
Abstract: IoT Based Human-Building Interaction

Our interactions with built environments are increasingly augmented with digital capa-

bilities. Smart appliances coupled with Building Management Systems (BMS) promise to

increase occupant comfort and to reduce energy consumption through automated control

and personalized services. However, it is not clear how smart appliances, originally designed

for smart homes, can be used in the context of non-residential buildings. For example: How

can a user be given access to smart appliances in her vicinity? This simple question raises a

number of issues in non-residential buildings: What are the smart appliances in the vicinity

of a person (this requires building-wide metadata collection and maintenance)? How can a

user access new smart appliances as she moves around without a cumbersome initialisation

process, yet with security measures enforced? How to mediate between diverging smart

appliances settings?

In this thesis, we study how Mark Weiser’s original vision for ubiquitous computing can

help us tackle such questions. Specifically, our contributions are the following:

(i) At the human-building interface, we design and implement a system for a building

manager that enables building-wide visualization and control by transforming the physical

building, with its structure, sensors and actuators, into a virtual reality system. For building

occupants, we enable the ubiquitous use of appliances and sensors in vicinity by bridging

existing off-the-shelf smart appliances to a common Bluetooth Low Energy (BLE) interface

with room-level based authorization.

(ii) We explore different identification mechanisms to support metadata management.

For existing BMS sensors and actuators, we introduce a crowd-sourced approach that in-

crementally builds up consistent metadata. For smart appliances in vicinity, we introduce

acoustic based localization. We further design and implement a system that uses smartphone

sensor based user feedback to automatically select appliance settings. We also mediate con-

flicts between users locally and building wide energy policies.

(iii) On a system level, we present an architecture for the decentralized integration of

smart appliances into non-residential buildings that relies on user smartphones as oppor-

tunistic gateways and BLE for communication. We design and implement a distributed

framework to evaluate BLE performance in such smartphone-peripheral systems. We per-

form a detailed evaluation of multiple smartphone models that shows that the native BLE

stack fails to provide homogeneous abstractions for different implementations. We improve

the default behavior, by the introduction of a dynamic, smartphone model dependent library,

that adapts to the idiosyncrasies of specific BLE implementations.



Resumé: IoT baseret Menneske-Bygning Interaktion

Vores interaktioner med kunstigt konstruerede miljøer er i stigende grad supplerede

med digitale muligheder. Smarte apparater kombineret med Building Management Syste-

mer (BMS) lover at øge komforten og reducere energiforbruget gennem automatiseret kontrol

og personlig service. Det er dog ikke klart, hvordan smarte apparater, som oprindeligt er

designet til intelligente hjem, kan blive brugt i forbindelse med bygninger der ikke huser

beboere. For eksempel: Hvordan kan en bruger få adgang til smarte apparater i hen-

des nærhed? Denne enkle spørgsmål rejser en række spørgsmål i ikke-beboelsesejendomme:

Hvilke smarte apparater er i nærheden af en person (dette kræver bygning-dækkende indsam-

ling og vedligeholdelse af metadata)? Hvordan kan en bruger få adgang til nye smarte appa-

rater, mens hun bevæger sig rundt uden en besværlig initialiseringsproces uden at give afkald

på håndhævelse af sikkerhedsforanstaltninger? Hvordan kan der mægles mellem forskellige

brugeres præferencer i i forbindelse med smarte apparaters indstillinger?

I denne afhandling undersøger vi hvordan Mark Weisers oprindelige vision for ubiquitous

computing kan hjælpe os til at tackle sådanne spørgsmål. Konkret er vores bidrag følgende:

(i) Ved menneske-bygningen interface, designer og implementerer vi et system til en

bygning manager, der gør det muligt at visualisere og kontrollere hele bygningen ved at

genskabe den fysiske bygning – med opbygning, sensorer og aktuatorer – i et virtual reality-

system. For bygningens beboere, muliggør vi den allestedsnærværende brug af apparater og

sensorer ved at bridge eksisterende off-the-shelf smarte apparater til et fælles Bluetooth Low

Energy (BLE) interface med authorization på værelsets-niveau.

(ii) Vi udforsker forskellige mekanismer til identifikation for at støtte metadata vedlige-

holdelse. For eksisterende BMS sensorer og aktuatorer, introducerer vi en crowdsourcing

tilgang, der trinvist opbygger konsekvente metadata. Fornære smarte apparater, indfører

vi fysisk akustisk-baseret lokalisering. Vi yderligere designer og implementerer et system,

der bruger brugerfeedback fra sensorerne i en smartphone til automatisk at vælge appa-

ratets indstillinger. Vi formidler også konflikter mellem brugere lokalt og energipolitik på

bygningsniveau.

(iii) På et system niveau præsenterer vi en arkitektur for den decentrale integration af

smarte apparater til ikke-beboelsesejendomme, der bygger på brugernes smartphones som

opportunistiske gateways og BLE for kommunikation. Vi designer og implementerer et

distribueret framework for at evaluere BLE præstationer i sådanne smartphone-peripheral

systemer. Vi udfører en detaljeret evaluering af flere smartphone modeller, der viser, at

den Androids standard BLE stak ikke giver homogene abstraktioner for forskellige imple-

menteringer. Vi forbedrer standard adfærden, ved at tilbyde et dynamisk, smartphone

model-afhængigt bibliotek, der tilpasser sig specifikke BLE implementeringers idiosynkrasier.
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Chapter 1

Introduction

1.1 Context

Twenty-five years ago, Mark Weiser proposed the original vision of ubiqui-

tous computing in Scientific American [44]. He predicted that our environ-

ment would soon consist of hundreds of connected computers, and that we

would interact with such smart environment using ubiquitous displays in var-

ious sizes. A few years later, in the late 1990s, researchers of the networking

community postulated that sensors and actuators equipped with computation

and communication capabilities would become widely deployed and require

new networking and application structures, distinct from traditional computer

networking [15].

Today, the work of Weiser and others at Xerox PARC has led to the re-

search fields of ubiquitous and pervasive computing, and sensor networks has

emerged from computer networking as an independent research field. Likewise,

in our daily lives, the original visions of ubiquitous computing and sensor net-

works are about to become a reality. Environmental sensors, smart devices and

appliances such as fitness trackers, thermostats, light bulbs, power plugs and

locks, equipped with short range radios are available in retail stores. Smart-

phones have become a pervasive tool for most of us, through which we can

interact with our environment. They provide an adjustable interface in form

of a touchscreen, various local and global networking protocols and radios (e.g.,

Bluetooth, 802.11, 3G, LTE) and gigabytes of personal storage.

1



IoT. The catch word, which like no other term, captures this development

beyond academia is IoT, the Internet of Things. In 1999, Kevin Ashton coined

the term “Internet of Things” in a sales pitch to Procter & Gamble [2]. Today,

IoT is the subject of mass media and economic politics. When we started our

work in 2013, IoT was still not widely accepted as a serious research field by

the academic community, but merely considered a marketing term by Cisco,

Google et al. Over the course of the last three years, this has changed dramat-

ically. University based IoT labs and projects rapidly emerge around the globe

(e.g., at Carnegie Mellon University [34], Stanford [39], Bosch/ETHZ [5]), and

academic, IoT centered conferences have been established by the sensor net-

work and pervasive computing community (e.g., [23]).

Many commercial off-the-shelf IoT appliances aim to improve our personal

comfort and our energy consumption by enhancing ordinary appliances with

computation and networking connectivity. Examples are smart lighting, smart

HVAC (using smart thermostats) or smart power plugs (power monitoring and

switching). This digitalization enables new capabilities like predictive analysis

or automated adaptive control.

Non-residential Buildings. Buildings are a prime platform for such IoT

deployments because of their high share of energy consumption and strong

human involvement. The average person spends around 90% of her time inside

a building [41]. In Europe and in the U.S., buildings consume nearly half of

the primary energy, ∼ 75% of electrical energy and are the cause for ∼ 36% of

CO2 emissions [16, 40]. The two main building categories are residential and

non-residential. A large portion of primary energy consumption (19%) can be

traced down to non-residential buildings [40]. Besides their impact on energy

consumption and the availability of off-the-shelf smart appliances, this thesis

focuses on non-residential buildings for the following reasons:

(i) Non-residential buildings often contain already automated building con-

trol in form of Building Management Systems (BMS). These systems are ver-

tically integrated stovepipes. The long building life-cycles of 50–70 years and

long replacement times of existing BMS infrastructure ([26]) make it necessary

to deal with these systems for the coming years. Computer science has been

naturally predesignated to break open these stovepipes and to provide new

abstractions that transform existing BMS into an operating system aligned
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architecture, a Building Operating System. Much pioneering work has been

done in David Culler’s and Randy Katz’s Local and Software Defined Build-

ing (SDB) group at UC Berkeley (e.g., [8, 27, 9]). Today, this work forms

some of the basis for a variety of BMS based research. Researchers have built

applications on top of BMS to improve energy consumption ([3]), find faults in

BMS control loops ([33]) or improve the comfort of building occupants ([14]).

This thesis, during several occasions, builds on and extends UC Berkeley’s

work.

(ii) Non-residential buildings provide an appealing combination of shared

spaces and a dynamic set of occupants. Further, a non-residential building

usually consists of multiple functional units and the building ownership is not

aligned with its use. Such setting has different requirements for access and

authorization and requires the mediation between conflicts of users locally and

between local comfort requirements and global, building wide goals. The high

human density makes it possible, and often necessary, to develop human centric

systems, to take humans into the loop and to crowd-source the knowledge of

individuals.

Our overall thesis for the system design of IoT based interaction of humans

with the non-residential built environment is the following:

Thesis

A seamless augmentation of physical human-building interaction with digi-

tal capabilities through IoT off-the-shelf systems can be derived from Mark

Weiser’s vision of ubiquitous computing.

1.2 Problems

This thesis addresses two classes of problems: (1) Using off-the-shelf IoT sys-

tems for human-building interaction and (2) aligning this interaction with

Mark Weiser’s vision of ubiquitous computing.

3



1.2.1 Problems with Off-the-Shelf IoT Devices

The reality of available off-the-shelf IoT systems in the context of human-

building interaction reveals several misalignments and problems:

Stove Pipes. Bad design decisions, that were made in building manage-

ment systems twenty years ago, are being repeated. Instead of systems that

are compatible across different manufacturers (with well defined interfaces and

by relying on open protocols), IoT devices are characterized by vertical silos,

manufacturer stove pipes and incompatibility. IoT in its current state is thus

appropriately described as “The CompuServe of Things” [46, 31].1

Centralized Architecture. Instead of following a decentralized archi-

tecture, many IoT systems are centralized and cloud-based. Practically, this

means that the data and control flow between IoT devices and the user’s in-

put device (e.g., her smartphone) occurs through the manufacturer cloud and

not directly between devices. Such centralization has serious implications for

fault-tolerance, security, privacy and scalability.

First, it constitutes a single point of failure. Users do not have much control

over their own devices and their functioning depends on the manufacturer cloud

services. There have been cases where devices on people’s premises have been

unavailable due to ordinary server outages (e.g., Nest thermostat outages [13]),

or even made permanently unusable by the manufacturer (e.g., in April 2016,

Nest announced that it would disable their Revolv smart home hub [12]; Philips

only reversed the deactivation of previously compatible, 3rd party light bulbs

after massive user protests [22]).

Second, a centralized architecture directly exposes appliances to the LAN

or the Internet. A potential attacker can thus take over control over appliances

remotely, even when the owner is not present. This problem is more severe

considering the high number of security flaws and slow software fixes for IoT

devices. This high number of security flaws made Kaspersky Lab refer to IoT

as the “Internet of Crappy Things” [25].

Third, IoT devices invisibly communicate with the manufacturer server,

possibly leaking data that users might not want to share. The centralization

1Compuserve provided, different siloed online services (e.g., forums, news, messaging)
on its popular CompuServe Information Service to their customers during the 80s.
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allows the combination and aggregation of otherwise non-critical user data to

privacy critical data (e.g., through nonintrusive load monitoring techniques,

or by combining sensor data with the web browsing preferences of a user).

And last, the growing number of connected sensors and actuators rises

questions of scalability in a centralized architecture. In contrast to that, the

networking community often approached scalability issues with the concept of

local and P2P networks (e.g., [15, 36]).

No Intuitive Interaction. The current way in which we interact with IoT

appliances is not intuitive for several reasons: For end users, centralized IoT

silos have led to different types of IoT devices requiring different smartphone

applications with different authentication and authorization mechanisms. User

authentication and authorization are mostly password based. Recent academic

systems are not better: In order to identify appliances in the physical world,

users might need to describe the appliance in cumbersome ways following a

strict syntax (see e.g., [8]). Other solutions require a high infrastructure over-

head to provide identification through tags (e.g., using BLE [47], RFID [43],

QR-codes [42] or infrared [48]).

Existing smart appliances and IoT systems are designed to be used by a

single family in the restricted environment of a home. Such a coupling between

physical locality and unit of administration and usage does not exist in non-

residential buildings. The Wifi or LAN that implicitely constitutes a natural

boundary for smart appliance accesses at home, might cover one or several

non-residential buildings shared by various organisations.

The current interfaces of building managers are not better: Interfacing

with a building requires programming, technical or expert knowledge, specific

to the building and BMS. Based on our own practical experience at our campus

building in Copenhagen and several buildings at the UC Berkeley campus, this

knowledge is not always present. It might even require external consultants

to make use of the systems.2 Even if expertise is available, we noticed some

reluctance towards implementing changes on the physical building. The reason

is that such changes directly affect the building occupants, and their comfort

and the building manager is held responsible.

2E.g., in our campus building, a change of the schedule for the automatic windows
requires external consultants.
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1.2.2 Mark Weiser’s Core Issues

Let us briefly go back to Mark Weiser’s original vision [44], and how it applies

to human-building interaction and IoT systems in 2016.

Core Concepts and Issues. In Weiser’s vision, computational elements,

embedded in our environment, become as ubiquitous as literacy technology

(e.g., the writing on a street sign). Because of their ubiquity, we do not

even consciously notice their presence, but make use of them without effort.

We interface with such environment using ubiquitous displays (tablets), that

are as omnipresent as regular notes and paper. He used the term “embodied

virtuality” to describe this phenomenon, which he considered diametrically

opposed to the notion of Virtual Reality (VR). VR creates a simulation of the

real or some imaginary world and is therefore suitable for the exploration of

otherwise inaccessible regions [44].

According to Weiser, four core issues need to be solved to achieve ubiqui-

tous computing:

• Location Awareness. Computers must be aware of their location.

• Scalability. Systems need to scale to hundreds of computers in a room.

• Ubiquitous Networking. Machines should be connected in an ubiq-

uitous, local network, but also connected on a wider scale.

• Privacy. Privacy is a key social issue. Embedded devices might sense

our movement, cameras might record us. Thus, users need to be pro-

tected from their superiors, marketing firms and their government.

Reality Check. Today, computers have clearly vanished into the back-

ground of non-residential buildings. Embedded sensors collect environmental

data, while we are surrounded by multiple devices that contain a computational

unit (e.g., TV, kitchen appliances, smart thermostats and lights). Such smart

environment can endow building occupants with individualized and adaptive

comfort according to personal preferences. Occupant comfort research has seen

a shift from a centralized, static, model based building control (PMV model)

to a user centered, adaptive control strategy. The adaptive model assumes

that people are able to adapt themselves to different temperatures dependent
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on the season and outside temperature. An ideal adaptive building has natural

ventilation, personal occupant control and a high energy efficiency [10].

The privacy issue of ubiquitous systems has been continuously emphasized

over the years. E.g., Langheinrich discusses several privacy problems in the

context of ubiquitous systems in non-residential buildings. Problems arise due

to the ubiquity and invisibility of the computing infrastructure. He draws a

scenario of a possible fulfillment of the “. . . frightening vision of an Orwellian

nightmare-come-true”. Some of the proposed countermeasures are limiting the

number of communication hops any message can travel and introducing the

concepts of proximity and locality [29]. In [28], Langheinrich further describes

the idea of “privacy borders” and that the crossing of these borders needs to

be prevented by designers of ubiquitous systems.

The ubiquitous tablets Weiser and others envisioned have found a par-

tial realization in our personal smart devices (our smartphones and tablets).3

People use these devices naturally to interact with others and with their en-

vironment. Manufacturers usually rely on smartphone apps as an interface to

their smart appliances.

Virtual reality has become a hot topic for industry and academia (e.g.,

Google, Facebook, Microsoft, Samsung, HTC are all working on their respec-

tive implementations), and is applied with success in the gaming sector.4 Re-

lated to human-building interaction, we believe VR can enable building-wide

insight and control and help to scope with the output of a huge number of

different sensors. Augmented reality might be a middle way between a fully

virtual system and a purely embodied virtuality.

Overall, it becomes clear, that Weiser’s twenty-five year old vision is more

relevant now than ever. For IoT based human-building interaction to be a

success, we believe that his core issues must be addressed in a non-residential

building context: (i) we need to achieve location awareness, (ii) systems need

to be scalable, (iii) local, ubiquitous networks need to be created and (iv)

privacy of users needs to be respected.

3In July 2016, Apple announced it had sold over one billion of iPhones in less than a
decade [1].

4E.g., In April 2016, Minecraft was released for Facebook’s Oculus system [35].
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1.3 Approach

The overall approach of this PhD is system oriented and rooted in Exper-

imental Computer Science [11]. Over the course of this PhD, we have been

iteratively defining problems, developing hypotheses, designing systems, imple-

menting prototypes of these systems and evaluating their performance qualita-

tively and quantitatively to prove or disprove our hypotheses. In many cases,

the system implementations itself have opened up new problems that were not

visible a priori, and design decisions that seemed initially obvious, proofed to

be inadequate.

1.4 Contributions

We derived specific requirements by adapting human-building interaction from

Mark Weiser’s original vision. These requirements have guided us during our

exploration of the design space. We then designed and implemented systems

that explore specific parts in this design space.

1.4.1 Requirements

Our requirements for systems of IoT-based human-building interactions are

the following:

(1) User Focused and Adaptive Model. Smart appliances should play

a crucial part in achieving an adaptive environment that is guided by user com-

fort preferences: (i) Smart appliances can provide individualization (e.g., by

adjusting to a person’s comfort preferences) and a more fine grained adaption

to the individual needs (e.g., by keeping the brightness at some preferred level,

independent of outside influences). (ii) They support optimizing a building for

energy efficiency through (a), automatic adaption to the current environment

state (e.g., by basing the heating and lighting setpoint on occupancy or by

lowering the brightness, while there is sufficient sun light) and (b), through

raising awareness among occupants (e.g., by providing insight on a person’s

energy consumption combined with building wide score boards).

(2) Ubiquitous Access. Following Weiser, we argue that access (au-

thentication and authorization) to these smart appliances in non-residential
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buildings must not be an additional burden for the user. Interacting with

smart appliances should not be more cumbersome than interacting with ordi-

nary appliances. This interaction also requires identification strategies in the

physical and digital world. Such identification should establish a link between

the user, her location, a physical smart appliance and a digital control point.

(3) Transparency. Users should always understand the current envi-

ronment state and be able to take control of it. Automated adaption needs

to be initiated by the user and appliance functioning must be transparent to

her as e.g., it has been shown in [32]. The device user/owner, and not the

manufacturer, should be in full control over her appliances.

(4) Building Wide Interface. The building manager’s interface should

not require deep technical or expert knowledge. It should include an intuitive

way of visualisation and allow to explore adequate building configurations

playfully, without harming the physical building and its occupants. It must

support overall building strategies and schedules, but the focus should be on

the exploration and supervision of the building state (e.g., the choice of the heat

and light setting in different rooms should be left to the current occupants).

(5) Smartphone Centered. Due to the universality of modern smart-

phones, they should play a central part in IoT-based human-building inter-

action. Smartphones enable the storage of individual preferences and are a

control point for data-flow between local infrastructure and the cloud, while

providing through their adjustable touchscreen one of the most flexible and

accepted user interfaces. An interface, that comes close to Weiser’s vision of

ubiquitous tablets. Their increasing number of sensors and ongoing extension

to smart watches and other smart wearables helps to measure comfort related

variables close to the affected individual person.

(6) Privacy Aware. IoT based human-building interaction should re-

spect the individual privacy requirements. In practice, e.g., restrict the use

of the cloud to necessary use cases (e.g., due to computational requirements

or application requirements). A non-residential environment poses different

parties with different interests (e.g., the building occupant and the building

owner, an employee and a manager). Such milieu makes the compliance with

privacy borders more important than in a residential environment.

(7) Decentralized and Local Networks. If the goal is to achieve ubiqui-
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tous networks, then the requirement must be that IoT systems are compatible

with each other and use well defined interfaces. The trade-off between compu-

tation locally and in the cloud must be taken with care. To achieve scalability

and fault-tolerance, we believe that devices should communicate locally when

possible. The cloud should only be used when necessary. Some computation

might require the cloud due to its computational intensity (e.g., Computer Vi-

sion applications), or due to application requirements (e.g., data aggregation).

IoT users must be able to switch their cloud-provider like they are able to

switch their electric utility or Internet provider.

1.4.2 Design Space

We split the design space for systems supporting human-building interaction

into three dimensions: (i) Human-building interfaces, (ii) Means of identifica-

tion and (iii) System architecture. We now briefly discuss each dimension:5

Human-Building Interface. We differentiate human-building interac-

tion in terms of: (i) The scope of interaction: In a local interaction, building

users interact with appliances in their surroundings (e.g., [48, 47]). Building

wide interaction is e.g., done in a BMS, where a building manager is in control

for the whole building (examples of academic systems are [45, 9, 37]).

(ii) Systems with a strong manual component (e.g., [14]) and systems with

a high grade of automation (e.g., HVAC is run based on schedule).

In this thesis, we choose to explore human-building interaction from a

building wide and a local perspective. For building wide interaction, we in-

vestigated the following questions: How can we support the building manager

with a tool that gives a visual overview over the current state of the build-

ing, opposed to columnized streams of time series data? How can we visualize

the effect of different configurations prior to deploying them on the actual

building?

For the building users, we investigated the following questions: How can we

enable end-users to ubiquitously use the smart infrastructure in their building?

How can conflicts between different user preferences be mediated? Are there

more intuitive ways than current ways of interaction?

5More details can be found in the respective later chapters of this thesis.
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Means of Identification. We are all able to identify a physical light

switch in a room, and the electrical wiring ensures that this switch toggles the

light. For smart appliances, this physical connector artefact is lost. IoT based

human-building interaction thus poses different levels of identification:

(i) Identification of appliances in the physical world. This identification

process can take different forms, from manual to automated. Identification

might be supported by some form of localization (e.g., [30]), by computer vision

based approaches (e.g., [7]), or automated through personal sensor feedback.

(ii) Identification of appliances (and their sensor and actuator points) digitally,

e.g., by means of metadata (e.g., [8]). The required metadata can be either

based on expert (e.g., [4]) input or crowd-sourced from ordinary users. It can

be derived from either point values or point names (e.g., [38]). The process

can be manual, semi-automatic or fully automatic.

In this thesis, we explored the following questions: (1) How can users

identify smart appliances in the physical world? (2) How can digital setpoints

of appliances be identified, when metadata of IoT devices or BMS metadata

are inconsistent? (3) How can we dynamically identify the logical human-

appliance relations? This means, how can we identify appliances like smart

heating or lighting based on their effect on the individual.

System Architecture. The underlying system architecture can either

be fully centralized, decentralized or a trade-off between both. Likewise, we

might have some global network and a local network of connected devices.

This thesis explores a decentralized system with local networks and local-

ized algorithms that adhere to global objectives. We have chosen to focus on

Bluetooth Low Energy (BLE) as networking protocol in this thesis, because:

(i) BLE is available on all modern smartphones without modification. (ii) It

allows direct smartphone-to-IoT device connectivity without requiring a gate-

way. (iii) Compared to 802.11, it provides lower power consumption with the

design goal of an exchange of small amounts of data. This is a perfect fit for

IoT. Specifically, the question we address is: Can the existing stovepipes of

IoT appliances be broken open and centralized architectures be replaced by

a decentralized system in where localized algorithms follow a global objective

like energy efficiency?

11



1.4.3 Systems

The systems we designed and implemented cover three areas: (i) Novel Human-

Building interfaces for building managers and users, (ii) Identification (through

BMS metadata, physical and logical appliance-human relation) and (iii) A

decentralized, user-focused BMS, based on off-the-shelf appliances and the

coupling of authorization and use through physical locality:

i In BUSICO 3D, we developed a system that integrates building simulation

and control with a virtual 3D environment, merging the physical and the

virtual world. A building manager is able to browse through time series

data by means of a visualization of the data being projected in real-time

on a 3D model of the actual building. The effects of different control

strategies and schedules can be simulated before they are applied on the

physical building. We implemented BUSICO 3D using a modern game

engine in combination with an existing Building Information Model (BIM)

of the building, facilitating a semi-automated deployment of our system.

ii During our implementation of BUSICO 3D, it became clear that metadata

of IoT devices and BMS sensors and actuators is crucial for any application

that builds on top. BMS metadata is often inconsistent and incomplete. No

common naming schema is followed [4]. In Babel, we therefore developed

a method to identify BMS-connected appliances through crowd-sourcing

the building occupants. Our system incrementally builds up the metadata

that is necessary for identification.

iii After we had dealt with the existing naming and interface abstractions,

we came back to one of the early visions of sensor networks: Decentralized

systems, with localized algorithms that adhere to a global objective [15, 24].

