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Spin-resolved dynamical conductance of a correlated large-spin magnetic molecule
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The finite-frequency transport properties of a large-spin molecule attached to ferromagnetic contacts are
studied theoretically in the Kondo regime. The focus is on the behavior of the dynamical conductance in the
linear response regime, which is determined by using the numerical renormalization group method. It is shown that
the dynamical conductance depends greatly on the magnetic configuration of the device and intrinsic parameters
of the molecule. In particular, conductance exhibits characteristic features for frequencies corresponding to the
dipolar and quadrupolar exchange fields resulting from the presence of spin-dependent tunneling. Moreover,
a dynamical spin accumulation in the molecule, associated with the off-diagonal-in-spin component of the
conductance, is predicted. This spin accumulation becomes enhanced with increasing the spin polarization of
the leads, and it results in a nonmonotonic dependence of the conductance on frequency, with local maxima
occurring for characteristic energy scales.
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I. INTRODUCTION

Magnetic molecules are envisaged as a prospective base
for future storage and information processing at the nanoscale
[1–5]. To realize this dream, it is, however, necessary to provide
a detailed understanding of various properties and mechanisms
governing transport properties of molecules attached to exter-
nal leads. The steady-state transport behavior of molecules
coupled to metallic electrodes has already been a subject of
extensive investigations [6–16]. First of all, it turns out that
when the coupling to external leads is relatively weak, transport
is dominated by single-electron charging effects [17]. On the
other hand, in the strong coupling regime, the many-body
correlations can result in the Kondo effect [18–20]. For
molecules with spin one-half, this phenomenon manifests as
an enhancement of linear conductance for temperatures lower
than some characteristic temperature, the so-called Kondo
temperature TK [21]. Interestingly, for molecules exhibiting
spin larger than one-half more exotic Kondo effects can in
general emerge, whose typical examples are the underscreened
[22–26] and the two-stage Kondo phenomena [27–31]. In the
former case, the low-temperature conductance still approaches
the conductance quantum, while in the latter case, a suppres-
sion of transport takes place. Moreover, the stationary transport
through magnetic molecules has been also considered in the
case of ferromagnetic leads [30,32–35]. In the strong coupling
regime, it was shown that the occurrence of the Kondo effect
is conditioned by the presence of a dipolar exchange field
[36], which effectively acts as an external magnetic field. If
such a field exceeds TK, the Kondo phenomenon becomes
suppressed [32,33]. Importantly, for molecules with spin larger
than one-half, an additional quadrupolar field arises [35]. Since
this field essentially imposes anisotropy on the molecular spin,
it can thus also destroy the Kondo effect once larger than the
Kondo temperature.
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In this paper, we focus on the frequency-dependent trans-
port through large-spin molecules coupled to ferromagnetic
contacts in the Kondo regime. The motivation for this study
stems from the fact that, unlike for the stationary transport,
the analysis of dynamical response of a system to an applied
time-dependent bias provides an additional insight into the
fluctuations in the system [37–41]. In particular, the spin-
dependent component of the dynamical conductance Gqq ′

σσ ′(ω),
describing the current response in the qth electrode to all
external voltages applied to q ′th electrodes

I q(ω) =
∑
q ′σσ ′

Gqq ′
σσ ′(ω)V q ′

(ω), (1)

is related to the corresponding component of the symmetrized-
noise power spectral density,

[SI]
qq ′
σσ ′(ω) = 1

2

∫
dτ e−iωτ

〈{
Î q

σ (τ ),Î q ′
σ ′(0)

}〉
, (2)

through the fluctuation-dissipation theorem [42]

[SI]
qq ′
σσ ′(ω) = −h̄ω coth

(
h̄ω

2kBT

)
Gqq ′

σσ ′(ω). (3)

Thus, at very low temperatures, as considered in this paper, the
noise normalized to frequency can be directly accessed from
the dynamical conductance.

We note that the dynamical aspect of spin-dependent
transport in the Kondo regime has so far only been addressed
theoretically in the case of quantum dots [38–40,43–46],
but not in magnetic molecules. Specifically, it was shown
that finite-frequency conductance provides a direct access
to the equilibrium spectral function of the system and the
Kondo resonance, which otherwise would have to be probed
under nonequilibrium conditions induced by application of
a finite-bias voltage [38]. Furthermore, the analysis of the
spin-resolved conductance for the Kondo model revealed the
effect of a dynamical spin accumulation, which is related to
finite off-diagonal component of conductance in the spin space
[40,43]. It is also important to notice that the finite-frequency
transport properties of quantum dot systems have also been

2469-9950/2017/95(15)/155446(16) 155446-1 ©2017 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/81669373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevB.95.155446
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explored experimentally in a wide range of frequencies
[41,47–50].

Here, we investigate the behavior of the frequency-
dependent conductance for a magnetic molecule, modeled
as a large-spin magnetic core exchange coupled to a single
conducting orbital level, that is, only the orbital level is
assumed to be tunnel coupled to external ferromagnetic leads.
The analysis is performed in the linear response regime by
using the Kubo formula, and the relevant correlation functions
are determined with the aid of the numerical renormalization
group (NRG) method [51]. We show that the dynamical
conductance strongly depends on the magnetic configuration
of the device and intrinsic parameters of the molecule, such
as magnetic anisotropy and exchange coupling between the
orbital level and magnetic core. When spin moments of leads
are oriented in parallel, the presence of dipolar and quadrupolar
exchange fields suppresses the conductance. On the other hand,
for the antiparallel configuration we find a different behavior
of the conductance on frequency depending on the type of ex-
change interaction. Furthermore, we predict a dynamical spin
accumulation in the molecule triggered by time-dependent
bias, which strongly depends on intrinsic parameters of the
molecule and in general exhibits a nonmonotonic dependence
on frequency.

The paper is organized as follows: In Sec. II A, the
model and key Hamiltonians for the considered system are
introduced. Next, a detailed derivation of the formula for
the dynamical conductance is presented in Sec. II B. The
numerical renormalization group method used for calculations
is briefly described in Sec. II C. Numerical results are discussed
in Secs. III and IV. In particular, two distinctive cases are
analyzed: for a single-level quantum dot of spin S = 1/2
(Sec. III), and for a large-spin (S > 1/2) molecule that can
additionally exhibit uniaxial magnetic anisotropy (Sec. IV).
Finally, the summary and key conclusions of the paper are
given in Sec. V.

II. THEORETICAL DESCRIPTION

A. Model

We consider a model of a large-spin molecule embedded
in a magnetic tunnel junction, as schematically depicted in
Fig. 1. The molecule, which in the following will be also

e

FIG. 1. Schematic representation of the model system under
consideration: a large-spin molecule embedded in a magnetic tunnel
junction. For detailed description see Sec. II A.

referred to as a magnetic quantum dot (MQD), is assumed
here to consist of a single conducting orbital level (OL) and a
magnetic core (internal spin) represented by a spin operator Ŝ.
Moreover, tunnel coupling of the OL to two metallic fer-
romagnetic electrodes of the junction, whose strength is
described by spin-dependent hybridization functions �

q
σ [q =

L (left),R (right)], enables transport of electrons across the
junction via the molecule. Importantly, when the OL is
occupied by a single electron, its spin becomes coupled via
exchange interaction J to the spin of the magnetic core. The
model setup to be studied is thus characterized by the total
Hamiltonian of the general form

Ĥ = ĤMQD + Ĥel + Ĥtun, (4)

where the three terms represent the molecule ĤMQD, electrodes
Ĥel, and electron tunneling processes Ĥtun.

To begin with, the first term of the total Hamiltonian (4),
standing for the MQD, in the absence of an external magnetic
field generally comprises the following parts:

ĤMQD = ĤMA + ĤOL + ĤJ. (5)

Here, of key importance is the first part

ĤMA = −DŜ2
z, (6)

describing the lowest-order magnetic anisotropy of the MQD’s
magnetic core, with D denoting the uniaxial anisotropy
constant. Next, the essential features of the conducting orbital
are captured by the second term of the Hamiltonian (5),

ĤOL = ε
∑

σ

n̂σ + Un̂↑n̂↓, (7)

where n̂σ = ĉ†σ ĉσ and the operator ĉ†σ (ĉσ ) is responsible for
creation (annihilation) of an electron with spin σ and energy ε

in the OL. Note that if the orbital is simultaneously occupied
by two electrons of opposite spin, this results in occurrence
of the Coulomb energy U . Finally, the exchange interaction
between the spin of a single electron occupying the OL, ŝ =
(1/2)

∑
σσ ′ σ̂ σσ ′ ĉ†σ ĉσ ′ [with σ̂ ≡ (σ̂x,σ̂y,σ̂z) denoting the Pauli

spin operator], and the magnetic core Ŝ is represented by the
third term

ĤJ = −J ŝ · Ŝ, (8)

and it will be referred to as ferromagnetic (FM) for J > 0 and
antiferromagnetic (AFM) for J < 0. Importantly, if J = 0,
the model under discussion reduces to a single-level quantum
dot (QD), with only the orbital part ĤOL, corresponding to the
Anderson single impurity model, being the only relevant term.

