| → 0 in probability as ε → 0.
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Furthermore, f ε
1 (t, x) is differentiable in x and

f ε
1 (·) = f ε

1 (·, xε(·)) ∈ D(L̂ε) and

L̂εf ε
1 (t, x) = −1

ε
fx(t, x)

′

g(t, x, ξε(t))

+
1

ε

∫ T

t

Eε
t

[

fx(t, x)
′

g(t, x, ξε(s))
]

t
ds

+ (f ε
1 (t, x))

′

x

[
∫

U

b(t, x, β, α)mt(dα) +
1

ε
g (t, x, ξε(t))

]

,

where

(f ε
1 (t, x))x =

1

ε

∫ T

t

Eε
t

[

fx(t, x)
′

g(t, x, ξε(s))
]

x
ds.

We next consider the function f perturbed by f ε
1 . To be more specific, let

hε(t) = f(t, xε(t)) + f ε
1 (t).

Note that the order of magnitude of f ε
1 is small and it results in the needed cancelations.
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We have

L̂εhε(t) = L̂εf(t, xε(t)) + L̂εf ε
1 (t)

= ft(t, x) + fx(t, x)
′

∫

U

b(t, x, β, α)m̂ε
t(dα)

+
1

ε

∫ T

t

Eε
t

[

fx(t, x)
′

g(t, x, ξε(s))
]

t
ds

+
1

ε

[∫ T

t

Eε
t

(

fx(t, x)
′

Eε
tg(t, x, ξ

ε(s))
)

x
ds

]
′
∫

U

b(t, x, β, α)m̂ε
t(dα)

+
1

ε2

[
∫ T

t

Eε
t

(

fx(t, x)
′

g(t, x, ξε(s))
)

x
ds

]
′

g(t, x, ξε(t))

= ft(t, x) + fx(t, x)

∫

U

b(t, x, β, α)m̂ε
t (dα)

+ ε

∫ T/ε2

t/ε2
Eε
t

[

fx(t, x)
′

g(t, x, ξ(s))
]

t
ds

+ ε

[

∫ T/ε2

t/ε2
Eε
t

(

fx(t, x)
′

g(t, x, ξ(s))
)

x
ds

]′

∫

U

b(t, x, β, α)m̂ε
t (dα)

+

[

∫ T/ε2

t/ε2
Eε
t

(

fx(t, x)
′

g(t, x, ξ(s))
)

x
ds

]′

g(t, x, ξε(t)).

Under our assumptions, in the last equation, the first, the second, and the last term are

O(1); the remaining terms are O(ε). Therefore the sequence xε(·)) is tight.

Step 2. The martingale problem satisfied by the limit. To characterize the limit we

compute one more perturbed test function. Let

F̂ε(t, x) =

∫ T/ε2

t/ε2
dsEε

t

(

fx(t, x)
′

g(t, x, ξ(s))
)′

x
g(t, x, ξε(t)),
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and define

f ε
2 (t, x)

=

∫ T

t

(Eε
t F̂ε(x, τ)− EF̂ε(x, τ))dτ

=

∫ T

t

dτ

{

∫ T/ε2

τ/ε2
ds
[

Eε
t

(

fx(τ, x)
′

g(τ, x, ξ(s))
)′

x
g(τ, x, ξε(τ))

− E

(

fx(τ, x)
′

g(τ, x, ξ(s))
)′

x
g(τ, x, ξε(τ))

]

}

= ε2
∫ T/ε2

t/ε2
dτ

{

∫ T/ε2

τ/ε2
ds
[

Eε
t

(

fx(τ, x)
′

g(τ, x, ξ(s))
)′

x
g(τ, x, ξ(τ))

− E

(

fx(τ, x)
′

g(τ, x, ξ(s))
)′

x
g(τ, x, ξ(τ))

]

}

= O(ε2).

By our assumptions, f ε
2 (·) ∈ D(L̂ε). Its p− limε is zero and

L̂εf ε
2 (t)

= −F̂ε(t, x) +

∫ T/ε2

t/ε2
E

(

fx(t, x)
′

g(t, x, ξ(s))
)′

x
g(t, x, ξ(

t

ε2
))ds+O(ε2).

To simplify the notation let still denote the weak convergence subsequence by

{xε(·), m̂ε(·)} and its limit by x(·), m̂(·). By virtues of weak convergence and the absolutely

continuity of m̂(·) there is an (ω, t)−measurable m̂t such that m̂t(U) = 1 and

∫ t

0

∫

U

f(s, α)m̂s(dα)ds =

∫ t

0

∫

U

f(s, α)m̂(ds× dα)

for each continuous f(·). Let f(·) ∈ C2,3
0 ([0, T ]× Rr) and define Mf(·) by

Mf (t) = f(t, x(t))− f(0, x(0))−
∫ t

0

∫

U

Lα
s f(s, x(s))ms(dα)ds.

