
Noname manuscript No.
(will be inserted by the editor)

Psi-calculi in Isabelle

Jesper Bengtson · Joachim Parrow · Tjark Weber

In memory of Robin Milner

the date of receipt and acceptance should be inserted later

Abstract This paper presents a mechanisation of psi-calculi, a parametric framework for
modelling various dialects of process calculi including (but not limited to) the pi-calculus,
the applied pi-calculus, and the spi calculus. Psi-calculi are significantly more expressive, yet
their semantics is as simple in structure as the semantics of the original pi-calculus. Proofs
of meta-theoretic properties for psi-calculi are more involved, however, not least because
psi-calculi (unlike simpler calculi) utilise binders that bind multiple names at once.

The mechanisation is carried out in the Nominal Isabelle framework, an interactive proof
assistant designed to facilitate formal reasoning about calculi with binders. Our main contri-
butions are twofold. First, we have developed techniques that allow efficient reasoning about
calculi that bind multiple names in Nominal Isabelle. Second, we have adopted these tech-
niques to mechanise substantial results from the meta-theory of psi-calculi, including con-
gruence properties of bisimilarity and the laws of structural congruence. To our knowledge,
this is the most extensive formalisation of process calculi mechanised in a proof assistant to
date.

Keywords psi-calculi, process calculi, proof assistants, nominal logic, mechanisation

1 Introduction

Process calculi are commonly used to describe the behaviour of concurrent systems. Seminal
calculi that were developed in the early 1980s include Milner’s CCS [34], Hoare’s CSP [27],
and Bergstra and Klop’s ACP [14]. More recent examples are the pi-calculus [38] and its
variants, for instance, the applied pi-calculus of Abadi and Fournet [1], and the concur-
rent constraint pi-calculus by Buscemi and Montanari [20]. These calculi provide high-level
modelling primitives to describe interactions between independent agents. Algebraic laws

Jesper Bengtson
IT University of Copenhagen E-mail: jebe@itu.dk

Joachim Parrow
University of Uppsala E-mail: joachim.parrow@it.uu.se

Tjark Weber
University of Uppsala E-mail: tjark.weber@it.uu.se

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/81666731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jesper Bengtson et al.

allow the manipulation of process descriptions, and precise semantics permit formal reason-
ing about properties such as process equivalence.

For any such formalism to be practically useful, fundamental results must be established
about it. One example is compositionality: that the semantics of a process can be deduced
from the semantics of its components. This is crucial for dividing the construction of a
system into parts that can be analysed separately.

Proving such properties of a process calculus often requires stamina and attention to de-
tail. Intricate induction proofs and case analyses necessitate a fair amount of bookkeeping.
When this is done using pen and paper, there is a temptation to take shortcuts by gloss-
ing over seemingly trivial parts. In some cases, this has led to the publication of erroneous
proofs. For instance, both the applied pi-calculus and the concurrent constraint pi-calculus
have been discovered to have flaws or incompletenesses in the sense that their claimed com-
positionality results do not hold [9]. Despite much research in the area, these errors went
unnoticed for several years, indicating the complexity of these proofs.

The problem is aggravated by a trade-off between simplicity and elegance of a calculus
on the one hand, and modelling convenience on the other hand. As an illustrative example,
consider the lambda-calculus [23]: its minimal language makes it relatively easy to prove
meta-theoretic properties (easier at least than for a full-fledged functional language, such
as Standard ML [39]), but one would not want to write programs directly in the lambda-
calculus. Similarly, there is no one-size-fits-all approach to process calculi. Some process
calculi use a parsimonious language to explore fundamental principles of computing and
facilitate proofs of meta-theoretic properties, while others are more tailored to application
areas and include many constructions for modelling convenience. Such formalisms are now
being developed en masse. There is a danger that for more applied calculi, proofs of meta-
theoretic properties become gruesome and, therefore, will not be not carried out with the
necessary care.

Proof assistants such as Coq [15], HOL4 [46] or Isabelle [50] can be of great benefit in
this setting. These software tools provide excellent support to manage unwieldy case dis-
tinctions and large numbers of assumptions; they diligently keep track of every detail of a
formalisation. Convincing a proof assistant that a statement is true may be a difficult and
sometimes tedious task, not least because one cannot resort to hand-waving. The reward is
that one obtains an unprecedented level of confidence in the statements so proven. More-
over, changes or additions to a calculus that would otherwise require weeks of careful proof
revision can be checked mostly automatically, sometimes in minutes [7]. When Aydemir
et al. posed the POPLmark challenge [3], they enunciated their vision of “a future in which
the papers in conferences such as Principles of Programming Languages [...] are routinely
accompanied by mechanically checkable proofs of the theorems they claim.” We share this
vision, and add that mechanised proofs are as valuable for process calculi as they are for
programming languages.

Taking this future one step closer to becoming reality, this paper presents a formalisa-
tion of psi-calculi in Isabelle. Psi-calculi (Section 2) are a parametric family of process cal-
culi that aim to resolve the conflict between elegance and modelling convenience sketched
above. Obtained as an extension of the pi-calculus, psi-calculi have a truly compositional
labelled operational semantics (without the complications of stratified process definitions,
structural congruence or explicit quantification over contexts found in other calculi), as sim-
ple in structure as the semantics of the original pi-calculus. Yet their expressiveness signif-
icantly exceeds that of the applied pi-calculus. They accommodate pi-calculus extensions
such as the spi-calculus [2], the fusion calculus [25], concurrent constraints, and polyadic
synchronisation [21], to name but a few.

Psi-calculi in Isabelle 3

This paper details the first mechanisation of a family of process calculi of this calibre.
The formalisation comprises approximately 32,000 lines of definitions and proofs and is
available from the Archive of Formal Proofs [8]. One interesting aspect and a major diffi-
culty when formalising any calculus with binders is the treatment of alpha-equivalence. For
this, we base our formalisation on Urban’s Nominal Isabelle framework [47]. More specifi-
cally, our contributions are the following.

– We extend Nominal Isabelle to reason atomically about sequences of binders, as opposed
to single binders (Section 3).

– We define the basic notion of psi-calculi agents (Section 4) and their labelled opera-
tional semantics (Section 5). We achieve parametricity, i.e., the ability to instantiate our
formal framework to concrete process calculi, through the use of locales [5], Isabelle’s
mechanism for local specifications.

– We use the induction rules provided by Nominal Isabelle to derive custom induction
rules that remove the bulk of manual alpha-conversions, keeping the machine-checked
proofs as close to their pen-and-paper counterparts as possible (Section 5).

– We describe heuristics for generating inversion principles (principles for case analysis)
for calculi that use sequences of binders (Section 6). Nominal Isabelle has generated
induction principles for such calculi (and also for calculi with single binders) for some
time now, but adapting these techniques to cover inversion principles has been an open
problem.

– In a similar way as for the pi-calculus, we define strong bisimilarity and prove that it is
preserved by all operators except the input prefix (Section 7).

– We define strong equivalence by closing strong bisimilarity under parallel substitutions
and prove that it is a congruence (Section 8).

– We define weak bisimilarity, which considers τ-actions unobservable, and prove that it
is preserved by all operators except nondetermistic choice and the input prefix.

– We define weak equivalence and prove that it is a congruence.
– We prove the tau-laws for weak bisimilarity.
– To facilitate reasoning about our operational semantics it does not include structural

congruence. As a sanity check, we prove that all versions of bisimilarity preserve the
laws of structural congruence.

In this paper, we focus on describing the first six of these items. Although the last four
items represent a substantial amount of work we only treat them summarily; a thorough pre-
sentation can be found in the first author’s PhD thesis [7]. This paper is partially based on a
previous conference paper [11], but it covers the material in more detail and contains several
new elements. Notably, the requirements on substitution (Section 4.3) have been simplified,
and Sections 6–8 (on inversion principles and the formalisation of strong bisimilarity and
strong equivalence) are new.

2 Background

To achieve an elegant treatment of alpha-equivalence, we base our formalisation of psi-
calculi on nominal logic [44]. In this section, we recapitulate the core concepts, as supported
by the Nominal Isabelle [47] framework. We also provide a brief background on psi-calculi.
For a more extensive treatment including motivations and examples see [9].

4 Jesper Bengtson et al.

2.1 Nominal logic

Nominal logic is a formalism designed to simplify the treatment of calculi involving binders.
In informal reasoning about such calculi, the Barendregt variable convention [6] is often
used. This convention states that all bound variables are distinct from the free variables that
appear in a given mathematical context. The variable convention is difficult to justify for-
mally; in fact, it is unsound in general when used in rule inductions [48]. Nominal logic
allows reasoning about terms with binders up to alpha-equivalence. It thus places the infor-
mal, but convenient style of reasoning that is often practised in pen-and-paper proofs on a
sound theoretical footing.

At the core of nominal logic is a countably infinite set of atomic names N , ranged over
by a, . . . , z. In our formalisation, names will represent the symbols that can be statically
scoped. They will also represent symbols acting as variables, in the sense that they can be
subjected to substitution. A typed calculus would distinguish names of different kinds [16],
but our account will be untyped.

A nominal set [44] is a set equipped with name swapping functions. The latter are writ-
ten (a b) for any names a and b. Intuitively, for any member X of the nominal set it holds that
(a b) · X is X with a replaced by b and b replaced by a. Formally, a name swapping function
is any function satisfying certain natural axioms, such as (a b) · (a b) · X = X. A permuta-
tion is a list of name swappings. We write ε for the empty list, and xx̃ for a list consisting of
head x and tail x̃. Application is lifted from name swappings to permutations: ε · X = X, and
(a b)x̃ · X = (a b) · x̃ · X. Application of permutations to tuples, lists, and other inductive
data types is defined homomorphically: e.g., p · (u, v) = (p · u, p · v).

Even though we have not specified any particular syntax for elements of a nominal set,
name swappings allow us to define what it means for a name to occur in an element: namely
that it can be affected by swappings.

The names occurring in an element X constitute the support of X, written supp X. We
write a] X, pronounced “a is fresh for X,” for a /∈ supp X. For instance, if the nominal set is
an inductively defined data type, we have a] X if and only if a does not occur syntactically in
X. In the lambda-calculus, where alpha-equivalent terms are identified, the support of a term
is the set of its free variables. If A is a set of names, we write A] X to mean ∀a∈A. a] X.

We require all elements to have finite support, i.e., supp X is finite (possibly empty) for
all X. Given a finite collection of elements X1, . . . , Xn, this requirement ensures the existence
of infinitely many names a such that a] X1, . . . , a] Xn.

A function f is said to be equivariant if (a b) · f (X) = f ((a b) ·X) for all X, and similarly
for functions and relations of any arity. Intuitively, this means that f treats all names equally.
We write eqvt f when f is equivariant.

A nominal data type is a nominal set equipped with a collection of equivariant functions.
In particular we shall consider substitution functions, which intuitively substitute elements
for names. If X is an element of a nominal data type, x̃ is a sequence of names without dupli-
cates, and T̃ is an equally long sequence of elements, the substitution X[x̃ := T̃] is an element
of the same data type as X. In a traditional (inductively defined) data type, substitution can
be thought of as replacing all occurrences of names in x̃ by corresponding elements in T̃ . In
a calculus with binders, it can be thought of as replacing the free names, alpha-converting
bound names as necessary to avoid capture. Formally, a substitution can be any equivariant
function that satisfies certain substitution laws. The full list of these is given in Section 4.3.

By using nominal data types we obtain a general framework that allows many different
instantiations. Our only requirements are on the notions of support, name swapping, and
substitution. This corresponds precisely to the essential ingredients for data transmitted be-

Psi-calculi in Isabelle 5

tween agents (Section 2.2). Since names can be statically scoped and data sent into and out
of scope boundaries, it must be possible to discern exactly which names are contained in a
data item, and this is just the role of the support. In case a data element intrudes a scope, the
scoped name needs to be alpha-converted to avoid clashes, and name swapping can achieve
precisely this. When a term is received in a communication between agents, it must replace
all occurrences of the placeholder in the input construct; this requires a substitution function
that substitutes the received term for the placeholder.