Electrodes of the magnetic tunnel junction are represented
as reservoirs of spin-polarized and noninteracting itinerant
electrons, so that, with creation (annihilation) of a spin-
σ electron in the qth electrode described by the operator
â

q†
σ (ε) [âq

σ (ε)], the second term of the total Hamiltonian (4)
is given by

Ĥel =
∑
qσ

∫ W

−W

dε ε âq†
σ (ε)âq

σ (ε), (9)

with W denoting the conduction band half-width. Moreover,
we assume that spin moments of electrodes form a collinear
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configuration, that is, they can be oriented with respect to each
other either parallel (P) or antiparallel (AP) (see Fig. 1). The
assumption is also made that these spin moments are collinear
with the principal magnetic (z) axis of the MQD set by the
uniaxial component of magnetic anisotropy. In consequence,
the process of electron tunneling across the junction via the
OL of the molecule, taken into account by the final term of the
total Hamiltonian (4), is expressed as

Ĥtun =
∑
qσ

√
�

q
σ

π

∫ W

−W

dε
[
âq†

σ (ε)ĉσ + ĉ†σ âq
σ (ε)

]
. (10)

The spin-dependent hybridization functions �
q
σ in the equation

above can be further conveniently parametrized by means
of the spin-full hybridization (OL broadening) due to tunnel
coupling to the qth electrode, �q = �

q

↑ + �
q

↓, and the spin
polarization coefficient pq defined as pq = (�q

↑ − �
q

↓)/(�q

↑ +
�

q

↓). Assuming identical electrodes and tunnel barriers, that
is, �L = �R = � and pL = pR = p, one obtains �L

↑(↓) =
�R

↑(↓) = (�/2)(1 ± p) for the parallel magnetic configuration,
and �L

↑(↓) = �R
↓(↑) = (�/2)(1 ± p) for the antiparallel one.

However, it has been demonstrated that for calculations
within the linear response theory, it becomes advantageous
to use a canonical transformation [33,52,53] corresponding
to a rotation in the space of left-right electron operators that
allows for decoupling of the OL from the odd linear com-
bination of electrode operators âo

σ (ε) = 	R
σ âL

σ (ε) − 	L
σ âR

σ (ε)
with 	

q
σ =

√
�

q
σ /(�L

σ + �R
σ ). The orbital couples then only

to a single effective electron reservoir constructed out of
the even linear combinations of electrode operators âe

σ (ε) =
	L

σ âL
σ (ε) + 	R

σ âR
σ (ε). As a result, in the new basis of even-

odd electron operators the tunneling Hamiltonian (10) is
transformed as follows:

Ĥtun =
∑
qσ

√
�eff

σ

π

∫ W

−W

dε
[
âe†

σ (ε)ĉσ + ĉ†σ âe
σ (ε)

]
, (11)

with �eff
σ = �L

σ + �R
σ . Importantly, note that in the antiparallel

magnetic configuration �eff
σ = �, whereas in the parallel one

�eff
↑ (↓) = �(1 ± p).

B. Dynamical conductance

To study the dynamical response of the system, we apply
an external time-dependent bias voltage V L(R)(t), changing
periodically, which is described by a new term Ĥbias [39,45],

Ĥbias =
∑

q

Q̂qV q(t), (12)

added to the total Hamiltonian (4), with Q̂q = ∑
σ Q̂

q
σ , and

Q̂q
σ = −|e|

∫ W

−W

dε âq†
σ (ε)âq

σ (ε) (13)

denoting the operator for the spin-σ component of charge
induced in the qth electrode. Consequently, in the linear
response, the current flowing through the MQD can be

described by the Kubo formula

〈Î q(t)〉 =
∑
q ′σσ ′

∫
dt ′ Gqq ′

σσ ′(t − t ′)V q ′
(t ′), (14)

where Gqq ′
σσ ′(t − t ′) is the time-dependent response of the

system (conductance), induced by applied time-dependent
voltage, given explicitly by

Gqq ′
σσ ′(t − t ′) = − i

h̄
θ (t − t ′)

〈[
Î q

σ (t),Q̂q ′
σ ′(t ′)

]〉
, (15)

with Î
q
σ (t) = dQ̂

q
σ (t)/dt and Q̂

q ′
σ ′(t ′) [Eq. (13)] standing for

the current and charge operator in the interaction picture,
respectively, and 〈. . .〉 denoting the quantum-statistical aver-
aging. Using the above expression, the frequency-dependent
conductance (admittance) Gqq ′

σσ ′(ω) can be shown to take the
form (for details see Appendix)

Gqq ′
σσ ′(ω) = i

ω

[〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω

− 〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω=0

]
. (16)

In order to find the frequency-dependent conductance Gqq ′
σσ ′(ω),

one has to calculate 〈〈Î q
σ |Î q ′

σ ′ 〉〉r
ω, that is, the Fourier transform

of the retarded Green’s function for the current operator
defined as 〈〈Î q

σ |Î q ′
σ ′ 〉〉r

t = −(i/h̄)θ (t)〈[Î q
σ (t),Î q ′

σ ′(0)]〉. Although
in a general case, derivation of such a function can pose
a serious challenge, in the situation under consideration the
MQD is coupled only to the even reservoir (see Sec. II A),
which will lead to a great simplification of analytical formulas.

It turns out that due to application of the canonical
transformation discussed above, also the current operator Î

q
σ

can be separated into two parts representing even (Î q,e
σ ) and

odd (Î q,o
σ ) transport channel, Î

q
σ = Î

q,e
σ + Î

q,o
σ , with

Î q,e
σ = −i

|e|
h̄
√

πρ

�
q
σ√

�eff
σ

Îe
σ ,

(17)

Î q,o
σ = −iηq

|e|
h̄
√

πρ

√
�L

σ �R
σ

�eff
σ

Îo
σ .

Here, the coefficient ηq should be understood as ηL = 1 and
ηR = −1, whereas Îe(o)

σ denotes the dimensionless current
operator given by

Îe(o)
σ = ĉ†σ ̂e(o)

σ − ̂e(o)†
σ ĉσ , (18)

with ̂e(o)
σ = √

ρ
∫

dε âe(o)
σ (ε) and ρ = 1/(2W ) being the

density of states of a conduction band. Furthermore, employing
the above decomposition of the current operator Î

q
σ , the

Green’s function 〈〈Î q
σ |Î q ′

σ ′ 〉〉r
ω occurring in the expression for

dynamical conductance Gqq ′
σσ ′(ω) [Eq. (16)] can be split into

two components corresponding to the even and odd channels,〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω

= 〈〈
Î q,e

σ

∣∣Î q ′,e
σ ′

〉〉r
ω

+ δσσ ′
〈〈
Î q,o

σ

∣∣Î q ′,o
σ ′

〉〉r
ω
. (19)

The explicit expressions for these two functions are found to be
of the following form (for details of derivation see Appendix):

〈〈
Î q,e

σ

∣∣Î q ′,e
σ ′

〉〉r
ω

= −G0

h̄ρ

�
q
σ�

q ′
σ ′√

�eff
σ �eff

σ ′

〈〈
Îe

σ |Îe†
σ ′

〉〉r
ω

(20)
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and〈〈
Î q,o

σ

∣∣Î q ′,o
σ

〉〉r
ω

= ηqηq ′G0
�L

σ �R
σ

�eff
σ

×
∫

dω′{[f (ω′ − ω) + f (ω′ + ω)]Re〈〈ĉσ |ĉ†σ 〉〉r
ω′

+ i[f (ω′ − ω) − f (ω′ + ω)]Im〈〈ĉσ |ĉ†σ 〉〉r
ω′

}
, (21)

with G0 ≡ 2e2/h. Additionally, in the equation above
〈〈ĉσ |ĉ†σ 〉〉r

ω represents the Fourier transform of the re-
tarded Green’s function for the OL, and f (ω) = {1 +
exp[h̄ω/(kBT )]}−1 denotes the Fermi-Dirac distribution of
electrodes at equilibrium, with T being temperature and kB

the Boltzmann constant.
As a result, the real part of the conductance G

qq ′
σσ ′(ω) ≡

ReGqq ′
σσ ′(ω) = −Im〈〈Î q

σ |Î q ′
σ ′ 〉〉r

ω/ω can be expressed in units of
the conductance quantum G0 as

G
qq ′
σσ ′(ω)

G0
= −δσσ ′ηqηq ′2πA0

�L
σ �R

σ

�eff
σ

go
σ (ω)

+ πA0
�

q
σ�

q ′
σ ′√

�eff
σ �eff

σ ′

ge
σσ ′(ω), (22)

where go
σ (ω) and ge

σσ ′(ω) stand for dimensionless conductance
contributions from the odd and even channels, respectively.
These two functions can be then written as [39,40]

go
σ (ω) = 1

2ω

∫
dω′Ac

σ (ω′)
A0

[f (ω′ − ω) − f (ω′ + ω)] (23)

and

ge
σσ ′(ω) = − 1

ω

AI
σσ ′(ω)

h̄ρA0
, (24)

with Ac
σ (ω) ≡ −Im〈〈cσ |c†σ 〉〉r

ω/π denoting the spectral func-
tion of the OL, AI

σσ ′(ω) ≡ −Im〈〈Îe
σ |Îe†

σ ′ 〉〉r
ω/π being the

spectral function for the dimensionless even current operator,
and A0 = 1/(π�) standing for the spectral function of a bare
OL (that is, for J = 0 which essentially corresponds to a
single-level QD) at ω = 0 and for nonmagnetic electrodes.