In BLEoT, we developed a system for the integration of off-the-shelf smart-

appliances into a non-residential building, using Bluetooth Low Energy

(BLE). We align use and authorization using acoustic based localization

on a room level granularity. Such decentralized system can run localized

algorithms that still adhere to some global, building wide goal like energy

efficiency.
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Based on our experiences in BLEoT with the BLE stack of current mo-

bile operating systems, we decided to investigate it closer. In BLEva, we

developed a distributed benchmarking framework for BLE in smartphone-

peripheral systems. We then performed a detailed evaluation on nine dif-

ferent smartphone models. Based on our results, we proposed model de-

pendent abstractions opposed to the native Android implementation and

implemented a prototype.

When implementing BLEoT and Babel, we discovered that room level

localization and consistent metadata are often not descriptive enough. It

is hard to represent logical human-appliance relations in metadata. We

would like to answer queries like: Increase the brightness of the light that

affects me most at my current location. The included paper “A Practical

Model for Human-Smart Appliances Interaction” gives an answer to this

problem. Like Babel, it also puts the human in the loop. It uses the

personal sensors of a user (e.g., smartphone, smartwatch) and human input

to identify logical relations between a user and an appliance.

1.5 Structure of the Thesis

This thesis is composed of a collection of five research papers produced during

my three year PhD. I am the main author of all these papers.

At the beginning of my PhD, I spent six months in David Culler’s and

Randy Katz’s Software Defined Building (SDB) group at UC Berkeley. This

stay has been an essential part of my PhD. I have continued to work with

students of SDB for three years. In particular my collaboration with Kaifei

Chen has been productive. Kaifei is a co-author on three papers of this the-

sis. I am also a co-author on three additional papers ([6, 7] and one paper

currently in submission), for which Kaifei is the main author. This work is

not included in my thesis and will be part of Kaifei’s thesis. In these other

papers, we approach human-building interaction from a different perspective,

using Computer Vision (CV). Our premise in that work is: What you see is

what you interact with. That work thus provides an intuitive, computer vision

based interface for building occupants. Users are able to interface with smart

appliances naturally, by using their smartphone camera. Opposed to that, my
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work utilizes localization awareness and smartphone based sensor feedback to

identify appliances.

Besides my collaboration with UC Berkeley, I have been co-supervising

several student projects during my PhD. This process has helped me to explore

more of my ideas and areas of the design space. A part of the outcome of this

work has also found its way into some of the attached papers (e.g., [21, 19]).

The papers included in this thesis are structured into three parts. In the

first part, we present our work on developing a new interface for building man-

agers: “BUSICO 3D—Building Simulation and Control in Unity 3D”, which

has been presented in form of a demo at SenSys’14, at the OpenBAS’14 work-

shop at CMU and at the U.S. Department of Energy’s Building Technologies

Office Peer Review 2014 [18].

The middle part of this thesis discusses BMS metadata and how we incre-

mentally crowd-source this data in our system. The included paper “Crowd-

sourced BMS Point Matching and Metadata Maintenance with Babel” has been

presented at PerCom’16 workshops [20] and in form of a demo at BuildSys’15 [17]

(demo paper not included in this thesis).

In the last part, we introduce our decentralized, BLE based system of IoT

devices for non-residential buildings “Leveraging Physical Locality to Integrate

Smart Appliances in Non-Residential Buildings with Ultrasound and Bluetooth

Low Energy”, which has been presented at IoTDI’16 and at the Software De-

fined Buildings Winter Retreat 2016 [21]. We continue with BLEva, our bench-

marking framework and detailed evaluation of BLE on different smartphone

models “Evaluating and Improving Bluetooth Low Energy Performance in the

Wild”.

We then extend the physical locality of BLEoT to a logical human-appliance

relation with “A Practical Model for Human-Smart Appliances Interaction”.

We finish with an overall conclusion and an outlook on future work.
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Chapter 2

The Building Manager

Perspective

In this chapter, we explore the human-building interface from the perspective

of a building manager. A building manager is usually in charge of monitoring

and controlling automated building components that are exposed through a

building management system (e.g., HVAC, lighting) in a non-residential build-

ing. In the context of IoT, the number of these components is increasing. This

makes it harder for often untrained building managers to scope with the high

quantity of different sensor and actuator streams through traditional data ana-

lytics tools. We design and implement a system that allows a building manager

to visualize and control an entire building in an intuitive way. It fully matches

Weiser’s use case for virtual reality [21], by applying it to the exploration of

otherwise inaccessible areas (for a building manager it is not impossible, but

impractical to physically visit all relevant parts of a building in order to control

its functions).

In the first year of my PhD, I spent 6 months at UC Berkeley in David

Culler’s and Randy Katz’s Software Defined Buildings (SDB) group. BUSICO

3D is a direct result of this exchange. I was part of the OpenBAS project. A

project, by the U.S. Department of Energy, that funded three research teams

at different universities (UC Berkeley, Carnegie Mellon University and Virginia

Tech) to develop an open Building Automation System (BAS) that especially

targets small and midsize commercial buildings. Hence, we developed BUSICO
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with the requirement of a centrally controlled system, in which a possibly

untrained building manager (e.g., an employee carrying out the job part-time)

is in charge of the building. The attached demo abstract was presented at

SenSys’14, the OpenBAS14 workshop at CMU and at the U.S. Department of

Energys Building Technologies Office Peer Review 2014 [11].

Our main goal was to develop an interface in which the building manager

naturally interacts with the building, both for defining the building’s schedule

and setpoints, and for understanding its current and past states. Commercial

automation systems and other academic work usually abstract the building

state to time series data and to two-dimensional plots of this data (e.g., [7, 8,

18, 22, 10]). In BUSICO, we visualize data directly on a 3D representation of

the building. We allow the manager to intuitively change that virtual envi-

ronment and thereby change the physical building environment. Further, the

manager can visually browse past states in the virtualization.

Mis-configurations and changes can negatively impact building occupants

and are only perceptible after some time delay (e.g., for heating and cool-

ing). This is why BUSICO also includes a simulation mode in which different

setpoints and schedules can be test run in accelerated form, before they are

applied on the physical building.

Because the attached paper is only a short demo paper, we now briefly

discuss our design decisions and their relation to related areas of Building

Information Models (BIM) and building simulation.

2.1 From Building Information Models to Game

Engines

We started BUSICO by investigating Building Information Models (BIM).

BIM have gained importance over the last years.1 Ideally, they represent a

digital representation of physical and functional characteristics of a building

and serve thereby as a shared knowledge resource for decision making over

the lifetime of a building [19]. However, outside of BIM marketing, they often

do not live up to this promise. BIM use proprietary formats and are manu-

1The two main commercial BIM applications are Autodesk Revit [3] and ArchiCAD [1].
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facturer locked-in systems. Further, the static, structural model during the

construction phase is in a strong contrast to a dynamically changing building

during the operational phase. We found the possibilities to directly use a BIM

to create a virtual building experience, where the building state is in real-time

derived from physical sensors and actuators, to be limited. This is why we

abandoned the idea of implementing our system natively in a BIM.

Despite their shortcomings, commercial BIM support several widely used

and standardized data formats. One example are the Industry Foundation

Classes (IFC). IFC describe building and construction industry data of a BIM.

They are an open specification and supported by all the main BIM applica-

tions [6].2 Filmbox (FBX) is another widely supported format, used to rep-

resent and interchange 3D content. Despite being proprietary, it is supported

both in the BIM ecosystem and the 3D modeling world. Most importantly, it

is supported by the major game engines (Unity 3D, Unreal Engine).

Game engines allow for a rapid development of games and other virtual

worlds by providing generic core components like a rendering, physics, collision

detection engine. Some of the major engines (Unity and Unreal) have both

become free for non-commercial use during the last years. We thus choose to

implement our system using Unity 3D,3 and by exporting the existing BIM

structural model through FBX to Unity. If the BIM contains sensors and

actuators that use the same namespace as the interface to the physical sensors

and actuators (e.g., via the BACnet protocol), our workflow is not only able

to derive the structural model, but also automatically match BIM sensors and

actuators to their physical counterpart. Some related work has been done at

MIT Media Lab. DoppelLab provides visualization and sonification of sensor

data using Unity 3D [9], but focuses on presentation and leaves out actuation.

2.2 Simulation

In order to support simulation, we surveyed the variety of (building) simulation

systems. However, we discovered, that most of them focus on the design and

2In Denmark, the use of IFC has been made mandatory for public building projects since
2003.

3At the time of implementation, the Unreal engine was still not freely available.
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construction phase of a building and not on the operational phase. Second,

many simulation tools focus on a single aspect of simulation (e.g., solely energy,

lighting, heating etc. . . , or are too generic (e.g., [16, 14]). Third, they usually

apply a high focus on the precisions of simulation results. Due to the lack

of actual sensor data, simulation models need detailed input of the physical

properties to calculate their output. This is opposed to simulating a building

during its operational phase, where real building feedback is available as model

input. Examples for widely used simulation frameworks to generally model

physical systems are Matlab/Simulink and Modelica or Energy Plus, focusing

solely on modeling buildings.4

Some directly related simulation systems exist: MLE+ provides co-simulation

using Energy Plus and Matlab through sensor feedback from a BACnet inter-

face [5]. BCVTB supports similar functionality [23]. However, both solutions

require a relative deep technical and expert knowledge to be used. They are

built over pre-existing BMS technologies and provide a traditional data anal-

ysis interface. For our use case, we do not require accurate simulation, but

understand simulation as a user interface tool. We want to enable the build-

ing manager to naturally explore the working of the building. We therefore

use Unity’s lighting engine for light and implement a basic heating, cooling

and energy simulation that uses the state-effect pattern [20] and a simplified

thermodynamics model (see Equation 2.1).

Tin(t+ 1) = Tin(t) +
Uin − Uout

p ∗ V ∗ C (2.1)

Where:

• C is the specific heat capacity ( Joules
Kg∗Kelvin)

• p is the density ( kg
m3 )

• V is the volume (m3)

• Uin/Uout is the added/removed energy.

4An extensive list of building energy tools can be found at http://www.

buildingenergysoftwaretools.com
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Uin is derived through:

Uin =
∑

(LightingPower(t)) +
∑

(EquipmentPower(t))

+
∑

(PersonHeatOutput(t)) +
∑

(HeatPower)

−
∑

(CoolPower)

(2.2)

Uout is derived through:

Uout = h ∗ timestep ∗A ∗ Tin(t)− Tout(t)

wallthickness
(2.3)

Where:

• h is the heat transfer coefficient ( W
kg∗m)

• A is the contact area (m2)

We derive the wall area, wall material and room and building volumes

automatically from the BIM structural model and choose the correct heat

transfer coefficient (e.g., 0.5 W
kg∗m for brick material).

2.3 Looking Forward

Recently, IBM Research picked up some of our work in [17]. They explore ways

to visualize real-time building data using virtual and augmented reality. We

predict that both, virtual and augmented reality systems, will become more

common in a building management context in the future. They allow to scope

with an ever growing number of smart devices and sensors, while lowering

the professional and technical background of users. VR is about to hit the

mainstream with Google, Microsoft, Facebook, Sony and Samsung all pushing

their platforms commercially. At the same time, the implementation efforts of

such virtual worlds are steadily reduced by the increased availability of digital

BIM models, but also by the availability of both hardware (e.g., [12, 15, 2])

and software and algorithms (e.g., [4, 13]) to construct digital representations

of the physical world. We therefore believe, that building management will be

one of the main applications of VR outside gaming in the near future.

As future work, we want to investigate the crowdsourced creation of such

models using consumer hardware (e.g., smartphones). Besides the issues that
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are involved in the creation itself (e.g., wall and material detection, user assis-

tance in creation process), other problems are the (semi-) automated matching

of sensor and data points to the digital model.
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Abstract
In this demonstration, we present a novel system of build-

ing control and simulation focused on the integration of the
physical and virtual worlds. Actuations and schedules can
be manifested either in a physical space or in a virtualiza-
tion of that space, allowing for more natural interactions with
simulations and easier transferring of schedules and config-
urations from the simulated virtual environment to a real-
world deployment. We provide an implementation using a
widely used game engine (Unity 3D) and sMAP (Simple
Measurement and Actuation Profile), a developed time se-
ries database and metadata store.

1 Introduction
Buildings are increasingly turning into systems of human-

computer-building interaction via software. People are be-
ginning to use mobile apps to control their devices like lights
or thermostats. The ‘Internet of Things’ has spawned many
new devices that people can interact with, such as the Philips
Hue LED bulb and Nest thermostat. At the same time, there
have been research efforts towards making existing building
instrumentation accessible in a uniform way and integrating
it with this new generation of smart devices, e.g., [1], [2].
Many of these projects provide relatively mature solutions
for abstracting physical sensors and actuators to a uniform
interface, but the question of how inhabitants or building
managers access this physical information is still not very
well developed. Interfacing with a building often requires
programming or technical experience specific to that sys-
tem. Furthermore, access to a Building Automation System
(BAS) is often restricted because running applications or ex-
periments on a building or changing its configuration can be
harmful.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SenSys’14, November 3–5, 2014, Memphis, TN, USA.
ACM 978-1-4503-3143-2/14/11.
http://dx.doi.org/10.1145/2668332.2668380

With BUSICO 3D, we present a system that provides:
(i) a virtual representation of a building as a more natural in-
terface for human interaction, and (ii) an integration of sim-
ulation and control that allows the testing of configurations
without any harm on the physical building or personal envi-
ronment (see Figure 1). BUSICO 3D uses sMAP as an ab-
straction layer for accessing and describing various sensors
and actuators of the physical building. The structure of the
physical building is derived from an imported BIM (Building
information modeling) model. The system can be run in ei-
ther simulation or control mode. In simulation mode, people
can change settings, define rules or schedules, and simulate
the effect of these on the building. Feedback on the build-
ing’s state, including temperature and energy consumption,
is provided through the virtual experience. In control mode,
feedback of the simulation engine is replaced by feedback of
the actual building. In the following, we describe our pro-
totype design and implementation using a widely used game
engine (Unity 3D) and existing platforms for modeling the
physical structure of a building (Autodesk Revit).

Figure 1. BUSICO 3D from birds-eye perspective.

2 Design and Implementation
Here we explain briefly the different components and

working of our system. We finish by describing a typical
interaction with our system. We have built a physical testbed
for our system that resembles two rooms of a building (see
Figure 2).
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Figure 2. Schematic view of our testbed.

2.1 Components
BUSICO 3D uses Unity 3D as an execution environ-

ment. Unity is a game engine that allows a fast implementa-
tion of games and other virtualizations by providing a com-
mon set of features like graphics, lighting or physics engine.
Unity allows for scripting of the underlying engine in several
high level languages (C#, JavaScript and Boo). BUSICO
3D is entirely written in C#. It allows the import of a CAD
architectural model of the building that is created in a mod-
eling program of choice (Autodesk Revit, Graphisoft Archi-
cad, Sketchup). sMAP acts as a hardware abstraction layer
on top of various physical devices. sMAP drivers abstract
away the particulars of sensors and actuators and expose a
uniform REST interface [1]. BUSICO 3D reads this REST
interface of sensors and actuators and maps it by means of
sMAP metadata to the CAD model, creating automatically
objects for each found sensor or actuator including GUI, pro-
gramming logic and renderer.

2.2 Simulation and Control Engine
BUSICO 3D is built around an integrated simulation

and control engine that follows the working of discrete
event simulation. Every object (e.g., an object represent-
ing a thermostat) has a Start() method and an Update()
method. Start() gets called once when the object is cre-
ated, Update() gets called every frame by the Unity engine.
Our system adds to this the state-effect pattern ([3]) by divid-
ing calls to Update() in an ‘effect’ and ‘state’ phase. In the
‘effect’ phase, all objects are calculating effect values based
on the state values of themselves and related objects. These
effect values are then saved for the ‘state’ phase. Here, ob-
jects are accessing effect values to calculate their new states.

2.3 Schedules and Rules
BUSICO 3D includes an event-driven rule engine. A

user may specify simple rules in the form of:

IF ( c o n d i t i o n ) THEN ( consequence ) ;

An example could for instance be:

IF ( window1==open )
THEN ( t h e r m o s t a t 1 m o d e =OFF) ;

BUSICO 3D also includes a scheduler in which users can
set different schedules for their lights or temperature in a
building. Scheduling can also be event driven, in which case
events are points in time.

IF ( t ime ==2014−07−27T07 : 4 8 : 4 2 )
THEN ( t h e r m o s t a t 1 t e m p =42) ;

2.4 User Interaction
A sMAP configuration file describes the components of a

building; BUSICO 3D automaps the various devices therein
to their correct locations. A user has two view options. She
can observe each floor from a birds-eye-perspective, or she
can switch to a first person view and walk through the build-
ing. Actuation can be done in two ways, either in pure simu-
lation in which the drivers act as virtual drivers that include
a thermal model and a model for power consumption, or it
can be done by actually controlling the physical building.
In a real scenario, a building manager first tries out different
schedules and rules, runs the simulation and optimizes it over
time. When she is sure about the result, the building config-
uration is applied to the real building. At any point, it is
possible to walk through the building to have a visualization
of different aspects (e.g light, heating, energy consumption).
When discovering something to change there is no need to
switch to a different view, the user can just naturally switch
devices or set new setpoints like she would in a real building.
3 Conclusion and Future Work

BUSICO 3D provides a natural interface for building
control and simulation that allows non-experts to interact
with a building and configure it. Using a game engine for im-
plementation allowed fast prototyping. We are currently ex-
ploring how BUSICO 3D can be tailored for various types
of what-if analysis, and more generally as a means of ex-
perimenting with new forms of building operations. We are
also designing serious games to gain insight on the social
practices in a given building and the interactions that define
how the building is actually used. We want to implement a
more natural experience to the building by using a virtual-
reality headset like Oculus Rift. On the simulation side we
are currently investigating integration with a more sophisti-
cated simulation engine like Energy Plus.
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Chapter 3

Crowd-Sourced Metadata

Management

Metadata helps to identify smart appliances for human-building interaction

(e.g., is the appliance a light or thermostat? Which sensors and which ac-

tuators does it contain?). Cyber-physical application usually query sensors

and actuators based on their metadata (e.g., [8, 9, 2]). This makes consis-

tent metadata crucial to achieve compatibility between IoT devices and to

support portable, cyber-physical applications. Building Management Systems

(BMS) are existing (smart) environments of connected sensors and actuators,

in which inconsistent and incomplete metadata is causing many problems. We

thus specifically approach the issue of metadata collection and maintenance in

the context of BMS.

Recent approaches towards consistent BMS metadata either try to detect

patterns in metadata descriptors (e.g., [3, 23]) or use machine learning tech-

niques, like a clustering based on sensor values (e.g. [13]). Our system, Babel,

makes use of crowdsourcing to incrementally create a consistent metadata state

for sensors and actuators in a BMS. We achieve a high accuracy and are fur-

ther able to map an actuator or sensor to its physical location in a building.

Such mapping is important to enable location context based applications (e.g.,

a smartphone application that allows to control lighting and heating in an of-

fice). Babel is the first system that applies crowdsourcing to BMS metadata,

and it is likewise applicable to other emerging forms of IoT systems.
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We presented a demo of Babel at BuildSys’15 and at the SDB winter retreat

2016 [10]. The included paper was presented at PerCom workshops 2016 [11].

To better place the problems that we address with Babel, we now briefly

introduce the reader to BMS and their metadata representation. Further, we

describe our motivation and future challenges more detailed than it is done in

the included paper.

3.1 Building Management Systems

Most larger non-residential buildings contain a BMS. A BMS connects dif-

ferent controllers, sensors and actuators and allows for a central control of

building functions such as HVAC and lighting. BMS follow usually a three-

tier model of management, automation and field level (see Figure 3.1). At the

lowest level, sensors and actuators communicate through a field bus (digital

serial data bus) with each other and with control devices of the upper automa-

tion layer. Communication at the automation and management level usually

takes place over LAN. Automation occurs locally, via a direct coupling of sen-

sors and actuators (occupancy and light), on the automation level (via direct

digital controllers [DDCs]) or on the management level (BMS machine) [16].

To retrieve digital values of set- and datapoints, a building manager can query

BMS points on the management level.

3.1.1 BMS Metadata

The available metadata and its structure dependents on the specific BMS.

BMS in the wild contain all, from proprietary and niche technologies, to stan-

dardized and widely used ones. Examples for widely used standardized systems

and protocols are LonTalk, KNX, BACnet and Modbus. Interoperability issues

across these systems are often faced problems, but even device interoperability

within a single standard is not guaranteed. This lack of device and protocol

interoperability translates itself to an inconsistent use of metadata. Metadata

is usually applied manually during construction and commissioning. These

are not atomic events, but processes that are almost always performed by sev-

eral workers from different organizations and during different times. Further,
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Figure 3.1: General Three-Tier BMS Architecture

Table 3.1: BMS Metadata from Soda and Davis Hall

BMS Label Decoded

SDH.AH1_RHC-9:HEAT.COOL Sutardja Dai Hall, Air Handler 1, Room 9,
Heat Cool Setpoint.

SDH.S1-04:AI 3 Sutardja Dai Hall, Analog Input 3.

DH.AH1B.SF_VFD:CMD STP.STRT Davis Hall, Air Handler 1B.

WS86002.RELAY02 Sutardja Dai Hall, Relay to switch lights on a
hallway on 2nd floor.

DH.AH1A_HCDAT Davis Hall, Air Handler 1A, Heating Coil Dis-
charge Temperature.

over the lifetime of a building, devices get replaced and added on a regular

basis and spaces change their original use—metadata however rarely follows

through [12].

Most BMS systems support the labeling of data and set-points as a way

of identification. To show a practical example, Table 3.1 shows some of the

metadata that we found in our test-case building and a second building on

campus. Common practices are the use of abbreviations for describing building

component keywords (e.g., from the HVAC, lighting domain) and for specifying

the location (building and room names). These encodings are however not

consistent and not easily parseable for both machine and human.
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One approach followed in industry and academia towards improving con-

sistency in the long term, is the standardizing of name spaces:

• The Industry Foundation Classes (IFC). A standard for interop-

erability within the building and construction domain [5]. Due to its

origin in the construction/architecture domain, it has a strong focus on

the physical building structure and materials.

• Project Haystack is an ongoing open source initiative out of the BMS

community to develop naming conventions and taxonomies for building

equipment and operational data [22]. It therefore aims to be directly

applicable to existing BMS data models that have as their lowest common

denominator only the labeling of points.

• CityGML is a common XML based information model for representa-

tion, storage, and exchange of virtual 3D city and landscape models that

originates in the geospatial research community [21]. Opposed to IFC,

CityGML describe how buildings are observed or used [18]. It has not

been updated since 2012.

• ISO 16484–3:2005 specifies the requirements for the overall functional-

ity and engineering services to achieve building automation and control

systems. It defines a template for a BMS point list [14].

However, these naming standards are commonly not adhered to by building

constructors and commissioners [23]. And second, it has recently been argued

that none of them is descriptive enough to cover all building use cases [4].

3.2 Motivation

Consistent metadata supports two important goals: (i) Portable cyber-physical

applications (e.g., our own, previously discussed interface for building man-

agers, BUSICO 3D, depends on metadata), and (ii) a continuous building

commissioning process. We describe both in the following.
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3.2.1 Portable Cyber-physical Applications

Traditionally, BMS are custom fitted and isolated for a single building. They

are intended to be accessed by a single, central machine that performs control

and analytical tasks based on the data that is available from sensors and

actuators and the expert input of the building manager.

Commonly, buildings are controlled using the PMV (Predicted Mean Vote)

method. PMV defines comfort for air-conditioned buildings. It is based on a

generic definition for an optimal environment. The model often contradicts the

goal of low carbon buildings and disregards differences in individual comfort

preferences and their seasonal dependency [6].

In contrast, the adaptive model is based on the fact that outdoor climate

influences indoor comfort, because humans are able to adapt to different tem-

peratures during different seasons of the year. It also accounts for differences

in comfort preferences of individuals by aiming at an occupant controlled, nat-

urally conditioned building. The access to environmental controls and thermal

data influences building occupants’ thermal expectations and preferences [19].

Many argue that ubiquitous computing and cyber-physical applications will

play a key role in enabling an adaptive, energy saving model for buildings [6].

Establishing such an adaptive model requires, like any application outside

the scope of the original BMS, consistent metadata. Therefore the suboptimal

state of BMS metadata is a severe problem. It hinders the development of

such applications, because they are not portable across buildings and need to

be custom fit to every new deployment building.

3.2.2 Continuous Building Commissioning

Building commissioning is typically performed when a building is transferred

from the constructor/architect to the actual owner and operator. The com-

missioning process assures that the building meets the requirements set by

the building owner and is fully functioning. The functions that are commis-

sioned are, e.g., HVAC, electrical and safety systems. The ‘ASHRAE Guide-

line 0–2013: The Commissioning Process’ defines building commissioning as

follows [1]:

“The Commissioning Process is a quality-focused process for enhancing the
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delivery of a project by verifying and documenting that the facility and all of

its systems and assemblies are planned, designed, installed, tested, operated,

and maintained to meet the Owner’s Project Requirements.”

If the building controls these functions through a BMS—as it is nearly

always the case in recent buildings—, then also the working of the BMS is

tested. Lately, continuous commissioning (or re-commissioning) is gaining im-

portance as a quality process. It ensures that buildings continue to maintain

their functionality throughout their life-cycle. Re-commissioning results in en-

ergy savings: e.g., a recent study has shown average savings of 0.29$/sqft per

year for schools, hospitals and office buildings in the US [20]. A meta-analysis

has come to median commissioning costs of $0.27/sqft, whole-building energy

savings of 15%, and payback times of 0.7 years [17].