Since these are our only assumptions on data terms, the psi-calculi framework can be
instantiated also to data types that are not inductively defined, such as equivalence classes
and sets defined by comprehension or co-induction. Examples include higher-order data
types such as the lambda-calculus, or even agents of a psi-calculus.

Similarly, the notions of conditions (i.e., tests on data that agents can perform during
their execution) and assertions (i.e., facts that can be used to resolve conditions) are for-
mulated as nominal data types. This means that logics with binders, and even higher-order
logics can be used. Moreover, alpha-variants of terms are formally equated, thereby facili-
tating the formalism and proofs.

2.2 Psi-calculi

Psi-calculi provide a framework where a range of process calculi can be formulated with a
lean and symmetric semantics, and where proofs can be conducted using straightforward in-
duction, without resorting to a structural congruence or explicit quantification over contexts.
This section gives a brief informal introduction to psi-calculi, in order to keep this paper
self-contained. We refer to our formal development in Sections 4–7 for details, and to [9]
for further explanations and examples.

Historically, psi-calculi evolved from the pi-calculus [38]. In the (basic, untyped) pi-
calculus, a concurrent system is composed of agents that communicate names across chan-
nels. Names are scoped (i.e., known only to certain agents), but may be sent to agents out-
side their current scope. Names serve a dual role: they function as both channel names and
communicated objects. This allows the pi-calculus to conveniently model changes in the
communication structure, such as those commonplace in mobile networks. A pi-calculus
agent may send or receive a name on a channel, make a non-deterministic choice, execute
in parallel with another agent, replicate (i.e., create a copy of itself), create a fresh (local)
name, or test for equality of names. Based on this parsimonious language, the pi-calculus
aims to be a universal model for concurrent computation. Similarly to the lambda calculus,
it is Turing-complete, and does not contain primitives for numbers, lists, or other data struc-
tures. In contrast to the lambda calculus, it has no primitive notion of substituting a term for
a name, and can thus be said to capture computation on a much lower level.

Psi-calculi enrich the minimal language of the pi-calculus for better modelling conve-
nience, while preserving its relatively simple meta-theory. A psi-calculus is obtained by
extending the pi-calculus with three parameters. The first is a set of data terms. These gen-
eralise names; like names in the pi-calculus, data terms function as both communication
channels and communicated objects. The second is a set of conditions, for use in condi-
tional constructs such as if statements. These generalise the test for name equality. The third
is a set of assertions, used to express, e.g., constraints or aliases, which can resolve the con-
ditions. These sets need not be disjoint. We assume that terms, conditions, and assertions are
given by nominal data types. One of our main results is to identify minimal requirements on
these types (Section 4), which turn out to be both general and natural.

6 Jesper Bengtson et al.

Psi-calculi are equipped with a labelled operational semantics (Section 5). A transition
in this semantics is written Ψ B P α−→ P ′, and intuitively means that Ψ is an assertion
(representing an environment of P) under which the agent P can take action α to become P ′.
Although psi-calculi are significantly more expressive than the applied pi-calculus, the sim-
plicity of their semantics is on par with that of the original pi-calculus.

As a simple example that anticipates the syntax of psi-calculi agents, consider the agent
M(λx̃)N .0, which expects to receive an instance of the pattern (λx̃)N on the channel M.
The pattern can match any term N′ obtained by instantiating the names x̃ in N. This can be
thought of as a generalisation of the polyadic pi-calculus [36], where the patterns are just
tuples of names. When executed in parallel with the agent KN′ .0, which sends the term N′

on channel K, the two agents can communicate if (and only if) the environment asserts
that M and K denote the same channel.

This example touches on three important features of psi-calculi: pattern matching, chan-
nel equivalence, and multiple binders (i.e., binders that bind multiple names at once). We
formalise multiple binders in Section 3, before introducing psi-calculi agents and their syn-
tax in more detail in Section 4.

3 Binding sequences

A major difficulty when formalising any calculus with binders is to handle alpha-equivalence
in a smooth and transparent fashion. Like other techniques that have been used in proof as-
sistants to handle binders, Nominal Isabelle can only bind a single name at a time. Reasoning
about single binders works well for many calculi, but psi-calculi require binding sequences
of arbitrary length. As mentioned in Section 2.2, a binding sequence is needed for agents
that expect an input: the agent M(λx̃)N .P has the sequence x̃ binding into N and P. The sec-
ond place where binding sequences are needed is in the definition of frames (Section 5.1).
Frames are derived from agents, and as agents can have an arbitrary number of binders, so
can the frames. The third occurrence of binding sequences is in the operational semantics

(Section 5.3). In the transition Ψ B P M (νã)N−−−−−→ P′, where the agent P takes an output action
on channel M to become P ′, the sequence ã represents the bound names in P that occur in
the object N.

Nominal2 [29] is a recent re-implementation of Nominal Isabelle that was in large part
motivated by our formalisation of psi-calculi. It supports multiple binders, i.e., structures
that bind several names simultaneously, but it is currently not mature enough to be used for
our formalisation. More specifically, it does not (yet) support the use of Isabelle’s locales.
We discuss Nominal2 in more detail in Section 9, together with other related work.

It is important to introduce binding sequences without complicating proofs unnecessar-
ily. In this section we discuss how we adapted, in a clear and transparent manner, the core
lemmas used for reasoning about single binders in Nominal Isabelle to handle sequences of
binders. All definitions and theorems in the following sections have been formally checked
in Isabelle. Where necessary, we will explain Isabelle-specific notation as we go along.

3.1 Definition

To obtain binding sequences, we define a nominal data type bindSeq by induction: any term
of finite support is of type bindSeq, and binding a name yields another term of this type.

Psi-calculi in Isabelle 7

Definition 1 (bindSeq)

nominal datatype α bindSeq = Base α
| Bind �name� (α bindSeq)

Thus, the nominal data type bindSeq is parametric in a type parameter α. We generally
use postfix notation, e.g., α bindSeq, for type constructors. This data type has two con-
structors: Base simply takes an argument of type α, while Bind is recursive. It takes two
arguments, a name and a term of type α bindSeq, and binds the name in the latter. Binding
is made apparent by guillemets in the notation of Nominal Isabelle.

A binding sequence is obtained from a list of names by recursion, binding one name at
a time.

Definition 2 (bindSequence)

bindSequence :: name list⇒ α⇒ α bindSeq
bindSequence ε T = Base T
bindSequence (xx̃) T = Bind x (bindSequence x̃ T)

Thus, bindSequence is a function of two arguments, the first being a list of names and
the second of type α. We use the notation [x̃].T to mean bindSequence x̃ T. For the rest of
this section, we compare the most common nominal mechanisms that are used for calculi
with single binders to their counterparts that use binding sequences.

A binding sequence x̃ is fresh for a term X if all names x in x̃ are fresh for X.

Single binder Binding sequence
a] X ≡ a /∈ supp X x̃] X ≡ ∀x∈set x̃. x] X

Here, set x̃ is the set of all elements that are contained in the list x̃.

3.2 Alpha-renaming

There are two steps involved in every alpha-conversion. First, a sufficiently fresh name is
chosen. Second, a bound name (and all of its free occurrences under the binder) is replaced
with this fresh name. Generating a name that is fresh for any term of finite support is natively
supported in nominal logic. For binding sequences, we construct a permutation that, when
applied to a sequence of names, ensures that the resulting sequence satisfies all desired
freshness conditions.

Single binder Binding sequence
∃c. c] C ∃p. (p · x̃)] C ∧ set p ⊆ set x̃ × set (p · x̃)

Alpha-renaming for binding sequences then mimics the single binder case very closely.

Single binder Binding sequence
y] T

[x].T = [y].(x y) · T
(p · x̃)] T set p ⊆ set x̃ × set (p · x̃)

[x̃].T = [(p · x̃)].(p · T)

Long proofs tend to introduce many alpha-converting permutations, and it is important
to have a means to remove these from all parts of a goal where they are not needed. For any
term p · T, the permutation p can be removed if either no names in p occur in T, or if the

8 Jesper Bengtson et al.

inverse permutation p− can be applied to the goal where p · T is found; p− will distribute
through the goal by equivariance and cancel out when it reaches p · T, since p− · p · T = T.
It is, however, not generally true that p · p · T = T. The case where no name in p occurs in T
is unproblematic, and follows its single-binder version closely.

Single binder Binding sequence
a] T b] T
(a b) · T = T

set p ⊆ set x̃ × set ỹ set x̃] T set ỹ] T
p · T = T

In fact, the single binder version is just a special case of the rule for binding sequences.
However, the second of these techniques, i.e., applying the inverse permutation p− to the
goal, is unsatisfactory. As desired, applying p− will cancel out any occurrence of p in the
goal, and moreover disappear from any other subterm that contains none of its names. But
the freshness condition (p · x̃)] C does not generally imply (p− · x̃)] C . As an example,
(x y)(x z) · x] y holds, but (x z)(x y) · x] y does not. Thus, by introducing inverse permuta-
tions we lose freshness properties of binding sequences. For this reason, it is simpler to work
with permutations that are their own inverse. The following predicate accomplishes this.

Definition 3 (distinctPerm) distinctPerm p≡ distinct ((map fst p) @ (map snd p))

The distinct predicate takes a list as an argument and holds if there are no duplicates
in that list. The infix operator @ concatenates two lists. Thus, the distinctPerm predicate
ensures that all names in a permutation are distinct.

Lemma 1 If distinctPerm p then p · p · T = T .

Proof. By induction on p.

By restricting ourselves to alpha-converting permutations that are their own inverse, we
are not required to use explicit inverse permutations, and all freshness properties of binding
sequences are preserved.

We ensure that whenever an alpha-converting permutation is generated, it is sufficiently
fresh and its own inverse.

Single binder Binding sequence
∃c. c] C ∃p. (p · x̃)] C ∧ distinctPerm p ∧ set p ⊆ set x̃ × set (p · x̃)

3.3 Alpha-equivalence

For single binders, the nominal approach to alpha-equivalence is quite straightforward. Two
terms [x].T and [y].U are alpha-equivalent if and only if either x = y and T = U, or x 6= y,
x] U and U = (x y) · T. Reasoning about binding sequences is more difficult. Exactly what
does it mean for two terms [x̃].T and [ỹ].U to be alpha-equivalent? As long as T and U do
not themselves have binding sequences on the top level, we know that |x̃| = |ỹ| (where |x̃|
denotes the length of the list x̃). What happens when x̃ and ỹ partially share names?

Assumptions such as [x̃].T = [ỹ].U are obtained in proofs when we carry out induction
over a term with binders. Typically, [ỹ].U is the term in the original proof goal, and [x̃].T is
the term that appears in the induction or inversion rule. These rules are designed in such a

Psi-calculi in Isabelle 9

way that any bound names appearing in the rules can be assumed to be sufficiently fresh.
More precisely, we can ensure that x̃] ỹ and x̃] U.

If [x̃].T is alpha-equivalent to [ỹ].U, there should be a permutation that equates these
terms. We first prove the following auxiliary lemma.

Lemma 2
(i) If [a].T = [b].U then a ∈ supp T ←→ b ∈ supp U.
(ii) If [a].T = [b].U then a] T ←→ b] U.

Proof. By the definition of alpha-equivalence on terms.

We can now prove the following lemma about the existence of equating permutations
for alpha-equivalent binding sequences.

Lemma 3

If [x̃].T = [ỹ].U and x̃] ỹ then ∃p. set p ⊆ set x̃ × set ỹ ∧ distinctPerm p ∧ U = p · T .

Proof. By induction on the length of x̃ and ỹ. We construct p by using Lemma 2 to filter out
the pairs of names from x̃ and ỹ that do not occur in T and U respectively, and pairing the
rest. Since x̃] ỹ, we obtain a permutation that contains no duplicates.

We can equate T and U with this technique, but not x̃ and ỹ. To do this, we must also
know that x̃ and ỹ are distinct.

Lemma 4

[x̃].T = [ỹ].U x̃] ỹ distinct x̃ distinct ỹ
∃p. set p ⊆ set x̃ × set (p · x̃) ∧ distinctPerm p ∧ ỹ = p · x̃ ∧ U = p · T

Proof. Similar to Lemma 3, but as we know that x̃ and ỹ are distinct, and that they share
no names, the permutation p is created by pairwise combining the names from both binding
sequences.