In the following discussion, we focus on the analysis of the
left-right component of the dynamical conductance

GP/AP(ω) =
∑
σσ ′

[
GLR

σσ ′(ω)
]P/AP

≡ Go
P/AP(ω) + Ge

P/AP(ω), (25)

where the second line consists of two components of con-
ductance Go

c(ω) and Ge
c(ω) related to the odd and even

transport channels, respectively. For the parallel (c = P) and
antiparallel (c = AP) magnetic configuration of the junction,
these quantities are defined as

Go
c(ω) = 1

2

∑
σ

	c
σ

[
go

σ (ω)
]c

(26)

and

Ge
c(ω) = 1

4

∑
σσ ′

	c
σϒc

σσ ′
[
ge

σσ ′(ω)
]c

. (27)

When deriving the equation above, it was assumed as previ-
ously that both electrodes and tunnel barriers are identical,
so that the factors 	c

σ and ϒc
σσ ′ determined by the magnetic

configuration c, take the following form [45]:

	P
σ = 1 + ησp and 	AP

σ = 1 − p2, (28)

with η↑(↓) = ±1,

ϒP
σσ ′ =

√
1 + ησ ′p

1 + ησp
and ϒAP

σσ ′ = 1 + ησp

1 + ησ ′p
. (29)

C. Numerical determination of spectral functions

As explained in the previous section, the spin-resolved
dynamical conductance (22) is essentially determined by two
types of spectral functions: one describing the OL Ac

σ (ω) [see
Eq. (23)], and the other for the dimensionless even current
operator AI

σσ ′(ω) [see Eq. (24)]. In general, derivation of
these two quantities in the Kondo regime, corresponding to a
strong tunnel coupling between a spin impurity and conducting
electrons, is a nontrivial task. In this work, we use for this
purpose the Wilson’s numerical renormalization group method
[51,54–56]. The main idea of the NRG technique relies on
the logarithmic discretization of the conduction band with
a discretization parameter 	, so that transport properties of
a system can be resolved on energy scales logarithmically
approaching the Fermi level. Next, such a discretized model is
mapped onto a semi-infinite chain with exponentially decaying
hoppings and the first site being coupled to a spin impurity.

Relating this idea to our model of a magnetic molecule, the
full NRG Hamiltonian of the system under consideration takes
the following form:

ĤNRG = ĤMQD + Ĥchain + ĤMQD-chain, (30)

where the second term, representing the Wilson chain, is given
by

Ĥchain =
∞∑

n=0

∑
σ

Vn[f̂ †
nσ f̂ n+1σ + f̂

†
n+1σ f̂ nσ ]. (31)

Here, the operators f
†
nσ and fnσ describe the nth site of the

Wilson chain, while electron hopping between neighboring
sites of this chain is characterized by matrix elements Vn.
Furthermore, the coupling between the MQD and the first
site of the semi-infinite chain is formulated by means of the
effective hybridization function �eff

σ [cf. Eq. (11)] as

ĤMQD-chain =
∑

σ

√
�eff

σ

πρ
[ĉ†σ f̂ 0σ + f̂

†
0σ ĉσ ]. (32)

Note also that f̂ 0σ ≡ ̂e
σ . Having defined the NRG Hamilto-

nian, we continue with the next step of this method which is
the iterative diagonalization of the chain. In calculations we
took the discretization parameter 	 = 2 and kept up to 4096
states after each step of the iteration. Moreover, to improve the
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accuracy of calculations, we averaged the spectral data over
Nz = 8 different discretization meshes [57].

III. CASE OF A QUANTUM DOT ( J = 0)

To set the ground for a discussion of frequency-dependent
transport through a magnetic molecule in the Kondo regime,
we first introduce some general concepts by considering the
instructive example of a single-level quantum dot (QD). In
particular, this limiting case is obtained by assuming J = 0, as
mentioned in Sec. II A. Importantly, the essential concepts that
we learn from the analysis of the transport through a QD will
prove very useful for understanding of transport mechanisms
relevant in the case of a more complex system such as a
MQD. We note that whereas stationary transport through QDs
strongly coupled to ferromagnetic contacts has already been
the subject of extensive experimental [58–62] and theoretical
[36,63–65] studies, the problem of time-dependent transport
has attracted less attention so far [45].

A. Parameter space

To begin with, let us recall the key conditions which have
to be met in order to observe a formation of the Kondo
resonance. First of all, the dot has to be occupied by a single
electron so that spin-flip processes responsible for the increase
of conductance can take place. This is ensured by adjusting
a gate voltage to keep the position of the dot level ε in
the range −1 � ε/U � 0. Second, the temperature T of the
system should be lower than the Kondo temperature TK [21],
which represents the characteristic energy scale of the ef-
fect under consideration. In our system, the Kondo tem-
perature is estimated from the temperature dependence of
zero-frequency conductance G(ω = 0,T ) as the half-width
at the half-maximum of the normalized linear conductance
G(ω = 0,T )/G(ω = 0,T = 0) at the particle-hole symme-
try point (ε/U = −1/2), so that we find TK/W = 0.002,
with temperature given in energy units (kB ≡ 1) and the
conduction band half-width W ≡ 1 taken as an energy unit.
This value of the Kondo temperature, henceforth referred to
as T 0

K ≡ TK(J = 0), is obtained by assuming the following
parameters of the system in our calculations: the Coulomb
energy associated with the double occupation of the dot is
U/W = 0.4 and the tunnel coupling between electrodes and
a QD is �/U = 0.1. From now on, whenever useful, T 0

K will
be employed as a reference energy scale. Furthermore, if not
stated otherwise, the spin polarization coefficient of electrodes
is p = 0.5. Numerical results are presented here for T = 0
and a wide range of frequencies. As will be discussed below,
the most subtle effects are observed in the regime of low
frequencies. On the other hand, in the limit of high frequencies,
the Coulomb interaction starts to play a dominant role and the
Kondo effect becomes suppressed.

B. Numerical results and discussion

Figure 2 presents the dependence of dynamical conductance
G(ω) [see Eq. (25)] on frequency ω and the position of a QD
level ε for the parallel (a) and antiparallel (b) orientation of spin
moments of electrodes. In each case, one can observe the onset
of the Kondo effect at low frequencies ω < T 0

K for ε corre-
sponding to a single occupation (Q = 1) of the QD, though the
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FIG. 2. Dynamical conductance Gc(ω) of a quantum dot (QD),
i.e., for J = 0, shown as a function of frequency ω and the position
of the QD level ε for the antiparallel (c = AP) and parallel (c = P)
magnetic configuration of electrodes. Recall that the normalization
factor G0 ≡ 2e2/h denotes the conductance quantum. Bottom panels
present relevant cross sections of (a) and (b): for indicated values of
ω in (c) and for chosen values of ε in (d), as specified in the legends.
Note that the scales of color bars in (a) and (b) are purposefully
chosen the same to facilitate the comparison of the results. In fact,
in (b) the maximum value of conductance is GP(ω)/G0 = 1, as can
be seen in (c) and (d). The parameters are U = 0.4 (in units of band
half-width), �/U = 0.1, T 0

K/U = 0.05, and p = 0.5 (h̄ = kB ≡ 1).

behavior of conductance is significantly different depending
on the magnetic configuration of electrodes. Specifically, when
ω 
 T 0

K, in the antiparallel configuration GAP(ω)/G0 → 1 −
p2 = 0.75 for −1 � ε/U � 0, as indicated by the solid line in
Fig. 2(c), whereas in the parallel configuration the conductance
reaches the unitary limit GP(ω)/G0 → 1, only at the particle-
hole symmetry point (ε/U = −1/2) [see the long-dashed line
in Fig. 2(c)]. This striking qualitative difference between the
dependence of G(ω) on the position of the QD level ε for the
antiparallel and parallel magnetic configuration stems from
the presence of an effective exchange field in the latter case
[36,66]. This field occurs as a result of a spin asymmetry of
the effective tunnel coupling �eff

↑(↓) ∝ 1 ± p and it leads to
the spin splitting of the QD level δεex ∝ p� ln |ε/(ε + U )|.
On the other hand, if the dot is occupied by an even number
of electrons, that is, Q = 0 for ε/U � 0 and Q = 2 for
ε/U � −1, conductance becomes suppressed since the spin-
exchanging cotunneling processes play no role. These results
are in agreement with previous studies for stationary (ω = 0)
spin-dependent transport through a single-level QD [65].