Despite these results, re-commissioning is not used on a regular basis. It

is mainly hindered by the relative long duration (usually several months) and

the high initial costs. Costs are mostly based on manual labor and a potential

need for additional monitoring infrastructure (e.g., the installation of energy

meters). Much of the manual labor is necessary because metadata is incon-

sistent, incomplete and missing. Thus, the commissioning experts manually

need to visit most parts of the building.

We argue, that a continuous and crowdsourced labeling of BMS points is a

way to greatly improve the process of re-commissioning. Inconsistent metadata

is one of the reason that the re-commissioning process involves so much manual

labor [17]. The crowdsourced approach can also be extended to other areas of

the building (e.g., to report broken devices).

3.3 Looking Forward

Looking forward, we believe that the issue of metadata is an issue that needs to

be addressed not only within the scope of a building, but for the greater vision

of IoT, where a vast number of heterogeneous devices are connected. Future

cyber-physical applications might require to access devices on the scope of a

whole city by means of their metadata.

We find a promising approach towards this vision in the renaissance of the

semantic web as Linked Data[15]. Linked Data could be described as a graph
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of machine-readable data, published in an open, shared document format.

Documents are universally resolvable by a URI. They link to each other,

forming a shared and structured graph of knowledge. Several open standards

exist. The Resource Description Framework (RDF) is the standard model of

the W3C for Linked Data exchange on the Web [24]. On the lowest level, RDF

consists of subject-predicate-object triples. RDF has several serializations

standards like XML or JSON-LD (see http://www.w3.org/TR/json-ld/).

We thus follow the reasons given by Curry et al. in [7] that the Linked

Data approach should also be applied to the building domain, solving not

only interoperability issues inside that domain, but also with other systems

in the context of IoT. Human-in-the-loop feedback systems, like Babel, are

one approach to keep the state of the Linked Data graph in synchronization

with the state of the physical world. The incentive to participate in such

systems can be achieved by introducing some playful, game-like factor. In the

attached paper, we mention the augmented reality game Ingress as a successful

application in this domain. Now, at the time of writing this thesis, Pokémon

Go has by far outreached Ingress success in a few days. Google owns the

majority of shares behind Niantic, the company behind Ingress and Pokémon

Go.
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Abstract—Cyber-physical applications, deployed on top of
Building Management Systems (BMS), promise energy saving
and comfort improvement in non-residential buildings. Such
applications are so far mainly deployed as research prototypes.
The main roadblock to widespread adoption is the low quality
of BMS metadata. There is indeed a mismatch between (i)
the anecdotal nature of metadata for legacy BMS – they are
usually initialized when the BMS is commissioned and later
neglected–, and (ii) the imperious need for consistent and up-to-
date metadata for supporting building analytics or personalized
control systems. Such applications access sensors and actuators
through BMS metadata in form of point labels. The naming of
labels is however often inconsistent and incomplete. To tackle
this problem, we introduce Babel, a crowd-sourced approach
to the creation and maintenance of BMS metadata. In our
system, occupants provide physical and digital input in form
of actuations (e.g., the turning on/off a light) and readings (e.g.,
reading room temperature of a thermostat) to Babel. Babel then
matches this input to digital points in the BMS based on value
equality. We have implemented a prototype of our system in a
non-residential building. While our approach can not solve all
metadata problems, we show that it is able to match end-user
relevant points in a fast and precise manner.

I. INTRODUCTION

Non-residential buildings are a prime platform for novel
cyber-physical applications that can reduce energy consump-
tion and improve occupant comfort. Reducing energy con-
sumption in non-residential buildings is an important goal,
considering that these buildings account for ca. 19% of pri-
mary energy consumption in the U.S. [1]. Occupant comfort
is likewise important because we spend more than 90% of our
time inside buildings [2].

Around half of non-residential buildings are already in-
strumented with a Building Management System (BMS). A
BMS is a typically tightly coupled digital control and sensing
system that performs automation and management tasks for a
particular building (HVAC, lighting etc.) [1].

Lately, BMS have caught the interest of the Sensor Network
community. Previous groundwork has made BMS sensors and
actuators available to cyber-physical applications by abstract-
ing them to a common interface (e.g., [3]). Early cyber-
physical applications on top of BMS show great potential:
Erickson and Cerpa develop a system that allows users to
directly communicate their thermal preferences to the BMS,
leading to energy savings of 10% and increased personal
comfort [4]. Narayanaswamy et al. develop a system that
optimizes energy usage and comfort by detecting anomalies
in HVAC systems [5].

However, such cyber-physical applications are not yet de-
ployed beyond building-specific research experiments. The
problem is metadata. Traditionally, a BMS is commissioned
and its functions are hardcoded to the specific characteristics
of a building and needs of a building manager. After commis-
sioning, the BMS becomes a legacy system and metadata is
largely irrelevant. Devices get replaced and added on a regular
basis while spaces get re-configured and change their use (e.g.,
a classroom is transformed into a lab). Metadata rarely follows
such evolution [6].

BMS metadata is usually restricted to a single label that
is set manually for each BMS point (e.g., a single sensor or
actuator). Specific commissioning contractors are responsible
for defining names for these BMS labels. Common naming
practices rely on the use of abbreviations for describing build-
ing component keywords (e.g., from the HVAC, Lighting do-
main) and for specifying the location (building, room names).
These encodings are not defined by a well-formed namespace.
They are not easily parsable, even for humans. Here are some
exemplary problems that we found while analyzing the BMS
labels in three of our campus buildings:

• No strict naming scheme within a single building.
E.g., WS86007.RELAY12 and SDH.PXCM-08SDH.
S5-04:ROOM TEMP represents a light switch and the
room temperature of a thermostat at the same location.

• Different labels for the same semantic meaning (RM
and ROOM, TEMP and TMP, STPT and SP). E.g.,
SDH.CP.RESET.TMP.SP.MIN and SDH.CAC-3:
ROOMTEMP use different labels for temperature sensors.

• Incomplete metadata due to the restriction to point labels
as data structure. For example WS86007.RELAY12
completely misses information about the location of the
light switch.

Inconsistent BMS metadata has been studied before (see
Section II for an overview). What distinguishes our approach
from previous work is that (i) we apply crowd-sourcing,
relying on the building occupants, (ii) we consider both,
actuators and sensors while (iii) we provide points with a
mapping to their physical location. Our hypothesis is that much
of the physical state of a building can be observed by humans
and that building metadata maintenance should be based on
human input.

In our system, Babel, occupants provide physical and digital
input in form of actuations (e.g., the switching of a light)
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and readings (e.g., the reading of the room temperature of a
thermostat). Babel then matches user input to points in the
BMS by comparing point values to user provided input. For
example, if the user notifies Babel that the temperature is 67oF,
we are able to reduce the qualifying points to all points with
value 67. By further iterative refinement of crowd-sourced
data (a user reports another value for the same temperature
point), we can reduce the qualifying points eventually to a
single match. Our intention is to enable occupants to set up
the metadata for their own office space by providing input
to Babel. After performing this setup process, they are then
able to use a personal comfort application, e.g., on their
smartphone. We consider BMS metadata maintenance as a
good fit for crowd-sourcing for the following reasons:

• BMS metadata maintenance is parallelizable (there can
be several parallel user inputs) and serializable (the order
of user inputs does not matter).

• Many application relevant BMS points are visible to
humans (e.g., thermostat setpoint, light state) and the user
effort to report their state is small.

• It can be partitioned (e.g., metadata maintenance in one
office is independent from maintenance in another).

• The introduction of our system can improve building
operation and allow personal comfort applications. This
helps to incentivize people to participate.

The core contribution of our work is the design and imple-
mentation of Babel, a system that allows for a incremental,
crowd-sourced construction and maintenance of BMS meta-
data. We implement and evaluate Babel on an actual non-
residential building in the U.S. to show the applicability,
performance and accuracy of our system. To our knowledge,
this is the first work that applies crowd-sourcing to the problem
of inconsistent and incomplete BMS metadata.

The remainder of this paper is structured as follows: First,
we present related work. We then follow with our design
goals and the design of our system. Finally, we presents
our deployment and evaluation in a non-residential building,
concluded with an outlook on future work.

II. RELATED WORK

Metadata population has been covered extensively for dif-
ferent content. For text, automated metadata generation has
been done in various ways, e.g. through natural language
processing [7]. Yang and Lee propose a machine learning
approach to automatically generate metadata for the semantic
web from the content of webpages. Rodriguez et al. use
associate networks to transfer metadata from metadata-rich
resources to metadata-poor resources. They evaluate their
system using a bibliographic dataset [8].

Semi-automated, crowd-sourced metadata generation is very
successful in the so-called folksonomies using e.g., community
based tagging, where users tag a typically small fraction of
documents [9]. An example is the tagging of YouTube videos.
Projects like OpenStreetMap go further by collaboratively
creating a free editable map of the world that has become
comparable if not superior in quality than geo-data from

commercial providers [10]. In the building domain, Rice and
Woodman have successfully applied the concept of crowd-
sourced construction of world models. They present a system
that allows occupants to map the inside of a building [11].

In the sensor network community, Bhattacharya et al. pro-
poses a system where sensor metadata is semi-automatically
completed using regular expressions to detect common pat-
terns in metadata descriptors using the expertise input of
the building manager [12]. They achieve a correct matching
of 70% of data points using relatively few manual sample
matches. But they note that many labels have a very low
frequency, making it very hard to qualify them automatically.
Hong et al. apply spatial clustering to classify relative sensor
locations with some initial success for 5 rooms and 15 sensors
[13]. Finally, Schumann et al. present an approach for the
semi-automated mapping of BMS and Energy Management
System (EMS) labels. They propose semantic techniques for
computing similarity values between BMS and EMS labels.
These similarity values are subsequently used to reduce the
number of points a user needs to consider when he/she matches
labels manually. However they conclude that their approach
only identifies the correct match in 16% of all cases and hence
is not fit for automated labeling.

To solve the metadata problem in the first place, several
long-term efforts to standardize naming exist. Most notable the
ISO Industry Foundation Classes (IFC) [15], the open source
initiative Project Haystack [16] and ISO 16484-3:2005 [17].
These standards are commonly not adhered to by building
constructors and commissioners. Furthermore, a study recently
came to the conclusion that none of these metadata schemes
fully captures to model a building’s sensors and actuators and
their relationships [18].

III. DESIGN GOALS

We aim to solve the problem of inconsistent and incomplete
BMS metadata through crowd-sourcing. Our design goals are
the following:

• Global namespace. A global metadata namespace en-
ables portable applications across different buildings. Our
system should therefore map the current, loose namespace
of a building to a global one.

• Limited user involvement. To achieve a wide adoption
of a crowd-sourced system, user involvement should be
limited. Our system should ideally rely on a localization
system, so the location of the user can be automatically
selected and she does not need to manually input it. Fur-
ther, Babel should allow for the introduction of a reward
system in terms of a salary bonus or internal competition.
It should be possible to give users an immediate incentive
by e.g., enabling a personal comfort application for them
after points have been matched for their office.

• Backward compatibility. Buildings have long life-cycles
of 50-70 years. This means that our system needs to
be able to work with existing BMS and their charac-
teristics (e.g., slow and unreliable data-polling). More
recent buildings contain mostly one of the wider used,
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standardized protocols like BACnet, KNX or LONWorks.
Many open source and research projects have made it
possible to integrate these (e.g., [3]). Our system should
build on top of this work. Due to the slow data polling
rate of BMS, our system should rely on asynchronous
requests where possible.

• Robustness. Resulting matches and metadata need to be
robust in regards to the human factor. We generally trust
the users of our system. We assume that a user will not
sabotage our system by providing wrong input. Users will
be affiliated to the building as employees or students,
which makes this assumption reasonable. Further, in a
real deployment, countermeasures against faulty input
can be the requirement of n correct matches for a point
instead of 1 and to distinct between trustworthy and less
trustworthy users. However, our system should handle
small imperfection and imprecisions in the user input.
For example, a user might report 64oF, while the actual
value is 64.3oF, or she might report an observation with
some delay to Babel.

• Dynamicity. To achieve dynamic metadata, our system
should be able to verify its metadata at defined time-
intervals. The time-interval depends on the requirement
of the specific building.

In the following we describe our system design and imple-
mentation based on these design goals.

IV. SYSTEM DESIGN

Figure 1 depicts the general architecture of Babel. A smart-
phone application accesses a Web service in the cloud that
contains a lexicon for different device types and points (e.g.,
a light on/off switch, a thermostat temperature point). The
same lexicon is used across all buildings to enforce a global
namespace. The smartphone application can further access
the local Babel service. It provides (i) the specific, structural
model of the building, adhering to a global naming scheme
and (ii) an entry point for users to report new values from the
physical world. When a user reports a value, it is compared
against the current values in the BMS in order to find a match.
The matching state is stored in a local database.

A. Metadata Model

Our system requires a data model that is able to represent the
different BMS points and respective locations, while allowing
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Fig. 2. Mapping the loose BMS Namespace to a Global Namespace

to integrate elements outside of the building domain. A cyber-
physical application might for instance retrieve local weather
information to adjust the HVAC setpoints.

We follow Curry et al. [19] and apply the Linked Data
approach to the building domain, solving interoperability is-
sues not only inside that domain, but also with other systems
in general. The Resource Description Framework (RDF) is
the standard model of the W3C for Linked Data exchange
on the Web [20]. RDF has several standardized serializations
formats like XML or JSON. In Babel we use JSON-LD (http:
//www.w3.org/TR/json-ld/) to model the structure of a building
and its different components as Linked Data. We principally
follow the naming scheme from Project Haystack, which
encompasses many points from the BMS domain (e.g., tem-
perature, humidity and CO2 sensors and thermostat setpoints).
Points that are not defined in Haystack are included by linking
to other naming schemes (e.g., https://schema.org). Figure 2
shows by means of an example how the loose, existing
namespace of BMS points is mapped to a global namespace
by relying on user provided context. Sensors and actuators
make up a majority of BMS points. They are physically wired
to a controller, which connects to the BMS backend. Physical
sensor and actuator states are then perceived by occupants
and serve as parameter for Babel’s point matching process.
Matches are thus constructed incrementally over time and
change as the building changes. This might be the case when
the physical points change because part of the HVAC system
gets replaced. In the example, a temperature sensor is mapped
to a global namespace using the Haystack scheme.

B. Namespace Mapping and Point Matching

To match a single BMS point, we distinguish it from the
set of all points through iterative refinement and enrich it with
metadata. This is achieved by the simplified matching process
seen in Figure 3. We need to eliminate other, unpredictable
datapoint changes that might happen during an unfinished
matching process. When receiving a new user input, Babel
first reduces the points to consider for this request. It removes
already successful matches and points whose “BACnet type”
value does not fit the type of the point that should be matched.1

Then it queries the remaining points and compares their value
with the user provided value. A substantially reduced list of
points is the result. This process is repeated when user input

1The BACnet standard defines 54 point types (e.g., Binary Input, Binary
Output, Analog Input etc.) [21].
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for the same point is provided again until a single point is
left. The point is enriched with metadata in the form of (i)
the user selected location and (ii) information from the global
component lexicon.

C. Implementation and Deployment

We use one of our campus buildings for implementation
and deployment. The 141,000 s.f. 7-story facility contains
mainly research spaces and classrooms. The building’s BMS
is connected to a PC which runs sMAP [3]. We implement a
driver for sMAP that runs locally. Our driver uses pyBACnet to
query the BMS and spawns a Web service for communicating
with the main Babel component.

The main component (written in Go) offers a REST in-
terface for smartphone clients. Most times the driver is idle.
When Babel receives user input by a client, it dynamically
creates a list of BACnet points that come into question for
the user’s input and fires up our driver with these points.
This reduced list of points is based on BACnet type values
and previously matched points. If the point is already part of
an ongoing matching process, we continue the process with
the already narrowed down points. We implement an Android
smartphone client for Babel that connects to a structural model
in the form of rooms and a lexicon of point descriptors fol-
lowing the Project Haystack naming convention and modeled
in JSON-LD. A user of our app is able to select her location
in the building and the type of point she wants to report (e.g.,
a light switch). She then only inputs the observed state (e.g.,
on).

V. EXPERIMENTAL RESULTS

We evaluate our system with various micro- and macro-
benchmarks. In the following, we present our experimental
evaluation on our deployment building. The building is oper-
ated by Siemens Apogee, a proprietary BMS by Siemens. It
provides a virtual BACnet interface that we interact with.

We scan for BACnet points on the building using pyBACnet.
Our scan result shows that the building contains 7053 points.
By observing the point names manually, we find that 365 of
these points are part of the lighting system, while 6688 belong
to HVAC. Analog Output and Binary Output points make for
87% of all points.
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Fig. 4. Matching Progress for Two Thermostat Temperatures

We then sample all BMS points at different times of the day
(9am, 1pm and 10pm) to be able to quantify how often the
same value is shared among points. When many points have
the same value, then a distinction based on the change of that
value might require substantial more steps. Our experiments
show that a value is shared on average among 4.8 other points.
Few values make out the majority for all points (1 and 0 make
up 42% of all points). The reason is that our system contains
relatively many binary switched lights (365) and that HVAC
systems use 1 and 0 to specify their heating and cooling mode.

A. Matching Process

We perform macro benchmarks for the point matching
process by physically visiting several thermostats and light
switches to perform user input to Babel over the period of
one week. Figure 4 shows the result of this process for two
thermostat temperature points. The points that need to be
considered by Babel reduce over time, dependent on user input
and the “grade of singularity” of that value. In depicted case,
we are able to reduce the possible points to 48 and 25 with
the first user input. In consecutive iterations, we only consider
the remaining points. As can be seen for the room temperature
(dashed line), the matching process might not be able to reduce
the points if either (i) all other possible points have the same
value or (ii) some of the points in the BMS do not respond to
reading requests.

Figure 5 shows the same experiment for a point that can
be directly influenced by users: a binary light switch. There
are 365 such points in our deployment building. In contrast to
the matching of the temperature setpoint, we can not reduce
the number of points as significantly in the first iteration. But
then we can observe the strength of our human-in-the-loop
approach. By physically switching a light and reporting the
new state we could always reduce to a single point during our
experiments (100 tries for 20 different points).

To quantify the performance of our system at a larger
scale, we have used historical data to simulate an ongoing
matching process. The measurements have a 10s granularity.
The dataset contains 463 different points. We use this data
to perform a point matching in 10 minute time intervals.
This means, that we assume that for all unmatched points,
every 10 minutes, a user inputs her observations into our
system. Figure 6 shows how the distribution of matched points
increases over time. The result is a match of all points after 12
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hours. One must note that this experiment does not fully model
a real deployment. First, this experiment does not contain any
user initiated actuation ( e.g., light switch, thermostat setpoint
changes etc.) that will accelerate the matching process and
second, we perform a matching every 10 minutes, which is
not realistic for a real deployment. However, the results show
that our approach leads to a quick point mapping when users
participate sufficiently.

B. End-to-end Latency

We aim for an interactive system, where users get timely
feedback on the completion of a matching process. First, low
end-to-end latency can enable gamification as user incentive.
Second, it enables users to engage in a sequence of rapid
interactions (e.g., for lights). Letting users manually change
the value of a point through a sequence of interactions with
Babel can speed up the BMS metadata matching process.

The experienced end-to-end latency generally correlates
with the number of points that need to be queried. Querying
all 365 light points results in 5.9s of delay. The time reduces
to 4.8 and 3.4s for 237 and 95 points respectively. We found
the latency of the BMS the main dominating component for
our system and perform therefore micro-benchmarks on it
(see Figure 7). We are able to read a bulk of 3224 points
in 17.3s (10 tries). The query time does not always correlate
to the number of queried points. During our experiments, we
found that the query time heavily depends on the physical
BMS controller that connects the points. Sometimes querying
more points takes less time. E.g., the controller that polls the
2100 points is significantly faster than the controller polling
the 1100 points. Such unpredictability makes it challenging to
implement an interactive system on top of a BMS.
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Fig. 7. BMS Query Latency

C. Accuracy

Accuracy is crucial for cyber-physical applications and to
overcome reservations by a building manager if a new, more
user centric system is installed. If we assume that the state
of physical readings by users does always correspond to the
digital state in the BMS, then by universal instantiation, this
must also be true for a single value that remains at the end:

∀xP (x) ⇒ P (a/x) (1)

This results in a 100% accuracy in an ideal system. However,
in a real implementation, we need to consider (i) accidental or
intentional wrong user input and (ii) that digital and physical
states are not perfectly aligned in time and value dimension.
Both can be dealt by building trust through multiple matches
by several users. We leave extensive experiments with real
occupants for future work, but we experienced that the phys-
ical state (e.g., of a light switch or temperature value) is not
always equal to the value in the BMS. A thermostat was only
able to display temperature as integer, while the value in the
BMS was a two decimal floating point number. As a result, we
convert values to integers, sacrificing some variance. We also
found that physical artifacts do not always correspond one-
to-one to BMS points. For instance we found a light switch
that corresponded to two points in the BMS. Another problem
occurs if BACnet points do not respond to reading requests.
If this happens, we might remove the correct point from our
list of possibilities. To avoid that, we keep points that do not
respond in our list of possible matches.

D. Lessons Learned

The insight we gained over the course of our design
and deployment towards the feasibility and performance of
our approach is threefold. First, using a BMS as basis for
user initiated interaction is feasible as our evaluation shows.
However, we often face technological barriers. The BACnet
read rate is limited. Considering that we are connecting to a
virtual BACnet interface, we suspect a native BACnet to be
even slower. Second, our approach has limitations when we
deal with points that can not be observed directly by humans.
The matching of internal setpoints (e.g., for the control flow
of the HVAC system) is out of scope in our work, as these
points are not directly relevant for many applications. Third,
our matching process is considerably slowed down by a loss
of variance due to different encodings of point values (e.g.,
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on a thermostat display and on the BMS). We currently deal
with this problem by using the lowest common denominator
(e.g., convert to integer).

VI. CONCLUSION AND FUTURE WORK

In this work, we developed and implemented the con-
cept of crowd-sourced metadata maintenance through point
matching for non-residential buildings. Inconsistent metadata
in the building space is a problem that hinders the further
development of cyber-physical applications that are portable
across buildings. Inconsistent metadata is also a problem for
traditional building operations. The introduction of a ESM is
often expensive and requires manual work [14]. The traditional
building commissioning is transforming into a continuous and
iterative process that requires consistent metadata to stay cost-
effective [22].

Our approach of introducing a human-link between the
physical world and the digital point of a BMS works well
in the experiments performed in our building. The current
implementation is limited by the artifacts an occupant can ob-
serve, solving the most relevant metadata problems with regard
to end-user applications. In addition, traditional appliances in
residential homes are steadily replaced by smart appliances. It
is inevitable that these appliances will reach the non-residential
building market during the next years. This plethora of new
devices will be much more interactive for humans and align
itself well with our idea. Ultimately, we envision Babel as a
general approach to metadata maintenance in the context of
IoT.

Looking forward, we see several directions for future work.
The obvious next step is to deploy Babel with actual occupants
of a building to investigate to which extend our approach is an
acceptable effort. Further, gamification is an ideal candidate
for Babel. Ingress is a popular game (7 million players) by
Niantic Labs (Google) where the goal of players is to conquer
geographical areas in the real world by physically visiting
these places (https://www.ingress.com). Combining Ingress’s
approach with metadata maintenance appears to be promising.
Lastly, building commissioning is a process that often is only
completed once when the building is constructed. A commis-
sioning process that is driven by human input could propagate
a continuous commissioning process where occupants keep the
physical state of the building in sync with the digital.
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Chapter 4

Leveraging Physical Locality

In our first contribution, we developed a novel building interface for a building

manager that relies on virtual reality. Our crowdsourced metadata mainte-

nance system Babel allows to run such interface on top of existing building

management systems by creating a consistent metadata state.

In this chapter, we switch our focus to the architectural issues that arise

when off-the-shelf smart appliances are to be integrated in a non-residential

building. We address authentication, authorization and networking issues.

What guides our design throughout the following papers is Mark Weisser’s

vision of ubiquitous computing [15]. We aim to make such smart infrastruc-

ture truly ubiquitous by emphasizing on (i) an easy deployment by building

management and users, and (ii) intuitive and effortless accessibility for current

occupants. This chapter includes three papers.

4.1 Towards a Decentralized BMS

The first paper in this series is titled “Leveraging Physical Locality to Integrate

Smart Appliances in Non-Residential Buildings with Ultrasound and Bluetooth

Low Energy” and was presented at IoTDI’16 [6] and at the SDB winter re-

treat 2016. It describes the design, implementation and evaluation of BLEoT,

a system that makes off-the-shelf smart appliances and sensors available to

users in vicinity using Bluetooth Low Energy (BLE) for networking, and using

acoustic communication to ensure a usable form of authorization. We use the
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user’s smartphones as human-building interaction devices and as opportunis-

tic gateways that enable local and remote networking. Ergo, with BLEoT, we

explore a decentralized approach and user focused design of a BMS.

The main contributions of BLEoT lie in its decentralized system design,

implementation and in the insight of coupling locality with usage. Our sys-

tem is functional outside academia, by relying on off-the-shelf appliances and

unmodified user smartphones.

To make smart appliances ubiquitous, we need to make interaction with

them as simple as for traditional appliances. Authentication and authorization

are often contrary to usability. Many smart appliances for the residential home

rely on the implicit locality provided by the residential LAN. This locality is

not guaranteed in a non-residential building. The LAN might cover multiple

building parts or even multiple buildings. Further, non-residential buildings

(like a university campus) are often characterized by a non-uniform, non-static

set of occupants. Daily visitors are the norm and not the exception like in a

residential home. Smart infrastructure should be available to all building users.