3.4 Distinct binding sequences

Because of Lemma 4, we prefer to work with binding sequences [x̃].T such that x̃ is distinct.
A problem is that this property is not necessarily preserved by alpha-conversion. Consider
the term [xy].Base y, where the distinct sequence xy binds into the name y. Since a name can
only bind into a term once, any further occurrence of the same binder in the sequence will
by definition be fresh for everything under its scope, and hence can be freely renamed to any
other fresh name. For instance, [xy].Base y = [yy].Base y, so that we cannot a priori assume
that distinctness is maintained when working up to alpha-equivalence.

This example motivates the following lemma, which states that any binding sequence
can be replaced with a distinct one that is at least as fresh as the original.

Lemma 5 If x̃] C then ∃ ỹ. [x̃].T = [ỹ].T ∧ distinct ỹ ∧ ỹ] C .

Proof. Since each name in x̃ can only bind into T once, we can construct ỹ by replacing any
duplicate name in x̃ with a sufficiently fresh name.

10 Jesper Bengtson et al.

If we know that all members of a distinct binding sequence are in the support of the term
the sequence is binding into, then alpha-converting the sequence maintains its distinctness.

Lemma 6
[x̃].T = [ỹ].U distinct x̃ set x̃ ⊆ supp T

distinct ỹ

Proof. By induction on the length of x̃ and ỹ.

Lemmas 5 and 6 allow us to ensure that binding sequences are kept distinct in proof
contexts.

4 Psi-calculi

In this section, we describe the formal definition of psi-calculi—that is, parameters of a psi-
calculus, requirements on these parameters, and the notions of agents and static equivalence
thus obtained. Our definitions have been implemented in Nominal Isabelle.

4.1 Terms, assertions and conditions

Psi-calculi are parametric in three (not necessarily disjoint) nominal data types:

T the (data) terms, ranged over by M, N
C the conditions, ranged over by ϕ
A the assertions, ranged over by Ψ

Similarly to names in the pi-calculus, terms represent both data that is sent between
agents, and the channels over which this data is communicated. Conditions act as guards
for agents using non-deterministic choice, where any branch that has its guard satisfied may
execute. Assertions represent the environment in which the agents act; they are used to
determine whether conditions hold. They also occur inside agents, the intuition being that
as an agent executes, more assertions are added to the evolving environment. The interplay
between assertions and conditions is made more precise in Section 5, where the operational
semantics of psi-calculi is defined.

4.2 Agents

Given the three nominal data types of terms, assertions and conditions, psi-calculi agents P,
Q are defined by the following grammar:

P,Q ::= 0 Nil
MN .P Output
M(λx̃)N .P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
P | Q Parallel
(νa)P Restriction
(|Ψ |) Assertion
!P Replication

Psi-calculi in Isabelle 11

In the input form M(λx̃)N .P, we require that x̃ ⊆ supp N is a sequence without dupli-
cates. The names in x̃ bind occurrences in both N and P. Restriction (νa)P binds a in P.
In the input and output forms, M is called the subject and N the object. Input and output
are similar to those in the pi-calculus, but arbitrary terms can function as both subjects and
objects.

Intuitively, the input form M(λx̃)N .P expects to receive an instance of the pattern (λx̃)N
on the channel M. For instance, M(λxy) f (x,y) .P can only communicate with an output
M f (N1,N2) .Q for some data terms N1, N2. This can be thought of as a generalisation of the
polyadic pi-calculus [36], where the patterns are just tuples of names. Another significant
extension is that we allow arbitrary data terms also as communication channels. Thus it is
possible to include functions that create channels.

The case construct behaves as any one of the agents Pi for which the corresponding
condition ϕi is true. We sometimes abbreviate case ϕ1 : P1 [] · · · [] ϕn : Pn as case ϕ̃ : P̃, and
when n = 1 as if ϕ1 then P1.

Defining a corresponding data type of agents in Isabelle is not entirely straightforward.
Nominal data types in Isabelle are restricted in the sense that neither nested data types nor
nested binders are permitted. When defining psi-calculi agents this is problematic in two
respects. First, the input form requires that an arbitrary number of names can be bound.
Second, the case operator takes an arbitary number of pairs that consist of one condition
and one agent for each conditional branch.

To circumvent these problems, we create a mutually recursive nominal data type for
agents. This data type is parametrised over three type variables α, β, and γ, for terms, asser-
tions and conditions respectively.

Definition 4 (Agents)

nominal datatype (α, β, γ) psi =
PsiNil
| Output α α ((α, β, γ) psi)
| Input α ((α, β, γ) psiInput)
| Case ((α, β, γ) psiCase)
| Par ((α, β, γ) psi) ((α, β, γ) psi)
| Res �name� ((α, β, γ) psi)
| Assert β
| Bang (α, β, γ) psi

and (α, β, γ) psiInput =
Trm α ((α, β, γ) psi)
| Bind �name� ((α, β, γ) psiInput)

and (α, β, γ) psiCase =
EmptyCase
| Cond γ ((α, β, γ) psi) ((α, β, γ) psiCase)

We use the notation introduced in the informal grammar above as syntactic sugar for the
corresponding constructors of this data type: e.g., (|Ψ |) is short for Assert Ψ .

While this data type correctly formalises agents in psi-calculi, it is not convenient to
work with. It is much more elegant to reason about input forms and case constructs in such
a way that the mutually recursive structure of the psi data type becomes transparent. To
accomplish this, we define the following wrapper functions.

12 Jesper Bengtson et al.

Definition 5 (inputChain)

inputChain :: name list⇒ α⇒ (α, β, γ) psi⇒ (α, β, γ) psiInput
inputChain ε N P = Trm N P
inputChain (xx̃) N P = Bind x inputChain x̃ N P

Definition 6 (psiCases)

psiCases :: (γ× (α, β, γ) psi) list⇒ (α, β, γ) psiCase
psiCases ε = EmptyCase
psiCases ((ϕ, P)C̃) = Cond ϕ P psiCases C̃

We write M(λx̃)N.P for Input M (inputChain x̃ N P), and use Cases C̃ as a shorthand
for Case (psiCases C̃).

4.3 Substitution

When the input form M(λx̃)N .P receives an instance of the pattern (λx̃)N, it continues as
the agent P with names in x̃ instantiated accordingly to match the received instance (see
the operational semantics in Section 5). To define this more precisely, we require a substi-
tution function on agents. Substitution in psi-calculi operates in much the same way as for
other calculi with binders. It propagates through the structure of agents, avoiding capture by
binders, until it reaches terms, assertions and conditions.

Terms, assertions and conditions are parameters of psi-calculi, and their exact structure
is unknown. Hence we cannot define how substitution acts on them, but we must require
that each of these types is equipped with an appropriate substitution function. We write
X[x̃ := T̃] to denote a term, assertion, or condition X whose free names in x̃ have been
substituted with the terms in T̃ . Intuitively, this substitution should be parallel: once a name
has been replaced with a term, no further substitution is performed on this term. In practice,
substitution can be any function that satisfies a minimal set of constraints. To model this, we
introduce the notion of substitution types.

4.3.1 Substitution types

A substitution type is a type α that is equipped with a ternary function, written ·[· := ·], of
type α⇒ name list⇒ β list⇒ α. Intuitively, this function will substitute terms (of type β)
for names in terms, assertions or conditions (of type α). Hence the types α and β may be
equal, but this is not required. We impose three constraints on substitution functions.

Definition 7 (Substitution function) A function ·[· := ·] of type α⇒ name list⇒ β list⇒
α is a substitution function if it satisfies

p · X[x̃ := T̃] = (p · X)[p · x̃ := p · T̃] SUBSTEQVT

|x̃| = |T̃ | distinct x̃
set x̃ ⊆ supp X y] X[x̃ := T̃]

y] T̃
SUBSTFRESH

|x̃| = |T̃ | distinctPerm p
set p ⊆ set x̃ × set (p · x̃) (p · x̃)] X

X[x̃ := T̃] = (p · X)[p · x̃ := T̃]
SUBSTALPHA

Psi-calculi in Isabelle 13

In Isabelle, we have defined a corresponding locale [5] for substitution types, i.e., types
equipped with a substitution function.

For SUBSTFRESH and SUBSTALPHA, we require the vectors that are being substituted
and substituted for to be of equal length. Moreover, there must be no duplicates in the name
vector. As the substitution function is intended to model parallel substitution, this does not
impose any serious restriction. We now discuss the three requisites in turn.

The requisite SUBSTEQVT ensures that the substitution function is equivariant, as we
must be able to propagate permutations over substitutions.

The requisite SUBSTFRESH states that the substitution function may not discard names
in terms that are being substituted into a substitution type: if a term is to be substituted for
a name, then the result of the substitution must not have smaller support than this term. The
requisite only applies when all names being substituted are in the support of the substitution
type’s element. This requisite is necessary to ensure that the objects of transition labels
(Section 5) record all received names; otherwise we lose the principle of scope extension [9,
§2.5].

The final requisite SUBSTALPHA is required to mimic alpha-conversions. If the bound
names of an input prefix are alpha-converted, then the corresponding names of the substitu-
tion must be similarly converted. This requisite achieves this.

With a locale for substitution types in place, we can proceed to define substitution on
psi-calculi agents.

4.3.2 Agent substitution

In order to define substitution for psi-calculi agents, we create a locale that imports three
separate instances of the locale for substitution types: one instance each for terms, assertions
and conditions, respectively. Since psi-calculi agents are defined by a mutually inductive
definition, the substitution function is defined by mutual recursion.

Definition 8 (Capture-avoiding parallel substitution for agents)

0[x̃ := T̃] = 0
(MN .P)[x̃ := T̃] = M[x̃ := T̃]N[x̃ := T̃] .P[x̃ := T̃]

(Input M I)[x̃ := T̃] = Input M[x̃ := T̃] I[x̃ := T̃]
(Case C)[x̃ := T̃] = Case C[x̃ := T̃]
(P | Q)[x̃ := T̃] = P[x̃ := T̃] | Q[x̃ := T̃]

If y] x̃ and y] T̃ then ((νy)P)[x̃ := T̃] = (νy)P[x̃ := T̃]
((|Ψ |))[x̃ := T̃] = (|Ψ [x̃ := T̃]|)
(!P)[x̃ := T̃] = !P[x̃ := T̃]

=

(Trm M P)[x̃ := T̃] = Trm (M[x̃ := T̃]) (P[x̃ := T̃])
If y] x̃ and y] T̃ then (Bind y I)[x̃ := T̃] = Bind y I[x̃ := T̃]

=

EmptyCase[x̃ := T̃] = EmptyCase
(Cond Ψ P C)[x̃ := T̃] = Cond Ψ [x̃ := T̃] P[x̃ := T̃] C[x̃ := T̃]

14 Jesper Bengtson et al.

As in the pi-calculus, substitution propagates through the structure of agents, avoiding
capture by binders. When it reaches terms, assertions or conditions, the appropriate substitu-
tion function for these (which, in a slight abuse of notation, we write in the same way above)
is applied.

Hence, the psi-calculi framework is parametric in substitution functions for terms, asser-
tions and conditions; given these, substitution for agents is defined explicitly. We have shown
that substitution for agents satisfies SUBSTEQVT and SUBSTALPHA, provided the given
substitution functions for terms, assertions and conditions do. The SUBSTFRESH property,
on the other hand, is only needed for term substitution.

Lemma 7

p · P[x̃ := T̃] = (p · P)[p · x̃ := p · T̃]

|x̃| = |T̃ | set p ⊆ set x̃ × set (p · x̃) distinctPerm p (p · x̃)] P

P[x̃ := T̃] = (p · P)[p · x̃ := T̃]

Proof. By simultaneous induction over agents, input forms, and case constructs, using the
corresponding properties for substitution on terms, assertions, and conditions.

4.4 Nominal operators

In addition to the type parameters and substitution functions for terms, assertions and con-
ditions, psi-calculi are also parametric in the following equivariant operators.