We are going to show that Mf (·) is a martingale with respect to Gt = σ{x(s), m̂(A× [0, s]) :

A is a Borel set , s ≤ t}. Let h(·) be any real valued, bounded and continuous function of
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its argument. Let ϕ(·), ϕj(·) below be real valued and continuous function with compact

support. Define the function

(ϕ, m̂)t =

∫ t

0

∫

U

ϕ(s, α)m̂(dα× ds).

Let ti < t < t + s, let q1 and q2 be arbitrary integers, using the results of the calculations

with perturbed tests functions we have

Eh(xε(ti), (ϕj, m̂
ε)ti , 1 ≤ q1, j ≤ q2)

{

f(t+ s, xε(t+ s))− f(t, xε(t)) + f ε
1 (t+ s)− f ε

1 (t) + f ε
2 (t + s)− f ε

2 (t)

−
∫ t+s

t

ft(τ, x
ε(τ))dτ

+

∫ t+s

t

dτ

∫

U

fx(τ, x
ε(τ))

′

b(τ, xε(τ), βε(τ), α)m̂ε
τ (dα)

−
∫ t+s

t

dτ

∫ T/ε2

τ/ε2
dsE

(

fx(τ, x
ε(τ))

′

g(τ, xε(τ), ξ(s))
)′

x
g(τ, xε(τ), ξε(τ))

+ term which goes to 0 in mean as ε → 0

}

= 0.

(4.25)

We now take the limit as ε → 0 in (4.25) and use Skorohod representation, which allows

us to define a new probability space so that the weak convergence becomes the convergence

almost surely in the topology of the space Dr[0,∞)×R([0,∞)× U).

The terms related to perturbed test functions f ε
1 and f ε

2 go to 0 as ε → 0. By the weak

convergence of xε and Skorohod representation we have

∫ t+s

t

ft(τ, x
ε(τ))dτ →

∫ t+s

t

ft(τ, x(τ))dτ, (ϕj, m̂
ε)ti → (ϕj, m̂)ti .

For the double integral in the second line of (4.25), using the estimate regarding the conver-

gence of the transition probability to the invariant measure of the underlying Markov chain
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(see [51]) we have

E

[
∫ t+s

t

dτ

∫

U

fx(τ, x
ε(τ))

′

b̄(τ, xε(τ), α)m̂ε
t (dα)

−
∫ t+s

t

∫

U

fx(τ, x
ε(τ))

′

b(τ, xε(τ), βε(τ), α)m̂ε
t (dα)

]

= E

∫ t+s

t

dτ

∫

U

∑

i∈M

fx(τ, x
ε(τ))

′

b(τ, xε(τ), i, α)
[

νi − 1{βε(τ)=i}

]

m̂ε
t (dα)

= O(ε).

By Theorem 5.11 of [25], we have

∫ t+s

t

dτ

∫ T/ε2

τ/ε2
E

(

fx(τ, x
ε(τ))

′

g(τ, xε(τ), ξ(s))
)′

x
g(τ, xε(τ), ξε(τ))ds

→
∫ t+s

t

dτ

∫ ∞

0

E

(

fx(τ, x
ε(τ))

′

g(τ, xε(τ), ξ(s))
)′

x
g(τ, x(τ), ξ(0))ds.

Therefore,

Eh(xε(ti), (ϕj, m̂
ε)ti , 1 ≤ q1, j ≤ q2)

×
[

f(t + s, x(t+ s))− f(t, x(t))−
∫ t+s

t

∫

U

Lα
τ f(τ, x(τ))mτ (dα)dτ

]

= 0,

and thus Mf(·) is a martingale. Note that, in the above arguments, we chose t, ti, t + s in

the set of points of continuity of the limit process x. This is because we only know that x(·)

has paths in Dr[0, T ] but have not yet proved that the path are in Cr[0, T ]. Since the set

of points of discontinuity of x is at most countable, due to Theorem 7.8 and Theorem 8.10

in [6] it suffices to choose t, ti, t+ s being the points of continuity of x.

Step 3. Representation of the limit. Since Mf (·) are martingales with respect to Gt, there

is a standard Brownian motion w(·) such that w(t) is adapted to Gt, x(t) is nonanticipative

with respect to w(·) and

dx(t) =

∫

U

b̄(t, x(t), α)m̂t(dα)dt+ σ̄(t, x(t))dw(t).
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If the probability space is not rich enough (e.g., the case a is degenerate), we can augment it

by adding an independent Brownian motion, see Theorem 4.5.2 in [45] for a detail discussion.

Moreover, because w(t) is Gt−adapted, m̂(A × [0, t]) and m̂t(A) are nonanticipative with

respect to w. Thus m̂(·) is an admissible relaxed control for the problem. The convergence of

sequence of cost functions follows from the weak convergence of (xε(·), mε(·)) ⇒ (x(·), m̂(·)),

and the continuity of the process x(·)

Remark 4.10. Repeat the arguments of the above theorem, we have the following remark.

Let u(·, x(·)) be a time-dependent feedback control which is continuous in x, uniformly in t

on each bounded (x, t) set, and for which the martingale problem associated with (4.7) has

a unique solution. Then xε(u(·, xε(·)), ·) ⇒ x(u(·, x(·)), ·) and Jε(u) → J(u). This is a useful

observation and the key to obtain the nearly optimal controls or equilibriums.