Our insight is thus to explicitly reconstitute this locality by combining BLE

with sound based authorization.

We decouple off-the-shelf smart appliances from their manufacturer cloud,

restricting their communication to BLE through opportunistic gateways in

form of user smartphones. Such a design gives the control and ownership back

to the user of smart appliances. Current off-the-shelf smart appliances are

siloed systems and coupled with the manufacturer’s cloud server, often not for

the benefit of the single user:

Such cloud-centric design does not allow the user to decide what data she

wants to share and what data to keep private. Our architecture enables the

user to keep control over collected data by restraining the flow of data on her

smartphone. Apple’s Health Kit [1] shows that such a design of user controlled

flow of private data is already accepted for health related data in industry. We

believe that this should not only be restricted to health data, but apply to all

personal user data that is collected in the context of IoT.

The cloud-centric design also has serious implications to security. It means

that many smart appliances will be constantly connected to the Internet. The

variety of different Android smartphones is already not being updated fre-
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quently.1 The update frequency and security state for the emerging IoT de-

vices is even more severe (see [10] for an analysis). In our design, appliances

are disconnected when occupants are not present.

BLEoT also shows that many of the factors that smart appliances promise

to improve (e.g., personal comfort, energy consumption) can be solved at a

local context. Device-to-cloud communication can thus in many cases be re-

placed by decentralized, local device-to-device connectivity. In future, we need

to develop trade-offs for the necessary sharing and aggregation of data. Cryp-

tography approaches like Homomorphic Encryption [7] might be a possible

answer to this as systems like CryptDB have shown [11]. Differential privacy,

a statistical approach, might be another approach to it [5].

4.2 Bluetooth Low Energy in the Wild

We choose Bluetooth Low Energy in BLEoT to connect appliances and sen-

sors to the user’s smartphone, because of its low energy consumption, but even

more, because of its omnipresence on current smartphones.2 This omnipres-

ence, together with its single-hop, short-range characteristics, allow a user to

directly interact with devices in her vicinity. Bluetooth 5 was announced re-

cently and is expected to be released early 2017. It promises to quadruple the

range, to double the speed and to increase data broadcasting capacity eight-

fold to further strengthen its applicability for IoT [4]. For these reasons, we

expect that the importance of BLE for IoT is going to increase further in the

near future.

However, during the implementation and deployment of BLEoT, we noticed

erratic and nonuniform BLE behavior on current Android phones and tablets.

As an example, when we implemented our first prototypes in 2014 and 2015,

some smartphone models and Android OS versions required to turn 2.4GHz

802.11 off in order to achieve a stable BLE performance. Fortunately, many of

the most severe issues have been improved with software fixes. Despite of these

1At the point of writing (June 2016), Android Marshmallow is only installed on 10.1%
of all devices (see https://developer.android.com/about/dashboards).

2Apple introduced BLE with the iPhone 4S in 2011 [16]. Since then it has seen rapid
growth and is in practice available on all current smartphones.
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fixes, our experiences led us to investigate BLE performance in smartphone-

peripheral systems.

Much work has been done in analysing and evaluating BLE as a commu-

nication protocol. Kamath and Lindh, Siekkinen et al. evaluate performance

and energy consumption of BLE at chip level (SoCs) [8, 12]. Liu et al. analyse

its discovery process [9] and Silva et al. focus on the interference with other

protocols on the 2.4GHz band [13].

Surprisingly, there exists no “in the wild” evaluation of BLE in a smartphone-

peripheral context. Modern smartphones are complex, multiprocessing ma-

chines. Their internals are at best only partly open (like on Android) or fully

black-boxed (like on iOS). An application developer accesses their functions

through multiple abstraction layers. Further, the actual process scheduling

can only be influenced and not defined by the developer. In the end, the OS

can interrupt, halt or even terminate a process according to available system

resources or to reduce energy consumption. Another issue is the hardware

variance. Manufacturers use different radio chips, different antenna and case

designs.

If smartphones are to become an integral component of IoT and in op-

portunistic, ad-hoc sensor network designs, then the performance of actual

BLE implementations needs to be better understood. This insight will allow

an application to adapt itself dynamically to the oddities of the particular

phones. Such dynamic adaption will make the BLE behavior on smartphones

more deterministic and ultimately benefit embedded system designers, that

are resource constrained with their designs. With BLEva, our second attached

paper, we make a first step into this direction.

BLEva has several contributions: (i) We present a distributed evaluation

framework for BLE on modern smartphones. (ii) We evaluate nine different

smartphone models in our framework. (iii) We present an initial implemen-

tation of a dynamic BLE library that takes the characteristics of different

smartphones into account.

Looking forward, we predict smartphones being progressively used as the

user’s personal tier between low power sensor and actuator infrastructure and

the cloud. As such, the OS will need to provide more deterministic guarantees

to help embedded designers to optimize energy consumption. An approach
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like we showed in BLEva, that adapts to the idiosyncrasies of specific BLE

implementations can facilitate such behavior.

At the moment, we further work on establishing a simple methodology for

cross-platform smartphone power monitoring applying the API only approach

we choose in BLEva. Based on a survey of recent work of mobile based sys-

tems, we discovered that many researchers either externally measure power

consumption at the battery terminals, or use non up-to-date and smartphone

model dependent, software model based approaches. External monitoring is

not applicable for many in the wild evaluations and increasingly unpractical

due to closed case designs. This means, that many current power consump-

tion results are not easily reproducible by other researchers. Thus, we believe

that a reproducible methodology and toolchain for the power monitoring of

continuous, smartphone based sensing and gateway applications is necessary.

4.3 From Physical to Logical Localization

The last paper of this thesis, titled “A Practical Model for Human-Smart Ap-

pliances Interaction”, combines personal smartphone sensors and human-input

to dynamically detect logical relations between humans and smart appliances.

As such, it extends the granularity of the physical, acoustic localization pro-

vided by BLEoT to dynamically enable relative queries of the form “increase

the brightness at my current spot” and similar.

Our work builds on logical localization, taking our inspiration from Sur-

roundSense’s introduction of ambience fingerprinting [2] as alternative to RF

based fingerprinting techniques. In contrast to SurroundSense and others, we

apply logical localization in combination with a modifiable smart environment.

We assume that some rough location context exists. This context could be pro-

vided in various ways: Through an acoustic, room-level based localization like

in BLEoT, through WiFi-based localization (e.g., [3]) or merely through the

physical signal propagation restrictions of BLE or similar RF protocols. In our

system, this context then allows to read local values from sensors and mod-

ify actuators. By combining the possibility of environment modification with

personal sensors (e.g., a smartphone’s light sensor) and manual, user feedback,

we are then able to grade human-smart-appliance relations according their im-
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pact on the individual. This allows for: (i) an optimization of energy efficiency

as a global, building wide goal locally and (ii) for conflict mediation between

disjoint comfort preferences of occupants.

As future work, we want to further investigate systems where humans are

equipped with an increasing amount of different environmental and personal

sensors (e.g., temperature, humidity, pulse). We believe that such personal

sensors are a prerequisite to enable ubiquitous smart environments that adapt

themselves to the individual comfort of the current occupants, eventually tak-

ing the human completely out of the loop. There are also many potential

improvements in the networking and system architecture domain. Our current

room-coordinator can be replaced by direct phone-to-phone communication.

This will be further enabled through improvements in the upcoming Bluetooth

5 standard, like e.g., a much extended broadcasting capacity [4]. We want to

investigate such local peer-to-peer networks and the trade-offs involved in the

resulting distributed design.

Another interesting research direction is to model the different user comfort

preferences and energy efficiency as multi-objective optimization. E.g., Sørensen

et al. applied multi-objective optimization for conflicting requirements in the

context of a greenhouse control system [14].
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Abstract—Smart appliances and sensors have become widely
available. We are deploying them in our homes to manage the
level of comfort, energy consumption or security. While such
smart appliances are becoming an integral part of modern
home automation systems, their integration into non-residential
buildings is problematic. Indeed, smart appliance vendors rely on
the assumption that the Local Area Network (LAN) guarantees
locality and a single unit of use/administration. This assumption
is not met in non-residential buildings, where the LAN infras-
tructure might cover one or several buildings, and where several
organizations or functional units are co-located. Worse, directly
coupling smart appliances to the Internet opens up a range of
security issues as device owners have very little control over
the way their smart appliances interact with external services.
In order to address these problems, we propose a solution
that couples the use and management of smart appliances
with physical locality. Put differently, we propose that smart
appliances can be accessed via smartphones, but only from the
room they are located in. Our solution combines opportunistic
connectivity through local Bluetooth Low Energy (BLE) with an
ultrasound-based method for room level isolation. We describe
and evaluate a prototype system, deployed in 25 offices and
2 common spaces of an office building. This work opens up
intriguing avenues for new research focused on the representation
and utilization of physical locality for decentralized building
management.

Index Terms—IoT; buildings; middleware; Bluetooth; BLE;
ultrasound;

I. INTRODUCTION

Since the late 1990s, researchers have postulated that sen-
sors and actuators equipped with computation and communi-
cation capabilities would become widely available [1]. Today,
this vision has become a reality. Environmental sensors and
smart appliances such as thermostats, light bulbs, power plugs
and locks equipped with short range radios are available in
retail stores. A large part of these smart devices is targeted
at home automation systems. However, there is a case to be
made for the deployment of such smart infrastructure in non-
residential buildings.

Buildings account for roughly 40% of primary energy
consumption in the US and in Europe while we spend more
than 90% of our time inside them [2, 3]. Larger non-residential
buildings are massively instrumented and equipped with a
Building Management System (BMS) under the control of
Facility Management (FM).1 Direct influence of occupants is

1The BMS centrally controls functions like HVAC or lighting.
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Fig. 1. Current Home Appliance IoT State

often limited to few, physical switches (e.g., light switches).
However, various studies show that personal comfort and
energy consumption can be greatly improved by giving oc-
cupants direct personal control and by raising their awareness
of their environment (see e.g., [4]). Likewise, existing BMS
could be greatly improved by gaining more insight through ad-
ditional sensors and by receiving direct feedback from building
occupants [5]. Medium and small commercial buildings on the
other hand are normally run without a BMS [6]. Consequently,
the deployment and federating of a smart infrastructure could
be a cost-effective way to introduce user centric management
in such buildings.

But the current IoT infrastructure does not align with the
paradigms of non-residential buildings. First, despite being
marketed the Internet of Things, the present ecosystem is
characterized by manufacturer silos, with different protocols,
different application gateways and different cloud infrastruc-
tures. Windley describes IoT as “The CompuServe of Things”
[7]. We argue that this problem is even more severe when
such devices are deployed in a business environment like a
commercial building.

In principle, we can currently distinguish between three
different IoT approaches to devices connectivity: (i) a low
power protocol (e.g., ZigBee, ANT, Z-Wave) is integrated with
the LAN infrastructure through a hardware manufacturer appli-
cation gateway, (ii) the device is directly connected to the LAN
(Ethernet/Wi-Fi), (iii) the device connects to a manufacturer
application on the user’s smartphone (see Figure 1).

A first consequence is that users do not have much control
over appliances. Kaspersky Lab referred to IoT as the “Inter-
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net of Crappy Things” [8]. Appliances invisibly communicate
with the manufacturer server, possibly data that the users
might not want to share. The point is that with current IoT
approaches, users have no control over the sharing of data
which might be personal.

Second, the connectivity options presented above directly
expose appliances to the LAN or the Internet. A potential
attacker might thus take over control over appliances remotely,
even when the owner is not present.

Third, the owner is responsible of keeping the software on
all devices up to date, while she must rely on the manufacturer
to provide timely updates for security flaws. Such a system
would become unmanageable in a non-residential building.

Fourth, the setup, deployment and access patterns of current
IoT devices are an ill fit for (semi-) public and shared spaces
like non-residential buildings. After deployment in the LAN,
the user needs to establish a bond (authorization) with an
application—usually on the users’ smartphone—and a cloud
service by the smart device manufacturer. This introduces the
following problems:

• In a residential domain, the LAN guarantees locality. In a
non-residential building, the LAN might cover the whole
building, or even several buildings. The notion of physical
locality is thus lost.

• At home, there is a uniform user domain (residents and
guests). In a non-residential building, the LAN covers
multiple functional units within an organization, and
possibly multiple organizations. Above described setup
process does not allow to configure who has access to a
given smart device in a non-residential building.

• While there might be social tensions within a family to
control the home automation systems, a home consti-
tutes a single unit of administration. In a non-residential
building, facility management, the IT department and
the organizations occupying a given building constitute
multiple overlapping units of administrations.

Put differently, the integration of smart devices relies
on the amalgamation of physical locality and unit of
use/administration. This coupling is implicitly defined by the
LAN domain at home, and explicitly by a password based
authentication. There is no implicit coupling in non-residential
buildings, and the explicit coupling is cumbersome to achieve.

In order to address these problems, we must thus:
1) decouple smart appliances from the LAN or Internet.

We propose to abstract the silo-ed cloud communication
from traditional IoT solutions behind a generic and
opportunistic gateway device: the user’s smartphone.

2) define an infrastructure that explicitly reconstitutes
the coupling between physical locality and unit of
use/administration. Our insight is therefore to leverage
Bluetooth Low Energy together with ultrasound based
data communication to achieve authorization at the gran-
ularity of a room within a non-residential building.

In this paper, we present the design and implementation
of a decentralized system of smart devices (sensor and ac-

tuator nodes) that are only intermittently connected through
smartphones equipped with Bluetooth Low Energy: BLEoT–
The Bluetooth Low Energy of Things. Our solutions makes
smart appliances directly accessible for all users within BLE-
range via smartphone. Authentication and authorization is
achieved through the transmission of a key from smart devices
to nearby smartphones using sound signals above the human
hearing range that work well with off-the-shelf smartphones.
Our solution does not require any changes in the buildings’
IT infrastructure and does not necessitate an extended au-
thorization process. Instead, it requires a simple deployment
procedure managed by facility management and relies on
authentication/authorization that is based on physical locality.

We studied how our design enables the deployment of smart
devices with a prototype system deployed in 25 offices and two
common spaces. Our experiments show that our solution was
easy to deploy, easy to manage and that it opens up intriguing
avenues for new research focused on the representation and
utilization of physical locality in the Internet of Things.

In summary, the main contributions of our work are:
• The design of a solution to the problem of deploying

smart appliances in non-residential building, that com-
bines (i) the use of sound signals above the hearing range
to achieve a secure access of smart infrastructure for
close-by smartphones, and (ii) opportunistic communica-
tion via user smartphones equipped with Bluetooth Low
Energy, that serve as generic links between local smart
infrastructure and the cloud in the context of IoT.

• The implementation and evaluation of such a system in
the scope of 25 offices and two common spaces.

The remainder of this paper is structured as follows. First
we present background and related work. We then describe the
design principles we followed, and overall system architecture
before moving on to the detailed presentation of the two core
components of our system: Acoustic channel and Bluetooth-
based opportunistic gateways. Finally we discuss implemen-
tation and evaluation of our deployment in a non-residential
building.

II. BACKGROUND AND RELATED WORK

The two central components of our solution to connect smart
appliances in a non-residential building are (i) opportunistic
communication via Bluetooth Low Energy (BLE) and (ii)
ultrasound communication. In this section, we present related
work on smart appliances connectivity. We give a short BLE
primer and discuss the use of Bluetooth for opportunistic
communications. Finally, we discuss existing work where
ultrasound is used for managing locality and data transmission.

A. Smart Appliances Connectivity

There has been a number of approaches from industry and
academia focused on connecting smart appliances to home
automation systems. Google is leading a consortium to develop
a networking protocol for IoT called ‘Thread’ [9]. Thread
builds on 6LoWPAN and creates a mesh network of up to 250
devices. Thread is targeting the home market and provides IP
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connectivity to all nodes. Apple recently introduced HomeKit,
a framework for communicating with and controlling smart
appliances [10]. HomeKit is built for the residential market,
performing authentication based on the user’s Apple ID. Our
system distinguishes itself from these approaches by targeting
non-residential buildings, where shared spaces require explicit
coupling between use/administration domain and physical lo-
cality. We do not base our system on a fixed infrastructure like
in Thread or Homekit, which does not scale to non-residential
building, but on opportunistic gateways and self sustaining
nodes.

The Californian start-up Zuli recently introduced BLE en-
abled smart-plugs, promoting a direct smart-plug to phone
connectivity without the detour over a Wi-Fi network [11].
However their design follows a typical vertical vendor inte-
gration and smart plugs do not communicate their state with
each other.

Zachariah et al. presented the idea of using mobile phones
as routers for smart devices in [12]. They present the idea of
using a participatory approach to bringing IPv6 to devices or
to proxy their Bluetooth profiles to the Internet, but do not
follow further with an implementation. With BLEoT, we have
implemented a device bridge that creates Bluetooth profiles
for REST APIs of several off-the-shelf smart appliances and
opportunistic Internet gateways that enable communication
between Bluetooth peripherals and between peripherals and
Internet services.

Many prototypes and demonstrations in academia have been
proposed for smart homes, including [13, 14, 15]. Mozer
states in [14], that deployed smart systems need to inform
users about their behavior. Functioning of devices need to be
transparent to the user. Key challenges for home automation
have further been addressed in [16], where Brush et al. list
the following barriers: high cost of ownership, inflexibility,
poor manageability, and difficulty achieving security. Brush
also name convenience as a primary factor of user acceptance.
With BLEoT, we use these observations as starting points for
our design. Much work remains to be done to identify and
address barriers to adoption in non-residential buildings.

B. Bluetooth Low Energy

We now describe briefly some of the key aspects and limi-
tations of Bluetooth Low Energy (BLE) as they are important
to understand our subsequent design decisions.

In BLE, data is exchanged asynchronously and limited to
a single-hop in the 2.4 GHz band. BLE has two types of
channels, advertising and data channels. If a device needs to
only broadcast data, it can use the advertising channels to
achieve a 1 : n unidirectional communication. Bidirectional
communication takes place on the data channels between a
central and a peripheral device, where peripherals usually
provide services (server role) and centrals access these services
(client role). Services are structured into characteristics that
a client can read from or write to. This is managed by
the Generic Attribute Profile (GATT). Following the publish-
subscribe pattern, clients can get notified of value changes

(notifications/indications). This can be used to push updated
sensor values to clients for instance. The value that can be read
and transmitted from a characteristic at a time is commonly
limited to 20 bytes. Transmitting more than 20 bytes requires
a split into multiple packages and possibly multiple read
requests. A read/write request can only be initiated by a central
device.

Park and Heidemann have shown that Bluetooth can be
efficiently used as a support for data muling. During their de-
ployment in several environments, they note that office spaces
are a specially good fit for opportunistic mobility due to their
dense sensors and long human loiter times [17]. They base
their system on Bluetooth 2.0, using small embedded PCs and
USB dongles. In contrast, our system utilizes custom battery
powered sensor nodes, as well as commodity appliances and
smartphones that communicate using Bluetooth Low Energy.

The recently announced Bluetooth 4.2 has the goal of
establishing BLE as the wireless standard for IoT. It introduces
a new profile enabling IPv6 for Bluetooth [18]. Nordic Semi-
conductor reacted by providing IPv6 over a Bluetooth protocol
stack as well as a prototype of a IPv6 router, implemented on
a Raspberry Pi [19]. Our implementation is not based on IPv6,
instead we are proxying the existing APIs of smart appliances
to native Bluetooth services.

C. Sound for Locality and Data Transmission

Sound signals have been used to achieve both, (i) localiza-
tion/proximity and (ii) data communication.

Madhavapeddy et al. emphasize the adequacy of sound
as a means to manage localization. Especially in buildings,
walls prevent audio signals to be propagate outside a room,
enabling room level localization [20]. Priyantha et al. have
established the use of concurrent radio and sound signals to
infer distance [21]. Borriello et al. then uses a combination of
sound modulation and Wi-Fi networking (as communication
channel) to achieve room level localization [22]. Finally, Lazik
and Rowe use chirps in the ultrasound range to achieve
localization [23].

Sound modulation for data communication has been studied
extensively. Madhavapeddy et al. give an overview of using
acoustic communication for both long range (telephone line)
and short range (3m). For inaudible sounds (OOK on 21.2kHz
carrier), they achieve 8bps [24]. Gerasimov and Bender ex-
plore different data encoding schemas for acoustic data trans-
mission (echo coding, PSK, FSK and impulse coding) both
in audible (5.5 kHz) and inaudible (18.4 kHz) frequency
ranges. Their implementation works well for transmitter-
receiver distances of up to 2m. Their maximum data rate is
3.4 Kbps when using multiple-level B-FSK in the 18.4 kHz
range [25]. Nandakumar et al. propose a system to replace
NFC communication with a secure, short range, sound based
protocol that works in a range up to 20cm. Their operating
bandwidth is 1kHz in the range of 6-7kHz. Their system relies
on orthogonal frequency division multiplex (OFDM) with
binary and quadrature PSK modulation for digital modulation
and achieves 2.4Kbps [26]. Lee et al. develop an aerial
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acoustic communication by adopting chirp signals for digital
modulation [27]. Their system works from 19.5-22kHz and
achieves 16bps on a range up to 25m, while relying on a
backend server to overcome the low data rate. Lopes and
Aguiar develop a modulation schema that works in audible
frequencies, but is more pleasant for humans by emulating
sounds that humans are used to, like the ones of birds. They
mention a data rate of 100-1000bps, but do not discuss the
maximum range of their design [28].

In BLEoT, we are building on the experiences developed in
aforementioned work. We achieve room locality through sound
signals in the ultrasound range. We also use these signals to
transmit an alternating key to close-by smartphones. We thus
directly couple device access with physical access.

III. DESIGN PRINCIPLES

In this section, we discuss the principles that underlie the
design of the system that we call BLEoT. These principles
are articulated around three key requirements when deploying
smart appliances in a non-residential building: security, ease
of use and decentralized control.

A. Security Model

Our security goals are twofold. First, we want to ensure that
only valid users are able to access smart devices. Second, we
want to limit the possibility of a remote attack on the smart
infrastructure. The assumption in our security model is that
we trust the smartphone devices.

To ensure that only valid users can access devices, we
couple their authorization with physical locality. The local
coupling of acoustic data transmission and authorization maps
thus physical authorization with digital authorization. Put
differently, if a person has physical access to a room, we
assume that she also has access to devices in that room. This
is analogous to a person being able to switch the light in a
room using a physical switch. This assumption is consistent
with the security model of the physical space.

B. Deployment

Heavy deployment overhead has been one of the major
challenges for smart systems and home automation in the
past [16]. A key motivation of our work is to enable a
quick and possibly temporary deployment of sensors and smart
appliances in a large number of shared spaces. Ideally, neither
facility management nor the IT department are involved in
the deployment of smart appliances. Users should be able to
(i) deploy smart appliances and make them available, and (ii)
access any smart appliances they get close to.

A key aspect of our system is the definition of a common
interface that abstracts existing devices. Devices are only
able to communicate via that interface through the user’s
smartphone.

C. Decentralized Control

Deployed smart appliances and sensors need to follow a
decentralized control logic, where operation does not break
down with a connection loss to a central control unit.

Traditional Building Management Systems are usually fol-
lowing a three-tier model of management, automation and field
level. At the lowest level, sensors and actuators communicate
through a field bus (digital serial data bus) with each other and
with control devices of the upper automation layer. Communi-
cation at the automation and management level usually takes
place over LAN. Automation can happen locally via a direct
coupling of sensors and actuators (occupancy and light), on the
automation level (via direct digital controllers (DDCs)) or on
the management level (building automation control computer)
[29].

These layers of communication and control enable a build-
ing to be operated even when communication between local
controllers and the central BMS computer breaks down. E.g., a
direct coupling of a temperature sensor and a thermostat will
be operational even in the absence of the centralized BMS.
This approach to fault tolerance has been proven successful
during several decades of building automation. A system of
smart appliances and sensors should also be based on local
control capabilities that do not require permanent connectivity
with a central server.

Our design, based on opportunistic connectivity, pushes this
logic and reverses the assumption: sensors and actuators are
not connected to the upper automation layer unless a user
with a smartphone equipped with the appropriate app enters
the room where they are located.

IV. DESIGN OVERVIEW

BLEoT aims to provide secure and usable access to smart
appliances in non-residential buildings. BLEoT replaces exist-
ing manufacturer stovepipes with a gateway design. Edge-to-
cloud data exchange becomes more visible and controllable
by the user, via their smartphone.

A. Architecture

BLEoT consists of a loosely coupled three-tier architecture
that uses opportunistic gateways to connect IoT devices with
each other and with the cloud (see Figure 2). Locally, nodes
act as BLE bridges for sensors and smart appliances. They
advertise their service and state periodically via BLE. Nodes
that bridge actuators contain a second, acoustic communication
channel in the form of ultrasound. This channel is used to
transmit a periodically changing key (e.g., every hour) that
is required to access actuator capabilities on a node (see
Figure 3). As such, we achieve a room level authorization
based on the attenuation of sound waves by walls and doors.
Nodes do not directly connect to each other or to remote
services (e.g., the manufacturer cloud web service), but rely on
opportunistic gateways—in form of smartphones. Using their
BLE-enabled smartphone running BLEoT as gateways, users
can interact with the environment (e.g., switching the light) in
a room they enter and to read local sensor information (e.g.,
temperature).