.↔: T×T→ C Channel Equivalence
⊗ : A×A→ A Assertion Composition
1 : A Unit Assertion
`⊆ A×C Entailment

The binary operators will be written in infix. Thus, if M and N are terms then M .↔ N is
a condition, pronounced “M and N are channel equivalent,” and if Ψ and Ψ ′ are assertions
then so is Ψ⊗Ψ ′. Moreover, we write Ψ ` ϕ, pronounced “Ψ entails ϕ,” for (Ψ,ϕ) ∈ `.

Similarly to the pi-calculus, data terms in psi-calculi represent all kinds of data, includ-
ing communication channels. Intuitively, two agents can communicate if one sends and the
other receives along the same channel. This is why we require a condition M .↔ N to say
that M and N represent the same channel. Channel equivalence generalises the pi-calculus,
where .↔ is just identity of names.

Assertions declare information that is used to resolve the conditions in case constructs.
Assertions may be contained in agents and represent constraints; they may contain names
and thereby be syntactically scoped, representing information known only to the agents
within that scope. The operator⊗ on assertions will, intuitively, represent conjunction of the
information in two assertions. The assertion 1 is a unit for ⊗. Entailment Ψ ` ϕ intuitively
means that given the information in Ψ , it is possible to infer the condition ϕ.

We say that an assertion Ψ implies an assertion Ψ ′, written Ψ ≤ Ψ ′, if any condition ϕ
that is entailed by Ψ is also entailed by Ψ ′. We say that Ψ and Ψ ′ are equivalent, written
Ψ ' Ψ ′, if they imply each other.

Psi-calculi in Isabelle 15

Definition 9 (Assertion implication and equivalence)

Ψ ≤ Ψ ′ ≡ ∀ϕ. Ψ ` ϕ −→ Ψ ′ ` ϕ
Ψ ' Ψ ′ ≡ Ψ ≤ Ψ ′∧ Ψ ′≤ Ψ

We require these operators to satisfy a minimal set of properties. More precisely, equiv-
alence must be a commutative compositional monoid, with assertions A as the carrier, 1 as
its unit element, and ⊗ as the join operator. Channel equivalence must be symmetric and
transitive. It need not be reflexive; this allows psi-calculi to have terms that cannot be used
as communication channels.

Definition 10 (Requirements on static equivalence)

If Ψ ` (M .↔ N) then Ψ ` (N .↔ M). CESYM

If Ψ ` (M .↔ N) and Ψ ` (N .↔ L) then Ψ ` (M .↔ L). CETRANS

If Ψ ' Ψ ′ then Ψ ⊗ Ψ ′′ ' Ψ ′⊗ Ψ ′′ . ACOMP

Ψ ⊗ 1 ' Ψ AID

Ψ ⊗ Ψ ′ ' Ψ ′⊗ Ψ ACOMM

(Ψ ⊗ Ψ ′) ⊗ Ψ ′′ ' Ψ ⊗ (Ψ ′⊗ Ψ ′′) AASSOC

In Isabelle, we have defined a corresponding locale that imposes these requirements.

4.5 Summary

In the next section we will define the operational semantics of psi-calculi. For now, let us
briefly recapitulate the parameters that are required for a valid psi-calculus instance, and the
constraints that we impose on these parameters.

First, we require three nominal data types T, A and C, for terms, assertions and con-
ditions respectively. These must be substitution types, i.e., types equipped with substitu-
tion functions. Second, we require a symmetric and transitive nominal operator for channel
equivalence (.↔). Third, for assertions we require a composition operator (⊗), a unit ele-
ment (1) and an entailment relation (`) such that assertion equivalence (') forms a commu-
tative compositional monoid.

5 Operational semantics

The complexity of the operational semantics of psi-calculi is on par with the standard pi-
calculus semantics. Proofs of meta-theoretic properties, however, are more complicated. The
main reason for this is the possible interplay of agents in a parallel composition P | Q. In the
standard pi-calculus, the transitions from a parallel composition can be uniquely determined
by the transitions from its components. In psi-calculi the situation is more complex. Here
the assertions contained in P can affect the conditions tested in Q and vice versa. For this
reason we introduce the notion of the frame of an agent, similar to the ones introduced by
Abadi and Fournet [1], as the combination of an agent’s top-level assertions, retaining all
binders.

16 Jesper Bengtson et al.

5.1 Frames

The frame of an agent represents the information that the agent exposes to the environment
via its assertions. These can contain information about names, and names can be scoped
using the ν-binder. For instance, in a cryptographic application an assertion Ψ could be that
a datum represents the encoding of a message using a key k. This assertion can occur under
the scope of νk, to signify that the key is known only locally. We write (νk)Ψ do denote a
frame consisting of the assertion Ψ where the name k is local.

In the general case, a frame is of the form (νb̃)Ψ, where b̃ is a sequence of names that
bind into the assertion Ψ. Frames are defined in Isabelle in the following manner.

Definition 11 (Frames)
nominal datatype β frame =

FAssert β
| FRes �name� (β frame)

We use F, G to range over frames. (νε)Ψ is short for FAssert Ψ , and (νx)F means
FRes x F. We write just Ψ for (νε)Ψ when there is no risk of confusing a frame with an
assertion.

As for input forms, we bind lists of names to a frame by recursing over the list.

Definition 12 (frameResChain)

frameResChain :: name list⇒ β frame⇒ β frame
frameResChain ε F = F
frameResChain (xx̃) F = (νx)frameResChain x̃ F

We use (νx̃)F as syntactic sugar for frameResChain x̃ F.

5.1.1 Frame composition

When two agents run in parallel, their frames are composed. We overload the ⊗-operator to
also compose frames with assertions and frames with frames.

Definition 13 (Composing frames with assertions) A frame F composed with an asser-
tion Ψ is written F ⊗ Ψ .

((νε)Ψ) ⊗ Ψ ′ = (νε)(Ψ ′⊗ Ψ)
If x] Ψ ′ then ((νx)F) ⊗ Ψ ′ = (νx)(F ⊗ Ψ ′)

Definition 14 (Composing frames with frames) A frame F composed with a frame G is
written F ⊗ G .

((νε)Ψ) ⊗ G = G ⊗ Ψ
If x] G then ((νx)F) ⊗ G = (νx)(F ⊗ G)

The following lemma is used to propagate binders in a composition to the outermost
level.

Lemma 8

b̃F] Ψ

((νb̃F)ΨF) ⊗ Ψ= (νb̃F)(Ψ ⊗ ΨF)

b̃F] b̃G b̃F] ΨG b̃G] ΨF

((νb̃F)ΨF) ⊗ ((νb̃G)ΨG) = (νb̃F b̃G)(ΨF ⊗ ΨG)

Proof. By induction on b̃F for the first case, and on b̃G for the second.

Psi-calculi in Isabelle 17

5.1.2 Frame of an agent

The frame of an agent, written F P, is the collection of assertions of P that are not guarded
by an input or output prefix, where all binders are retained. It is defined by recursion over
the agent as follows.

Definition 15 (Frame of an agent)

F 0 = 1
F (Input M I) = 1

F (MN .P) = 1
F (Case C) = 1
F (P | Q) = F P ⊗F Q
F ((|Ψ |)) = (νε)Ψ

F ((νx)P) = (νx)(F P)
F (!P) = 1

For a simple example, if a] Ψ1, we have

F ((|Ψ1|) | (νa)((|Ψ2|) | MN .(|Ψ3|))) = (νa)(Ψ1 ⊗ Ψ2)

Here, Ψ3 occurs under a prefix and is therefore not included in the frame of the agent.
We often write (νb̃P)ΨP for F P, but note that this is not a unique representation since

frames are identified up to alpha-equivalence.

5.1.3 Frame entailment and equivalence

Intuitively, a condition is entailed by a frame if it is entailed by the frame’s assertion and
does not contain any names bound in the frame. Two frames are equivalent if they entail the
same conditions.

Definition 16 (Frame entailment and equivalence) For a frame F and a condition ϕ, we
define F ` ϕ to mean that there exists an alpha-variant F = (νb̃F)ΨF such that b̃F] ϕ and
ΨF ` ϕ, i.e.,

F ` ϕ ≡ ∃ b̃F ΨF . F = (νb̃F)ΨF ∧ b̃F] ϕ ∧ ΨF ` ϕ
For two frames F and G, we define

F ' G ≡ ∀ϕ. F ` ϕ←→ G ` ϕ

For instance, (νab)Ψ ' (νba)Ψ , and if a] Ψ then (νa)Ψ ' Ψ .
To take an example of first-order logic with equality, assume that the term enc(M,k)

represents the encryption of message M with key k. Let Ψ be the assertion C = enc(M,k),
stating that the ciphertext C is the result of encrypting M with k. If an agent contains this
assertion, the environment of the agent will be able to use it to resolve tests on the data,
in particular to infer that C = enc(M,k). In other words, if the environment receives C it
can test if this is the encryption of M. In order to restrict access to the key, k can be en-
closed in a scope νk. The environment of the agent will then have access to the frame (νk)Ψ
rather than Ψ itself. This frame is much less informative, for example it does not hold that
(νk)Ψ `C = enc(M,k). Here great care has to be taken to formulate the class of allowed
conditions. If these only contain equivalence tests of terms, (νk)Ψ will entail nothing but
tautologies and be equivalent to 1. But if quantifiers are allowed in the conditions, then by

18 Jesper Bengtson et al.

existential introduction Ψ ` ∃k.(C = enc(M,k)), and since k is not free in this condition we
obtain (νk)Ψ ` ∃k.(C = enc(M,k)). In other words, the environment will learn that C is the
encryption of M for some key k.

Most of the properties of entailment carry over from assertions to frames. Channel equiv-
alence is again symmetric and transitive. Frame composition is associative and commutative,
the frame 1 being a unit. However, compositionality need not hold. In other words, there are
psi-calculi with frames F, G, H where F 'G but not F⊗H 'G⊗H. An example is if there
are assertions Ψ , Ψ ′ and Ψa for all names a, conditions ϕ′ and ϕa for all names a, and where
the entailment relation satisfies Ψa ` ϕa and Ψ ′ ` ϕ′. Suppose composition is defined such
that Ψ⊗Ψ = Ψ and all other compositions yield Ψ ′. By adding a unit element this satis-
fies all requirements on a psi-calculus. In particular ⊗ is trivially compositional because
no two different assertions are equivalent. Also (νa)Ψa ' Ψ , but Ψ⊗(νa)Ψa 6' Ψ⊗Ψ since
Ψ⊗Ψa = Ψ ′ ` ϕ′.

5.2 Actions

The actions that agents can perform are of three kinds: output actions, input actions of the
early kind, meaning that the input action contains the received object, and the silent action τ.

Definition 17 (Actions)

nominal datatype α action =
In α α
| Out α (name list) α
| Tau

We write MN for In M N, M (νx̃)N for Out M x̃ N and τ for Tau. We use α, β to range
over actions.

For input and output actions, we refer to M as the subject and N as the object. As in
the pi-calculus, the output M (νx̃)N represents an action sending N along the channel M
and opening the scopes of the names x̃. Note in particular that the support of this action
includes x̃, so that, for instance, M (νa)a and M (νb)b are different actions. Nonetheless, for
reasons that will become apparent in the following section, we refer to the names x̃ in an
output action as its bound names.

Definition 18 (subject, object, bn)

subject :: α action⇒ α option
subject (MN) = Some M
subject (M (νx̃)N) = Some M
subject (τ) = None

object :: α action⇒ α option
object (MN) = Some N
object (M (νx̃)N) = Some N
object (τ) = None

bn :: α action⇒ name list
bn (MN) = ε
bn (M (νx̃)N) = x̃
bn (τ) = ε

Psi-calculi in Isabelle 19

5.3 Residuals

The operational semantics of psi-calculi consists of transitions of the form

Ψ B P α−→ P ′

This transition intuitively means that in an environment that asserts Ψ , the agent P can
perform action α, thereby becoming P ′.

A first attempt to encode transitions, which works well for simpler calculi like CCS [10],
is to define the operational semantics as an inductive predicate with four arguments: an envi-
ronment Ψ , a process P, an action α and a derivative P ′. However, previous mechanisations
of both the pi-calculus and of psi-calculi have shown that this approach is impractical here.
The key issue is that the action α may bind names, and these names bind not only in α but
also into the derivative P ′.