In the opposite limit of large frequencies ω  T 0
K, one

can notice that the Kondo effect gets attenuated as soon as
ω � T 0

K regardless of the magnetic configuration of electrodes.
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To understand this behavior, one should note that the presence
of periodically varying in time bias voltage essentially corre-
sponds to pumping energy into the system, allowing thus for its
excitation. Consequently, when ω significantly exceeds TK and
starts approaching the limit of ω ∼ U the qualitative difference
between transport features for the two magnetic configurations
becomes negligible [see Fig. 2(d)] as the occupation of the
dot by two electrons is energetically accessible. In such a
regime, conductance can even become negative, which can be
attributed to the dominant role of the Coulomb interaction and
large charge fluctuations present for ω ≈ U [45].

We use the above model of a single-level QD as a starting
point for discussion of a more complex system, that is, a
large-spin magnetic molecule, which is the subject of this
paper. Knowing the generic frequency-dependent transport
characteristics of QDs in the Kondo regime, we will be able
thus to discern these from other subtle and nontrivial effects
occurring only for large-spin systems, which we consider in
the next section.

IV. CASE OF A LARGE-SPIN MAGNETIC
MOLECULE ( J �= 0)

In this section, we extend our analysis of frequency-
dependent transport in the Kondo regime to large-spin systems,
specifically, to magnetic molecules modeled as described in
Sec. II A. For this purpose, unlike in the previous section,
we assume here the finite value of the exchange interaction
parameter J �= 0, so that magnetic molecules of interest
are represented by Hamiltonian (5). To make the following
discussion comprehensible, the value of an internal spin
(magnetic core) is taken to be S = 2, which allows for a
comparison of the present results with the case of stationary
transport studied in such a system before [30,32–34]. We
note that currently the main aim of the work is to explain
the subtle effects, occurring due to the generic properties
of a magnetic molecule, such as a large spin and magnetic
anisotropy, which are visible in the frequency-dependent
transport characteristics.

However, before we get down to the effect of magnetic
anisotropy, at first we study the frequency-dependent transport
through a spin-isotropic molecule (i.e., for D = 0). In our
calculations, we assume the magnitude of the exchange
coupling between the OL and the internal spin to be |J |/T 0

K =
2.25. Moreover, no constraint regarding the sign of J is
imposed, so that two types of the interaction are generally
considered: ferromagnetic (FM, J > 0) or antiferromagnetic
(AFM, J < 0). Since the value of the parameter J in relation
to the Kondo temperature T 0

K plays a decisive role in formation
of the the Kondo effect [30], below we motivate the relevance
of this specifically chosen value of J . To begin with, recall that
regardless of the type of the J coupling, the well-pronounced
Kondo resonance is always observed as long as |J | 
 T 0

K.
In this regime, the spin ŝ of an electron in the OL of the
molecule becomes screened by conduction electrons from
electrodes, and the presence of the internal spin essentially
does not qualitatively affect the Kondo resonance. On the other
hand, if the condition |J | � T 0

K is met, as temperature of the
system is decreased for J > 0, one observes the underscreened
Kondo effect [22–26], while for J < 0 the so-called two-stage
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FIG. 3. Frequency-dependent conductance of a spin-isotropic
(D = 0) magnetic molecule plotted as a function of the OL position ε

for the antiparallel (AP, left column) and parallel (P, right column)
magnetic configuration of electrodes. The top [bottom] panel corre-
sponds to the FM (J > 0) [AFM (J < 0)] exchange coupling between
the OL spin and the internal one. When comparing with Figs. 2(a)
and 2(b), note that here the frequency range extends towards lower
frequencies. Moreover, recall that the Kondo temperature T 0

K used
here as an energy scaling factor is defined for a single-level QD.
Except |J |/T 0

K = 2.25, other parameters of the system are the same
as in Fig. 2.

Kondo effect takes place [27–31]. In the latter situation, with
diminishing temperature, first, the OL spin is screened and the
conductance increases, while for even lower temperature this
new effective Fermi sea screens also the internal spin (which
is ensured by the AFM J coupling) leading to the suppression
of conductance. Consequently, assuming the parameter J to
be slightly larger than the Kondo temperature, one predicts
that at T = 0 the Kondo effect should occur only for the FM
J coupling, whereas for the AFM case conductance of the
system should be suppressed.

The frequency-dependent conductance of a spin-isotropic
molecule plotted as a function of ε and ω for two different types
of the J coupling is shown in Fig. 3. One can immediately
compare the effect of a large internal spin and its coupling to
the OL spin on frequency-dependent transport with the case
of a single-level QD in Sec. III (see Fig. 2). It can be seen
that for the FM J coupling the behavior of the conductance
in the low-frequency limit (ω/T 0

K → 0) agrees qualitatively
with that of a QD [cf. Figs. 3(a) and 3(b) with Figs. 2(a) and
2(b)]. Importantly, while in the parallel magnetic configuration
[Fig. 3(b)] this behavior is preserved until ω ≈ T 0

K, in the
antiparallel configuration a suppression of conductance occurs
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for −1 � ε/U � 0 long before such a limit of frequency is
reached [Fig. 3(a)]. To understand this difference, first, we
recall that the Kondo temperature T 0

K, to which frequency is
scaled, refers in fact to a single-level QD. Since one generally
expects that suppression of conductance occurs for ω � TK,
one can conclude that in the case under discussion the Kondo
temperature TK has been reduced, as compared to the case of
a QD [32]. Thus, this effect can be basically attributed to the
presence of the exchange coupling of the OL to an internal spin.
In fact, the suppressed Kondo temperature can be also observed
in the case of parallel configuration, which can be directly
inferred from the width of the Kondo peak at ε = −U/2 as a
function of ε, which is now much smaller compared to the QD
case [cf. Fig. 3(b) with Fig. 2(b)]. This implies that a smaller
detuning from particle-hole symmetry point, that is, a smaller
exchange-field-induced splitting of the OL, is necessary to
destroy the Kondo resonance. In addition, one can also note
that the height of the Kondo peak in the parallel configuration is
much lower compared the case of J = 0. This feature results
directly from the presence of quadrupolar field, as will be
discussed in greater detail in the next sections.

On the contrary, a completely different behavior of con-
ductance is observed for the AFM J coupling, where, owing
to the two-stage Kondo effect, a significant suppression of
conductance takes place in both magnetic configurations [see
Figs. 3(c) and 3(d)]. Note, however, that this suppression is
more effective in the case of antiparallel configuration since
in the parallel configuration the presence of exchange fields
obscures the second stage of Kondo screening.

A. Effect of magnetic anisotropy

The physical picture of frequency-dependent transport
established above for a spin-isotropic molecule becomes more
complex if the internal spin exhibits additionally spatial pref-
erence for its orientation, namely, we include now the uniaxial
magnetic anisotropy (D �= 0). To keep the discussion focused
on key aspects of the problem, let us for the moment concen-
trate only on the case of the antiparallel magnetic configuration
of electrodes and the position of the OL corresponding to
the particle-hole symmetry point (ε = −U/2). For a spin-
isotropic molecule, this situation corresponds to cuts along
the thin dashed lines in Figs. 3(a) and 3(c), and in Figs. 4(a)
and 4(b) we present how these evolve with increasing D.
The motivation for choosing the antiparallel configuration
stems from the fact that in such a case no effective spintronic
exchange fields arise [35], which, in turn, allows for studying
effects exclusively originating from the generic properties of
the molecule interconnecting electrodes. The effect of such
fields will be discussed in detail in the next section (Sec. IV B).

Analyzing the evolution of frequency-dependent conduc-
tance GAP(ω) in response to larger and larger magnetic
anisotropy D, as shown in Fig. 4, one can see a markedly
different behavior of the conductance for the FM [Figs. 4(a)
and 4(c)] and AFM-type [Figs. 4(b) and 4(d)] of the J coupling.
In particular, this occurs for low frequencies (ω 
 T 0

K) where
for the FM J coupling GAP(ω) becomes suppressed for large
values of D and a distinct resonance emerges, delineated by
the dashed thin line A in Fig. 4(a) [see also Fig. 4(c)]. On the
other hand, for the AFM J coupling under the same conditions
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FIG. 4. The effect of uniaxial magnetic anisotropy on frequency-
dependent conductance of a large-spin molecule. Top panels [(a), (b)]:
conductance density maps for the antiparallel magnetic configuration
of electrodes shown at the particle-hole symmetry point (ε = −U/2)
as functions of frequency ω and the uniaxial magnetic anisotropy
constant D in the case of the ferromagnetic (a) and antiferromagnetic
(b) J coupling. Middle panels [(c), (d)]: cross sections of the
respective panels above for selected values of D as specified in
(d). Black arrows indicate here the direction of increasing D.
(e) Schematic representation of a few low-energy states of a free-
standing molecule participating in spin-exchange electron tunneling
processes via the OL leading to the Kondo effect. For further details,
see Sec. IV A. (f) Dependence of the excitation gaps marked in
(e) on the uniaxial magnetic anisotropy D. All other parameters are
the same as in Fig. 3.