All nodes are equipped with a Bluetooth radio, and some
computation and storage capabilities. Nodes that connect to
actuators are also equipped with a speaker. Nodes can connect
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to any sensor and actuator. We have for instance implemented
several prototypes of native sensor and actuator nodes (see
§VII). However, most importantly, our design allows to inte-
grate various off-the-shelf smart appliances by bridging them
from their native technologies and protocols to BLE services.
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Fig. 3. Sound Based Authorization Process

V. BLE-BASED SMARTPHONE: A GATEWAY TO RULE
THEM ALL

This section discusses the design of our BLE based oppor-
tunistic gateway infrastructure. We describe how we abstract
off-the shelf devices to a BLE interface and how we define
the protocol that allows node-to-node and node-to-cloud com-
munication.

A. Bridging IoT Devices

We abstract off-the-shelf smart appliances through a bridge
to a BLEoT Node. Current off-the-shelf smart appliances
provide different technologies, physical layers and APIs for
access and are vertically integrated. Further, they do not always
provide open and documented APIs.

Luckily, this problem of integrating several incompatible
technologies, physical layers and (closed) APIs has been
recognized and investigated earlier. Research projects as well
as efforts originating in the open source community deal with
their integration (e.g., [30, 31, 32]). BLEoT is building on the
domain knowledge and technical insight gained in previous
work (namely sMAP [30] and FHEM [31]). Both projects
provide a rich repository of drivers for several existing IoT
devices and the capability to write new ones. Such a device
driver implements the specific protocol of the device and maps
the device’s functions to a local REST interface. Finally, this
REST interface can then be accessed by applications inde-
pendent of the device manufacturer interface (e.g., openHAB
provides a UI application for residential homes [32]).

With BLEoT, we extend the current practice of REST
integration by adding the capability of making that interface
available locally via BLE to clients in proximity.

TABLE I
BLEOT LOCAL SENSOR SERVICE

Characteristic Access Example Description
Requested
value

Write ed0000ff Value of requested lo-
cal sensor value.

Taking the limitations of BLE into consideration, we have
implemented two different approaches: (i) We simply tunnel
the REST interface though BLE and (ii) we create native BLE
services for each smart appliance.

While the latter approach (ii) seems like the better choice –
because it is free of the HTTP overhead–, it causes difficulties
when the set of smart applications connected to a bridge
evolves in time. The commonly used Bluegiga BLED112
dongle requires for instance a reprogramming via USB DFU
using a proprietary Windows-only update utility that writes a
licence key on the chip. So we prefer the former approach
(i). By tunneling the rest interface over a RX/TX pipe which
we implement as a service on the BLE dongle, we achieve
a generic interface. Standardized metadata that exists on the
local REST interfaces becomes available on the smartphone
client.

B. Common Interface

The interface between nodes and gateways consists of
data communication taking place in pure advertisement state
as well as communication taking place when a gateway is
connected to a node.

1) Gateway Services: Each node exports BLEoT gateway
services. Each service has a number of BLE read and write
characteristics. Gateways access these services when a node
forwards a request through its advertising message.

Table I shows the our service that allows basic node-to-node
state transfer. A peripheral requests a sensor value from a de-
fined set of abstracted types (e.g., temperature, humidity, CO2

etc.). Opportunistic gateways serving that request will then
directly write that value to the Requested Value characteristic.

Table II shows these characteristics for the BLEoT HTTP
Service, while demonstrating a typical data offloading task
that we implemented in our deployment. A URL characteristic
provides the resource in form of a URL, while the HTTP
method and payload are provided by other characteristics.
Our specific payload for offloading sensor data consists of
the sensor value (using IEEE 754 floats) and the sequence
number of the measurement. Two writeable characteristics
allow opportunistic gateways to acknowledge success in form
of HTTP response codes and possibly write back the result in
form of a HTTP message.

2) Advertisement Protocol: BLEoT nodes advertise their
state, as well as requests for gateway services, regularly using
a defined format on the advertising channels. This allows a
1 : n unidirectional communication between a node and close-
by gateways. The data structure of the BLEoT advertisement
can be seen in Figure 4. All data, necessary to populate a User
Interface (UI) on the smartphone is encoded in the payload
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TABLE II
BLEOT HTTP SERVICE

Characteristic Access Example Description
URL Read 130.226.142.

195/api/bleot/
addreadings

URL for the HTTP
request.

HTTP method Read POST HTTP method to use.

Payload Read ed0000ff81ff
... 81ff0100

Payload for the HTTP
request.

HTTP
response

Write 201 HTTP response
codes.

Message body Write not used HTTP message (e.g.,
new configuration).

together with state and service request information for the
gateway service:

• The Manufacturer ID allows to distinguish BLEoT
Nodes from other BLE devices.

• The Human Readable Location enables a direct display
of the node’s location in a UI without requiring any
remote connection. This makes each of our smartphone
applications usable on every building.

• The Service Request allows a node to request of gate-
ways to perform a HTTP service or local service in its
behalf.

• A Misc flag encodes several information in binary: bat-
tery level, sensor/actuator and the expected length of a
service request.

• The current State of the node is encoded as a IEEE
floating point number (e.g., current sensor value).

• The Coordinates flag abstracts common placements of
nodes in a room (e.g., ceiling, outside etc.).

• ID gives a node a unique ID inside a building scope.
The Bluetooth standard restricts BLE advertisement packets

to 24 Bytes. This limits the maximum length of the dynamic,
human readable location string to 11 Bytes in our protocol.
But it is sufficient for representing a typical “building, room
number encoding” (e.g., ITU4D21, SODA410 to the user.

Manufactor 
ID Location Service 

Request Misc Type State Coordinates ID

0xDDDD 34443230 00 01 2A 04 550100FF 04 7000

max total = 24 Bytes

To identify 
BLEoT Nodes

ASCII, variable 
length, Null 

termin.
Type of 
Request

Buffer/Battery 
Level, Sensor/
Actuator flag

Temperature, 
Humidity, Light 

etc.

Sensor 
Actuator State 

(IEEE Float)
Inside, Outside, 

Floor etc.
Building unique 

Node ID

0xDDDD 
identifies 

BLEoT Nodes
4D20 Internet Service

001010 -> 
100-10 = 90% 

Battery
1 -> Long 
Request

0 -> Sensor

Humidity 34.1% Ceiling Node with ID 
7000

16 Bit max 88 Bit 8 Bit 8 Bit 8 Bit 32 Bit 8 Bit 16 Bit

Fig. 4. BLEoT payload

The example payload in Figure 4 shows how we use the
protocol described above for one-to-many communication. The
depicted node is located in the ceiling of room “4D20”. The
location is ASCII encoded, which allows direct display in a UI

application. The node is currently requesting Internet services
from gateways, its battery level is at 90% and the service
request it has will take relatively long time for the gateway
to complete. We have divided service requests in long and
short lasting requests. Currently, only data-offloading is a long
lasting request. This allows a gateway to utilize its inbuilt
location service to decide if it should accept such a request
(person is sitting at his/her office and phone does not move)
or not (person is walking the hallway). Lastly, the exampled
node is advertising a humidity sensor value of 34.1%.

C. Deployment Processes and Configuration

We expect that BLEoT Nodes will be mostly deployed
by building users. Hence we can not expect that deployment
requires a technical background with a deep understanding of
Computer Science or the operation of a BMS. Our current
implementation of the deployment and configuration process
reflects this:

1) A user places the BLEoT node at the deployment
location and pushes the configuration button on the node.

2) In the configuration tab of our smartphone app, the
node is now shown ready to be configured. When
connecting to the node we establish a bond, storing a
long term AES-CCM 128bit key on the node and the
smartphone. This key is necessary when a node needs
to be reconfigured.

3) The user defines location (building, floor no. and room
no.) and further narrows it down by choosing from
predefined coordinates associated with that location
(ceiling, floor, outside...). She then configures each
single sensor and actuator of that node. For sensors,
she can enable data-offloading, set sample, advertising
frequency, buffer threshold and signal strength or leave
them at their default. For actuators, she is able to define
a generic control in the form of a default schedule for the
space. In practice these are things like defining actuator
set points for daytime and night-time, for weekdays
and weekends. If there is no user in the space, then
these settings will define the behavior of the space. To
adjust the acoustic channel to the size of the space,
we implement an adaption procedure, where the user
moves at the room border and sound volume is adjusted
to the quality of the received signal—now the node is
operational.

The setup of off-the-shelf, smart appliances is slightly
more complex. Before the above process, a BLEoT bridge
is configured that connects all these devices and forms a BLE
access point in form of a BLEoT node. Only then can the
node be configured as usual.

Our design allows for an update of node configurations
through opportunistic gateways. The node advertises on a
regular basis its request (in the form of a HTTP service
request) to get a possible new configuration. The gateway gets
the configuration from the provided remote server and writes it
back to the node. The message is encrypted server side using
the AES-CCM 128bit keys that have been generated during
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the first bond with the smartphone of a trusted deployment
person.

VI. ACOUSTIC CHANNEL

The acoustic channel between smartphone devices and
BLEoT nodes implements room level authorization. As a
requirement, our system must be capable to operate in indoor,
(semi-) public spaces. BLEoT’s correct operation depends on
the acoustic channel as a physical medium. First, indoor spaces
contain some level of ambient noise that causes interference
to any acoustic communication. Second, indoor environments
cause sound signals to echo from walls and other obstacles.
The resulting multipath propagation represents another chal-
lenge. Finally, our requirement is to operate above the human
hearing range and with off-the-shelf devices (smartphones).

A. Ambient Noise

Ambient noise differs on the type of indoor location. We
categorize spaces into (i) smaller, delimited spaces like offices,
(ii) spaces in which people pass through, like hallways and
(iii) spaces of gathering (meeting rooms, cafeteria), where the
ambient noise is expected to be higher. To qualify their noise
level, we have taken sound samples on different periods of the
day.

As our requirement is to work above the human hearing
range, we pay special attention to ambient noise in higher
frequencies. These might be due to the influence of high
frequency sounds like those commonly emitted by switched-
mode-power supplies. In Figure 5 we plot the Power Spectral
Density (PSD) for different locations on our campus. The data
was recorded using a portable USB condenser Microphone
(Samson Go Mic). As can be seen, regardless of the environ-
ment, high spectral power can especially be observed up to
around 6000kHz. High frequencies are not critically affected
by ambient noise.
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Fig. 5. Indoor Ambient Noise

B. Frequency Selectiveness

The human hearing range differs from person to person
and depends on the applied audio pressure. Previous studies
come to different results, reaching from a maximum of 19-
20kHz ([33]) to 18kHz ([34]). Modern smartphones usually
have an acoustic sampling rate of up to 44.1kHz, leading to

a maximum frequency of 22kHz in theory. However, smart-
phone microphones are usually quite frequency selective and
optimized for human voice frequencies (see e.g., [26]). We
conducted experiments with several commonly used smart-
phones by playing a wide, linear chirp over the full frequency
range (up to 22kHz). To minimize side effects of a non-flat
speaker frequency responses, we used a studio monitor speaker
(Audioengine 5+). Figure 6 shows our result for calculating
PSD after Welchs method for several smartphones and tablets.
As can be seen, the frequency selectiveness depends on
device type and frequency. Higher frequencies contain a wider
variance, but most devices are capable to record up to 21-
22kHz. The result corresponds to the results obtained in [23]
and [27].
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Fig. 6. Frequency Selectiveness

C. Generating the Signal

Our ambient noise experiments (see VI-A) have shown
that high frequency ranges show little to no disturbance by
ambient sounds. The sensitivity of smartphone microphones
show however a high variance between models (see VI-B).
Due to the high frequency selectiveness of smartphone micro-
phones, we disregard any Frequency Shift Keying (FSK) based
modulation schemas. Phase Shift Keying (PSK) schemas on
the other hand perform bad in time-varying, fading channels
like the acoustic channel [35]. We therefore follow the insight
gained in [23] and [27] to use chirp signals for binary acoustic
communication.

Compared to the time-invariance of FSK and PSK, a chirp
signal varies its frequency over time. A chirp is a signal
that linearly increases (up-chirp) or decreases (down-chirp) its
frequency between two frequency ranges (see Figure 7). Chirp
signals have been used extensively in sonar and radar appli-
cations. In the context of frequency selective microphones,
a chirp signal has the advantage to use the same frequency
range for up- and down-chirps. This means that both chirps
are affected in a symmetric way.

Linear, up- and down-chirps are defined as follows:

s1,2(t) = sin

[
φ0 + 2π

(
f0t+

f1 − f0
2T

t2
)]

(1)
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Fig. 7. Up- and down-chirp signals between 50 and 300Hz and over a time
interval of 0.2s.

Where:

• f0 is the starting frequency.
• f1 is the final frequency.
• T is symbol duration.
• φ0 is the initial signal phase at t = 0.

Applying Equation 1 directly for modulating the signal
results in a human perceivable clicking noise at the begin
and end of the signal. This is due to the instant shift into
high frequency ranges [23]. To remove this clicking effect we
simply apply each chirp signal with a Hann window. Error
detection is achieved by transmitting a parity bit at the end of
the message.

To avoid multipath interferences, we add 50ms guard inter-
val between symbols. We set our symbol duration to 100ms
as our system is not expected to transmit longer messages
via sound, but a small secret to allow clients to authenticate
themselves with the BLEoT node. This results in a data rate
of 7bps.

Acoustic power decreases by the square of the distance
from the transmitter. This makes a one-fits-all power setting
difficult. Ideally, the signal power changes with the receiver
distance in a room. We therefore make use of the Bluetooth
channel to achieve a more adaptive sound transmission by
using RSSI at the transmitter as a coarse estimator.

RSSI roughly relates to distance as follows [36]:

RSSI = −10n× log10(d)−A (2)

Where:

• n is the signal propagation constant.
• A is received signal strength at 1m distance (dBm).
• d is the distance between sender and receiver (m).

We experimentally define n and A for our combination of
radios and indoor environment by taking RSSI measurements
every meter from 1-25m. With A = −59.947, we then
calculate n by inserting A in Equation 2 using the values from
each experiment sample. This resulted in an averaged value of
n = 2.772.

In the transmitter, we then multiply the signal power with
the squared distance estimation.
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Fig. 8. Decoding 101 signal by convolving with the time reversed chirps.
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D. Receiving the Signal

To decode the signal at the receiver, we apply a combination
of convolution and peak detection. We generate both, up- and
down-chirp signals, time reverse them and convolve them with
the received audio signal. We pad the signal with 0s to achieve
a complexity of N ∗ logN for FFT. After converting back to
the time domain of the signal, we then perform peak detection
on both results (received signal convolved with up-chirp and
down-chirp). By merging both sets of detected peaks, we can
then sort the values by time and thus decode the message.

Figure 8 shows a signal of 101 and the result of its
convolution with the reversed chirp signals.

VII. SYSTEM IMPLEMENTATION

We design and build custom nodes that connect sensors and
actuators as well as a node that simply provide a Bluetooth
bridge for off-the-shelf smart appliances.

The custom BLEoT nodes are implemented using the Octo-
ber 2014 revision of Nordic Semiconductor’s nRF51822 SoC.
It features a 32-bit ARM Cortex M0, 256kB of flash storage
(of which the Bluetooth stack requires 80kB), 32kB of RAM
and a 31-pin GPIO mapping scheme for analog and digital in-
and output. We have designed and implemented several types
of sensor (motion, temperature, humidity, light) and actuator
(AC relay with Hall effect current sensor) boards using the
nRF51822 (Figure 9 show our sensor nodes). The bulk of
sensor nodes runs from a single 3V coin cell battery of type
CR2450 which comes with a capacity of 620mAh.

Our IoT bridge is implemented using a Raspberry Pi Model
B with a Bluegiga BLED112 dongle and a single, active
speaker. The programmable dongle makes it a connectable
peripheral device. We have experimented with several smart
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appliances. Our current deployment relies on Philips Hue light
bulbs as personal desk lights, HomeMatic radiator thermostats
to allow thermal changes and HomeMatic for switching arbi-
trary appliances. The Philips Hue lights rely on Z-Wave as the
communication protocol, while the HomeMatic appliances use
a proprietary protocol on the 868MHz band (BidCos).

A. Gateways

We implement opportunistic gateways in the form of an An-
droid background service that is bundled with a UI application
allowing users to control and sense their local space.

Once the application is started, the background service boot-
straps necessary functionalities and maintains a global state. It
relies on a fixed thread pool executor that will drive a number
of internal threads concurrently. A “packet interceptor” thread
is cyclically scanning for BLE advertisement packets, which
then are handled by a “packet handler” thread that notifies
observers (the UI) in case a valid BLEoT packet with new
data is available. If the packet contains a service request flag,
the thread will create a special “Service-Thread” and add it
to the pool. This thread will indicate its accept of the service
request by establishing a connection to the node and initiating
the demanded request (e.g., data offloading its historic values).
A “packet cleaner” thread is further removing dated packets
(currently after 90s) and notifying the observers. This makes
sure that possible occupant movement is reflected in the UI.

B. Cloud Web Services

We implement several Web services that nodes can access
via opportunistic gateways: (i) data-offloading that allows
nodes to offload their buffered sensor data, (ii) configuration
retrieval to update a node’s configuration. Both are imple-
mented in Go (https://golang.org). The off-loading service
takes POST requests that contain as their payload a node’s
buffered sensor data. Sensor data includes a sequence number
for each sample that enables the logic on server side to
calculate time stamps backwards, based on the known sample
frequency. We plot historical sample data and make it accessi-
ble for other applications. The configuration retrieval service
provides a new configuration for the node after a GET request
is issued. Both services are protected by per node unique
symmetric keys that are created when a node is deployed for
the first time.

VIII. RESULTS

We deployed our system in 25 (mostly shared) offices, two
hallways/meeting rooms and a kitchen area at our university.
The facilities consist of a long hallway with offices to the left
and right. Meeting rooms are integrated in the hallway itself
(see Figure 10).

We conducted experiments with BLEoT, as described in
§VII, with various Android devices. Performance results var-
ied. In the following, we show the results obtained with two
devices that illustrate the breadth of the performance spectrum:

   1
4

1

   
2/3

2

3    4

Fig. 10. Deployment with BLEoT nodes (circles) and experiments setup

(i) the Motorola Moto E smartphone and (ii) the Google Nexus
7 tablet.2

The most important performance measures are latency (for
acoustic transmission and BLE), the performance of oppor-
tunistic gateway services (we evaluate data offloading as an
example service), energy consumption (on battery powered
nodes and smartphones) and finally the capability of our design
to achieve a sound based room isolation. We conclude with a
discussion on security aspects and a qualitative placement and
discussion of our work.

A. BLE Channel

1) Latency: Several latency metrics are relevant for our
work. Latency of actuation and the retrieval of local sensor
values (state) is important to end-users (humans are able to
perceive switching delays greater than 100ms [37]). The la-
tency of opportunistic gateway services is ultimately important
for the working of our system: If the state of a node drifts
too far away from the state of its environment, its data might
become irrelevant; if it is not able to offload its data, then data
might be lost.

Our experiments have shown that latency of state transmis-
sion through advertisements depends heavily on the specific
smartphone and on the advertising interval that has been
chosen on the nodes. Figure 11a shows a growing latency
as a result of a growing advertising interval. The standard
deviation for the Nexus 7 is much higher than the Moto
E.3 Due to these erratic results between different devices, we
suggest to set the interval to a maximum of 3s, which in our
tests has been sufficient to keep the maximum latency between
advertisements below 8s while still preserving battery.

Further, we measured the experienced latency when actuat-
ing bridged, off-the-shelf smart appliances. It took on average
0.6s to discover a new BLEoT node (with advertising interval
set to 30ms). It then takes 3.74s to receive a 16bit key via the
acoustic channel and the services of the node. Now, actuation
can be done relatively quick. We measured the overhead
introduced by our system in the range of 70 to 130ms. Node
discovery and service retrieval only needs to be performed
when a user enters a space for the first time. Afterwards,
actuation occurs timely.

2See http://www.motorola.com/us/smartphones/moto-e-2nd-gen/moto-e-
2nd-gen.html and http://en.wikipedia.org/wiki/Nexus 7 (2013 version)

3The unpredictability of the Nexus 7 seems to be a known problem in the
Android community without a fix (https://code.google.com/p/android/issues/
detail?id=65863).
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Fig. 11. Energy Consumption and Receiver Latency for Advertising.

The latency introduced by a opportunistic gateway (node-
to-cloud and node-to-node) depends mainly on its availability.
We have not yet performed an evaluation with an extended user
base (n > 10). However we argue that the need for a gateway
is highest when people are actually occupying a space. If
a space is not used, it can be run in a default, unoccupied
schedule. Data offloading can become critical during times
of holidays. The maximum available flash storage of 156kB
on our implemented sensor nodes allows for the storage of
194500 sensor values (8 bytes each). A node with a single
sensor and 1 minute sample period will be able to persist
values over a period of more than 16 days. This is in many
cases sufficient for longer unoccupied periods.

2) Data Offloading: Data offloading is a data intensive
service. We conducted experiments both, right next to the
offloaded sensor node and at a distance of approx. 20m.
3258 sensor values were offloaded for 10 re-runs, tak-
ing 82msec/value on average for the close offloading and
100msec/value on average for the 20m distant sensor node.
Moving the gateway further away from the sensor node
resulted in connection dropouts.

These results fit well with our deployment in an office
space in a university building. It takes around 5 minutes
to continuously offload 3258 values. This seems much, but
it does not worsen general operation due to the long loiter
times in office spaces. When deploying our system in another
context, buffer threshold needs to be adjusted to the specific
environment and its occupation model.

B. Energy

We evaluate energy consumption for our battery powered
sensor nodes and for the opportunistic gateway services.
Energy consumption is mostly relevant for BLEoT sensor
nodes that run from battery. Nodes that bridge off-the-shelf
smart appliances are connected to the mains.

Our test equipment consists of a digital oscilloscope (Rigol
DS1054Z) that we combine with an op-amp circuit to amplify
a voltage signal at a small burden resistor. Due to the spread
in consumption of BLE (from a few µA during sleep to 15mA
during peak current when transmitting), we are using different
burden resistor sizes (1Ω for higher currents and 1000Ω for
sleep currents). Together with our amplification circuit of

factor 100, this gives us a range of 0− 20mA and 0− 20µA
for respective resistors.

We have measured consumption for the main operational
events of our nodes. Figure 11b shows averaged results of
100 broadcasting and payload changes. The energy spent on
payload changes is independent on TX power. Energy con-
sumption for sensing is mostly defined by the specific sensor
type and we thus omit it here. However persisting a value to
flash is independent of the chosen sensor. We have measured
that storing a single measurement requires 5.9µJ. An important
event for our opportunistic design is node data collection by
a gateway. In such a case nodes are transferring relatively big
amounts of data in chunks of 22 bytes BLE data packets.
A single connection event takes on average 3.05s with a
consumption of 1.11mJ/s. This adds up to a total consumption
of 3.39mJ for establishing a connection. The consumption
for offloading the data depends on how full the buffer is.
Our offloading mechanism uses Bluetooth indications, which
allow GATT servers (peripherals) to push new values to the
client (central device) without the need of poll requests by
the client. We have measured 0.21mJ per indication. As one
data packet in an indication fits two of our measurement data
structures (8 bytes each), we end up with around 0.1mJ per
transmitted measurement. For transmitting n measurements
the consumption model thus becomes: 3.39mJ + n · 0.1mJ.
A sensor node with a single sensor, a sample frequency of
1min and advertising frequency of 3s will thus run well over
a year from a single CR2450 battery.

To evaluate the impact on smartphone energy consumption,
we use “GSam Battery Monitor”. We run our gateway service
for a period of one week on the Motorola Moto E. This
resulted in a battery impact of 14.8% on the phone’s battery.
During this time, the phone was offloading 68424 sensor
values to the backend. We expect that the battery impact of
such applications will drop in the near future, as Bluetooth
connected devices become ubiquitous and hardware and OS
support is being optimized for it. Further, to incentivize the use
of our gateway service, we allow users to decide if the service
should only be active when the UI application is in forefront.
Our experience has shown that the power consumption is then
mainly determined by the display.

C. Acoustic Channel

We now look at the performance characteristics of the
acoustic channel.

1) PRR and Distance: To evaluate the Packet Reception
Ratio (PRR), we transmit a message of 52bits from different
distances (every 1m, from 1 to 10m) at different locations.
Figure 12 shows the result doing this experiment in our section
hallway (see Figure 10, No. 1) an open space (our university’s
atrium) and a shared office (No. 2). In open space we reach
30m before PRR drops substantially due to signal overlappings
introduced by multipath (see Figure 13). In the hallway, these
overlappings occur much earlier (around 16m). We can cover
the 18.5m2 office fully with our signal. Extending the range
is possible by increasing the guard interval between signals.
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Fig. 13. Multipath effect on a signal at 40m distance.

Initial experiments when doubling the interval show that our
approach can reach > 40m, which is more than the authors
in [27] have achieved.

2) Room Isolation and Multipath: The main purpose in
our design of using an acoustic transmission channel is to
achieve isolation which we then map to device authorization.
To measure the effectiveness of this isolation, we perform
experiments with different pathways between transmitter and
receiver (see Figure 10: No. 2, 3 and 4). Our experiments
show that the acoustic channel easily covers the whole room,
while a device listening at the wall and door, outside of
the room is not able to pick up the signal. We successfully
tested room isolation with different materials commonly used
in buildings (concrete, wood, glass and polymer). An open
door however, makes the signal available. To minimize this
effect node configuration can be introduced to adjust the signal
power to the room size. An attacker with a device with a high
gain amplifier is however still able to pick up the signal.