This observation was made already in the original presentation of the pi-calculus, where
lemmas concerning variants of transitions are spelled out [37]. In his tutorial on the polyadic
pi-calculus [36], Milner therefore uses “commitments” rather than labelled transitions.

In many presentations of the pi-calculus the issue is glossed over, and if α-conversions
are not defined rigorously the four-argument syntax for transitions works fine. But here it
poses a problem: it would require us to explicitly state the rules for changing bound names,
and we would not be able to rely on the otherwise smooth treatment of alpha-variants in the
Nominal Isabelle framework.

Therefore, in our implementation we follow Milner [36], with a slight change of notation
to avoid confusion of prefixes and commitments, and define a residual data type that contains
both action and derivative. It binds the bound names of an action also in the derivative. We
used a similar technique in our mechanisation of the pi-calculus [10], but for psi-calculi we
must additionally take into account that an action can contain more than one bound name.
We first define a nominal data type containing an object, a derivative and a sequence of
names binding into both.

Definition 19 (boundOutput)

nominal datatype (α, β, γ) boundOutput =
BOut α ((α, β, γ) psi)
| BStep �name� ((α, β, γ) boundOutput)

Binding sequences are obtained as usual, by recursively binding names in the nominal
data type.

Definition 20 (BOresChain)

BOresChain :: name list⇒ (α, β, γ) boundOutput⇒ (α, β, γ) boundOutput
BOresChain ε B = B
BOresChain xx̃ B = BStep x (BOresChain x̃ B)

We can now define residuals. Just like psi-calculi agents, the data type of residuals is
parametrised over three type variables α, β, γ for terms, assertion and conditions respec-
tively.

20 Jesper Bengtson et al.

Definition 21 (Residuals)

nominal datatype (α, β, γ) residual =
RIn α α ((α, β, γ) psi)
| ROut α ((α, β, γ) boundOutput)
| RTau ((α, β, γ) psi)

We use V and W to range over residuals. Having defined residuals, we face a discrep-
ancy between the more traditional syntax for transitions (which suggests that they are a
quarternary relation) and their intended semantics (where action and derivative are one con-
struct, and names in the action bind into the derivative). One drawback is that we cannot
define a function that extracts the bound names of a residual in nominal logic, since these
are not invariant under alpha-conversion. To reconcile the two views, we define an infix
function ≺ that creates a residual from an action and an agent.

Definition 22 (≺)

≺ :: α action⇒ (α, β, γ) psi⇒ (α, β, γ) residual
MN ≺ P = RIn M N P

M (νx̃)N ≺ P = ROut M (BOresChain x̃ (BOut N P))
τ ≺ P = RTau P

We use the notation Ψ B P α−→ P ′ to mean Ψ B P 7−→α ≺ P ′, where · B · 7−→· is a
ternary relation. By modeling transitions in this manner we get the best of two worlds. As
required, the bound names of output actions bind into derivatives in the residual. But we can
still determine which binders are used in an action, and what the objects and agents under
their scope are. This allows us to impose conditions on the binders in labels; for instance,
that they must be sufficiently fresh.

5.3.1 Alpha-equivalence

Dealing with alpha-equivalence of residuals is not entirely straightforward. What does it
mean for two residuals α ≺ P and β ≺ Q to be equivalent? The subjects are not under the
scope of the binders, so clearly they must be equal. But the object and the derivatives are
under the scope of the bound names of α and β. Hence they are not necessarily syntactically
equal, but alpha-equivalent. Moreover, we do not want to resort to case analysis every time
an equality between two residuals appears in a proof state: the very point of the residual
construction is to avoid separate cases for actions with bound names and for those without.
The following lemma, which is similar in spirit to Lemma 4, obtains an alpha-converting
permutation that equates two residuals.

Lemma 9

α ≺ P = β ≺ Q distinct (bn α) distinct (bn β)
bn α] bn β bn α] α ≺ P bn β] β ≺ Q

∃p. set p ⊆ set (bn α) × set (bn (p · α)) ∧ β = p · α ∧ Q = p · P ∧
bn α] β ∧ bn α] Q ∧ bn (p · α)] α ∧ bn (p · α)] P

Proof. Given two residuals with disjoint bound names, an alpha-converting permutation p is
constructed by pairing corresponding bound names together. The requirements bn α] α≺ P
and bn β] β ≺ Q ensure that bound names do not occur outside their scope; thus, p leaves
the subjects of both residuals unaffected.

Psi-calculi in Isabelle 21

We also prove an alpha-conversion lemma for residuals. As when alpha-converting bind-
ing sequences (Section 3.2), the permutation applied to the sequence must be fresh for ev-
erything under the scope of the binder. Moreover, for the same reason as in the previous
lemma, neither the original nor the new bound names may occur in the subject of the action.

Lemma 10

bn (p · α)] ob ject α bn (p · α)] P
bn α] sub ject α bn (p · α)] sub ject α set p ⊆ set (bn α) × set (bn (p · α))

α ≺ P = (p · α) ≺ (p · P)

Proof. By case analysis on α. When α = τ or α = MN the permutation must be empty as
neither action has bound names. In case α = M (νx̃)N the permutation will cancel out from
the subject M as no names in p occur in M. The residual is then alpha-converted to finish the
proof.

5.4 Operational semantics

A standard way to model operational semantics is to use inductively defined predicates.
For calculi without binders, this is relatively straightforward, and Isabelle generates both
induction and inversion (elimination) rules automatically [51].

For calculi with binders, things are not as straightforward. One of the main achievements
of the Nominal Isabelle framework is its treatment of rule induction. More precisely, how it
makes formal the Barendregt variable convention, allowing us to pick an arbitrary context of
names that all bound names will be fresh for when we carry out induction over transitions.
As mentioned in Section 2.1, the Barendregt variable convention is unsound in the general
case. Urban et al. [48] identified a variable convention compatibility condition that details
exactly what is required of bound names for the variable convention to be sound.

One straightforward way to satisfy this property is to require that all bound names are
sufficiently fresh, i.e., fresh for everything outside their scope. This has the additional benefit
that when we carry out induction over the transition system, the bound names of each rule
are by default fresh for everything outside their scope that is mentioned in the rule.

The labelled operational semantics of psi-calculi, describing the transitions that psi-
calculi agents can take, is defined inductively, and shown in Figure 1.

For the remainder of this section, we demonstrate how we encode the operational se-
mantics in Nominal Isabelle, and how we develop the standard induction rules as well as
some custom ones. We discuss the PAR rule as an example. Our techniques apply equally to
the other rules of the semantics. Shown in full, the PAR rule has the following form.

Ψ ⊗ ΨQ B P α−→ P ′

F Q = (νb̃Q)ΨQ bn α] Q b̃Q] Ψ b̃Q] P b̃Q] α

Ψ B P | Q α−→ P ′ | Q
PAR

For the operational semantics, we would like to obtain a stronger induction principle
than the one afforded by this rule, namely one where the bound names b̃Q and bn α are both
distinct and fresh for everything outside their scope. Therefore, we use the following rule
instead of PAR to define the operational semantics.

22 Jesper Bengtson et al.

IN
Ψ ` M .↔ K

Ψ B M(λỹ)N.P KN[ỹ:=L̃]−−−−−→ P[ỹ := L̃]
OUT

Ψ ` M .↔ K

Ψ B MN.P KN−−→ P
CASE

Ψ B Pi
α−→ P′ Ψ ` ϕi

Ψ B case ϕ̃ : P̃ α−→ P′

COM
ΨQ⊗Ψ B P M (νã)N−−−−−→ P′ ΨP⊗Ψ B Q KN−−→ Q′ Ψ⊗ΨP⊗ΨQ ` M .↔ K

Ψ B P | Q τ−→ (νã)(P′ | Q′)
ã] Q

PAR
ΨQ⊗Ψ B P α−→ P′

Ψ B P | Q α−→ P′ | Q
bn(α)] Q SCOPE

Ψ B P α−→ P′

Ψ B (νb)P α−→ (νb)P′
b] α,Ψ

OPEN
Ψ B P M (νã)N−−−−−→ P′

Ψ B (νb)P M (νã∪{b})N−−−−−−−−→ P′
b] ã,Ψ,M
b ∈ n(N)

REP
Ψ B P | !P α−→ P′

Ψ B !P α−→ P′

Fig. 1 Operational semantics. Symmetric versions of COM and PAR are elided. In the rule COM we assume
that F P = (νb̃P)ΨP and F Q = (νb̃Q)ΨQ, where b̃P is fresh for all of Ψ , b̃Q, Q, M and P, and that b̃Q is
correspondingly fresh. In the rule PAR we assume that F Q = (νb̃Q)ΨQ, where b̃Q is fresh for Ψ , P and α.
In OPEN the expression ã∪{b}means the sequence ã with b inserted anywhere. This figure is taken from [9].

Ψ ⊗ ΨQ B P α−→ P ′ F Q = (νb̃Q)ΨQ distinct b̃Q

b̃Q] P b̃Q] Q b̃Q] Ψ b̃Q] α b̃Q] P ′

distinct (bn α) bn α] sub ject α
bn α] Ψ bn α] ΨQ bn α] Q bn α] P

Ψ B P | Q α−→ P ′ | Q
PARS

While the PARS rule provides convenient freshness conditions for proofs that perform
induction on the transition system, the same freshness conditions make the PARS rule te-
dious to use on its own, i.e., to derive transitions for a parallel composition. To circumvent
this problem, we derive the PAR rule from the PARS rule.

Theorem 1 PAR is a valid rule.

Proof. We first alpha-convert b̃Q and bn α to be sufficiently fresh. Then Lemma 5 is used
twice to ensure that both b̃Q and bn α are distinct.

The induction rule generated by Isabelle for the operational semantics is shown in Fig-
ure 2. Its selling characteristic is that it allows all inductive proofs that use this rule to
provide a freshness context C for which any bound names introduced by the rule are fresh.
This greatly reduces the tedium of manual alpha-conversions that would have to be done
otherwise.

5.5 Action induction rules

The induction rule from Figure 2 works well only as long as the property to be proven does
not depend on anything under the scope of a binder. Trying to prove the following statement
illustrates the problem.

Psi-calculi in Isabelle 23

Ψ B R 7−→W

...
Ψ ′⊗ ΨQ B P α−→ P ′∧

C . Prop C (Ψ ′⊗ ΨQ) P (α ≺ P ′) F Q = (νAQ)ΨQ distinct AQ

b̃Q] C ′ AQ] P AQ] Q AQ] Ψ ′ AQ] α AQ] P ′

distinct (bn α) bn α] sub ject α
bn α] Ψ ′ bn α] ΨQ bn α] Q bn α] P

Prop C ′Ψ ′ (P | Q) (α ≺ P ′ | Q)

PAR

...

Prop C Ψ R W

Fig. 2 Induction rule for the operational semantics of psi-calculi. The inductive cases share the name of the
semantic rule from which they are derived. Only the PAR case is shown in detail. For space reasons, meta
quantifiers have been suppressed—every term of every case is locally universally quantified.

If Ψ B P M (νx̃)N−−−−−→ P ′ and z] P and z] x̃ then z] N and z] P ′.

This statement is provable by induction on Ψ B P M (νx̃)N−−−−−→ P ′. However, the induction
rule in Figure 2 will not prove it in a satisfactory way. Every applicable case in the induction
rule will introduce its own bound output term K (νỹ)L≺ P ′′ for which we know that K (νỹ)L
≺ P ′′ = M (νx̃)N ≺ P ′. What we need to prove relates to the term P ′; what the inductive
hypotheses will give us is related to the term P ′′, where all we know is that P ′ and P ′′ are
part of alpha-equivalent terms.

Proving the above statement is still possible with this induction rule, but in every step of
every proof of this type, manual alpha-conversions and equivariance properties are needed.
Figure 3 shows a derived induction rule that solves this problem once and for all.