4.5 Approximation of Optimal Controls and Equilibrium Controls

for xε(·)
In this subsection we show the following theorems which explain how we get the “nearly”

desired controls for the original system from those one of the limit system.

Theorem 4.11. Assume (A) and let δ > 0 be given. For any Lipschitz continuous (uniformly

in t) δ-optimal feedback control ūδ(·) for the problem (LCP) (which always exists thanks to

Proposition 4.3.2), we have

lim sup
ε→0

[

Jε(ūδ)− inf
m∈Rε

Jε(m)

]

≤ δ.

Proof. Apply the weak convergence argument of Theorem 4.9 for the fixed control ūδ(·, x)

we have xε(ūδ(·, xε(·)), ·) → x(ūδ(·, x(·)), ·) and Jε(ūδ) → J(ūδ). Let δε → 0 and let m̂ε be a
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δε-optimal admissible relaxed control for the process (4.1) then by Theorem 4.9 we have

Jε(m̂ε) → J(m̂) ≥ inf
m∈R0

J(m) ≥ J(ūδ)− δ.

Combining the two above observations, the definition of m̂ε and the following inequality

lim sup
ε→0

[

Jε(ūδ)− inf
m∈Rε

Jε(m)
]

≤ lim sup
ε→0

[

Jε(ūδ)− J(ūδ)
]

+ lim sup
ε→0

[

J(ūδ)− Jε(m̂ε)
]

+ lim sup
ε→0

[

Jε(m̂ε)− inf
m∈Rε

Jε(m)
]

then we have the desired result.

Theorem 4.12. Assume (A). Let δ > 0 and ûδ(·) a δ-Nash Equilibrium feedback strategies

for the problem (LGP) with corresponding state processes x̂(·). Denote x̂ε(·) the correspond-

ing state processes obtained from the problem (LGPε) using the strategies ûδ(·)). Assume

that ûδ(·) is Lipschitz continuous. Then we have x̂ε(·) converges weakly to x̂(·) and

lim
ε→0

[

J i,ε(ûδ)− J i(ûδ)
]

= 0, i = 1, 2, . . . , N. (4.26)

Moreover, for any feedback strategy vi(·), i = 1, 2, . . . , N , we have

lim sup
ε→0

[

J i,ε(ûi,δ, û−i,δ)− J i,ε(vi, û−i,δ)
]

≤ δ. (4.27)

Proof. The weak convergence of x̂ε(·) and (4.26) follow from Theorem 4.9. In order to prove
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(4.27) we have

lim sup
ε→0

[

J i,ε(ûi,δ, û−i,δ)− J i,ε(vi, û−i,δ)
]

≤ lim sup
ε→0

[

J i,ε(ûi,δ, û−i,δ)− J i(ûi,δ, û−i,δ)
]

+
[

J1(ûi,δ, û−i,δ)− J1(vi, û−i,δ)
]

+ lim sup
ε→0

[

J i(vi, û−i,δ)− J i,ε(vi, û−i,δ)
]

.

It follows from Remark 4.10 that the lim sup in the first and the third terms are zero. By the

assumption on ûδ(·) the second term is upper bounded by δ. The inequality (4.27) therefore

holds true.

4.6 Linear Quadratic Control and Game with Wide Bandwidth

Noise

In this section, we consider a linear quadratic optimal control problem and a linear

quadratic game problem with N players involving a Markov switching and wideband noises.

The state of each player is again a non-Markovian process so the usual stochastic control

techniques do not work. It should be pointed out that “linear” is meant to be linear in the

continuous state variable. In our formulation, we also have a continuous-time Markov chain

in the original problem. Thus the problem is not really linear. Nevertheless, for simplifying

the discussion, we call the problems linear rather than using the phrase “linear in continuous

state variable” in each appearance. We use the idea proposed in [49] to obtain a “nearly

desired” solution. Let us briefly describe this idea in the linear quadratic optimal control

problem. As we have seen in the previous section, when ε → 0, the optimal control problem

with wideband noise will “converge” to the corresponding problem of diffusion. By the
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standard result in linear quadratic optimal control of diffusion processes, we know that the

optimal control is of the linear feedback form u(t) = Σ(t)x(t). Since the control problem

with switching wideband noise is complicated, one possible thing we can do is to see how

good the system performs under the control uε(t) = Σ(t)xε(t). It turns out that with this

control both the controlled process and the corresponding cost function converge to those of

diffusion. Similarly, in the game problem, by considering the limit problem (as ε → 0) and

using the standard results of mean-field game theory, we propose a set of feedback strategies

that are obtained from the form of the δ-Nash equilibriums of the mean-field problem, such

that each player only needs to use the information of its own state. When ε → 0, both the

dynamic of players and their costs approach to those of the mean field type control limiting

problem.