D. Security Analysis

We use the concept of physical locality to authorize local
actuation and access to sensor data. By basing access on
locality in the physical world, we move the challenge of
achieving a secure system out of a pure software implemen-
tation and into the physical security of a space. Security
is therefore mainly dependent on how access to that space
is controlled. Acoustic waves do not stop at open doors or
windows. This means that our system further depends on the
structure and location of a space.4 Security also depends on the
social structure that is prevalent. Are occupants likely to fiddle
with other’s instrumentation? During our deployment, one
individual was occasionally actuating other’s instrumentation
as a friendly joke. Studying such scenarios in the context of
a larger deployment is future work.

4E.g., A ground office is different than an office on the top floor.

We use symmetric encryption to exchange data between
nodes and Web services, via smartphone gateways. Keys are
created and exchanged when a node is deployed. During the
deployment phase, local sniffing attacks might be conducted.
After keys are exchanged, we depend on the security of
the AES encryption. Mitigating the attack window during
deployment is difficult. Nodes would need to have extended
human input capabilities to enter a code directly on the node.
Because of the short attack window and the exclusively local
scope of the attack, we consider it a manageable threat.

IX. CONCLUSION

The BLEoT infrastructure is a first step towards integrating
smart appliances in the context of non-residential buildings.
Using ultrasound as a means to establish physical locality,
BLEoT makes it possible to deploy and access smart appli-
ances within non-residential buildings. Our results show that
this approach is technically viable. Much work remains to be
done to explore how BLEoT could complement an existing
Building Management System (and possibly replace BMS in
small buildings). More specifically, the key issue left as future
work is the study of centralized building operation based on
instrumented spaces that are only available when occupied by
users with smartphone gateways.

In future work, we want to install our BLEoT sensors around
the campus to perform larger user tests, to experiment with the
acceptance of our system and to measure actual data loss due
to the uncertainty in the system. We further want to experiment
with the (temporary) deployment of sensors to improve the
actual BMS of our campus.

Another interesting research area is to study how peo-
ple will behave when they have the possibility to control
smart appliances via smartphones. Having a larger installation,
we will be able to evaluate to which extend an adaptive
environment actually helps to increase comfort and reduce
energy consumption. We want to compare an adaptive, user
controlled setting with a central, model based system in terms
of consumption and comfort.
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ABSTRACT
Despite its growing significance as a short-range, single-hop
protocol for phone-to-peripheral communication in the con-
text of IoT, the system performance characteristics of Blue-
tooth Low Energy (BLE) are not well understood. Existing
performance studies focus on BLE peripherals, but not on
overall smartphone-peripheral systems. Unlike peripherals,
smartphones are complex, multiprocessing systems with dif-
ferent radios and IO capabilities. Their architecture and im-
plementation is at best partially open, like on Android OS.
Application developers can only access low-level function-
alities through multiple layers of OS and hardware abstrac-
tions. Therefore, we designed and implemented a simple,
portable and scalable benchmarking framework for evalu-
ating BLE performance on smartphones. We propose sev-
eral microbenchmarks derived from two common BLE ap-
plications, for which we perform an extensive evaluation
on a variety of modern smartphones. Our evaluation char-
acterizes existing devices and gives new insight about pe-
ripheral parameters settings. We derive the need for a dy-
namic, model-dependent setting of BLE parameter patterns
on smartphones. Our initial implementation of such a library
shows much improved results over the default BLE imple-
mentation on Android, improving PRR of advertisements up
to 20-fold for some models and mean iBeacon accuracy by
2m.

1. INTRODUCTION
Marc Weiser’s vision of ubiquitous computing, for-

mulated twenty years ago, has finally become a real-
ity. We can all use our smartphone to interact wire-
lessly with smart devices in our surroundings. A core
enabler technology for the realization fo this vision is
Bluetooth Low Energy (BLE). BLE allows an energy
efficient, local data exchange between smartphones and
power, computationally constrained devices, enabling
new, user-centric, cyber-physical applications.

BLE is a single hop, short range communication pro-
tocol, adopted into the Bluetooth Core Specification 4.0
in 2010. Since then, it has experienced rapid growth
due to its tight bond with the fast growing smartphone
market. Today, most smartphones support BLE and

make it available to developers through high level SDKs.
There are now billions of devices with BLE connec-
tivity in application areas such as proximity sensing
(iBeacons), fitness/sport tracking (e.g. Fitbit, smart
watches), healthcare and smart home [5].

Despite its wide adoption, the performance charac-
teristics of BLE systems are still largely undocumented.
This leads to erratic application behaviours and under-
utlisation of resources. Existing research has focused
on (i) the performance and energy consumption char-
acteristics of BLE at chip level (SoCs) (e.g., [25, 35]),
(ii) a detailed analysis of the Bluetooth discovery pro-
cess (e.g., [28]) and (iii) interference with other proto-
cols on the 2.4GHz band (e.g., [36]). However, all this
work does not evaluate BLE in its main implementa-
tions: smartphone centric systems. In order to under-
stand the performance characteristics of BLE on smart-
phones, a more holistic, system approach is required. In
contrast to peripherals (e.g., sensors and actuators) that
are increasingly implemented using a single SoC, smart-
phones non deterministic. They are powerful, multipro-
cessing machines that in their great majority run a Unix
based OS (Android OS and iOS). They include a vari-
ety of closed hard- and software implementations and
these implementations are often manufacturer specific.
As a result, it is unreasonable to expect that complex
smartphones behave like the SoC they contain.

We particularly motivate our work with the experi-
ence gained from our own BLE based deployment (see [13]).
In this deployment, we made use of smartphones as op-
portunistic gateways between BLE-connected sensors,
actuators and cloud services. We noticed, that the pro-
vided OS abstractions often fail to generalize certain
model dependent performance characteristics. This re-
sults in varying and erratic performance for different
models. E.g., a wide latency variance, failures to es-
tablish a connection, and even the impossibility to use
any BLE functions at all without completely disabling
802.11 on the smartphone. This lack of performance
guarantees across models is a problem for applications.

In this work, we develop a benchmarking framework
for Android in combination with BLED112 dongles by
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Silicon Labs (TI CC2540 based) to create a reproducible
baseline for different BLE hardware and software imple-
mentations on smartphones. Based on our past expe-
rience with BLE and the emerging iBeacon use case,
we design microbenchmarks and experimentally evalu-
ate BLE performance on 9 smartphones models.

The main contributions of this paper are the follow-
ing: (i) We analyse the working of BLE on Android
by tracing high-level API calls down the OS stack. (ii)
We design and implement a distributed benchmarking
framework to easily perform BLE related benchmarks
on Android. (iii) We design a set of benchmarks that
model common usage scenarios of BLE. (iv) We per-
form an extensive evaluation on a variety of smart-
phones. (v) We abstract our results to a set of best
BLE practices for different smartphone models that we
make available for application developers. This im-
proves PRR for some models 20-fold and iBeacon ac-
curacy by a mean of 2m for all models.

The remainder of the paper is structured as follows.
First, we motivate our work by providing background on
BLE and its hardware and software implementation on
Android. We then present design and implementation
of our framework and benchmarks in Section 3. Sec-
tion 4 describes our results on 9 different smartphone
models. We abstract these results to an adaptive BLE
library in Section 5 that improves PRR and RSSI based
distance estimation accuracy. Section 6 presents related
work and Section 7 concludes our paper.

2. BACKGROUND AND ANALYSIS
In this section, we briefly summarize the working of

BLE and its implementation on Android. We then de-
scribe our two motivational application areas.

2.1 Bluetooth Low Energy
BLE was designed as a RF standard with low power

consumption, low cost, low bandwidth and low com-
plexity. In BLE, data is exchanged asynchronously and
limited to a single-hop in the 2.4 GHz band. The band
is divided into 40 channels of which 3 are used for estab-
lishing connections, advertising and broadcasting (ad-
vertising channels) and 37 are used for connection data
(data channels). To minimize interference by other sig-
nal sources (802.11, 802.15.4, classic Bluetooth), BLE
applies time synchronized, adaptive frequency hopping
spread spectrum (AFH) in its connection-oriented com-
munication. The signal itself is modulated using Gaus-
sian Frequency Shift Keying (GFSK) with a modulation
rate of 1 Mbit/s.

The Generic Access Protocol (GAP) of BLE defines
four important device roles: (i) The Broadcaster role,
in which a device solely broadcasts. (ii) The Observer
role, in which a device solely scans and listens to these
broadcasts. (iv) The Peripheral role, in which a device

advertises and is allowing connections to it. (v) The
Central role, in which a device scans and connects to
Peripheral devices.

If a device needs to only broadcast data, it can use
the advertising channels to achieve a 1 : n unidirectional
communication. Each advertising packet has a max-
imum payload of 31 bytes. The advertising channels
are stateless, resulting in the fact that advertisements
can be missed by a scanner. The probability of success-
ful reception depends on the advertising and scanning
intervals and the differential in their start time. For
example, an advertiser might advertise sequentially on
all three channels every 200ms. Then a scanner that
only scans with a scan window of 25ms at an interval of
100ms on single channel might potentially miss most of
the advertisements if advertising and scanning intervals
are not coincidentally aligned.

Bidirectional communication takes place on the data
channels between a central and a peripheral device,
where peripherals usually provide services (server role)
and centrals access these services (client role). Ser-
vices are structured into characteristics that a client
can read from or write to. This structure is managed
by the Generic Attribute Profile (GATT). Following the
publish-subscribe pattern, clients can get notified of
value changes (BLE terms: notifications/indications),
e.g., push updated sensor values to clients. The value
that can be read and transmitted from a characteristic
at a time is commonly limited to 20 bytes.1 Transmit-
ting more than 20 bytes requires a split into multiple
packages and possibly multiple read requests. A read-
/write request can only be initiated by a central device.
We now look at two common applications of BLE.

2.1.1 iBeacon
iBeacon is a protocol by Apple, developed on top

of BLE to allow proximity and localization applica-
tions [2]. An iBeacon system is based on Broadcaster
devices that are placed at known locations. These bea-
cons purely broadcast a unique ID with a reference sig-
nal strength at 1m distance. Close-by smartphones can
then listen to these broadcasting beacons and derive a
coarse distance estimation based on their Rx power.

The originally intended use of iBeacons was to only
provide coarse location context (far, near, immediate)
to applications [1]. For example a store can install iBea-
cons that enhance an applications functionality when
the user is close by. This is because RF technologies on
the 2.4GHz band are error prone due to interferences
throughWi-Fi activities, human bodies or metal objects
as e.g., Jiang et al show in [24]. Despite that, there are
several research projects that push iBeacons towards
traditional indoor localization problems. In [10], iBea-

1This value is dependent on the protocols further up the
stack. The actual data payload size of BLE is 27 bytes.
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cons are used to implement an occupancy detection sys-
tem in a non-residential building. The authors in [29]
use iBeacons for localization and achieve an average es-
timation error of 0.53m. Recently Biehl et al presented
a system that applies iBeacons to trusted indoor loca-
tion estimation [3].

Performance wise, the main criteria for an iBeacon
system are distance accuracy and a small latency of re-
ceived broadcasting packages on the phone to quickly
estimate proximity or location and provide it to an ap-
plication. The preferred walking speed of humans is
considered to be around 1.4m/s [27]. Hence, applica-
tions need to update user location according to their
requirements: f = 1.4m/s

a , where f is the update fre-
quency, a is the accuracy requirement in m. E.g., if an
application requires 1m accuracy, it would need to up-
date its location every 0.7 s. Further, iBeacon devices
are commonly battery powered, which makes the choice
of broadcasting frequency a trade-off between latency
and battery lifetime.

2.1.2 Personal Smart Devices
Besides of iBeacon based localization, BLE is exten-

sively used to enable smartphone centric, cyber-physical
applications by wirelessly connecting sensors and actu-
ators. The Bluetooth standard defines several GATT
profiles for commonly used applications (e.g., alert no-
tification, heart rate, weight scale, environmental sens-
ing etc. [6]) that can be implemented on any device to
allow interoperability between different manufacturers.

The main performance criteria for these type of ap-
plications are (i) a timely discovery process of devices
and their services and (ii) a timely exchange of data
packets to communicate state changes from peripheral
to phone or vice versa. For example, a temperature
sensor might communicates state changes to a phone
or a phone might communicate a new state to an ac-
tuator (e.g., a light switch). Research has shown that
humans are usually able to perceive switching delays
greater than 100ms [34].

2.2 Android BLE Stack
The Android architecture divides OS functionalities

into five layers from bottom to top: (i) Linux kernel,
(ii) Hardware Abstraction Layer (HAL), (iii) Android
runtime and libraries, (iv) Application framework and
(v) Application layer (see Figure 1).

Android leverages the drivers from the Linux ker-
nel for several hardware components like memory and
power management, audio, video, Wi-Fi and also Blue-
tooth. However, an application developer is not able to
access that native Bluetooth stack (system/bt) on non
rooted, off-the-shelf devices directly. Further, device
manufacturers are able to make extensions to the de-
fault stack. Application developers access BLE through
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(BLE, Audio…) Binder IPC Driver Power Management

Android Runtime Android Libraries

ART Dalvik

Core Libraries SSL OpenGL
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Bluetooth 
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View 
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Package
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Figure 1: Simplified Android Architecture (based on
[17, 37] and Android source code at [18]).

several abstraction levels by calling the Bluetooth ap-
plication framework APIs (android.bluetooth). In-
ternally this code then calls a single, running Bluetooth
process (packages/apps/Bluetooth) through interpro-
cess communication (Binder IPC). The Bluetooth pro-
cess then coordinates the different requests by possi-
bly multiple applications to the HAL layer using the
Java Native Interface (JNI). Bluetooth events are com-
municated back using callbacks (e.g., an advertisement
that matches a filter is discovered). The Android source
code is available at https://android.googlesource.
com/. Despite that, manufacturer specific extensions
are closed source and Bluetooth hardware implemen-
tations are undocumented. As e.g., Moazzami et al
show in [30], an application process may be blocked by
the operating system anytime for up to 110ms. Besides
that, Android OS versions in use are highly segregated.
BLE was introduced into Android in 2013 (API level
18). Since then, it has evolved, making many API calls
>= 21 behave differently and incompatible.

2.3 Hardware Implementation
BLE hardware (antenna, chip) and case design are

implemented manufacturer and model specific. Their
implementation details (e.g., antenna gain) are mostly
not available on a smartphone’s data sheet. However,
many “tear-down” websites make some implementation
internals, like the used chips, public. We looked at avail-
able information for the most popular models of the last
three years according to [21] (see Table 1). The main in-
sight is that all recent models implement BLE through
a multipurpose SoC that handles 802.11, Bluetooth and
possibly FM.2 The main chip manufacturers are Qual-
comm and Broadcom. Broadcom chips are becoming

2Front-end, power and low noise amplifier will still be model
dependent in most cases.
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Table 1: BLE Chipset Hardware Implementations on
Popular Smartphone Models between 2013–2015
Phones Chip Type

iPhone 4S Broadcom BCM4330 WiFi/BT

iPhone 5/5c/5s Broadcom BCM4334/2 WiFi/BT

iPhone 6 Murata 339S0228 WiFi/BT

Samsung S4, Note 3,
HTC One

Broadcom BCM4335 WiFi/BT

LG Nexus 5, LG G3 Broadcom BCM4339 WiFi/BT

Samsung S6, Nexus 6P Broadcom BCM4358 WiFi/BT

Samsung Galaxy S5 Broadcom BCM4354 WiFi/BT

Motorola Moto G, LG
Nexus 4

Qualcomm WCN3620 WiFi/BT

Motorola Moto X Qualcomm WCN3680 WiFi/BT

more widespread recently.

3. FRAMEWORK AND BENCHMARK DE-
SIGN

Our framework should enable a BLE performance
evaluation on different, off-the-shelf smartphone mod-
els to understand the specific characteristics of single
models. We first describe the design of our framework,
before we discuss the rationale behind our experiments
design.

3.1 Framework Design
In order to perform a wide scope of benchmarks on

a variety of smartphones, we design a simple, portable
and scalable distributed benchmarking framework:

• Simple It needs enable a simple creation of new
types of benchmarks.

• Flexible It needs to enable performance tests for
connection-oriented and connectionless operations.

• Portable It should be portable across Android
versions, but also towards other platforms (iOS,
Windows Mobile).

• Reproducible Performed experiments need to be
reproducible by others and on other devices.

• Scalable It needs to scale to multiple peripherals
and phones.

These requirements lead to our resulting system ar-
chitecture in Figure 2. It consists of four main com-
ponents: A repository (i) aggregates benchmarking re-
sults and stores their configurations. Configurations de-
fine the setup and different steps of a benchmark for
phone and Peripheral(s) in JSON. They can be modi-
fied or created at will. A phone application (ii) accesses
these configurations and coordinates the starting point

Coord-
ination

Benchmark
Configurations

and Results

Linux 
Machine

Figure 2: Overall Benchmarking Framework Architec-
ture with Four Main Components: Smartphone, Repos-
itory, Coordinator, BLE Test Stand

of benchmarks through a coordinator (iii) with the com-
modity machine that connects multiple Peripherals via
virtual serial ports (iv).

Our design is based on off-the-shelf hardware to allow
for reproducibility of results and to create a common
baseline for inter-smartphone comparisons. We imple-
ment our system using the widely available BLED112
USB dongle. It uses TI’s CC2540 chip ([22]) and pro-
vides all Bluetooth 4.0 features through a virtual serial
port to the host while providing a simple application
interface, its retail price is roughly $10 [26].

Because our framework is distributed across several
physical components, it requires inter-component syn-
chronization. A fine grained time synchronization pro-
tocol would interfere with running benchmarks (com-
putational resources, RF interference and energy con-
sumption). For this reason, we only synchronize the
starting time of each benchmark and then rely on round-
trip measurements on the smartphone and test stand.
This has shown sufficient for all our metrics.

Encoding the global benchmarking instructions in JSON
ensures portability, simplicity and makes the our ap-
proach scalable. The number of connected BLE micro-
controller can be varied dependent on the requirements
of a benchmark. The coordinator can run on the same
machine to which the dongles are connected to. All
benchmark results are committed to a Git repository
together with the used configuration files. The reposi-
tory is publicly available (see [15]).

As an example, Listing 1 shows a configuration snip-
pet with instructions for the BLE microcontroller. They
instruct the controller to advertise on all three adver-
tisement channels for 30 s with defined short name and
under a fixed advertisement interval while being scannable
but not connectable for Central devices.

Listing 1: BLE Microcontroller Configuration Snippet
{
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"gap_role": "broadcaster",
"gatt_role": "server",
"replicas": 1,
"steps": [
{
"adv_channels": "0x07",
"short_name": "BLEva",
"adv_interval_max": "0x200",
"adv_interval_min": "0x200",
"ble_operation": "advertising",
"gap_connectable_mode": "gap_scannable_non_connectable",
"gap_discoverable_mode": "gap_user_data",
"sr_data": "0x0609424c457661",
"time": 30000

}
]

}

Listing 2 shows a snippet for a possible phone coun-
terpart. The phone scans for 30 s, reporting back all
matches for all advertisements without a filter or delay
and using a power-balanced scanning mode.

Listing 2: Smartphone Configuration Snippet
{
"gap_role": "observer",
"gatt_role": "client",
"steps": [
{
"ble_operation": "scanning",
"callback_type": "all_matches",
"match_mode": "aggressive",
"match_num": "max_advertisement",
"scan_mode": "balanced",
"time": 30000,
"report_delay": 0,
"wifi_state": "off",
"filters": [],

}
]

}

Our framework maps these JSON instructions to na-
tive parameters and function calls of Android and the
BLED112 programming interface. Each BLED 112 con-
troller is orchestrated through a separate Python pro-
cess. On Android we streamline the differences between
the APIs of Android 4.4, 5 and 6 by implementing an
abstraction library that checks the devices API, selects
the correct API call and potentially emulates newer fea-
tures for older devices (e.g., packet batching, filtering).
This is especially important considering the high frag-
mentation of Android (currently, March 2016, Android
6.0 is only installed on 2.3% of Android phones).

3.2 Benchmark Design

3.2.1 Metrics
Multiple potentially relevant metrics exist: Latency,

Package Reception Rate (PRR), throughput, Received
Signal Strength Indication (RSSI) and power consump-
tion. We define device discovery latency as the time it
takes to receive the first advertising package of a Pe-
ripheral. This time interval is crucial for the respon-
siveness of many BLE applications (e.g., it determines
the time until a phone can connect to a Peripheral).
We define advertising latency as the time interval be-
tween the following consecutive packages. This interval

determines how fast state changes can be transmitted
through advertisements and is thus crucial for all iBea-
con applications. In a connected state, we define read
latency as the latency for a read operation while write
latency expresses it for a write operation. Because a
high throughput is not a design goal of BLE and is not
a major performance criteria of BLE applications that
we observed, we do not measure it directly in our exper-
iments. Instead, we measure it through the latency of
single read and write operations. RSSI is an important
metric, because iBeacon is based on the RSSI-distance
relation of received advertisements. The correct work-
ing of iBeacon depends in consequence on the validity
of RSSI values.

Smartphones are battery powered, thus power con-
sumptions needs to be considered. Power consumption
can be measured in three distinct ways: (i) via an ex-
ternal power monitor (e.g., [12, 8]), (ii) via an internal
monitor (e.g., [23]) and (iii) using software power mod-
els (e.g., [33]). To meet our design goal of a simple and
repeatable benchmarking framework, we do not rely
on external monitors or sophisticated software power
models. We account for power consumption by extend-
ing the time dimension for an operation and measure
the battery drop programmatically. The reason is that
there is currently no possibility to read power consump-
tion on a per app granularity on Android. Measuring
the power consumption physically at the battery ter-
minals does not scale well and can not simply be re-
produced by others (e.g., current smartphones are of-
ten not designed with a replaceable battery). We have
performed experiments with phones of the same model
that show a close correlation (r = 0.93) between their
reported battery levels. This means, that even if the
power consumption is not in a linear relation with the
reported battery level, it still allows to make a side-
by-side comparison of different parameters for the same
phone model.

3.2.2 System Parameters
We categorize the parameters that influence BLE per-

formance on smartphones according to their GAP roles
defined in the BLE standard (Central, Observer, Pe-
ripheral, Broadcaster). In each of these roles, a de-
vice can perform BLE operations in a connectionless or
connection-orientated fashion. These operations are in-
fluenced by the chosen BLE parameters. Additionally,
we find three external parameters that might influences
any BLE operation: Processing (concurrency model),
Environmental State and 2.4GHz State. Table 2 sum-
marizes these parameters and their dimensions.

3.2.3 Experiments
The following experiments are based on our two mo-

tivational applications: “iBeacon” and “Personal Smart
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Table 2: BLE Performance Parameters Overview: 4 categories of parameters (BLE Parameters, Processing, Environ-
ment, 2.4GHz State) influence the BLE Operations in different GAP roles (Central, Observer, Peripheral, Broadcaster).

BLE Operations BLE Parameters Processing Environment 2.4GHz
Connectionless Connection-

oriented
Central Scanning, Device

Discovery
Connecting (1st
connect, re-
connect), De-
tecting Services,
Transferring,
Receiving

Scan Win-
dow/Interval,
Advertis-
ing Interval,
Connection
Interval, Slave
Latency

App in Fore-
ground/Back-
ground, Con-
currency
model, No.
of processes
active

Distance,
Number of
BLE devices,
2.4 GHz inter-
ference

Wi-Fi
active,
on, off,
2.4GHz,
5GHz

Observer Scanning, Device
Discovery

Peripheral Advertising, Scan
Response

Indication, Notifi-
cation

Broadcaster Advertising, Scan
Response

Devices”. In these applications and thus in our bench-
marks, the phone is in Central and Observer role and
the microcontroller is in Peripheral and Broadcaster
role. With this role allocation, the resulting main groups
of experiments are:

• Connectionless: Scanning and advertising on dif-
ferent scan and advertising combinations.

• Connectionless to Connected: Device and Ser-
vice Discovery on different parameter combinations.

• Connection-oriented: Data Transfer and Re-
ception (read/write) with different connection in-
terval parameters.

We describe detailed experimental configurations to-
gether with our results in the next section.

4. EXPERIMENTAL RESULTS
We performed an experimental evaluation on 9 differ-

ent Android models from 2013 to 2015 and from differ-
ent performance and price ranges (see Table 3). For the
Nexus 7 and the Moto E2, we use two devices each, for
the other models we use one device. All known mod-
els implement Wi-Fi and Bluetooth on the same chip.
All our experiments use our benchmarking framework
described in Section 3.

Most of the following experiments follow the experi-
mental setup depicted in Figure 3. Four BLE dongles
are distributed in a semicircle around the antenna area
of the smartphone at a distance of 1.5m. Dongles are
active or inactive depending on the current benchmark.

4.1 Connectionless
In connectionless experiments, we evaluate the recep-

tion of advertisement packages. Advertisement pack-
ages are the base for Apple’s iBeacon protocol and are
the means in which a Peripheral makes itself visible to

Table 3: Evaluation Devices: Smartphone models with
their release date, API level and BLE chipset.

Phone Year API BLE Chip Type

Motorola Moto G 2013 5.1.1 WCN3620 WiFi/BT combo

LG Nexus 4 2013 5.1 WCN3660 WiFi/BT combo

LG Nexus 5 2013 6.0 BCM4339 WiFi/BT combo

Asus Nexus 7 2013 6.0 WCN3620 WiFi/BT combo

LG G3 2014 5.0.2 BCM4339 WiFi/BT combo

Motorola Nexus 6 2014 6.0 BCM4356 WiFi/BT combo

LG Nexus 5X 2015 6.0 unknown unknown

Motorola Moto E2 2015 5.1 unknown unknown

Huawei Nexus 6P 2015 6.0 BCM4358 WiFi/BT combo

a Central device. As such they are the first step in the
device discovery and connection process.