In contrast to the induction rule from Figure 2, where the property Prop takes a resid-
ual W as its final argument, Prop in this rule takes an action α and an agent R ′ as two separate
arguments. By disassociating the action from the derivative in this manner we have lost the
ability to alpha-convert the residual, but we have gained the ability to reason about terms
under the scope of its binders. The extra ALPHA case in the induction rule is designed to
allow Prop to mimic the alpha-conversion abilities that we have lost.

Theorem 2 The induction rule in Figure 3 is valid.

Proof. We derive the induction rule in Figure 3 from the original induction rule shown in
Figure 2. Lemma 9 is used in each step to generate the alpha-converting permutation. This
lemma requires that the bound names of the transition are distinct, and do not occur free
in the residual, hence in the subject of the action. These requirements can be found as two
extra requisites distinct (bn α) and bn α] sub ject α in the derived induction rule. In every
case, Prop is proven in the standard way, and then alpha-converted using the new inductive
case ALPHA.

24 Jesper Bengtson et al.

Ψ B R α−→ R ′ bn α] sub ject α distinct (bn α) bn α ′] Ψ ′ bn α ′] P bn α ′] sub ject α ′ bn α ′] C ′

bn α ′] bn (p · α ′) set p ⊆ set (bn α ′) × set (bn (p · α ′))
distinctPerm p bn (p · α ′)] α ′ bn (p · α ′)] P ′ Prop C ′ P α ′ P ′

Prop C ′Ψ ′ P (p · α ′) (p · P ′)

ALPHA

...
Ψ ′⊗ ΨQ B P α ′−→ P ′∧

C . Prop C (Ψ ′⊗ ΨQ) P α ′ P ′ F Q = (νAQ)ΨQ distinct AQ b̃Q] C ′

AQ] P AQ] Q AQ] Ψ ′ AQ] α ′ AQ] P ′

distinct (bn α ′) bn α ′] sub ject α ′

bn α ′] Ψ ′ bn α ′] ΨQ bn α ′] Q bn α ′] P

Prop C ′Ψ ′ (P | Q) α ′ (P ′ | Q)

PAR

...

Prop C Ψ R α R ′

Fig. 3 Derived induction rule for transitions of the form Ψ B R α−→ R ′. The extra ALPHA case ensures
that the bound names of α can be freely alpha-converted in Prop. The inductive cases share the name of the
semantic rule from which they are derived. For space reasons, meta quantifiers have been suppressed—every
term of every case is locally universally quantified. To apply the rule, the requisites bn α] sub ject α and
distinct (bn α) must be proved.

With this induction rule, we must prove that the property that we are trying to establish
respects alpha-conversions. The advantage is that this only has to be done once for each
inductive proof. Moreover, the ALPHA case is generic; it does not require the agents or
actions to be of a specific form.

We can now prove the freshness lemma that we stated earlier.

Lemma 11 If Ψ B P M (νx̃)N−−−−−→ P ′ and z] P and z] x̃ and distinct x̃ and x̃] M then
z] N and z] P ′.

Proof. By induction on Ψ B P M (νx̃)N−−−−−→ P ′, using the induction rule from Figure 3.

The lemma illustrates a minor remaining problem with the method used to derive general
induction rules: it requires the extra freshness and distinctness assumptions distinct x̃ and
x̃] M. In principle, a stronger version of the lemma without these assumptions could be
proved, but they are needed to invoke the induction rule from Figure 3.

If desired, these assumptions can later be removed by manual alpha-conversions. This
is a tedious process in general, and the user has to decide for each proof whether it is worth
the effort. In practice, these extra constraints are unproblematic: Nominal Isabelle is very
good at ensuring that binding sequences are sufficiently fresh, and infrastructure to prove
the distinctness property will be provided. In contrast, if the standard induction rule were
used, manual alpha-conversions would have to be done for every inductive proof step.

Psi-calculi in Isabelle 25

Ψ B R 7−→W F R = (νb̃R)ΨR distinct b̃Rb̃P] Ψ ′ b̃P] P b̃P] p · b̃P b̃P] V b̃P] C ′

set p ⊆ set b̃P × set (p · b̃P) distinctPerm p
Prop C ′Ψ ′ P V b̃P ΨP

Prop C ′Ψ ′ P V (p · b̃P) (p · ΨP)

ALPHA

...

Ψ ′⊗ ΨQ B P α−→ P ′
∧

C . Prop C (Ψ ′⊗ ΨQ) P (α ≺ P ′) b̃P ΨP

F P = (νb̃P)ΨP distinct b̃P b̃P] b̃Q b̃P] ΨQ

b̃P] P b̃P] Q b̃P] Ψ ′ b̃P] α b̃P] P ′ b̃P] C ′

F Q = (νb̃Q)ΨQ distinct b̃Q b̃Q] P b̃Q] Q
b̃Q] Ψ ′ b̃Q] α b̃Q] P ′ b̃Q] ΨP b̃Q] C ′

distinct (bn α) bn α] sub ject α bn α] Ψ ′

bn α] ΨP bn α] ΨQ bn α] P bn α] Q

Prop C ′Ψ ′ (P | Q) (α ≺ P ′ | Q) (b̃Pb̃Q) (ΨP ⊗ ΨQ)

PAR1

...

Prop C Ψ R W b̃R ΨR

Fig. 4 Derived induction rule for transitions of the form Ψ B R 7−→W, where R has the frame (νb̃R)ΨR. The
extra ALPHA case ensures that the frame of R can be alpha-converted in the predicate Prop. The inductive
cases share the name of the semantic rule from which they are derived. For space reasons, meta quantifiers
have been suppressed—every term of every case is locally universally quantified.

5.6 Frame induction rules

A common type of proof for psi-calculi is induction over a transition where the agent has a
specific frame. Trying to prove the following statement illustrates this.

Ψ B P MN−−→ P ′ F P = (νb̃P)ΨP distinct b̃P

Ψ ⊗ ΨP ` M .↔ K b̃P] Ψ b̃P] P b̃P] M b̃P] K

Ψ B P KN−−→ P ′

The statement asserts that an action subject M can be replaced by a channel equiva-
lent subject K in an input action, where the frame of P may be used to establish channel
equivalence between M and K.

The statement is provable by induction onΨ B P MN−−→ P ′. However, using the induction
rule from Figure 2, we suffer from a problem similar to the one discussed in the previous
section: every inductive case will generate a frame alpha-equivalent to (νb̃P)ΨP, so that
many tedious alpha-conversions are necessary in the proof.

To address this issue, we derive an induction rule for induction on transitions where the
agent has a specific frame. This rule is shown in Figure 4.

26 Jesper Bengtson et al.

According to the operational semantics, the subject of a transition may well contain
names that do not occur in the originating agent. However, the subject must be channel
equivalent to the subject of a prefix that occurs syntactically. Intuitively, the following lemma
obtains this prefix subject, which does not contain any names that are fresh for the agent and
the bound names of its frame. Here, the is a function that retrieves the value of elements of
option types, specified as the (Some x) = x.

Lemma 12

Ψ B P α−→ P ′

F P = (νb̃P)ΨP distinct b̃P bn α] sub ject α distinct (bn α)
α 6= τ x̃] P b̃P] Ψ b̃P] x̃ b̃P] P b̃P] sub ject α

∃M. Ψ ⊗ ΨP ` the (subject α) .↔ M ∧ x̃] M

Proof. By induction onΨ B P α−→ P ′, using the induction rule from Figure 4. Since α 6= τ,
the (subject α) is well-defined.

This lemma obtains the subject from the prefix of P. Moreover, it ensures that any se-
quence of names x̃ that are fresh for P and for the bound names b̃P of the frame of P are also
fresh for the subject.

The following lemmas can then be used to replace the subject of an action.

Lemma 13 (Replacing the subject of an input action)

Ψ B P MN−−→ P ′ F P = (νb̃P)ΨP distinct b̃P

Ψ ⊗ ΨP ` M .↔ K b̃P] Ψ b̃P] P b̃P] M b̃P] K

Ψ B P KN−−→ P ′

Proof. By induction on Ψ B P MN−−→ P ′, using the induction rule from Figure 4.

Lemma 14 (Replacing the subject of an output action)

Ψ B P M (νx̃)N−−−−−→ P ′ F P = (νb̃P)ΨP distinct b̃P

Ψ ⊗ ΨP ` M .↔ K b̃P] Ψ b̃P] P b̃P] M b̃P] K

Ψ B P K (νx̃)N−−−−→ P ′

Proof. By induction on Ψ B P M (νx̃)N−−−−−→ P ′, using the induction rule from Figure 4.

6 Inversion rules

Theorem provers use inversion rules (also known as case rules or elimination rules) to
perform case analysis over inductively defined data types and predicates. These rules are
used when reasoning about terms of a specific shape. For instance, a transition of the form

Ψ B P | Q α−→ R must be derived by one of the PAR rules or the COMM rule; a transition

of the form Ψ B (νx)P α−→ P ′ must be derived by either the OPEN or the RES rule. An
inversion rule, when given a transition, splits the proof into one subgoal for each possible
case from which the transition can be derived.

Psi-calculi in Isabelle 27

ΨR B R 7−→ W

...

∀Ψ ΨQ P α P ′Q AQ

ΨR = Ψ R = P | Q W = α ≺ P ′ | Q

Ψ ⊗ ΨQ B P α−→ P ′ F Q = (νAQ)ΨQ distinct AQ
AQ] P AQ] Q AQ] Ψ AQ] α AQ] P ′

distinct (bn α) bn α] sub ject α
bn α] Ψ bn α] ΨQ bn α] Q bn α] P

Prop

PAR

...

Prop

Fig. 5 Generated inversion rule for the operational semantics of psi-calculi. The terms ΨR, R, W and Prop
are global for the entire rule. Each case has a set of equality constraints for these terms.

Isabelle automatically generates inversion rules for terms and predicates that are equated
using standard Leibniz equality. The rule that is generated for the operational semantics of
psi-calculi is presented in Figure 5. For space reasons, only the PAR case is shown in detail.
The rule allows inversion for terms of the form ΨR B R 7−→ W, and each case of the rule
imposes equality constraints onΨR, R and W that are used to ascertain whether that particular

case fires. For instance, a transition of the formΨ ′B S | T β−→ U can be derived by the PAR

rule, and the inversion rule then provides Ψ ⊗ ΨQ B P α−→ P ′ along with three equality
constraints Ψ ′= Ψ , S | T = P | Q, and β ≺ U = α ≺ P ′ | Q.

The first equality can immediately be used to substitute Ψ for Ψ ′ in proofs. By injec-
tivity of the parallel composition operator |, we obtain S = P and T = Q from the second
equality. Also these equalities can immediately be used in proofs. It is the third equality that
causes difficulties, as both β and α may contain bound names that bind into U and P ′ | Q
respectively. Using the third equality in proofs therefore requires explicit alpha-conversions
via Lemma 9 to reason about all possible alpha-variants of β ≺ U.

This is unsatisfactory. When we prove a statement by inversion over the transition
Ψ B P α−→ P ′, we want to reason about the bound names that actually occur in α, as that
action has already been fixed in the proof context. We should not be forced into reasoning
about alpha-equivalent variants.

This problem is not new. Berghofer et al. [13] already added inversion support for for-
malisations that use single binders to Nominal Isabelle. Their solution is to strengthen the
standard inversion rule by quantifying all bound names globally, rather than locally as in
Figure 5. This allows the user to choose the bound names of each case to match those in the
term that is being inverted. All equality constraints can then be used in proofs with the help
of the standard injectivity rules for each constructor. For instance, if β ≺ T = α ≺ P ′ | Q
and the bound names of α and β are the same, which the user can guarantee as a result of the
strengthened inversion rule, then we know that their subjects and objecs are also equal, and
that T = P ′ | Q. However, fixing the bound names prior to inversion is sound only if these
names are sufficiently fresh. The variable convention compatibility condition mentioned in
Section 5.4 makes precise exactly what the freshness conditions are.

28 Jesper Bengtson et al.

6.1 Inversion with binding sequences

Berghofer’s extension to Nominal Isabelle only covers formalisations that use single binders,
and it has remained an open question how to extend this approach to calculi that use binding
sequences. We propose a technique to generate inversion rules for these types of formalisa-
tions. Our technique has been used successfully to generate inversion rules for psi-calculi,
and also by Berghofer in a formalisation of the simply typed lambda-calculus extended with
let patterns for tuples [12].