GAP(ω) is enhanced and a kink forms, highlighted in Fig. 4(b)
by the dashed thin line C [see also Fig. 4(d)]. Importantly, the
position of this peak/kink shifts towards higher frequencies as
the magnetic anisotropy becomes stronger. This indicates that
the spin-exchange processes underlying the Kondo effect occur
between some ground and excited states with the energy gap
between them determined by the magnetic anisotropy parame-
ter D. To elucidate more this statement, let us focus on the case
illustrated in Figs. 4(a) and 4(c), that is, for the FM J coupling.
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As one can notice, there are two characteristic resonances
indicated by thin dashed lines A and B. As already mentioned
above, resonance A starts at low frequencies ω for vanishingly
small magnetic anisotropy D and its position with respect
to ω depends linearly on D (mind logarithmic scales both
for ω and D). On the other hand, resonance B develops at
ω/T 0

K ≈ 101. The physical mechanism leading to formation
of these two resonances can be qualitatively understood by
considering the lowest-energy spectrum of a free-standing
magnetic molecule, that is, we neglect the renormalization
effects due to strong tunnel coupling of the molecule to
electrodes. First of all, it is worth noticing that the coupling
between the OL spin and the internal spin results in decom-
position of the MQD states (with the OL occupied by a single
electron) into two spin multiplets S ± 1/2. Then, the sign
of the parameter J representing this coupling [see Eq. (8)]
determines which of these two multiplets is characterized by
lower energy: in the situation under discussion for J > 0 (FM)
it is S + 1/2. In the absence of magnetic anisotropy (D = 0)
all the states within each spin multiplet are degenerate, so
that as long as temperature is low enough one observes the
Kondo effect at low frequencies [see Fig. 3(a)]. Next, adding
the uniaxial magnetic anisotropy to the problem results in the
additional splitting of the states within each spin multiplet and
also modifies the excitation gaps between states belonging to
different multiplets [33].

In the case under consideration (i.e., J > 0), at ε = −U/2,
D �= 0, and T = 0, the states of a singly occupied MQD that
primarily contribute to a formation of the Kondo effect are as
follows:

(i) From the spin multiplet S + 1/2 being lower in energy
(referred to as the “ground” multiplet, and marked by the
subscript “g”)∣∣S tot

z = ±5/2
〉
g = |±1/2〉OL ⊗ |±2〉S,∣∣S tot

z = ±3/2
〉
g =X g

± |±1/2〉OL ⊗ |±1〉S (33)

+ Yg
± |∓1/2〉OL ⊗ |±2〉S.

(ii) From the spin multiplet S − 1/2 being higher in energy
(referred to as the “excited” multiplet, and marked by the
subscript “e”)∣∣S tot

z = ±3/2
〉
e = X e

± |±1/2〉OL ⊗ |±1〉S

+ Ye
± |∓1/2〉OL ⊗ |±2〉S. (34)

Here, | . . . 〉OL(S) stands for the spin state of OL (magnetic

core), whereas X g(e)
± and Yg(e)

± are effective Clebsch-Gordon
coefficients, which nontrivially depend on J and D (for details
see Ref. [67]). For the sake of notational clarity, below we
use |S tot

z = m〉g(e) ≡ |m〉g(e). We recall that the Kondo effect
arises due to conduction-electron cotunneling processes which
lead to spin exchange (flip) in the OL. As a result, in the
considered system such spin-exchange processes correspond
to the ground-to-excited-state transitions within the ground
multiplet |5/2〉g ↔ |3/2〉g and |−5/2〉g ↔ |−3/2〉g, as well
as between the ground and excited multiplets |5/2〉g ↔ |3/2〉e

and |−5/2〉g ↔ |−3/2〉e, with the relevant energy gaps �FM
A

(for g ↔ g) and �FM
B (for g ↔ e) as indicated in Fig. 4(e).

Note, however, that the direct ground-to-ground-state transi-

tion |−5/2〉g ↔ |5/2〉g is prohibited as a single conduction
electron is not able to change the state of the magnetic core
by 2S [see Eq. (33)]. In the regime of D 
 J , the two energy
gaps can be estimated to be [33]

�FM
A ≈ 2SD

[
1 − 2(J − D)

(2S + 1)(J − 2D)

]
(35)

and

�FM
B ≈ 2S + 1

2
J. (36)

One can easily see that �FM
A ∝ D and �FM

B ∝ J [see Fig. 4(f)].
Consequently, whereas in the limit of stationary transport
(ω → 0) the Kondo effect can take place only if �FM

A � TK

[32,33], as otherwise the spin-exchange processes are en-
ergetically not allowed, for ω �= 0 such transitions become
possible if the resonant condition ω ≈ �FM

A or ω ≈ �FM
B is

met. It essentially means that the energy pumped to the MQD
matches the excitation energy between the molecular states
participating in the process of spin exchange. This, in turn,
corresponds to resonances A and B in Fig. 4(a). The former one
is associated then with the transition between states within the
ground spin multiplet and, thus, it depends linearly on D [see
Eq. (35)]. The latter resonance, on the other hand, originates
from transition between states belonging to the ground and
excited spin multiplets, so that its position is determined solely
by the magnitude of the J coupling, but not by D [see Eq. (36)].
A small quantitative mismatch between energy gaps plotted in
Fig. 4(f) and the position of resonances A and B in Fig. 4(a)
stems from the fact that above we considered the states of a
free-standing molecule, neglecting thus the renormalization of
their energies, which is systematically included in the NRG
calculations. The occurrence of the characteristic features
in Fig. 4(b), that is, the kink/peak marked by C/D, can be
explained using the analogous line of argumentation.

Finally, note that the upper limit of frequencies plotted in
Figs. 4(a) and 4(b) is much smaller than U . For even larger ω,
the same behavior as in Figs. 3(a) and 3(c), determined by the
Coulomb interaction, is observed.

B. Effect of the exchange field

In this section, we focus on another peculiar aspect of
spin-polarized frequency-dependent transport, namely, on the
effect of effective exchange fields [35,36,68]. Importantly,
these fields can significantly affect transport properties of
a nanosystem, e.g., manifesting by gate-voltage-dependent
splitting of the Kondo resonance [69] or even inducing spin
anisotropy in a generically spin-isotropic system [35]. As
highlighted at the beginning of the previous section, such
fields do not occur in the antiparallel magnetic configuration
of electrodes. This is not the case for the parallel magnetic
configuration, and we expect that this should be visible
especially in the behavior of features A and C in Figs. 4(a) and
4(b), respectively. For the purpose of the following discussion,
to make these two features more pronounced, we introduce
here a new normalization of conductance G(ω) with respect to
its value at ω = 0.

To begin with, let us first replot Figs. 4(a) and 4(b) using
the new normalization scheme (the left column of Fig. 5) and
supplement these by the plots representing the case of the
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FIG. 5. Dynamical conductance Gc(ω) scaled with respect to
its value at ω = 0 plotted as a function of frequency ω and the
uniaxial magnetic anisotropy constant D for ε = −U/2. The left
(right) column corresponds to the antiparallel (parallel) [c = AP (P)]
magnetic configuration of electrodes. Top/bottom panels represent
the case of the FM/AFM J coupling. All remaining parameters of the
system are the same as in Fig. 3.

parallel magnetic configuration (the right column of Fig. 5). It
can be seen that the peak A and step C no longer scale linearly
with magnetic anisotropy, as explained in the previous section,
once the magnetic configuration of a device is switched to
the parallel one. Whereas for large values of D this linear
dependence is still preserved, for smaller and smaller D these
features saturate at specific values of ω. In other words, even
if the molecule is spin isotropic (D → 0), there is always
an excitation gap to induce the spin-exchange processes.
Since Fig. 5 is obtained for the particle-hole symmetry point
(ε = −U/2), where only the quadrupolar exchange field is
present [35], the observed behavior of features A and C in
Figs. 5(b) and 5(d) we attribute to the effective spintronic
magnetic anisotropy induced by such a field. One should
understand this as follows: Eq. (35) describing the energy gap
�FM

A can be generalized to include the spintronic component
of magnetic anisotropy Dspin (i.e., the effective quadrupolar
exchange field) by making the substitution D �→ D + Dspin.
Thus, D can be now interpreted as the intrinsic component of
magnetic anisotropy, that is, present also when a molecule is
not attached to electrodes. It goes without saying that even for a
spin-isotropic molecule in a magnetic junction it may become
necessary to apply a bias voltage of the resonant frequency to
observe the Kondo effect.