4.6.1 Linear Quadratic Optimal Control

In this subsection we study a linear quadratic optimal control problem which is a special

case of the problem (CPε) but without the assumption on the compactness of U . Because of

the advantage of the linear structure, we can still obtain results similar in spirit to those given

in Section 4. Let β(t) is a Markov chain on the state space M = {1, . . . , m0} with the genera-

tor Q and the invariant measure ν = (ν1, ν2, . . . , νm0). Let A(·, ·), B(·, ·) : [0, T ]×M → Rr×r

and D,Q,R : [0, T ] → Rr be bounded deterministic matrix-valued functions such that

Q,R,G are positive definite. Assume that for fixed i0 ∈ M, A(·, i0) and B(·, i0) are contin-

uous and that D(t) = diag
(

D1(t), . . . ,Dr(t)
)

. The noise ξ(t) = (ξ1(t), ξ2(t), . . . , ξr(t))
′ ∈ Rr

and {ξi(t), 1 ≤ i ≤ r} are assumed to be independent identically distributed mixing second

order wide-sense stationary with mixing rate φ(t) satisfying the Assumption (A1).
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Linear quadratic control problem (LQCPε). Minimize

Jε(uε) = E

[
∫ T

0

[xε(t)
′

Q(t)xε(t) + uε(t)
′

R(t)uε(t)]dt + xε(T )
′

Gxε(T )

]

.

where xε(·) satisfies

dxε(t) =

[

A(t, βε(t))xε(t) +B(t, βε(t))uε(t) +D(t)
ξε(t)

ε

]

dt,

xε(0) = x0,

where x0 ∈ Rr. As usual uε(·) is the control process and belongs to Uε, the set of all processes

u : [0, T ]×Ω −→ Rr such that E
∫ T

0
|uε(t)|2dt < ∞ and F ε

t−adapted where F ε
t is defined in

(4.8).

Guided by what we have done in Section 4.4, we associate with (LQCPε) a formal limit

problem. Denote

Ā(t) =

m0
∑

i0=1

A(t, i0)ν
i0 , B̄(t) =

m0
∑

i0=1

B(t, i0)ν
i0 , (4.28)

and a(·) =
(

ai,j(·)
)

r×r
: [0, T ] → Rr×r where

1

2
ai,j(t) = E

[
∫ ∞

−∞

gi(ξ(s))gj(ξ(0))ds

]

= E

[
∫ ∞

−∞

Di(s)Dj(0)ξi(s)ξj(0)ds

]

, 1 ≤ i, j ≤ r.

(4.29)

Here, we use gi(t, x, ξ) = Di(t)ξi(t) as in the Assumption (A3). Similar to (A3), assume

that ā(·) defined by ā(t) = 1
2

[

a(t) + a
′

(t)
]

is positive definite an denote σ̄(·) the Lipschitz

square root of the symmetric matrix ā(·). Now we can state the limit linear quadratic control

problem.

Limit linear quadratic control problem (LQCP0). Minimize

J(x, u) = E

[
∫ T

0

[x(t)
′

Q(t)x(t) + u(t)
′

R(t)u(t)]dt+ x(T )
′

Gx(T )

]

,
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where x(·) satisfies

dx(t) =
[

Ā(t)x(t) + B̄(t)u(t)
]

dt+ σ̄(t)dw(t),

x(0) = x0,

where x0 ∈ Rn, w(·) is a standard Brownian motion in Rr, and the control process u(·)

belongs to U0, the set of all processes u : [0, T ] × Ω −→ Rr such that E
∫ T

0
|uε(t)|2dt < ∞

and F0
t −adapted where F0

t = σ(w(s) : 0 ≤ s ≤ t).

Note that the problem (LQCP0) is a standard linear quadratic optimal control with

diffusion process. It is well known that the solution to (LQCP0) is a feedback control of

the form ū(t) = Σ(t)x̄(t), where Σ(·) is the bounded continuous matrix-valued function that

can be obtained by solving a Riccati equation associated with (LQCP0). Now, we define

ūε(t) = Σ(t)x̄ε(t) for t ∈ [0, T ]. Plug this particular control ūε(t) into (LQCPε), then the

corresponding state equation and cost function can be rewritten as:

dx̄ε(t) =

[

(

A(t, βε(t)) +B(t, βε(t))Σ(t)
)

x̄ε(t) +D(t)
ξε(t)

ε

]

dt (4.30)

and

Jε(ūε) = E

[
∫ T

0

x̄ε(t)
′

(

Q(t) + Σ(t)
′

R(t)Σ(t)
)

x̄ε(t)dt+ x̄ε(T )
′

Gx̄ε(T )

]

.

We now aim to prove that when ε → 0, x̄ε(·) converges weakly to x̄(·) and Jε(ūε) converges

to J(ū) where ū(t) = Σ(t)x̄(t) and x̄(·) satisfies

dx̄(t) =
[

Ā(t) + B̄(t)Σ(t)
]

x̄(t)dt+ σ̄(t)dw(t),

x̄(0) = x0

(4.31)

and

J(ū) = E

[
∫ T

0

x̄(t)
′

(

Q(t) + Σ(t)
′

R(t)Σ(t)
)

x̄(t)dt+ x̄(T )
′

Gx̄(T )

]

. (4.32)
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We emphasize that we do not prove that (LQCPε) “converges” to (LQCP0) in the sense of

section 4.4; we only prove x̄ε(·) ⇒ x̄(·) and Jε(ūε) → J(ū). That is why we called (LQCP0)

the formal limit of (LQCPε). We need the following auxiliary lemma to obtain the tightness

of xε.