Our approach is to derive a strengthened inversion rule from the standard rule generated
by Isabelle. In this section we present, step-by-step, a heuristic for strengthening the standard
rule. For the sake of exposition we start by presenting the PAR case of our strengthened
inversion rule. This has the form

∀Ψ ΨQ P α P ′Q AQ

x̃] ΨR x̃] R x̃] W

ΨR = Ψ R = P | Q W = α ≺ P ′ | Q x̃ = bn α

Ψ ⊗ ΨQ B P α−→ P ′ F Q = (νAQ)ΨQ distinct AQ
AQ] P AQ] Q AQ] Ψ AQ] α AQ] P ′

AQ] C

Prop

where ΨR, R, W and Prop are globally quantified just as in the standard inversion rule.
There are a few things to note here. First, the binding sequence x̃ is globally quantified

for the entire rule. Intuitively, it matches the bound names in the action of W. The action α
is, however, locally quantified for the PAR case. The equality constraint x̃ = bn α ensures
that x̃ corresponds exactly to the bound names of α, making the constraint W = α ≺ P ′ | Q
immediately usable in proofs by injectivity of its constructors. Second, x̃ must be sufficiently
fresh, i.e., fresh for ΨR, R and W. The intuition is that as long as x̃ is sufficiently fresh, α can
be chosen such that x̃ = bn α. Finally, the binding sequence AQ remains locally quantified.
The reason for this is that AQ is not part of the transition being inverted, i.e., it is not syntac-
tically present in ΨR B R 7−→ W. If we need an inversion rule that performs inversion over
a transition where the agent has a specific frame, we can create such a rule in a similar way
as in Section 5.6.

In the single binder case, deriving the strengthened inversion rule is straightforward: the
user chooses the bound names for each case, and as long as those names are sufficiently
fresh, the standard inversion rule can be alpha-converted to match. For rules using binding
sequences things are not as simple. Here knowing that the sequences are sufficiently fresh

is not enough. Consider a transition Ψ B P α−→ P ′. In order to alpha-convert the bound
names in α to a given sequence x̃, we must know that x̃ is distinct, is sufficiently fresh, and
has the same length as the bound names of α.

We use the following lemma to create alpha-converting permutations for distinct se-
quences of equal length.

Lemma 15

|x̃| = |ỹ| x̃] ỹ distinct x̃ distinct ỹ
∃p. set p ⊆ set x̃ × set (p · x̃) ∧ distinctPerm p ∧ ỹ = p · x̃

Proof. By induction on x̃ and ỹ. The permutation p is constructed by pairwise combining
corresponding elements from these sequences.

Psi-calculi in Isabelle 29

ΨR B R 7−→W distinct x̃ |x̃| = residualLength W

...

∀Ψ ΨQ P α P ′Q AQ

x̃] ΨR x̃] R x̃] W

ΨR = Ψ R = P | Q W = α ≺ P ′ | Q x̃ = bn α

Ψ ⊗ ΨQ B P α−→ P ′ F Q = (νAQ)ΨQ distinct AQ
AQ] P AQ] Q AQ] Ψ AQ] α AQ] P ′

AQ] C

Prop

PAR

...

Prop

Fig. 6 Derived inversion rule for the operational semantics of psi-calculi. The terms ΨR, R, W and Prop are
global for the entire rule. Each case has a set of equality constraints for these terms.

The next step then is to calculate the length of binding sequences in actions. Given

a transition of the form Ψ B P α−→ P ′, this is straightforward: the desired number is
simply |bn α|. In the general case, transitions have the form Ψ B P 7−→ W, and we cannot
define a function that extracts the bound names of a residual in nominal logic, for these
are not invariant under alpha-conversion. However, the length of the binding sequence is
invariant under alpha-conversion, and it is possible to count the number of binders in a term.
The following function residualLength returns the length of the binding sequence in the
action of an arbitrary residual.

Definition 23 (residualLength)

boundOutputLength :: (α, β, γ) boundOutput⇒ N
boundOutputLength (BOut M P) = 0
boundOutputLength (BStep x B) = boundOutputLength B + 1

residualLength :: (α, β, γ) residual⇒ N
residualLength (RIn M N P) = 0
residualLength (ROut M B) = boundOutputLength B
residualLength (RTau P) = 0

We define a similar function to calculate the length of the binding sequence in input
forms. With these measures in place, we can state and prove the strengthened inversion rule,
presented in Figure 6.

Our proof of this rule was developed manually, but the technique is general enough to
be automated in Nominal Isabelle. It merely requires functions to calculate the length of
binding sequences in nominal data types, and ways to retrieve the bound names in each
specific case (such as the bn function). We believe the remaining automation work to be
primarily an engineering challenge, rather than a theoretical one.

30 Jesper Bengtson et al.

7 Strong bisimilarity

Having mechanised the syntax and labelled operational semantics of agents, we now turn our
attention to the meta-theory of psi-calculi. As mentioned in the introduction, any practically
useful process calculus must satisfy certain fundamental properties, for instance composi-
tionality: that the semantics of a process can be deduced from the semantics of its com-
ponents. In this section, we establish that strong bisimilarity for psi-calculi satisfies these
properties. Thereby, we demonstrate that in our formalisation such meta-theoretic results
can be proven with reasonable effort. Simultaneously, we validate our definitions of the
psi-calculi framework, gaining additional confidence that these definitions are appropriate.

Bisimilarity, originally defined by Park [41] and popularised by Milner [35] among oth-
ers, is a concept that appears in many areas of mathematical logic and computer science.
Intuitively, two processes are bisimilar if they can mimic each other’s actions. In this sense,
bisimilar processes cannot be distinguished from each other by an observer. We will con-
sider strong bisimilarity in this section, meaning that all actions (including τ-actions) must
be matched exactly.

Strong bisimilarity for psi-calculi differs from that for the pi-calculus and CCS [10]
in three main regards. First, bisimilarity is parametrised by an environment in which the
agents operate. Second, as in the applied pi-calculus, the frames of bisimilar agents must
be statically equivalent. Third, if two agents are bisimilar in an environment, they must be
bisimilar for all possible extensions of that environment. These issues are explained at length
in [9].

While these additions add to the complexity of the framework, the formalisation tech-
niques used for the pi-calculus and CCS scale remarkably well. Simulations are defined in
the standard way, with the exception that the simulation relation is ternary rather than binary,
and bisimilarity is defined coinductively.

The proof techniques deserve special mention. In the corresponding proofs for the pi-
calculus, case analysis is performed on the actions that an agent can do, and the rules of
the operational semantics are applied to the simulating agent to mimic these actions. In psi-
calculi, however, an agent in a parallel composition may use the frame of the other agent to
derive its transitions. For bisimilarity proofs, this requires that any transition derived using
the frame of an agent must also be derivable using the frame of any bisimilar agent. One of
our main contributions is a smooth and transparent formalisation of this requirement.

7.1 Definitions

Bisimilarity rests on a notion of simulation. Intuitively, an agent P can simulate an agent Q
preserving a relation R if P can take any action that Q can take; moreover, the derivatives
of P and Q must be related via R. Simulation is parametrised by an environment in which
the agents operate.

The definition of simulation for psi-calculi is straightforward. Since residuals are defined
to contain both free and bound names, no explicit case distinction is necessary for different
actions. Freshness conditions ensure that the bound names are fresh for the environment and
the simulating agent.

Definition 24 (Simulation) An agent P simulating an agent Q preserving the relation R in
the environment Ψ is denoted Ψ B P ↪→R Q.

Psi-calculi in Isabelle 31

Ψ B P ↪→R Q ≡ ∀α Q′. Ψ B Q α−→ Q ′ ∧ bn α] Ψ ∧ bn α] P −→
∃P ′. Ψ B P α−→ P ′ ∧ (Ψ, P ′, Q ′) ∈R

Bisimilarity can now be defined coinductively in the standard way.

Definition 25 (Strong bisimilarity) Bisimilarity, denoted .∼, is defined coinductively as the
greatest fixpoint satisfying

Ψ B P .∼ Q =⇒ (F P) ⊗ Ψ ' (F Q) ⊗ Ψ STATEQ

∧ Ψ B P ↪→ .∼ Q SIMULATION

∧ ∀Ψ ′. Ψ ⊗ Ψ ′ B P .∼ Q EXTENSION

∧ Ψ B Q .∼ P SYMMETRY

7.2 Introduction and elimination rules

Simulation for psi-calculi (Definition 24) ensures freshness conditions for the bound names
in the actions of transitions. For equivariant candidate relations, we derive an introduction
rule where these bound names are additionally guaranteed to be distinct and sufficiently
fresh for a context C .

Lemma 16 (Introduction rule for simulation)

eqvt R

∧
α Q ′.

Ψ B Q α−→ Q ′ bn α] P bn α] Q bn α] Ψ
distinct (bn α) bn α] sub ject α bn α] C

∃P ′. Ψ B P α−→ P ′∧ (Ψ, P ′, Q ′) ∈R

Ψ B P ↪→R Q
↪→-I

Proof. Follows from the definition of ↪→. The bound names in α are alpha-converted to
become distinct and avoid Ψ , P, Q, subject α and C . The fact that R is equivariant allows
the alpha-converting permutations to be applied to the derivatives in R.

Even though a name is fresh for an agent, it may appear in the subject of a transition
taken by that agent, similarly to the situation for frame induction (Section 5.6). Therefore,
we prove the following introduction rule for simulation, which additionally ensures that the
action α is fresh for a sequence x̃ of names. Again, R must be equivariant, and x̃ must be
fresh for the environment and the originating agents.

Lemma 17 (Introduction rule for simulation ensuring fresh subjects)

eqvt R x̃] Ψ x̃] P x̃] Q

∧
α Q ′.

Ψ B Q α−→ Q ′ bn α] P bn α] Q bn α] Ψ
bn α] sub ject α distinct (bn α) bn α] C x̃] α x̃] Q ′

∃P ′. Ψ B P α−→ P ′∧ (Ψ, P ′, Q ′) ∈R

Ψ B P ↪→R Q

32 Jesper Bengtson et al.

Proof. The introduction rule ↪→-I is used such that the bound names of the transition avoid
both C and x̃. A fresh subject is obtained from Lemma 12, and exchanged in the transition
by Lemma 13 in case α is an input action, or by Lemma 14 in case α is an output action.

The elimination rule for simulation, as well as the introduction and elimination rules for
bisimilarity, follow immediately from the respective definitions.

Lemma 18 (Elimination rule for simulation)

Ψ B P ↪→R Q Ψ B Q α−→ Q ′ bn α] Ψ bn α] P

∃P ′. Ψ B P α−→ P ′∧ (Ψ, P ′, Q ′) ∈R
↪→−E

Proof. Follows from the definition of ↪→.

Lemma 19 (Introduction and elimination rules for bisimilarity)

(F P) ⊗ Ψ ' (F Q) ⊗ Ψ
Ψ B P ↪→ .∼ Q ∀Ψ ′. Ψ ⊗ Ψ ′ B P .∼ Q Ψ B Q .∼ P

Ψ B P .∼ Q
.∼− I

Ψ B P .∼ Q
(F P) ⊗ Ψ ' (F Q) ⊗ Ψ

.∼−E1
Ψ B P .∼ Q

Ψ B P ↪→ .∼ Q
.∼−E2

Ψ B P .∼ Q
Ψ ⊗ Ψ ′ B P .∼ Q

.∼−E3
Ψ B P .∼ Q
Ψ B Q .∼ P

.∼−E4

Proof. Follows from the definition of .∼.

Since bisimilarity is defined coinductively, its introduction rule is hardly useful to prove
that two agents are bisimilar. We use a standard technique to establish bisimilarity between
agents. A symmetric candidate relation X is chosen such that all agents related by X sim-
ulate each other in a fixed environment, and their derivatives are either in X or bisimilar in
that environment. Moreover, agents that are related by X must remain related—or become
bisimilar—when the environment is extended with an arbitrary assertion. The following
lemma codifies this proof technique.