The voltage of even higher frequency is required if one
moves away from the particle-hole symmetry point where the
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FIG. 6. Analogous to Fig. 5 except that now the conductance is
presented for ε = −U/3.

effective dipolar exchange field starts playing a dominating
role. Figure 6 illustrates how features A and C look at
ε = −U/3, that is, away from the symmetry point. One can
see that whereas for the antiparallel magnetic configuration
the qualitative change is negligible, for the parallel one
the saturation of the two features at higher frequencies is
more distinct. This shift of features A and C towards higher
frequencies is associated with the increase of energy gaps
between relevant molecular states participating in the spin-
exchange processes due to a Zeeman component from the
dipolar exchange field. We remind that no external magnetic
field is applied and the dipolar field under consideration results
solely from spin-dependent electron tunneling. Such tunneling
gives rise to the associated spin-resolved level renormalization
of the orbital level, which has different sign for each spin
species and effectively splits the level of the molecule.

Finally, to corroborate the above findings, we focus on the
behavior of the dynamical conductance for different values of
spin polarization p in the case of a spin-isotropic molecule and
parallel magnetic configuration. This implies that no intrinsic
component of magnetic anisotropy is present (D = 0), but the
effective exchange fields are still in action (see Fig. 7). The left
column of Fig. 7 corresponds to the particle-hole symmetry
point ε = −U/2, where only the quadrupolar field can arise,
while in the right column we present results at ε = −U/3,
where both the dipolar and quadrupolar fields are present.

Let us first concentrate on the case of the FM J coupling
shown in Figs. 7(a) and 7(b). One can immediately notice that
when the electrodes are nonmagnetic (p = 0), in the stationary
limit ω → 0 conductance approaches the unitary value of the
conductance quantum G0, which is here a definite indication
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FIG. 7. The effect of spin polarization of electrodes p on
frequency-dependent conductance in the case of parallel magnetic
configuration and a spin-isotropic molecule (D = 0). The left (right)
column represents the case of ε = −U/2 (ε = −U/3). Black arrows
indicate the direction of increasing p, while finely dashed lines in
(a) and (b) serve as a guide for eyes marking the position of the
resonance A [cf. Fig. 4(a)]. Other parameters of the system are the
same as in Fig. 3.

of the Kondo effect. Once p �= 0, the conductance becomes
gradually suppressed at low frequencies, and this process is
more abrupt when the position of the OL is tuned out of the
symmetry point, as can be seen in Fig. 7(b). Moreover, this
behavior is associated with the fact that the increasing of p

essentially means that the spin-exchange processes responsible
for the Kondo effect become less frequent. In particular, such
processes can be viewed as effectively reversing the spin of
an electron tunneling through the OL of a molecule. Since
a large value of the spin polarization p corresponds to the
situation of a large disproportion between numbers of majority
and minority electrons, one thus expects that the efficiency of
the spin-exchange processes dramatically drops down with
increasing p. Furthermore, it can be seen that the suppression
of conductance for finite p is accompanied by the occurrence
of a peak, marked by finely dashed lines in Figs. 7(a) and 7(b),
which is nothing but the resonance A observed in previous
figures. Importantly, the position of this peak shifts now
towards higher frequencies for larger p. As at present there
is no intrinsic magnetic anisotropy (D = 0), it clearly proves
that the underlying mechanism must involve the spintronic
exchange fields, which depend on the spin polarization of
electrodes.

A completely different behavior of conductance as a
function of p can be observed for the AFM J coupling
[see Figs. 7(c) and 7(d)]. In such a case, the low-frequency
conductance is only weakly sensitive to a finite p, while
for p = 0 conductance smoothly approaches zero at ω → 0,

which signifies the two-stage Kondo effect, as discussed at
the beginning of Sec. IV. More precisely, for p > 0, the
presence of exchange fields results in suppression of the
second stage of screening and the conductance reaches a small
finite nonuniversal value [31]. This low-frequency value is
larger in the case of ε = −U/3 compared to the particle-hole
symmetry point since the dipolar exchange field is larger
than the quadrupolar field. For larger ω, a kink similar to that
marked as C in Figs. 4–6 develops, and the dependence of
its position on p can be understood analogously as discussed
above. Interestingly, both for the case of ε = −U/2 [Fig. 7(c)]
and ε = −U/3 [Fig. 7(d)] the main change in conductance
when varying p occurs in the transient frequency range of
T 0

K � ω � U . Then, in the case of p = 0, the conductance
shows an enhancement for ω ≈ T 0

K due to the first-stage Kondo
effect, which, however, quickly drops down for ω < T 0

K due
to the second stage of screening. When the spin polarization
increases, the local maximum in GP(ω) becomes suppressed
due to the spin splitting of the OL by the exchange field.

On the other hand, for large frequencies the behavior of
conductance hardly depends on p since ω is then much larger
than induced exchange fields. Moreover, comparing with the
FM J coupling [see Figs. 7(a) and 7(b)], the conductance
dependence is then qualitatively the same in both the FM and
AFM J -coupling cases.

C. Signatures of dynamical spin accumulation

In the last part of our work we address the effect of
dynamical spin accumulation in the case of large-spin sys-
tems. Such accumulation can be described by off-diagonal
contribution of the frequency-dependent conductance, and
corresponds to the situation when, e.g., one injects electrons of
given spin orientation and detects the current of opposite spin
direction. This effect has recently attracted some attention in
the case of quantum dots [40,43,45]. It was predicted that the
up-down component of the frequency-dependent conductance
is exclusively related to the even conduction channel, it exhibits
a maximum for ω ≈ T 0

K, and decays as ∝ω2 with ω → 0.
To analyze and understand the effect of dynamical spin

accumulation in the case of large-spin molecules, let us
focus on the situation where no effective exchange fields are
present (antiparallel configuration), and the intrinsic magnetic
anisotropy is negligibly small (D = 0). In Fig. 8, we present
the ω dependence of the total conductance GAP(ω) [Figs. 8(a)
and 8(b)], decomposed into contributions coming from the
odd Go

AP(ω) [Figs. 8(c) and 8(d)] [see Eq. (26)], and even
Ge

AP(ω) [Figs. 8(e) and 8(f)] [see Eq. (27)], transport channels.
Additionally, the even conductance Ge

AP(ω) is further split into
the diagonal

Ge
d,AP(ω) = 1

4

∑
σ

	AP
σ ϒAP

σσ

[
ge

σσ (ω)
]AP

(37)

and off-diagonal

Ge
o-d,AP(ω) = 1

4

∑
σ

	AP
σ ϒAP

σσ

[
ge

σσ (ω)
]AP

(38)

parts, where the notation σ should be understood as ↑ = ↓
and ↓ = ↑. In fact, this is the off-diagonal part of the even

155446-10



SPIN-RESOLVED DYNAMICAL CONDUCTANCE OF A . . . PHYSICAL REVIEW B 95, 155446 (2017)

-0.2

-0.15

-0.1

-0.05

0

-0.2

-0.15

-0.1

-0.05

0

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.1

0

0.1

0.2

0.3

0.4

Ferromagnetic 
J-coupling

Antiferromagnetic
J-coupling

10-6 10-4 10-2 100 102 104

Frequency /TKω 0
10-6 10-4 10-2 100 102 104

Frequency /TKω 0

= 0
= 0.25
= 0.5
= 2.25

(b)

(c)
(d)

)f()e(

)h()g(

)j()i(

C
on

du
ct

an
ce

 G
A

P
/G

0
G

d,
A

P
/G

0
e

G
A

P
/G

0
o

G
o-

d,
A

P
/G

0
e

G
A

P
/G

0
e

FIG. 8. Decomposition of dynamical conductance (a), (b) in the
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in Fig. 3.

conductance that can be associated with dynamical spin
accumulation in the system. Importantly, the even contribution
arises at finite frequencies and vanishes when ω → 0.