4.1.1 Package Reception Rate
An iBeacon-based BLE application requires the smart-

phone to continuously scan for advertisements and use
the received packages as input to calculate proximity
or a coarse location as an application context (e.g., a
shopping mall recommondation system pushes product
specific advertisements to close-by users). An ideal sys-
tem should therefore provide a small initial latency until
the first advertisement is received, and subsequently a
uniform reception of advertisements to propagate state
changes timely (e.g., the person or Peripheral moves).

In our experiment, we scan 30 s for advertisements.
Scan results are reported back by a callback. We per-
form this experiment for three different scan modes (low_
power, balanced, low_latency) on 9 different smart-
phone models and with a different number of periph-
erals (1,2,3,4) on different advertising intervals (20ms,
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Figure 3: Experimental Setup in most Experiments.

160ms, 320ms, 640ms, 1280ms, 5120ms). These param-
eters result in 72 different benchmarks for each phone
model. To mitigate a temporal influence of our results
(e.g., due to environmental changes), we run each of the
benchmarks in three repetitions at different times.

Figure 4 shows the resulting Package Reception Rate
(PRR) of advertisements packages for the three scan
modes and broken down to different smartphone mod-
els and advertisement intervals for all experiments with
a single advertising Peripheral. It reveals several inter-
esting insights:

(i) Most noticeable, PRR does not increase for all
models with scan intensity. For some models PRR is
not affected at all by the chosen scan mode (Asus Nexus
7, Motorola M, LG G3, LGE Nexus 4). Investigating
our results in more detail, we discover that the default
behavior of many models seems to be to solely report
the first received advertisement of a Peripheral, but not
succeeding ones. For other models, PRR increases as
expected with scan intensity. The devices affected by
this problem run on different Android OS versions up
until the most recent Android 6. We suspect that these
results might have to do with the specifics of the BLE
chips (Qualcomm WCN3620 and WCN3660) and how
the Bluetooth driver for these chips is implemented by
the manufacturer.

(ii) No phone is capable of receiving all advertise-
ments. The highest PRR we observer is 60%, even when
scanning in low_latency mode which is implemented
as constant scanning on Android (scan_window=5000,
scan_interval=5000). The reason is that the Periph-
eral advertises on three different channels (2402, 2426,
2480 MHz) sequentially. A receiver listens to all these
channels turn by turn, and will therefore not receive all
advertisements for all channels.

(iii) PRR on the same parameters varies much be-
tween phone models (5% vs 60%). This means that
e.g., scanning in balanced mode results in the same
PRR for one model than in low_latency for another.

(iv) Too frequent advertising (20ms) results in a low

PRR. A reason for that might be increased interference
between packages. However, in BLE, a random delay is
added to each advertising interval to avoid interference.
Another reason might be that the receiver cannot scope
with the amount of packages received. Because 20ms
is the lowest supported value according to Bluetooth
specification, we suspect that this is a borderline case
and not sufficiently implemented by current BLE chips.

Wi-Fi Interference.
Traditional 802.11 is operating on the same 2.4GHz

frequency range as Bluetooth and the two RF technolo-
gies are thus subject to general interference. Further,
as we have shown, all current smartphones share the
same chip and antenna for both Wi-Fi and Bluetooth
(see Table 1). Wi-Fi and Bluetooth must thus be time-
multiplexed on the chip.

To evaluate the implemented RF multiplexing, we
perform scanning operations with Wi-Fi on, off and
in an active state. In an active state, our framework
emulates common Wi-Fi traffic patterns by performing
various HTTP GET and POST requests concurrently
with the scanning operation. In on state, Wi-Fi is left
on, but not actively used. In off state, we turn Wi-Fi
functionality programmatically off.

We observe that turning Wi-Fi off while scanning has
no significant effect on scanning behavior. However, if
Wi-Fi is actively used, it reduces PRR by a mean of
18.3 % for all smartphone models.

4.1.2 Advertising and Device Discovery Latency
Besides a high PRR for advertisements, two latency

metrics are important: (i) A small device discovery la-
tency (time until an initial package is received) is cru-
cial for any application that requires a timely interac-
tion between a Central and Peripheral device (e.g., a
smart appliance). (ii) The latency of subsequently re-
ceived advertisements is important for any application
that builds on state transmission through advertise-
ments (e.g., any iBeacon-like location tracking, prox-
imity application).

To measure the initial latency when discovering a de-
vice, we start to scan and measure the time until we
receive the first package. We use a filter on the de-
vice name to only receive results from the device we are
looking for. For advertising latency, we measure the
interval between subsequently received packages. Fig-
ure 5 shows the device discovery latency for different
scan and advertisement intervals.

As discussed previously, the 20ms parameter, although
specified, seems not to be fully supported by current
BLE hardware, leading to erratic results across mod-
els. At the upper end, a 5120ms interval results in for
many application cases unacceptable latencies of up to
26s. In low_power or balanced, some phones do not
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Figure 5: Device Discovery Latency: Each map
depicts a different scan mode (low_power, balanced,
low_latency). The rows represent different phone mod-
els, the columns different advertisement intervals. The
cell numbers are the latency in seconds.

receive any package in a 30s period. This is because
Android implements scan modes in terms of different
values for scan window and interval. In low_power
mode for instance, the interval is set to 5000ms and
the scan window to 500ms. This means we effectively
only scan for 3000ms during a 30s benchmark and if
scan windows are not coincidentally aligned with the
peripherals advertisements, we miss them.

For mid-range advertising intervals, we can distin-
guish between two groups of models: (i) a group where
latency increases with a growing advertising interval
and with a less frequent scan mode (black names) and
(ii) a group where results are much less consistent (grey
names).

In accordance with our PRR results, it is sufficient
for some models to scan in a low frequency mode in or-
der to receive the same results as another model scan-
ning in high frequent mode (e.g., Nexus 6 can scan in
balanced mode, while the Asus Nexus 7 should scan in
low_latencymode). To increase the chance of a timely
reception on all models, we advice to use a maximum
advertising interval of 640ms. User centric applications
that require high responsiveness, might even require an
interval of 320ms or smaller.

4.1.3 Multiple Peripherals
We performed all previously discussed connectionless

experiments for 1–4 peripherals to evaluate the recep-
tion loss when a scanner needs to detect multiple, simul-
taneous advertisers. Our results show that PRR wors-
ens slightly with multiple advertisers. While the mean

PRR (across all smartphone models, all scan modes and
all advertising intervals) is 9.1% with a single advertiser,
it drops to 8.3% for two, 7.4% for three and only 5.6%
for four. The mean latency until all Peripherals have
been discovered worsens by 56% from a single to four
Peripherals.

4.1.4 RSSI and PRR at Different Ranges
The maximum specified range of BLE is 100m [4],

but in practice BLE is used on a much smaller scale.
We design our experiments for up to 30m, where we
perform experiments at various distances. Our testbed
setting is a long corridor of 40m in which we place both
receiver and transmitter at a height of 1.5m. We use
a corridor because of its property to channel signals
so that signal intensity drops at a regular rate when
moving further from the transmitter (see e.g., [19]) and
to minimize shadowing effects.

We expect RSSI to correlate with the log-distance
radio propagation model which models the path loss of
a signal inside a building and is defined as:

PLd0→d = PLd0 + 10α log10
d

d0
+ χσ (1)

Where, PLd0→d is the path loss at distance d, PLd0
is the known path loss at distance d0, α is the path loss
exponent, which is environment dependent (e.g., 1.8 for
non obstructed indoor environment), χσ is a zero-mean
Gaussian distributed random variable (in dB) with stan-
dard deviation σ that models the shadowing affect on
the signal.

In our experiments, we measure RSSI and PRR. We
set the transmitter power to 3dBm. Figure 6 shows the
mean RSSI values for different phone models at different
distances (1-16m) for a scanning period of 60 seconds
at each location. From these results, we note two issues:
(i) As it has been stated in previous work (e.g., [32]),
RSSI is in fact not an ideal parameter for distance esti-
mation. The results for one model and location are not
stable and vary within 10dBm. (ii) The median values
of different models differ further by a factor of >20dBm.
These varied results are due to the hardware (radio chip,
antenna, case design) and software (driver implementa-
tion) differences between different phone models.

Addressing issue (i), requires applying a filtering tech-
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Figure 6: RSSI for different smartphone models at dif-
ferent distances.

nique to the raw values (e.g., median, maximum, Gaus-
sian or Kalman filter), but (ii) requires a smartphone
model specific calibration factor. Current iBeacon based
proximity and localization applications do not account
for this. We discuss our improvements in Section 5.

Looking at the PRR-distance relationship, Figure 7
shows that PRR does not drop when extending the dis-
tance. We trace this back to our chosen testbed envi-
ronment that enforces the propagation of radio signals
and the relatively high Tx power of 3 dBm.
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Figure 7: PRR vs. Distance for different models.

4.1.5 Summary
In summary, our evaluation of connectionless oper-

ations shows great differences for PRR (3% vs. 60%)
and Latency (4 s vs. 30 s) between phone models. Some
models behave erratically and only report the first ad-
vertisement for a Peripheral, while others work as ex-
pected. BLE has worked well up to 30m. The RSSI
values are aligned with the Log-Distance Model, but
are spread widely between different models (> 20 dBm)
and show a high fluctuation at the same location.

4.2 Connection-oriented
After a smartphone has discovered a Peripheral, it

will in many scenarios connect to it, discover available
services and perform read or write requests. The design
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Figure 8: Latency of common GATT operations in Re-
lation to Connection Interval

goal of BLE is a timely exchange of a small amount of
data (e.g., read a new value from a smart scale). We
therefore focus on latency aspects of connection, service
discovery and read/write requests. Two performance
determining connection parameters exist: (i) connec-
tion interval and (ii) slave latency. The connection in-
terval determines how often a Central device will ask
for data from the Peripheral. The Peripheral can re-
quest a connection interval between 7.5ms and 4s, but
the Central device decides ultimately on the interval.
As such, medium access is coordinated by a Time Divi-
sion Multiple Access (TDMA) schema. Slave latency is
set as multiplication of the connection interval on which
the Peripheral can decide not to respond to the Central
device. This allows a Peripheral to stay in a low power
sleep mode for longer and only wake up if it has e.g.,
new data from a sensor.

The Android API does not support to set the connec-
tion interval explicitly, but it supports intervals from
7.5ms to 4s. In the following, we therefore let the Pe-
ripheral (slave) request different connection intervals to
set the parameter implicitly.

4.2.1 GATT Operations
We observe a Central device that initiates a connec-

tion to a Peripheral. This means that the Peripheral
has already been discovered (see Section 4.1.2 for bench-
marks of the discovery operation). In our experiment,
we sequentially connect, discover the services and read
and write to a characteristic. We perform this sequence
for different connection intervals (7.5–4000ms) and in
100 repetitions on each phone. Figure 8 shows our re-
sults for these GATT operations. The Peripheral is ad-
vertising in 320ms intervals.

As expected, the connection establishment is bound
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to the advertising interval and not to the connection
interval. We measure a mean of 721ms. This is due
to the non-time-synchronized nature of the advertising
channels. All other operations correlate with the con-
nection interval. The results for the Motorola MotoE2
are an exception. Our first explanation was that the de-
vice performs some caching of discovered services that is
persistent even when the Bluetooth Adapter has been
reset and the application restarted. However, we no-
ticed this behavior as well for different peripherals and a
full Android restore. When comparing the timestamps
on the Peripheral and on the Moto E, we discovered
that the Moto E performs the service discovery always
before the connection interval can be changed.

In general, the experiments show that it is important
to consider the impact of the connection interval on
the service discovery process. A mean latency of 4s
for a read request might still be acceptable for some
applications, while the corresponding discovery latency
of 30s might not be. The Android BLE stack should
therefore on a OS level rely on caching services of known
devices to speed up subsequent read/write requests.

4.2.2 Summary
Two parameters have a crucial impact on BLE con-

nection latency: initial connection between smartphone
and peripheral and service discovery. In order to im-
prove latency, it is thus advantageous to keep a connec-
tion to a Peripheral open or to cache service information
of a Peripheral across connections. Our experiments
show that such measures can halve the time it takes to
read or write.

4.3 Power Consumption

4.3.1 Connectionless Power Consumption
We measure scanning power consumption for five dif-

ferent phone models and for the three scan modes of
Android. In these experiments, we first fully charge
each phone and then perform a scan operation for the
period of 5 hours. We also measure the idle battery
drop of the battery which in our experiments has been
in the range of 1–3%. Figure 9 depicts the battery drop
for different scan modes. The mean battery drops are
8.5% (low_power), 17% (balanced) and 19.8% (low_
latency). The small difference between balanced and
low_latency scanning suggest that low_latency can
be used to improve PRR and latency without sacrificing
battery lifetime much.

4.3.2 Connection Power Consumption
We have experimented with different connection in-

tervals and kept a connection open for a period of sev-
eral hours, but we could not notice any differences be-
tween small and big intervals. We conclude that the
impact on power of an open connection might in many

cases be negligible when considering the overall battery
budget of a phone. In future work, we want to inves-
tigate this aspect of power consumption by measuring
power directly at the battery terminals.

5. BLE LIBRARY EXTENSION
In the previous section, we showed big discrepan-

cies in the BLE stack behavior on different smartphone
models through an extended experimental evaluation of
9 different models. In this section, we discuss the ini-
tial design of an library that sits on top of the native
Android BLE stack and show some results of its imple-
mentation.

5.1 Design Goals
We have the following design goals:

• Uniform BLE behavior. Ideally, every smart-
phone should exhibit the same BLE performance
characteristics. With our library, we want to achieve
some soft performance boundaries that Peripheral
designers can count on when building their sys-
tems.

• Off-the-shelf devices. We want out library to be
compatible with any unmodified (e.g., un-rooted)
mobile devices. As such, our implementation needs
to be designed on top of existing abstractions of
the Android OS.

• Different Android OS versions. As the An-
droid ecosystem is fragmented, our goal is to sup-
port different OS versions, independent from their
API. We want our implementation to be back-
wards compatible to Android 5.0 (38.4% of install
base, March 2016).

• Dynamic and extendable. We aim for a system
that is dynamic and extendable towards future
API changes, new phone models and novel uses
of BLE that require different performance charac-
teristics. We want our approach also extendable
to different mobile operating systems (e.g., iOS,
Windows Mobile).

5.2 Design and Implementation
To meet these goals, we design our system around

the central repository of benchmark results (see Sec-
tion 3). The aggregated results for each smartphone
model serve as input for an Android library. This li-
brary can be added to any Android project. It follows
the BLE APIs of Android 5.0, but maps the API calls
to the ones that correspond to the smartphone’s OS
version. Besides this API translation, the library intro-
duces a smartphone model specific behavior in terms of
(i) function parameters, (ii) processing and (iii) output.
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5.3 Initial Results
We now show some initial results of our implementa-

tion in the context of scanning performance and iBeacon
accuracy improvements.

5.3.1 Improving Scanning Performance
As Section 4.1 has shown, some devices show a scan-

ning performance that is insufficient for many applica-
tion scenarios. To improve PRR on affected models,
we implement a simple re-scan strategy in where we re-
start scanning immediately after we successfully receive
a package. This improves PRR by more than 20-fold
(see Figure 10).

Comparing the energy consumption with the native
solution during a scanning operation of 5h has shown
no measurable difference between the two approaches.
This is because also in the native implementation, the
smartphone keeps scanning, but does not report new
advertisements back for known Peripherals.

5.3.2 Improving iBeacon Accuracy
We have shown a hardware caused variety in phones’

RSSI values at the same location. These differences
make a generic distance/proximity estimation impossi-
ble (e.g., RSSI varies by 20dBm at 1m distance).

We approach this problem by creating a regression-

model for each phone model. There are two problems
when doing so: (i) the model is specific to our testbed
equipment and (ii) the model is skewed by the physical
environment (signal reflections, shadowing) To remove
the influence by our testbed, we build our model not
based on the absolute RSSI value, but on the ratio of
RSSI and reference RSSI at 1m:

Ratio =
RSSId

RSSId1m
(2)

As such, our model will give correct results as long
as the assumption that the reference RSSI at 1m is cor-
rectly determined by the manufacturer.

To mitigate that the model is skewed by the physical
environment, we assign increasing uncertainties to our
measurements as distance increases. These uncertain-
ties are then used as weights in the least-square regres-
sion. We further remove data outliers by disregarding
all values outside 1.5 IQR below the first quartile and
above the third quartile. Finally, we base regression on
the mean.

Figure 11 shows the result for the different smart-
phone models. An initial evaluation of our model has
shown improved results over a generic distance prop-
agation model. It reduces the overall mean error for
distances of 1–16m from 3.35 to 1.36m when we apply
it in a second indoor test environment.

6. RELATED WORK
In [38, 37], the authors emphasize the non-deterministic

behavior of Android. Their RTDroid system replaces
the default Android Java VM with a real-time VM,
which provides predictability for Android applications.
Our approach is different. We do not aim to provide
a fully deterministic system, but dynamically change
the working of the Android BLE stack to provide some
predictability across models and OS versions for BLE
operations. Our system is built as an abstraction on
top of existing Android libraries opposed to redesigning
and replacing Android OS components. This makes it
applicable for all off-the-shelf smartphones. In spite of
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that, our approach is complementary and could run on
top of a system like RTDroid.

[30] describes a smartphone-based platform for data-
intense, embedded sensing applications. It consists of
three tiers (smartphone, peripheral board and cloud ser-
vice) for which it minimizes energy consumption while
adhering to upper bounded processing delays. This is
achieved by a task partitioning framework that assigns
tasks to tiers based on their time-criticality, compute
intensity and latency/power consumption profiles.

The authors in [20] characterize the performance of
smartphone network applications by performing mea-
surements on a variety of different phones an mobile
networks. Similar to our work, their benchmarks are
applications based and performed on real phones. Their
findings show that performance varies widely due to
hardware and software differences. Our work gives sim-
ilar resukts for smartphones’ BLE stack.

In the sensor network community, there have been ef-
forts to develop testbed platforms to achieve a baseline
for comparing different sensor network protocols. The
Mirage testbed by Intel Research at Berkeley provided
a wireless sensor testbed in which users bid for testbed
resources in an auctioning scheme [9]. Likewise [11] pro-
vides a remotely accessible mobile wireless and sensor
testbed. Recently, in [7] the authors develop JamLab, a
low cost infrastructure for generating RF interference in
sensor networks. [31] provides a large testbed of mobile
phones which can be used to deploy experiments. With
our system we provide a low-cost testbed infrastructure
for BLE performance on off-the-shelf smartphones that
enables a common baseline for arbitrary BLE bench-
marks in similar fashion. Because smartphones and our
testbed components are available off-the-shelf, we do
not see the need to provide a centralized testbed plat-
form like [9, 11]. Opposed to that, we provide a simple
framework that builds on these components and a cen-
tral repository for benchmarks and their results.

There has been various work that discusses perfor-
mance aspects of the Bluetooth Low Energy protocol.

In [25, 35, 16] the authors present an early descrip-
tion and performance evaluation of BLE. They com-
pare BLE with other protocols like ZigBee/802.15.4,
6LoWPAN, Z-Wave and classic Bluetooth. In [36] the
authors evaluate interference between BLE, 802.15.4
and 802.11, while [28] analyse the device discovery of
BLE. All this work aims at evaluating BLE as protocol
and as its implementation on various microcontroller.
Our work looks at the main application of BLE in the
wild, which is in smartphone-peripheral systems. We
first evaluate the current state and then implement our
design to achieve a general better performance while
achieving a greater uniformity across different smar-
phone models.

7. CONCLUSION
With Bluetooth Low Energy (BLE), smartphones can

act as situated gateways between smart infrastructure
and cloud-based data processing. Understanding, and if
needed improving, BLE performance on smartphones is
crucial to meet the requirements of such gateways. This
paper introduced a framework for benchmarking BLE
performance on smartphones. Our framework builds on
off-the-shelf components. It is available online as a re-
source for the community (see [14]). We presented a
detailed experimental evaluation of nine different An-
droid smartphones. Our evaluation shows that native
Android BLE stacks fail to provide a homogeneous ab-
straction for different BLE implementations. We ad-
dressed this shortcoming and proposed an Android li-
brary that adapts to the idiosynchracies of a specific
BLE implementation by relying on aggregated, model-
specific data, obtained with our benchmark. Our li-
brary is designed as a wrapper around the native An-
droid BLE stack. We showed that our library provides
significant improvement for scanning performance and
distance estimation. We argue that the principles we
introduced for the design of our library should become
an integral part of Android.

83



8. REFERENCES
[1] Apple. Getting started with ibeacon.

https://developer.apple.com/ibeacon/
Getting-Started-with-iBeacon.pdf, 06 2014.

[2] Apple. iBeacon for Developers.
https://developer.apple.com/ibeacon/,
2016.

[3] J. T. Biehl, A. J. Lee, G. Filby, and M. Cooper.
You’re where? prove it!: towards trusted indoor
location estimation of mobile devices. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous
Computing, pages 909–919. ACM, 2015.

[4] Bluetooth SIG. Adopted specifications.
https://www.bluetooth.com/
specifications/adopted-specifications.

[5] Bluetooth SIG. Our history. https:
//www.bluetooth.com/media/our-history, 01
2016.

[6] Bluetooth SIG. Services.
https://developer.bluetooth.org/gatt/
services/Pages/ServicesHome.aspx, 01 2016.

[7] C. A. Boano, T. Voigt, C. Noda, K. Römer, and
M. Zúñiga. Jamlab: Augmenting sensornet
testbeds with realistic and controlled interference
generation. In Information Processing in Sensor
Networks (IPSN), 2011 10th International
Conference on, pages 175–186. IEEE, 2011.

[8] N. Brouwers, M. Zuniga, and K. Langendoen.
Neat: a novel energy analysis toolkit for
free-roaming smartphones. In Proceedings of the
12th ACM Conference on Embedded Network
Sensor Systems, pages 16–30. ACM, 2014.

[9] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng,
D. C. Parkes, J. Shneidman, A. C. Snoeren, and
A. Vahdat. Mirage: A microeconomic resource
allocation system for sensornet testbeds. Institute
of Electrical and Electronics Engineers, 2005.

[10] G. Conte, M. De Marchi, A. A. Nacci, V. Rana,
and D. Sciuto. Bluesentinel: a first approach
using ibeacon for an energy efficient occupancy
detection system. In BuildSys@ SenSys, pages
11–19, 2014.

[11] R. Fish, M. Flickinger, and J. Lepreau. Mobile
emulab: A robotic wireless and sensor network
testbed. In IEEE INFOCOM, 2006.

[12] R. Fonseca, P. Dutta, P. Levis, and I. Stoica.
Quanto: Tracking energy in networked embedded
systems. In OSDI, volume 8, pages 323–338, 2008.

[13] J. Fürst, K. Chen, M. Aljarrah, and P. Bonnet.
Leveraging physical locality to integrate smart
appliances in non-residential buildings with
ultrasound and bluetooth low energy. In 2016
IEEE First International Conference on
Internet-of-Things Design and Implementation
(IoTDI), pages 199–210. IEEE, 2016.

[14] J. Fürst, K. Chen, and P. Bonnet. Bleva
repository.
http://github.com/EnergyFutures/bleva,
2016.

[15] J. Fürst, K. Chen, and P. Bonnet. Bleva results
repository. http://github.com/
EnergyFutures/bleva-results, 2016.

[16] C. Gomez, J. Oller, and J. Paradells. Overview
and evaluation of bluetooth low energy: An
emerging low-power wireless technology. Sensors,
12(9):11734–11753, 2012.

[17] Google. Android interfaces and architecture.
https://source.android.com/devices/.

[18] Google. Android source repository.
https://android.googlesource.com, 2016.

[19] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys,
D. S. Wallach, and L. E. Kavraki. Practical
robust localization over large-scale 802.11 wireless
networks. In Proceedings of the 10th annual
international conference on Mobile computing and
networking, pages 70–84. ACM, 2004.

[20] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao,
M. Zhang, and P. Bahl. Anatomizing application
performance differences on smartphones. In
Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages
165–178. ACM, 2010.

[21] Insidermonkey. 10 best selling smartphones in the
world 201x. http://www.insidermonkey.com/,
2015.

[22] T. Instruments. Cc2540.
http://www.ti.com/product/CC2540.

[23] Intel. Intel power gadget.
https://software.intel.com/en-us/
articles/intel-power-gadget-20, 2014.

[24] X. Jiang, C.-J. M. Liang, K. Chen, B. Zhang,
J. Hsu, J. Liu, B. Cao, and F. Zhao. Design and
evaluation of a wireless magnetic-based proximity
detection platform for indoor applications. In
Proceedings of the 11th international conference
on Information Processing in Sensor Networks,
pages 221–232. ACM, 2012.

[25] S. Kamath and J. Lindh. Measuring bluetooth
low energy power consumption. Texas instruments
application note AN092, Dallas, 2010.

[26] B. S. Labs). Bled112 bluetooth smart dongle.
https://www.bluegiga.com/en-US/products/
bled112-bluetooth-smart-dongle/, 2015.

[27] R. V. Levine and A. Norenzayan. The pace of life
in 31 countries. Journal of cross-cultural
psychology, 30(2):178–205, 1999.