Lemma 4.13. The following assertions hold.

(i) For the system given by (4.30),

sup
0≤t≤T

E|x̄ε(t)|2 ≤ K < ∞.

(ii) For any given ε > 0, t, s ≥ 0, we have

E|x̄ε(t+ s)− x̄ε(t)|2 = O(s). (4.33)

Proof. To prove (i), we first note that in this proof, K is a general constant that its value may

change from line to line and depends only on T and the continuity and hence the boundness

of A(t, i0), B(t, i0), Σ(t), and D(t). Because of the boundedness of A(·, ·), B(·, ·) and D(·),

we have

|x̄ε(t)|2 ≤ K

[

∣

∣

∣

∣

∫ t

0

x̄ε(s)ds

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ t

0

ξε(s)

ε
ds

∣

∣

∣

∣

2
]

,

so by the Hölder inequality,

E|x̄ε(t)|2 ≤ KT

∫ t

0

|x̄ε(s)|2ds+Kε2
∫ t/ε2

0

∫ t/ε2

0

E|ξ(s)′ξ(ρ)|dsdρ. (4.34)

Using the usual mixing inequality, an application of the Gronwall’s inequality leads to

E|x̄ε(t)|2 < ∞. Taking sup over 0 ≤ t ≤ T yields the desired result.

For (ii), the proof can be carried by doing similar calculations as in the previous part.
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Remark 4.14. Note that in addition to Lemma 4.13, we can also obtain the conditional

second moment estimate. That is, sup0≤t≤T Es|x̄ε(t)|2 < ∞ for s < t, where Es denotes the

conditional expectation w.r.t. the σ-algebra generated by {x0, ξ
ε(ρ), βε(ρ) : ρ ≤ s}.

With the above notation and assumptions, we have the following result.

Proposition 4.15. The sequence {x̄ε(·)} defined by (4.30) is tight in Dr[0,∞). As ε → 0,

x̄ε(·) converges weakly to x̄(·) where x̄(·) is a the solution of the stochastic differential

equation

dx̄(t) =
[

Ā(t) + B̄(t)Σ(t)
]

x̄(t)dt+ σ̄(t)dw(t).

In addition,

Jε(ūε) → J(ū).

Proof. The proof of this proposition is quite similar to that of Theorem 4.9 though we do

not use relaxed control here so we only sketch it. Due to the linear structure of the problem

at hand, we do not need to utilize the truncation method.

Step 1. Tightness of {xε(·)}. The tightness of x̄ε follows from Lemma 4.13 and Theorem

3, page 47 in [25].

Step 2. The martingale problem satisfied by the limit. For each f ∈ C2,3
0 ([0, T ]× Rr), we

set f ε(t) = f(t, x̄ε(t)) + f ε
1 (t) + f ε

2 (t), where

f ε
1 (t) = f ε

1 (t, x̄
ε(t)) =

1

ε

∫ T

t

fx(t, x)
′

D(t)Eε
tξ

ε(s)ds

f ε
2 (t) = f ε

2 (t, x̄
ε(t)) =

∫ T

t

(Eε
t F̂ε(τ, x)− EF̂ε(τ, x))dτ
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and

F̂ε(t, x) =

∫ T/ε2

t/ε2

[

Eε
t

(

fx(t, x)
′

D(t)ξ(s)
)

x
ds
]′

D(t)ξε(t).

Similar to what has been done in Theorem 4.9 (except that we do not have the integral over

the space of relax control) we can prove that for each f ∈ C2,3
0 ([0, T ]× Rr), f ε satisfies the

requirements of Lemma 4.8 and thus establish the convergence of x̄ε.

Step 3. Representation of the limit. This step can be done by a similar way to that

of Theorem 4.9. For the last claim, though the functions h, k that appear in the cost

function are not bounded, due to the linear structure of the cost function and the uniformly

boundedness of second moment of x̄ε, the convergence of Jε(ūε) to J(ū) can be proved by

using the localization and the Cantor diagonal argument.

Remark 4.16. Let uε(t) = Σ(t, βε(t))xε(t), t ∈ [0, T ] be a family of controls, where Σ(t, i)

is a continuous matrix-valued function for each i ∈ M. It is easy to see from the previous

proposition that when plugging these controls in to (LQCPε), we also obtain the same

conclusion with Σ in (4.31) is replace by Σ̄ where

Σ̄(t) =

m0
∑

i0=1

Σ(t, i0)ν
i0 .