An intuitive picture about how the effect of dynamical
spin accumulation emerges in a large-spin molecule can be
gained by studying the evolution of the system from the case

of a QD. This can be achieved by a gradual increasing of the
parameter J from zero to a value used in previous sections.
This is illustrated in Fig. 8 where the dashed line represents
the case of a QD (J = 0). One can immediately see that the
conductance Ge

AP(ω) for a QD in the even channel is enhanced
at ω ≈ T 0

K, which can be fully attributed to a sudden buildup
of off-diagonal contribution [see Fig. 8(i)]. Note that Ge

AP(ω),
as well as its diagonal and off-diagonal components, are very
much suppressed until ω � T 0

K.
This is, however, not the case for J �= 0, where the

even contribution affects the conductance at frequencies
much smaller than T 0

K. Moreover, the evolution of the even
conductance, and thus the dynamical spin accumulation, with
increasing |J | depends greatly on the type of exchange
interaction J (cf. the left and right columns of Fig. 8). For
the ferromagnetic exchange interaction, with increasing |J |,
a well-pronounced broad maximum in Ge

o-d,AP(ω) develops at
frequencies corresponding approximately to the Kondo tem-
perature. Note that TK becomes suppressed with increasing J ,
so that for large J the effect of dynamical spin accumulation
should be present at relatively low frequencies [see Fig. 8(i)].
On the other hand, a completely opposite behavior can be
observed in the AFM J -coupling case. Now, the maximum
spin accumulation arises at low frequencies for small |J |,
and it shifts towards larger ω with increasing |J | [see
Fig. 8(j)]. The frequency, at which this maximum occurs, can
be related to the energy scale (T ∗

K) of the second stage of
Kondo screening ω ≈ T ∗

K. Because this energy scale becomes
enhanced with increasing |J |, the position of maximum in
the even conductance and its off-diagonal contribution moves
toward larger ω. Interestingly, Ge

o-d,AP(ω) exhibits then two
peaks, one occurring around ω ≈ T 0

K and the other one for
ω ≈ T ∗

K [see Fig. 8(j)]. For very large exchange coupling
|J | � T 0

K, both the first and second stages of Kondo effect
become suppressed and so is the dynamical spin accumulation.
Summing up, while for the FM J coupling the effect of the
dynamical spin accumulation becomes increasingly important
for large |J | at small frequencies (ω 
 T 0

K), in the same
limit it is gradually reduced for the AFM J coupling, so
that for |J | � T 0

K this effect becomes significant only for
ω � T 0

K.
Let us now investigate how the frequency-dependent

conductance and the effect of dynamical spin accumulation
are affected by the spin polarization p of electrodes. Figure 9
presents different contributions to the conductance for a
fixed value of |J | and several values of p, as indicated in
Fig. 9(a). Because in the case of antiparallel configuration,
the effective molecule-electrode coupling is spin independent,
the qualitative behavior of separate components of odd
and even conductance is the same as in the nonmagnetic
systems. Although the spin dependence enters only through the
coefficients of the conductance, it can interestingly give rise
to a highly nontrivial behavior. This is, first of all, reflected
in different dependence on p of the contributions related to
the spin diagonal and off-diagonal components. As can be
seen in Fig. 9, increasing the spin polarization results in a
general suppression of the diagonal conductance (both odd and
even), while the off-diagonal component becomes enhanced
regardless of the type of the J coupling. In fact, in the case of
half-metallic leads, p → 1, the total conductance would be just
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FIG. 9. Analogous to Fig. 8 except that now conductance is
decomposed for chosen values of the spin-polarization parameter
p and |J |/T 0

K = 2.25. Black arrows indicate here the direction of
increasing p.

given by Ge
o-d,AP(ω), i.e., the conductance would be exclusively

due to the effect of dynamical spin accumulation. Thus, for
large p, the frequency dependence of the total conductance
becomes mainly determined by the off-diagonal even channel
and characteristic features in GAP(ω) arise: a broad maximum
for ω 
 T 0

K in the case of the FM J coupling [see Fig. 9(a)],
and a sharp double-peak structure around ω ≈ T 0

K for the AFM
J coupling [see Fig. 9(b)].

Finally, we note that the high-frequency behavior of the
conductance and its contributions is essentially the same as

in the case of quantum dots: a large negative input due to the
even channel, which can be associated with dynamical charge
accumulation, is clearly visible (see Fig. 8). Moreover, we
also notice that finite magnetic anisotropy or the presence of
exchange fields (in parallel magnetic configuration) generally
results in the suppression of the dynamical spin accumulation.
Contrary to the case of quantum dots with ferromagnetic leads
[45], for large-spin molecules the spin accumulation can be
also suppressed at the particle-hole symmetry point due to
the presence of the quadrupolar field. The dynamical spin
accumulation occurs then only for frequencies larger than
the relevant energy scales, corresponding to either magnetic
anisotropy or exchange field, whichever is larger.

V. CONCLUSIONS

In this paper, we studied the frequency-dependent transport
through a large-spin magnetic molecule coupled to ferro-
magnetic leads in the Kondo regime. The molecule was
modeled by an orbital level tunnel coupled to the leads and
exchange coupled to a core spin of the molecule. By using
the Kubo formula, we related the dynamical conductance
to correlation functions of the molecule and showed that
the conductance is generally given by two contributions: the
first one due to the odd linear combination of electron fields
in the left and right leads, and the second one, associated
with the even combination. While the odd conductance is
responsible for low-frequency conductance enhancement due
to the Kondo effect, the even conductance has a purely
dynamical origin and vanishes in the limit of ω → 0. Using
the numerical renormalization group method to determine
the relevant correlation functions, we studied the dynamical
properties of the system in the full parameter space, in the
case of both parallel and antiparallel magnetic configuration
of the device.

We started with the case of a quantum dot as a reference
and performed a detailed analysis of frequency-dependent
conductance of the considered magnetic molecule. We showed
that the behavior of the dynamical conductance depends
greatly on the type of molecule’s internal exchange coupling
and the magnetic configuration of the device. In the case
of antiparallel configuration, for antiferromagnetic exchange
coupling, the system exhibits the two-stage Kondo effect and
GAP(ω) reveals a nonmonotonic dependence on ω, with a
maximum around ω ≈ TK. On the other hand, in the case
of FM J coupling, the system exhibits the underscreened
Kondo effect and the conductance increases at low frequencies
due the Kondo effect. We showed that the presence of finite
magnetic anisotropy of the molecule generally suppresses the
above-described behavior.

Interestingly, completely different features were observed
in the case of parallel magnetic configuration. First of all, in
this case the spin-resolved couplings give rise to dipolar and
quadrupolar exchange fields, which have a strong influence
on the behavior of dynamical conductance. The dipolar field
acts as an additional magnetic field, while quadrupolar field
induces an additional effective anisotropy in the system. The
presence of those fields leads generally to the suppression of
the Kondo effect and, consequently, the frequency-dependent
conductance.
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Finally, we also analyzed the behavior of the off-diagonal
(in-spin) component of the conductance, which is responsible
for dynamical spin accumulation in the molecule. This
contribution arises solely from the even conduction channel
and vanishes in the limit of ω → 0. We found that the
effect of dynamical spin accumulation strongly depends
on magnetic configuration of the system and molecule’s
magnetic anisotropy. In particular, this effect becomes es-
pecially pronounced for spin-isotropic molecules and in the
case of antiparallel configuration. Then, depending on the
type of exchange interaction, the off-diagonal conductance
becomes enhanced (suppressed) when the FM (AFM) J

coupling increases. Moreover, we showed that for systems
with large-spin polarization of the leads, the behavior of the
total conductance is mainly determined by the off-diagonal
conductance and reveals a highly nontrivial behavior, with
new local maxima occurring at characteristic energy scales.
Then, the measurement of the total conductance would allow
for direct probing of dynamical spin accumulation in the
system.
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APPENDIX: DERIVATION OF TRANSPORT
CHARACTERISTICS

Below we provide the outline of derivation for some key
formulas used in Sec. II B. In particular, first, we obtain
the general form for the frequency-dependent conductance
Gqq ′

σσ ′(ω) [Eq. (16)] and next we show how to calculate the

Green’s functions 〈〈Î q,e
σ |Î q ′,e

σ ′ 〉〉r
ω [Eq. (20)] and 〈〈Î q,o

σ |Î q ′,o
σ ′ 〉〉r

ω

[Eq. (21)] in terms of which Gqq ′
σσ ′(ω) can be expressed, as

shown in Eq. (19).

Frequency-dependent conductance Gqq′
σσ ′ (ω)

As explained in Sec. II B, within the linear response
transport regime the conductance Gqq ′

σσ ′(t − t ′) is essentially
the retarded Green’s function of the general form [see
Eq. (15)]

Gqq ′
σσ ′(t − t ′) = − i

h̄
θ (t − t ′)

〈[
Î q

σ (t),Q̂q ′
σ ′(t ′)

]〉
. (A1)

In general, the frequency-dependent conductance Gqq ′
σσ ′(ω) can

be derived from the expression above by considering the
following equation of motion:

− ∂

∂τ
Gqq ′

σσ ′(τ ) = 〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
τ
+ i

h̄
δ(τ )

〈[
Î q

σ (τ ),Q̂q ′
σ ′(0)

]〉
, (A2)

which has been obtained from Eq. (A1) by differentiation with
respect to t ′, and also the cyclic property of trace, Tr{�̂ . . .} ≡
〈. . .〉, has been used together with τ = t − t ′. Additionally, in
Eq. (A2) we have introduced the retarded Green’s function for
a current operator 〈〈Î q

σ |Î q ′
σ ′ 〉〉r

τ defined as

〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
τ

= − i

h̄
θ (τ )

〈[
Î q

σ (τ ),Î q ′
σ ′(0)

]〉
. (A3)

Next, we perform the Fourier transformation of the equation
of motion (A2)