[28] J. Liu, C. Chen, Y. Ma, and Y. Xu. Energy
analysis of device discovery for bluetooth low
energy. In Vehicular Technology Conference (VTC
Fall), 2013 IEEE 78th, pages 1–5. IEEE, 2013.

84



[29] P. Martin, B.-J. Ho, N. Grupen, S. Munoz, and
M. Srivastava. An ibeacon primer for indoor
localization: demo abstract. In Proceedings of the
1st ACM Conference on Embedded Systems for
Energy-Efficient Buildings, pages 190–191. ACM,
2014.

[30] M.-M. Moazzami, D. E. Phillips, R. Tan, and
G. Xing. Orbit: a smartphone-based platform for
data-intensive embedded sensing applications. In
Proceedings of the 14th International Conference
on Information Processing in Sensor Networks,
pages 83–94. ACM, 2015.

[31] A. Nandugudi, A. Maiti, T. Ki, F. Bulut,
M. Demirbas, T. Kosar, C. Qiao, S. Y. Ko, and
G. Challen. Phonelab: A large programmable
smartphone testbed. In Proceedings of First
International Workshop on Sensing and Big Data
Mining, pages 1–6. ACM, 2013.

[32] A. T. Parameswaran, M. I. Husain, S. Upadhyaya,
et al. Is rssi a reliable parameter in sensor
localization algorithms: An experimental study.
In Field Failure Data Analysis Workshop
(F2DA09), page 5, 2009.

[33] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In
Proceedings of the 7th ACM european conference

on Computer Systems, pages 29–42. ACM, 2012.
[34] B. Shneiderman. Designing the user

interface-strategies for effective human-computer
interaction. Pearson Education India, 1986.

[35] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and
J. Nieminen. How low energy is bluetooth low
energy? comparative measurements with
zigbee/802.15. 4. In Wireless Communications
and Networking Conference Workshops
(WCNCW), 2012 IEEE, pages 232–237. IEEE,
2012.

[36] S. Silva, S. Soares, T. Fernandes, A. Valente, and
A. Moreira. Coexistence and interference tests on
a bluetooth low energy front-end. In Science and
Information Conference (SAI), 2014, pages
1014–1018. IEEE, 2014.

[37] Y. Yan, S. Cosgrove, V. Anand, A. Kulkarni,
S. H. Konduri, S. Y. Ko, and L. Ziarek. Real-time
android with rtdroid. In Proceedings of the 12th
annual international conference on Mobile
systems, applications, and services, pages
273–286. ACM, 2014.

[38] Y. Yan, S. Cosgrove, E. Blantont, S. Y. Ko, and
L. Ziarek. Real-time sensing on android. In
Proceedings of the 12th International Workshop
on Java Technologies for Real-time and Embedded
Systems, page 67. ACM, 2014.

85





A Practical Model for Human-Smart Appliances Interaction

Jonathan Fürst, Andreas Fruergaard, Marco Høvinghof Johannesen, Philippe Bonnet
IT University of Copenhagen

{jonf, afru, mhoj, phbo}@itu.dk

ABSTRACT
Built environments are increasingly equipped with smart ap-
pliances that allow a fine grained adaption to the personal
comfort requirements of single individuals. Such comfort
adaption should be based on a human-feedback loop and
not on a centralized comfort model like Predicted Mean
Vote (PMV). We argue that such a feedback-loop should be
achieved through local interaction with smart appliances.
Two issues stand out: (i) How to impose logical locality
as a restriction when interacting with a smart appliance?
(ii) How to mediate conflicts between several persons in a
room, or conflicts between building-wide policies and local
user preferences? In this work, we approach both problems
by defining a general model for human-smart appliance in-
teraction. We present a prototype implementation with an
off-the-shelf smart lighting and heating system in a shared
office space. Our approach minimizes the need for location
metadata. It relies on a human-feedback loop (both sen-
sor based and manual) to identify the optimal setpoints for
lights and heating. These setpoints are determined by con-
sidering individual comfort preferences, current user location
and a global goal of minimizing energy consumption.

1. INTRODUCTION
Built environments are increasingly equipped with smart

appliances that allow a fine grained adaption to the personal
comfort requirements of single individuals. Buildings are a
prime deployment area for such appliances: they consume
∼ 40% of our energy while the average person spends > 90%
indoors [2, 6]. Two main categories of smart appliances in
buildings are lighting and HVAC.

In larger, non-residential buildings, Building Management
Systems (BMS) aim to improve energy consumption and
comfort by applying a central comfort and energy model
(e.g., PMV model). Even past work has made BMS acces-
sible to user input (e.g., Thermovote [4]), smart appliances
enable unarguably for much more direct and fine grained
forms of user interaction. However, the current interface
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Figure 1: A Model for User-Smart Appliance Inter-
action

abstractions of smart appliances are not well designed:
If we look at analog lighting and HVAC control, the link

between a user’s preference and the appliance is a physi-
cal object, e.g., a wall switch or thermostat. In BMS and
in many off-the-shelf smart appliances, this physical link has
been replaced by a textual namespace and by applying meta-
data to different appliances and their location. E.g., a smart
light might be tagged with a building, floor no., room no.
and a inter-room location: ITU/4/4D21/Ceiling1.

If such naming is consistent, it allows for building wide
control (e.g., turn off all lights on the 4th floor). However,
relying on such naming to create a human interaction in-
terface, causes problems. As a scenario, imagine a non-
residential building is equipped with smart lighting. The
intention is to allow occupants to adapt lights to their cur-
rent needs (e.g., by changing the brightness to their mood
and work task). A model that relies on naming to spec-
ify location information suffers from the problem that users
need to know where they are located (e.g., I am in meeting
room 5A24), but also where appliances are located inside a
room (e.g., which ceiling light is above me). These dynamic
relations are difficult to represent. Further, most appliances
influence more than a single user. Individual preferences are
different. This makes it necessary to resolve potential con-
flicts. Such conflict resolution needs be based on the current
comfort preferences and inter-room location of the individ-
uals. Our insights for improved smart appliance interaction
are thus:

• Logical Locality. Appliance identification should be
based on the impact (logical relation) on the single
user.

• Conflict Mediation. Conflicts should be mediated
between individuals locally (taking their preferences
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into account), or between local individual preferences
and global infrastructure-use policies.

In this work, we approach these problems by (i) defining
a general model for human-smart appliance interaction and
(ii) by implementing a prototype with an off-the-shelf smart
lighting and heating system in a shared office space. Our
approach minimizes the need for location metadata. It re-
lies on personal sensors (e.g., smartphones, wearables) and
human-in-the-loop feedback to identify the optimal setpoints
for lighting and heating. These setpoints are determined by
taking comfort preferences, current physical and logical lo-
cation and a minimal energy consumption into account. Our
prototype achieved 94% energy efficiency for lighting using
a probabilistic method of identification, while adhering to
the occupants’ comfort ranges. For heating, we achieved an
improvement of 80% in comfort while keeping a 3.3 ◦C lower
overall heating setpoint.

2. RELATED WORK
Several approaches facilitate an identification of appli-

ances: (i) Physical appliance tags provide a local context
to the user (e.g., using BLE [9], RFID [8], QR-codes [7] or
infrared [10]). Besides of precision limitations (especially
RF based methods) and high infrastructure overhead, these
techniques define human-appliance relations based on phys-
ical distance, but not based on a logical relation (e.g., a
smart light that is physically distant from the user, but has
a strong radiation effect on her). (ii) Metadata based ap-
proaches allow users to identify appliances based on textual
descriptors. This is not human-friendly. E.g., if the meta-
data scope is building wide, selecting the right appliance
is cumbersome. Indoor localization reduces this scope, but
does not model the logical human-appliance relation.

In contrast to these methods, our model captures the
human-appliance relation logically in terms of the appliance
impact on human comfort and considers global goals for en-
ergy efficiency. SurroundSense provided a first implemen-
tation of such a logical localization on the granularity of
different stores using environmental smartphone measure-
ments [3]. We push these ideas by (i) adding a human feed-
back loop, (ii) knowledge of the current appliance state in a
room (e.g., which lights are on/off) and (iii) by introducing
small modulations of the environment to speed up the reduc-
tion of the search space. This enables a logical localization
per appliance opposed to per room.

3. INTERACTION MODEL
Our main design goal is to enable an adaption of the smart

environment to the comfort needs of the current occupants.
On an abstract level, this means that different environmental
dimensions (Light, Temperature, Sound, Air Quality) must
be matched to the individual comfort preferences (see Fig-
ure 1). This matching is achieved by altering the output of
available appliances accordingly (e.g., the user’s light state
is too dark → increase brightness of affecting smart light).
Hence, it requires that the logical relations between humans
and appliances are identified beforehand.

We argue that in most scenarios, appliance authorization
can be based on physical locality (if I am physically inside
a room, I should have access to its appliances) as we pro-
posed in [5]. The system must allow for both, an automated
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adaption and for a manual, user initiated change of the en-
vironment. The bottom of Figure 1 shows the four main
building blocks of our model. We will now discuss each of
them.

3.1 Comfort Translation
In order to adapt the environment to the individual, it is

necessary to translate comfort preferences between human
and machine. We performed a survey among 50 students
and employees at our campus to understand their sensitivity
to temperature. Figure 2 shows that most people are not
able to estimate the current temperature accurately. The
mean error is 2.1 ◦C, while single estimates are off by 8.6 ◦C.
An initial survey among colleagues showed that the error in
human perception is even higher for less common units like
Lux. In our system, we thus use relative user intents (e.g.,
“I am too cold/hot”) to construct individual comfort ranges.
This approach is been successfully followed in industry (see
e.g., [1]).

3.2 Appliance Identification
Appliance identification builds on two levels: (i) appli-

ances need to be mapped to their respective environmen-
tal dimensions (macro level) and (ii) appliances need to be
mapped to individual occupants by their logical relation (mi-
cro level). Both mappings are only in the most simple cases
one-to-one. Some appliances influence more than one di-
mension (e.g., heating influences both temperature and air
quality; window shades influence both, light and tempera-
ture). Multiple occupants are in many cases influenced by a
single appliance (e.g., a ceiling light or the room heating).

In our model, we base the dimensional mapping of appli-
ances on metadata (e.g., a light has its primary output in
the light dimension and its secondary in the temperature
dimension). The logical mapping of appliances to individu-
als is dynamic and not solely expressible with metadata. It
depends on the present occupants and their location. This
mapping must thus be created by a feedback loop. The feed-
back loop combines both human-input (“I am too hot.”) and
sensor readings (personal temperature, brightness sensor).

We abstract these relations as a weighted property graph
G = (V,E), with |E| = m edges and |V | = n vertices. V
and E have a set of key value pairs that represent prop-
erties P (e.g., vertex type, primary/secondary output, cur-
rent state, edge cost. . . ). This graph is constructed by us-
ing the feedback-loop as input for a graph exploration al-
gorithm. The algorithm incrementally creates a property
graph of appliances, their output (e.g., light) and affected
occupants. Figure 3 depicts an simplified example of a con-
structed graph for our shared office with two occupants. It
is important to note that this graph is not static, but in
constant change. It is usually only partly and not fully ex-
plored. We discuss its construction process by means of our
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Figure 3: Property Graph for two occupants, two
lights, an automatic window and a heating system.

Figure 4: Office Testbed and Android Application

implementation in Section 4.

3.3 Comfort and Energy Optimization
We model comfort and energy optimization as constrained

optimization, where the individual comfort preferences are
hard constraints of a building-wide energy optimization. We
argue that occupant comfort is more significant than a low
energy consumption. When comfort requirements of occu-
pants are divergent, our system provides strategies to medi-
ate them. It first tries to resolve them by exploiting existing
one-to-one mappings (e.g., two persons with different light-
ing preferences, but individual desk lights). In case the con-
flict cannot be solved in this way (e.g., only a single heating
for a room), our system provides aggregation based strate-
gies (e.g., mean/median of all user preferences).

We minimize energy use when possible (e.g., if occupants
are comfortable with setting the brightness to 70%, the sys-
tem uses this lower bound and not a maximum brightness).

4. IMPLEMENTATION AND EVALUATION
Our testbed consists of a shared office (∼ 20 m2) with four

smart lights (Philips Hue), three smart thermostats (eQ-3
Homematic) and a window that we modified so it can be
closed and opened remotely (see Figure 4).

Our prototype uses acoustic signals to transmit an alter-
nating key to smartphones in the same room. This key is

needed to prove that one is inside the room.1 The smart
infrastructure in the room can be accessed through Blue-
tooth Low Energy (BLE) from an Android application on
the user’s smartphone. This application further uses the
phone’s light sensor to measure brightness levels at the user’s
location and stores the user’s comfort preferences for differ-
ent rooms. We use a room coordinator (a Raspberry Pi)
to coordinate requests between different users and mediate
conflicts. Users check-in to the room via our application
and can either manually switch identified appliances or let
the system decide on the best values based on comfort pref-
erences. Preferences are build up incrementally based on
relative user input (“I am too hot/cold.”).

4.1 Graph Exploration
Algorithm 1 shows our graph exploration algorithm in a

simplified form. As a first step, vertices are put into different
groups according to their environmental dimension. In an
unexplored graph (room), each vertex is assigned a random
probability and added to a priority queue. The algorithm
then iterates through that queue, modifying each appliance
state slightly and taking the sensor reading and human input
as feedback. If a threshold is reached, the appliance setpoint
is iteratively incremented/decremented further. Both steps
are repeated until the individual preference value has been
reached. (for lighting this process takes <2 s; heating re-
quires a time delay between actuations.) If the individual
comfort level cannot be reached by these steps, we increase
the modification level. This allows to identify appliances
that are not as strongly connected (e.g., a light with indi-
rect radiation). The resulting incomplete graph is stored
on the smartphone of each user. If a user visits the same
room a second time, we use this information to speed up the
identification process (we pick the most probable appliance
first).

4.2 Results

4.2.1 Identification Time and Energy Efficiency
Users require a timely identification time and are annoyed

by too frequent modifications of the environment to identify
logical appliance relations. We evaluate different strategies:
(i) Random (we start identification with a random choice),
(ii) Explore All (we explore the full lighting graph), (iii)
Probabilistic (we learn by past results). We perform experi-
ments at each of the three work desks of our office. Figure 5
shows these strategies in their time dimension. The time
for exploring the full graph grows linear with the number
of appliances. We implemented state transitions smoothly,
over a longer time period (1.5 s) to keep human annoyance
to a minimum, which is why identifying four lights takes 7 s.
The results of the random strategy are widespread. In best
case we initially pick a light with a strong logical relation to
the user, but in worst case, we iterate until the last light. In
the probabilistic approach the light can mostly be identified
with the first, and latest with the second try.

Exploring the whole graph can improve energy efficiency.
Figure 6 shows the same strategies in their efficiency dimen-
sion. We define 100% energy efficiency when

∑
E.cost is

minimal for the set of lights and setpoints. Exploring all

1Because of the natural attenuation of sound waves by walls,
this assumption is not unreasonable (see [5] for a detailed
description of this setup).

89



Algorithm 1 Graph Exploration

Precondition: User H enters room R with |V | = n vertices;
H = {(s1, p1, E1), (s2, p2, E2), . . . }, where (sn, pn) are cur-
rent comfort state and preferences for different dimensions,
En = {e1, e2, . . . } is a set of known edges. If R is unknown
to H, this set is empty.

1: function Identify((s1, p1, E1), V )
2: if E1 = ∅ then
3: V1 ← V
4: else
5: V1 ← E1.V1

6: end if
7: for i← 1 to |V1| do
8: e2 ← Toggle((s1, p1, E1), V1[i])
9: if e2 6= ∅ then

10: En ← En + e2
11: end if
12: s2 ← GetState()
13: if s2 = s1 then
14: return En

15: end if
16: end for
17: return En

18: end function

19: function Toggle(h1, v)
20: e ← NewEdge()
21: do
22: s1 ← GetState()
23: Actuate(v, 0.1)
24: s2 ← GetState()
25: e.cost ← (s2 − s1)/0.1
26: while abs(s2 − s1) > 0 & s2 < h1.s1
27: return e
28: end function
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Figure 5: Identification time for different strategies.

the graph ensures that the light (s) with the lowest cost
are always chosen (100%). Random strategy results become
more spread with a growing number of lights (mean value
78%). Our probabilistic strategy achieves 94% mean. The
relative high result for the random strategy are due to the
small number of lights in our testbed and because we use a
small threshold before we assign a logical relation between
an appliance and a user.

4.2.2 Conflict Resolution
In our testbed, we are able to mediate lighting conflicts

by exploiting one-to-one relations. However, room heating
affects all occupants. To resolve conflicts we set the heating
setpoint to the median of the current users. This maximizes
comfort for most people, while outliers are not weighted as
heavily as when using the mean. This is especially impor-
tant to mitigate the impact of users that game the system
by providing extreme preferences to either end. Applying
this strategy to our survey dataset, results in a median of
21 ◦C, which is inside the comfort ranges of 36 out of 50
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Figure 6: Energy efficiency for different strategies.

persons. The temperature is 3.3 ◦C lower than the mean
measured temperature. We thus improve comfort from 20
to 36 persons (80%) while saving heating energy (results
were obtained during heating season in Denmark).

5. CONCLUSION
We presented a model for smart-appliance interaction that

reduces the need for metadata and builds on a logical human-
appliance relation for identification. We have shown an ini-
tial implementation of such a model using smart lighting and
heating. Looking forward, we believe that central building
management can be partly substituted by such a decentral-
ized model that combines local user preferences with global
energy goals. We expect that humans will be increasingly
equipped with wearable sensors that enable an identification
of logical relations in all relevant comfort dimensions. This
also opens up a move from traditional RF based localiza-
tion methods (RSSI fingerprinting) to ambient based ones
(Ambient fingerprinting).
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Chapter 5

Conclusion

Based on our original thesis, we addressed two classes of problems: (i) Us-

ing off-the-shelf IoT systems for human-building interaction and (ii) aligning

this interaction with Mark Weisers vision of ubiquitous computing [8]. We

approached these problems from a system perspective, by exploring the design

space for IoT based human-building interaction on different dimensions: (i)

Human-building interfaces, (ii) Means of identification and (iii) System archi-

tecture. We explored each dimension by designing and implementing systems

according to their requirements by adapting Weiser’s core ideas and issues

to IoT based human-building interaction in 2016. For each system, we then

evaluated specific, non-functional requirements experimentally. These experi-

ments and evaluation confirm our initial thesis that a seamless augmentation

of physical human-building interaction with digital capabilities through IoT

off-the-shelf systems can be derived from Mark Weiser’s vision of ubiquitous

computing.

5.1 Summary of Results

We started out by creating BUSICO 3D, a building virtualization that pro-

vides a natural visualisation of past and current sensor data, building wide

control, configuration and scheduling. Changes made in the physical world are

reflected in the virtual world and likewise. Our toolchain derives its virtual

replication from an existing building information model (BIM). This facilitates
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a fast deployment across different buildings and the introduction of a simpli-

fied energy and thermal simulation mode, based on the structural model of the

BIM. BUSICO is implemented in the modern game engine Unity 3D.

With Babel, we then built a system that incrementally, and by crowd-

sourcing the building occupants, creates a link between a digital point in a

building management system (or likewise a system of IoT devices) and the

physical device and its location. This process eventually achieves a consistent

metadata state. Such consistent metadata enables portable cyber-physical

applications and eases the continuous building commissioning task.

In the last part of this thesis, we approached the architectural integration

problem of off-the-shelf smart appliances in non-residential buildings. We took

this problem as a starting point to develop BLEoT, a Bluetooth Low Energy

(BLE) based, decentralized system of smart appliances and sensors that can

replace a central BMS, while setting the focus on direct user control to achieve

an adaptive building management.

Our system implementation and evaluation of BLEoT showed some incon-

sistencies in the native Bluetooth abstractions on current smartphones. Hence,

with BLEva, we then provided a detailed, in-the-wild evaluation of BLE in the

context of smartphone-peripheral systems. We also designed a distributed

benchmarking framework that enables researchers to collect reproducible re-

sults. In a second step, we used these results to implement a prototype of

improved, dynamic BLE abstractions that result in a more predictable BLE

behavior.

We finished this thesis by presenting “A Practical Model for Human-Smart

Appliances Interaction”. Its appliance identification is based on a logical

human-appliance relation and relies on the decentralized architecture devel-

oped in BLEoT. We also present an initial implementation using a smart

lighting and heating system in a shared office that shows improvements in

occupant comfort and energy consumption.

5.2 Lessons Learned and Open Issues

We chose to design our building-wide interface BUSICO 3D as a virtual re-

ality system following Weiser’s argumentation of an acceptable use case for
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virtual reality [8]. In hindsight, the implementation in Unity 3D was the right

design decision. It enabled a fast prototyping and allowed us to make use of

Unity’s graphics, physics and lighting engine. We deployed our application in

form of a native binary. Since our implementation of BUSICO in 2014, GPU-

accelerated web-content has caught up dramatically in performance and ease

of implementation (e.g., using the popular Three.js library that provides sim-

ple and browser-independent abstractions on top of WebGL [7]). Unity allows

the export to WebGL since version 5 (released in 2015). Moving BUSICO into

a web browser would increase accessibility by making it directly available on

a multitude of devices (traditional computers, tablets, smartphones), without

requiring the installation of a native binary or browser extension. An open is-

sue is to better automate the mapping of the physical building to its digitalized

representation. For now, we assume the existence of a BIM, whose namespace

is consistent with the BMS. This assumption does not apply in many cases.

We believe that crowd-sourcing was the proper approach to solve incon-

sistent metadata and to facilitate identification between users and digitally

enhanced appliances. Physical environments are never static, but always in

change. Devices get moved or replaced. Hence, in all smart environments,

the digital state needs to be continuously kept in synchronization with the

physical world. Current off-the-shelf smart appliances are not location aware

themselves, which makes crowd-sourcing a viable option. Considering the rapid

growth of connected IoT devices, it will become critical that devices get loca-

tion aware and self-descriptive. Humans will not be able to scope manually

with the high number of devices.

The choice of BLE as a communication protocol in our decentralized IoT

architecture had advantages and disadvantages: BLE showed a low energy con-

sumption and allowed us to deploy our system with unmodified smartphones.

However, our design decisions were constraint by the design space predeter-

mined through the Bluetooth specification. Especially direct peripheral-to-

peripheral connections, multi-hop and extended broadcasting messages would

have been advantageous for parts of our design. Some of these issues are go-

ing to be solved with newer BLE specifications (e.g., Bluetooth 5 extends the

broadcasting capability eight-fold [1]). After our implementation of BLEoT,

the Bluetooth SIG proposed similar ideas by introducing RESTful API’s for
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enabling BLE devices to communicate with web-services, and likewise, web-

services with BLE devices [2]. Their white-paper proposes a stationary gate-

way device, whereas we directly use the user smartphones. We believe that

our opportunistic architecture has several advantages, especially in a non-

residential building: (i) it increases security by physically disconnecting de-

vices from the web when users are not present and (ii), it enables individual

data sharing policies on personal phones. Individual data sharing policies can

define a data-flow control point between local infrastructure and the cloud.

We currently have not implemented such policies, but our architecture allows

for their inclusion. Another issue that we have not touched with BLEoT is the

integration of an existing BMS with smart appliances. Such incremental ad-

dition of appliances is likely to happen in the near future to replace or extend

existing building infrastructure.

Our human-smart appliances interaction model is a start in the right di-

rection, but might need to be extended towards multi-objective optimization

and local, peer-to-peer networking. In our architecture, smartphones act as

personal gateways between smart infrastructure and the cloud, and as user

interface. Therefore, our system should include local, conflict mediation algo-

rithms that rely on direct phone-to-phone communication. BLE is an obvious

communication protocol for such algorithms, due to its omnipresence and short

range properties. The capability to switch between an advertising and scan-

ning role was introduced with Android 5 (API level 21) and can as such be

used to enable this local and dynamic BLE network of smartphones.

5.3 Research Perspectives

We see several directions for future research. One is rooted in the placement of

computation in distributed IoT systems. Should computation be placed locally

or in the cloud? As we have shown in this thesis, the placement has several

implications on usability, fault-tolerance, scalability and privacy. Usability is

affected by the latency of IoT systems (humans are able to perceive latencies

greater than 100ms [6]). Systems that rely on the cloud may further not be

as resilient as purely local systems and eventually reach a scalability problem.

However, maybe the most important implications of this trade-off are the
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impacts on privacy of user data and the security of IoT devices. Promising

approaches introduce a local computational tier, so called cloudlets [5] or fog

computing [3].

Virtual Reality (VR) and Computer Vision (CV) as means of human-

building interaction are other directions for further research. One problem is

how to deal with an ever changing environment. These environment changes

require that the digital representation for both VR and CV based approaches is

continuously kept in synchronization with the physical state. Because of their

high computational requirements, and the strong privacy implications of VR

and CV data, the trade-off between local and cloud computation is complex.

Further, current academic systems are based on a relatively small amount of

data. How can we scale systems from a single building to an entire city?

Another research direction lies in authentication and authorization issues.

If we assume that all of our environment transforms into a smart environ-

ment, then how should we authenticate and authorize users? Many devices

need to be accessible to all occupants (e.g., lighting, heating, window control),

while others should in many cases require authentication and authorization

(e.g., a projector during a lecture). This thesis has only focused on the former

ones. Should such an authentication and authorization system be centralized

or decentralized? Should it rely on asymmetric encryption or build on a de-

centralized blockchain for trust (e.g., [4])? We believe that it is crucial to (i)

find the right trade-off between security and simplicity/usability and (ii), to

choose the adequate design and technology for implementation.
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