4.6.2 Linear Quadratic Game Problem

We consider in this subsection a linear quadratic game problem with N players. Let

A(·, ·), B(·, ·) : [0, T ] × M → R and D,Q, Q̄, R : [0, T ] → R be bounded deterministic

real-valued functions such that Q,R,G > 0. Assume that for fixed i0 ∈ M, A(·, i0) and

B(·, i0) are continuous and that the noises ξ1(t), ξ2(t), . . . , ξN(t) are independent identically

distributed mixing second order wide-sense stationary with mixing rate φ(t) satisfying the
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Assumption (A1). Denote ξ(t) =
(

ξ1(t), ξ2(t), . . . , ξN(t)
)′

and ξε(t) = ξ(t/ε2) for ε > 0, 0 ≤

t ≤ T .

A linear quadratic game problem (LQGPε). We consider a class of N−person stochas-

tic differential games where the individual dynamic of player i, xi,ε satisfies the following

stochastic differential equation with wideband noise

dxi,ε(t)

dt
=
[

A(t, βε(t))xi,ε(t) +B(t, βε(t))ui,ε(t)

+F (t, βε(t))x(N),ε(t) +
D(t)

ε
ξi,ε(t)

]

,

(4.35)

with initial conditions xi,ε(0) = xi
0 ∈ R for 1 ≤ i ≤ N , where the control process ui,ε(·)

belongs to U i,ε, the set of all processes ui,ε : [0, T ]×Ω −→ R such that E
∫ T

0
|ui,ε(t)|2dt < ∞

and F ε
t−adapted where F ε

t is defined as in (4.8), and the term

x(N),ε(t) =
1

N

∑

1≤j≤N

xj,ε(t)

is the mean-field coupling term. The cost function for player i is given by

J i,ε(uε) = E

[

∫ T

0

(

xi,ε(t)Q(t)xi,ε(t) + ui,ε(t)R(t)ui,ε(t)
)

dt

+ xi,ε(T )Q(T )xi,ε(T )
]

+ E

[∫ T

0

(

xi,ε(t)− S(t)x(N),ε(t)
)

Q̄(t)
(

xi,ε(t)− S(t)x(N),ε(t)
)

dt

]

+ E
[(

xi,ε(T )− S(T )x(N),ε(T )
)

Q̄(T )
(

xi,ε(T )− S(T )x(N),ε(T )
)]

.

(4.36)

We note that, the system of stochastic differential equations describing the dynamic of

players can also be rewritten as

dxε(t) =
[

A(t, βε(t))xε(t)dt+ B(t, βε(t))uε(t) +
1

ε
D(t)ξε(t)

]

dt,
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where for t ≥ 0 and i0 ∈ M,

A(t, i0) =

























A(t, i0) +
F (t,i0)

N
F (t,i0)

N
· · · F (t,i0)

N

F (t,i0)
N

A(t, i0) +
F (t,i0)

N
· · · F (t,i0)

N

...
...

. . .
...

F (t,i0)
N

F (t,i0)
N

· · · A(t, i0) +
F (t,i0)

N

























,

B(t, i0) =

























B(t, i0) 0 · · · 0 0

0 B(t, i0) · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 B(t, i0)

























,

D(t) =

























D(t) 0 · · · 0 0

0 D(t) · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 D(t)

























.

So the states of N players describing in (4.35) can be written in a same way as the dynamic

of the linear quadratic control problem (LQCPε). Using a similar idea that was used the

previous subsection, we associate (LQGPε) with the following formal limit problem.

Limit linear quadratic game problem (LQGP0). Similar to previous subsection,

let Ā(t), B̄(t) be determined as in (4.28) and F̄ (t) =
∑m0

i0=1 F (t, i0)ν
i0 . Denote ā(t) =

E
∫∞

−∞
D(s)D(0)ξi(s)ξi(0)ds. Assume that ā(t) ≥ 0 for t ∈ [0, T ] and let σ̄(t) be any Lips-

chitz square root of ā(t).
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Let the dynamic of player i be described by

dxi(t)

dt
=
[

Ā(t)xi(t) + B̄(t)ui(t) + F̄ (t)x(N)(t)
]

+ σ̄dw(t),

where x(N)(t) = 1
N

∑N
j=1 x

j(t) and w(·) is a standard Brownian motion in R1. The cost

function for player i is given by

J i(u) = E

[∫ T

0

(

xi(t)Q(t)xi(t) + ui(t)R(t)ui(t)
)

dt+ xi(T )Q(T )xi(T )

]

+ E

[
∫ T

0

(

xi(t)− S(t)x(N)(t)
)

Q̄(t)
(

xi(t)− S(t)x(N)(t)
)

dt

]

+ E
[(

xi(T )− S(T )x(N)(T )
)

Q̄(T )
(

xi(T )− S(T )x(N)(T )
)]

.

(4.37)

It should be noted that (LQGP0) is a well-known LQG mean-field game problem. Under

some mild conditions (see [13] or [4]), there exists a δ-Nash equilibrium for this problem where

δ = O(1/
√
N), in which the strategies have the following feedback forms ûi = Ψ(t)x̂i(t)+Λ(t)

where x̂i(t) is the corresponding state, Ψ(t) and Λ(t) are continuous real-valued functions

which can be determined from the coefficients Ā, B̄, σ̄, Q, Q̄, R, S (see for instant, equation

(9.33) in [13] or Remark 3.3 in [4]).