−
∫

dτ

[
∂

∂τ
Gqq ′

σσ ′(τ )

]
e−iωτ

=
∫

dτ
〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
τ
e−iωτ

+ i

h̄

∫
dτ δ(τ )

〈[
Î q

σ (τ ),Q̂q ′
σ ′(0)

]〉
e−iωτ , (A4)

which after some algebra leads to

Gqq ′
σσ ′(ω) = i

ω

[〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω

+ i

h̄

〈[
Î q

σ (0),Q̂q ′
σ ′(0)

]〉]
. (A5)

Here, we note that 〈[Î q
σ (0),Q̂q ′

σ ′(0)]〉 can be found from the
equation above by considering the case of ω = 0, which yields〈[

Î q
σ (0),Q̂q ′

σ ′(0)
]〉 = − i

h̄

〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω=0, (A6)

so that the sought expression for the frequency-dependent
(dynamical) conductance is finally found:

Gqq ′
σσ ′(ω) = i

ω

[〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω

− 〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω=0

]
. (A7)

Since 〈〈Î q
σ |Î q ′

σ ′ 〉〉r
ω=0 has to be real, one easily gets that

ReGqq ′
σσ ′(ω) = − 1

ω
Im

〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω

(A8)

and

ImGqq ′
σσ ′(ω) = 1

ω
Re

[〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω

− 〈〈
Î q

σ

∣∣Î q ′
σ ′

〉〉r
ω=0

]
. (A9)

In general, the frequency-dependent conductanceGqq ′
σσ ′ (ω), also

referred to as admittance, consists of real and imaginary
parts. From the physics point of view, the real part of
admittance, commonly named conductance, is a measure of
the ease with which charge carriers can pass through the
system. The more easily charge carriers move, the higher
is the conductance. On the other hand, the imaginary part
of admittance, so-called susceptance, is the measure of how
much a circuit opposes against conducting a time-dependent
current. Moreover, susceptance expresses the readiness with
which the system releases stored energy as the current and
voltage fluctuate.

Retarded Green’s functions for the even
and odd current operators

As one can see from Eq. (A7), calculation of the dynamical
conductance Gqq ′

σσ ′(ω) basically means that one has to work
out the Fourier transform of the retarded Green’s function
for the current operator 〈〈Î q

σ |Î q ′
σ ′ 〉〉r

ω. In Sec. II B, we showed
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that this, in turn, can be further decomposed into two terms
corresponding to currents in the “even” 〈〈Î q,e

σ |Î q ′,e
σ ′ 〉〉r

ω and

“odd” 〈〈Î q,o
σ |Î q ′,o

σ ′ 〉〉r
ω channel [see Eq. (19)]. These two Green’s

functions can then be conveniently expressed in terms of the
Green’s functions for dimensionless current operators〈〈

Îe(o)
σ

∣∣Îe(o)
σ ′

〉〉r
τ

= − i

h̄
θ (τ )

〈[
Îe(o)

σ (τ ),Îe(o)
σ ′ (0)

]〉
(A10)

[see Eq. (17) for definition of the operators Îe(o)
σ ] as follows:

〈〈
Î q,e

σ

∣∣Î q ′,e
σ ′

〉〉r
τ

= −G0

h̄ρ

�
q
σ�

q ′
σ ′√

�eff
σ �eff

σ ′

〈〈
Îe

σ |Îe
σ ′

〉〉r
τ
, (A11)

with G0 ≡ 2e2/h denoting the quantum of conductance, and

〈〈
Î q,o

σ

∣∣Î q ′,o
σ ′

〉〉r
t
= −ηqηq ′

G0

h̄ρ

√
�L

σ �R
σ �L

σ ′�
R
σ ′

�eff
σ �eff

σ ′

〈〈
Îo

σ

∣∣Îo
σ ′

〉〉r
τ
.

(A12)

It now goes without saying that 〈〈Î q,e
σ |Î q ′,e

σ ′ 〉〉r
ω [Eq. (20)]

is straightforwardly obtained form Eq. (A11) by means of the
Fourier transform. On the other hand, an analogous procedure
applied to Eq. (A12) is insufficient to validate Eq. (21)
for 〈〈Î q,o

σ |Î q ′,o
σ ′ 〉〉r

ω. Importantly, one expects that the Fourier
transform of the retarded Green’s function for the current
operator in the “odd” channel 〈〈Îo

σ |Îo
σ ′ 〉〉r

ω can be further
expressed in terms of the retarded Green’s functions for the
OL 〈〈cσ |c†σ ′ 〉〉r

ω and the equilibrium Fermi-Dirac distribution
for electrodes f (ω) = {1 + exp[h̄ω/(kBT )]}−1. To show this,
let us insert the explicit form for the dimensionless current
operator Îo

σ = ĉ†σ ̂o
σ − ̂o†

σ ĉσ [Eq. (18)] into Eq. (A10) and
execute the commutator, which yields〈〈

Îq,o
σ |Îq ′,o

σ ′
〉〉r

τ
= ih̄

[〈〈ĉσ |ĉ†σ ′ 〉〉r
τ

〈〈
̂o

σ ′
∣∣̂o†

σ

〉〉<
−τ

+ 〈〈ĉσ |ĉ†σ ′ 〉〉<τ
〈〈
̂o

σ ′
∣∣̂o†

σ

〉〉a
−τ

+ 〈〈ĉσ ′ |ĉ†σ 〉〉a
−τ 〈〈̂o

σ

∣∣̂o†
σ ′ 〉〉<τ

+ 〈〈ĉσ ′ |ĉ†σ 〉〉<−τ

〈〈
̂o

σ

∣∣̂o†
σ ′

〉〉r
τ

]
. (A13)

Here, we introduced a set of Green’s functions for fermionic
operators x̂σ = ĉσ ,̂o

σ defined as follows:

〈〈x̂σ |x̂†
σ ′ 〉〉r

τ = − i

h̄
θ (τ )〈{x̂σ (τ ),x̂†

σ ′(0)}〉,

〈〈x̂σ |x̂†
σ ′ 〉〉a

τ = i

h̄
θ (−τ )〈{x̂σ (τ ),x̂†

σ ′(0)}〉, (A14)

〈〈x̂σ |x̂†
σ ′ 〉〉<τ = i

h̄
〈x̂†

σ ′(0)x̂σ (τ )〉,
and we also used the cyclic property of trace, that is, for
instance 〈x̂σ (0)x̂†

σ ′(τ )〉 = 〈x̂σ (−τ )x̂†
σ ′(0)〉.

In the next step, we perform the Fourier transformation of
Eq. (A13), so that we derive〈〈

Îq,o
σ

∣∣Îq ′,o
σ ′

〉〉r
ω

= ih̄

2π

∫
dτ

∫
dω′[e−i(ω+ω′)τ 〈〈ĉσ |ĉ†σ ′ 〉〉r

τ

〈〈
̂o

σ ′
∣∣̂o†

σ

〉〉<
ω′

+ e−i(ω+ω′)τ 〈〈ĉσ |ĉ†σ ′ 〉〉<τ
〈〈
̂o

σ ′
∣∣̂o†

σ

〉〉a
ω′

+ e−i(ω−ω′)τ 〈〈ĉσ ′ |ĉ†σ 〉〉a
−τ

〈〈
̂o

σ

∣∣̂o†
σ ′

〉〉<
ω′

+ e−i(ω−ω′)τ 〈〈ĉσ ′ |ĉ†σ 〉〉<−τ

〈〈
̂o

σ

∣∣̂o†
σ ′

〉〉r
ω′

]
. (A15)

Now, recalling how the operator ̂o
σ = √

ρ
∫

dε âo
σ (ε) is

related to electrode operators âL
σ (ε) and âR

σ (ε) (see Sec. II A),
and noting that electrodes are modeled as reservoirs of
free electrons, one finds [53] 〈〈̂o

σ |̂o†
σ ′ 〉〉r(a)

ω = ∓δσσ ′ iπρ and
〈〈̂o

σ |̂o†
σ ′ 〉〉<ω = δσσ ′ i2πρf (ω). Consequently, one can imme-

diately see that after integrating Eq. (A15) with respect to τ ,
the second and fourth terms in the brackets cancel each other,
so that the final result is reached:〈〈

Îq,o
σ

∣∣Îq ′,o
σ ′

〉〉r
ω

= −δσσ ′ h̄ρ

∫
dω′[f (ω′ − ω)〈〈ĉσ |ĉ†σ 〉〉r

ω′

+ f (ω′ + ω)〈〈ĉσ |ĉ†σ 〉〉a
ω′

]
. (A16)

To obtain Eq. (21) from the expression above, one needs
to insert it into the Fourier-transformed (A12) and use the
property of the Green’s functions, that is, 〈〈ĉσ |ĉ†σ 〉〉a

ω′ =
[〈〈ĉσ |ĉ†σ 〉〉r

ω′]
∗.
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