Consider the problem (LQGPε), let û
ε = (û1,ε, û2,ε, . . . , ûN,ε) be the set of strategies of

the feedback form

ûi,ε(t) = Ψ(t)x̂i,ε(t) + Λ(t), i = 1, 2, . . . , N,

where x̂i,ε(t) is the corresponding state of player i. Plugging this particular control into

problem (LQGPε), the state equation and cost function become

dx̂ε(t) =
[

(

A(t, βε(t)) + B(t, βε(t))Ψ(t)
)

x̂ε(t) + Λ(t)IN×N +
1

ε
D(t)ξε(t)

]

dt, (4.38)
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where IN×N denotes the N ×N identity matrix, and

J i,ε(ûε) = E

[
∫ T

0

x̂i,ε(t) (Q(t) + Ψ(t)R(t)Ψ(t)) x̂i,ε(t) + Λ(t)R(t)Λ(t)dt

]

+ E

[
∫ T

0

(

x̂i,ε(t)− S(t)x̂(N),ε(t)
)

Q̄(t)
(

x̂i,ε(t)− S(t)x̂(N),ε(t)
)

dt

]

+ E
[(

x̂i,ε(T )− S(T )x̂(N),ε(T )
)

Q̄(T )
(

x̂i,ε(T )− S(T )x̂−i,ε(T )
)]

+ Ex̂i,ε(T )Q(T )x̂i,ε(T ).

(4.39)

Similar to subsection 4.6.1, we have that the x̂ε(·) converges weakly to x̂(·) and J i,ε(ûε) →

J i(û), for i = 1, 2, . . . , N , where x̂ε(·) is the solution of (4.38), J i,ε(ûε) is given by (4.39) and

x̂(·) is given as below

dx̂(t) =
[

(

Ā(t) + B̄(t)Ψ(t)
)

x̂(t) + Λ(t)IN×N

]

dt+ σ̄(t)IN×Ndw(t), (4.40)

where the feedback strategy û(t) = Ψ(t)x̂(t) + Λ(t) is used, and Ā and B̄ are defined by

Ā(t) =

























Ā(t) + 1
N
F̄ (t) 1

N
F̄ (t) · · · 1

N
F̄ (t)

1
N
F̄ (t) Ā(t) + 1

N
F̄ (t) · · · 1

N
F̄ (t)

...
...

. . .
...

1
N
F̄ (t) 1

N
F̄ (t) · · · Ā(t) + 1

N
F̄ (t)

























,

B̄(t) =

























B̄(t) 0 · · · 0 0

0 B̄(t) · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 B̄(t)

























.
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The cost function J i(û) is given by

J i(û) = E

[
∫ T

0

x̂i(t)
(

Q(t) + Ψ(t)R(t)Ψ(t)
)

x̂i(t) + Λ(t)R(t)Λ(t)dt

]

+ E

[
∫ T

0

(

x̂i(t)− S(t)x̂(N)(t)
)

Q̄(t)
(

x̂i(t)− S(t)x̂(N)(t)
)

dt

]

+ E
[(

x̂i(T )− S(T )x̂(N)(T )
)

Q̄(T )
(

x̂i(T )− S(T )x̂(N)(T )
)]

+ Ex̂i(T )Q(T )x̂i(T ).

(4.41)

We summarize what have been discussing so far into following result that can be proved

similar to that of Proposition 4.15.

Proposition 4.17. Assume that the problem (LQGP0) has a δ−Nash equilibrium û in the

feedback form ûi = Ψ(t)x̂i(t) + Λ(t), i = 1, 2, . . . , N and Ψ(·),Λ(·) are continuous functions.

Let x̂ε(·) and x̂(·) respectively be the solutions of (4.38) and (4.40). Let J i,ε(ûε) and J i(û)

be defined as in (4.39) and (4.41) respectively for i = 1, 2, . . . , N . Then, as ε → 0, we have

x̂ε(·) ⇒ x̂(·) and J i,ε(ûε) → J i(û).

Remark 4.18. Notice that we can also consider the problem where the state space of each

player and the control process take value in multidimensional Euclidean spaces, however, the

results are essentially the same.

4.7 Further Remarks

This chapter developed near-optimal controls of hybrid systems under wideband noise

perturbations. The original problems are difficult to solve because they are non-Markovian.

There are no techniques readily available to treat such systems. To overcome the difficulties,

we dealt with the problem from a different angle. It is shown that the underlying problems

are reduced to certain limit Markovian systems under suitable scaling. Using optimal or near-
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optimal controls of the limit systems, we build controls for the original problems and show

that such a scheme leads to desired near optimality. Several directions may be worthwhile

for future investigation. Currently, for the linear (linear in the continuous state variable)

problem, the control weights are assumed to be positive definite. It would be interesting

to extend the current setting by considering indefinite control weights. The key idea is to

use backward stochastic differential equations. Another problem is to treat Markov chains

that involve multiple ergodic classes. These questions deserve further thoughts and careful

consideration.
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CHAPTER 5 CONCLUDING REMARKS AND FU-

TURE DIRECTIONS

In this dissertation, we concentrate on numerical methods, limit results, and controlled

stochastic differential systems with random switching. In the first part, we study the numeri-

cal approximation to those systems. We designed a new numerical scheme in the spirit of the

classical Milstein scheme to SDEs without switching and use a new approach to thoroughly

investigate the convergence of the proposed scheme. Inspired by the numerical approxima-

tion procedures, we next investigate a somewhat generalized and abstracted limit theorem

for stochastic systems with state-independent regime switching with quite general driving

processes. The last part of the dissertation is devoted to the controlled hybrid systems that

are good approximations to controlled switching diffusion processes. Motivated by applica-

tions, we study the switching systems perturbed by wide bandwidth noise and design the

nearly optimal and nearly equilibrium controls for those systems. Although the dissertation

is mainly concerned with quite general stochastic systems and does not focus on any specific

models, the results as well as methods and techniques developed can be use in certain specific

systems involving regime switching diffusions.

There are several directions that are worthwhile for further study and investigation. By

mimicking the classical numerical schemes for SDEs without switching counterpart, the ap-

proach in Chapter 2 can be used to design and study various numerical schemes to Markovian

switching systems. It is also interesting to extend this approach further so that it can be

used to treat the state-dependent switching systems as well. One may also want to relax the

assumptions on the coefficients of the systems to better suite many applications in practical

situations as well. Up to now, the main focus of research on numerical methods for switching
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diffusions was concerned with asymptotic error estimates, whereas central limit theorems for

the schemes have not received as much attention. Thus investigation in this direction is an

interesting choice. In general, central limit theorems illustrate how the choice of parameters

affect the efficiency of the scheme and they are a central tool for tuning the parameters.

In the last part of the dissertation we have considered a problem related to mean-field

models. These models are concerned with many particle systems having weak interactions.

To reduce the computational complexity of interactions due to a large number of particles

(or many body problems), all interactions with each particle are replaced by a single average

interaction. There has been a renew interest in Mean-field models in the past decades.

Initiated independently by Huang, Malhame, and Caines [13], and Lasry and Lions [31]

mean field differential games have drawn much attentions and became a very active area.

Along with the renewed interest in the classical models, the studies for some other type of

mean field models were also carried out. Recently, there has been some effort devoted to

study the mean-field models involving regime switching. However, the investigation is far

more difficult than that of the counterpart in mean-field models with SDEs. Further study

in this direction deserves more attention and careful consideration.
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This dissertation is concerned with the so-called stochastic hybrid systems, which are

featured by the coexistence of continuous dynamics and discrete events and their interactions.

Such systems have drawn much needed attentions in recent years. One of the main reasons is

that such systems can be used to better reflect the reality for a wide range of applications in

networked systems, communication systems, economic systems, cyber-physical systems, and

biological and ecological systems, among others. Our main interest is centered around one

class of such hybrid systems known as switching diffusions. In such a system, in addition to

the driving force of a Brownian motion as in a stochastic system represented by a stochastic

differential equation (SDE), there is an additional continuous-time switching process that

models the environmental changes due to random events.

In the first part, we develops numerical schemes for stochastic differential equations

with Markovian switching (Markovian switching SDEs). By utilizing a special form of Itô’s
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formula for switching SDEs and special structural of the jumps of the switching component we

derived a new scheme to simulate switching SDEs in the spirit of Milstein’s scheme for purely

SDEs. We develop a new approach to establish the convergence of the proposed algorithm

that incorporates martingale methods, quadratic variations, and Markovian stopping times.

Detailed and delicate analysis is carried out. Under suitable conditions that are natural

extensions of the classical ones, the convergence of the algorithms is established. The rate

of convergence is also ascertained.

The second part is concerned with a limit theorem for general stochastic differential

equations with Markovian regime switching. Given a sequence of stochastic regime switch-

ing systems where the discrete switching processes are independent of on the state of the

systems. The continuous-state component of these systems are governed by stochastic differ-

ential equations with driving processes that are continuous increasing processes and square

integrable martingales. We establish the convergence of the sequence of systems to the one

described by a Markovian regime-switching diffusion process.

The third part is concerned with controlled hybrid systems that are good approximations

to controlled switching diffusion processes. In lieu of a Brownian motion noise, we use a

wide-band noise formulation, which facilitates the treatment of non-Markovian models. The

wide-band noise is one whose spectrum has band width wide enough. We work with a basic

stationary mixing type process. On top of this wide-band noise process, we allow the system

to be subject to random discrete event influence. The discrete event process is a continuous-

time Markov chain with a finite state space. Although the state space is finite, we assume

that the state space is rather large and the Markov chain is irreducible. Using a two-time-

scale formulation and assuming the Markov chain also subjects to fast variations, using weak
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convergence and singular perturbation test function method we first proved that the when

controlled by nearly optimal and equilibrium controls, the state and the corresponding costs

of the original systems would “converge” to those of controlled diffusions systems. Using

the limit controlled dynamic system as a guidance, we construct controls for the original

problem and show that the controls so constructed are near optimal and nearly equilibrium.
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