Lemma 20 (Coinduction rule for bisimilarity)

(Ψ, P, Q) ∈X

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈X

(F R) ⊗ Ψ ′' (F S) ⊗ Ψ ′
STATEQ

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈X

Ψ ′ B R ↪→X ∪ .∼ S
SIMULATION

∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈X

(Ψ ′⊗ Ψ ′′ , R, S) ∈X ∨ Ψ ′⊗ Ψ ′′ B R .∼ S
EXTENSION

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈X

(Ψ ′, S, R) ∈X ∨ Ψ ′ B S .∼ R
SYMMETRY

Ψ B P .∼ Q

Psi-calculi in Isabelle 33

Proof. Follows from the definition of .∼. Isabelle automatically generates a coinduction rule
for bisimilarity, from which this rule is derived.

7.3 Preservation properties

We prove that bisimilarity is preserved by all constructors of the psi data type (Definition 4)
except Input. This replicates a similar result for the pi-calculus [10].

Theorem 3 Bisimilarity is preserved by all constructors except Input.

The rest of this section outlines our proof of Theorem 3. For space reasons, we only
discuss the Res and Par constructors, i.e., we show that Ψ B (νx)P .∼ (νx)Q whenever
Ψ B P .∼ Q, and that Ψ B P | Q .∼ P ′ | Q ′ whenever Ψ B P .∼ P ′ and Ψ B Q .∼ Q ′. The
restriction case is of interest because it involves binding, and the parallel case is the most
difficult of all, because an agent in a parallel composition may use the frame of the other
agent to derive its transitions. The remaining cases, which present no special difficulties, are
covered in our formal development [8].

The proofs will follow a standard pattern and be divided into simulation and bisimilarity
lemmas. The candidate relations for bisimilarity closely resemble those for corresponding
cases for the pi-calculus.

7.3.1 Restriction

We start by proving that simulation is preserved by restriction. The lemma requires that the
bound name is fresh for the environment.

Lemma 21 (Simulation is preserved by restriction)

Ψ B P ↪→R Q

eqvt R ′ x] Ψ R ⊆R ′ ∧
Ψ ′ R S y.

(Ψ ′, R, S) ∈R y] Ψ ′

(Ψ ′, (νy)R, (νy)S) ∈R ′

Ψ B (νx)P ↪→R ′ (νx)Q

Proof. The proof follows the usual structure: inversion on the restricted agent (νx)Q demon-
strates that its transitions are obtained through the SCOPE and OPEN rules of the operational
semantics (Figure 1). The same semantics rule can then be used to derive a corresponding
transition for the simulating agent (νx)P.

Note that both SCOPE and OPEN require the bound name to be fresh for the subject of
the transition. Since x] Ψ , x] (νx)P, and x] (νx)Q, Lemma 17 allows us to consider only
those actions and derivatives of (νx)Q for which x is fresh.

We prove a corresponding lemma for binding sequences.

Lemma 22

Ψ B P ↪→R Q eqvt R x̃] Ψ
∧
Ψ ′ R S y.

(Ψ ′, R, S) ∈R y] Ψ ′

(Ψ ′, (νy)R, (νy)S) ∈R

Ψ B (νx̃)P ↪→R (νx̃)Q

Proof. By induction on x̃, using Lemma 21.

34 Jesper Bengtson et al.

The static equivalence case of the coinduction rule for bisimilarity requires us to show
that static equivalence of frames is preserved by restriction. We first prove the corresponding
property for static implication.

Lemma 23 If F ≤ G then ((νx)F) ≤ ((νx)G).

Proof. Let ϕ be a condition. We must prove that if ((νx)F) ` ϕ then ((νx)G) ` ϕ. The main
complication lies in the fact that x is not guaranteed to be fresh for ϕ.

We obtain a fresh name y such that y is fresh for everything in the proof context. Since
((νx)F) ` ϕ, we have by alpha-conversion that ((νy)(x y) · F) ` ϕ. Because y] ϕ, it follows
that (x y) · F ` ϕ. From F ≤ G we obtain (x y) · F ≤ (x y) · G by equivariance, and there-
fore (x y) · G ` ϕ. Because y] ϕ, it follows that ((νy)(x y) · G) ` ϕ. Hence, ((νx)G) ` ϕ by
alpha-conversion.

We can now prove that static equivalence of frames is preserved by restriction.

Lemma 24 If F ' G then ((νx)F) ' ((νx)G).

Proof. Follows immediately from the definition of ' and Lemma 23.

We lift the previous lemma to sequences of restriction binders.

Lemma 25 If F ' G then ((νx̃)F) ' ((νx̃)G).

Proof. By induction on x̃, using Lemma 24.

We can now prove that bisimilarity is preserved by restriction. The restricted name must
not occur in the environment.

Lemma 26 (Bisimilarity is preserved by restriction) If Ψ B P .∼ Q and x] Ψ then
Ψ B (νx)P .∼ (νx)Q.

Proof. By coinduction (Lemma 20), with X = {(Ψ, (νx)P, (νx)Q) : Ψ B P .∼ Q ∧ x] Ψ}.

STATEQ: From Ψ B P .∼ Q we have (F P) ⊗ Ψ ' (F Q) ⊗ Ψ by .∼-E1. Hence,
(F ((νx)P)) ⊗ Ψ ' (F ((νx)Q)) ⊗ Ψ using x] Ψ and Lemma 24.

SIMULATION: From Ψ B P .∼ Q we have Ψ B P ↪→ .∼ Q by .∼-E2. Hence, using x] Ψ
and the fact that bisimilarity and X are equivariant, Ψ B (νx)P ↪→X ∪ .∼ (νx)Q by
Lemma 21.

EXTENSION: Given Ψ B P .∼ Q, we must prove that (Ψ ⊗ Ψ ′ , (νx)P, (νx)Q) ∈X for all
assertions Ψ ′, including those containing names that clash with x.
We obtain a fresh name y such that y] Ψ , y] Ψ ′, y] P, and y] Q. From Ψ B P .∼ Q we
have Ψ ⊗ (x y) · Ψ ′ B P .∼ Q by .∼-E3. Equivariance of bisimilarity and ⊗ then yields
(x y) · Ψ ⊗ Ψ ′ B (x y) · P .∼ (x y) · Q. Since x] Ψ and y] Ψ , the latter simplifies to
Ψ ⊗ Ψ ′ B (x y) · P .∼ (x y) · Q. Since y] Ψ and y] Ψ ′, we have y] Ψ ⊗ Ψ ′. Hence,
this demonstrates that (Ψ ⊗ Ψ ′ , (νy)(x y) · P, (νy)(x y) · Q) ∈X . Finally, since y] P
and y] Q, we obtain (Ψ ⊗ Ψ ′ , (νx)P, (νx)Q) ∈X by alpha-conversion.

SYMMETRY: Symmetry of X follows from symmetry of bisimilarity.

We again prove a corresponding lemma for binding sequences.

Lemma 27 If Ψ B P .∼ Q and x̃] Ψ then Ψ B (νx̃)P .∼ (νx̃)Q.

Proof. By induction on x̃, using Lemma 26.

Psi-calculi in Isabelle 35

7.3.2 Parallel composition

The proof that bisimilarity is preserved by parallel composition is the most difficult of the
preservation proofs. Historically, this is the property that most often fails in calculi of this
complexity: the intricate correspondences between parallel processes and their assertions
are hard to get completely right. Our main result is the following.

Lemma 28 (Bisimilarity is preserved by parallel composition) If Ψ B P .∼ Q then
Ψ B P | R .∼ Q | R.

The more general result that Ψ B P .∼ P ′ and Ψ B Q .∼ Q ′ imply Ψ B P | Q .∼ P ′ | Q ′

easily follows. For space reasons, we merely give an outline of the proof, pointing out
the complicated cases. Freshness conditions and other details will be glossed over. We re-
fer to [7] for a more complete discussion, and to our formal development as the ultimate,
machine-checked reference [8]. An informal but detailed account of this proof is contained
in [9].

It is sufficient to prove thatΨ ⊗ ΨR B P .∼ Q impliesΨ B P | R .∼ Q | R. The general
case, where P and Q are bisimilar in the frame Ψ , then follows by choosing a sufficiently
fresh frame of R.

The proof proceeds by coinduction (Lemma 20). We use the candidate relation

X = {(Ψ, (νx̃)(P | R), (νx̃)(Q | R)) : Ψ ⊗ ΨR B P .∼ Q}.

We then need to prove the SYMMETRY, EXTENSION, STATEQ, and SIMULATION premises
of the coinduction rule for this candidate relation.

Clearly, X is symmetric since bisimilarity is symmetric. This proves the SYMMETRY

premise.
The EXTENSION premise follows from the definition of X , using the extension property

of bisimilarity (.∼-E3).
To prove static equivalence (STATEQ), we get to assume

(F P) ⊗ (Ψ ⊗ ΨR) ' (F Q) ⊗ (Ψ ⊗ ΨR)

and have to show that

(F ((νx̃)(P | R))) ⊗ Ψ ' (F ((νx̃)(Q | R))) ⊗ Ψ.

The equivalence follows by algebraic manipulations that exploit associativity and commu-
tativity of ⊗, Lemma 25, and the fact that binding sequences in frames commute. The latter
is proved by induction on the sequences involved.

The SIMULATION premise is the most difficult one. Given Ψ ⊗ ΨR B P .∼ Q (hence
Ψ ⊗ ΨR B P ↪→ .∼ Q by .∼-E2), we must prove Ψ B (νx̃)(P | R) ↪→X ∪ .∼ (νx̃)(Q | R).
It is sufficient to prove that simulation is preserved by parallel composition: we then have
Ψ B P | R ↪→X ∪ .∼ Q | R, and the claim follows because simulation is preserved by
restriction (Lemma 22).

We now sketch the proof that simulation is preserved by parallel composition. The PAR

inversion rule, applied to Q | R, gives us four cases: two where either Q or R performs an
action, and two where the parallel processes communicate.

1. Ψ ⊗ ΨR B Q α−→ Q ′, where we need to find an agent S such that

Ψ B P | R α−→ S and (Ψ, S, Q ′ | R) ∈X .

36 Jesper Bengtson et al.

2. Ψ ⊗ ΨQ B R α−→ R ′, where we need to find an agent S such that

Ψ B P | R α−→ S and (Ψ, S, Q | R ′) ∈X .

3. Ψ ⊗ ΨR B Q MN−−→ Q ′, Ψ ⊗ ΨQ B R K (νx̃)N−−−−→ R ′, and Ψ ⊗ (ΨQ ⊗ ΨR) ` M .↔ K ,
where we need to find an agent S such that

Ψ B P | R τ−→ S and (Ψ, S, (νx̃)(Q ′ | R ′)) ∈X .

4. Ψ ⊗ ΨR B Q M (νx̃)N−−−−−→ Q ′, Ψ ⊗ ΨQ B R KN−−→ R ′, and Ψ ⊗ (ΨQ ⊗ ΨR) ` M .↔ K ,
where we need to find an agent S such that

Ψ B P | R τ−→ S and (Ψ, S, (νx̃)(Q ′ | R ′)) ∈X .

Case 1 is straightforward, and can be solved in much the same way as the corresponding
case for the pi-calculus and CCS [10]. Since P and Q are bisimilar, there is a derivative P ′

such that Ψ ⊗ ΨR B P α−→ P ′ and Ψ ⊗ ΨR B P ′ .∼ Q ′. Taking S = P ′ | R concludes the
case.

Case 2 is an easy case for both the pi-calculus and CCS. The witness agent is S = P | R ′.
However, for psi-calculi there are two complications. First, in order to derive the transition

Ψ B P | R α−→ P | R ′we need to know that Ψ ⊗ ΨP B R α−→ R ′, but the inversion rule

provides Ψ ⊗ ΨQ B R α−→ R ′: the transition α is derived in the frame of Q, but it must be
derived in the frame of P. Since Ψ ⊗ ΨR B P .∼ Q, we know that these frames are statically
equivalent. Hence, we need a frame switching lemma for equivalent frames to enable the
transition α. Second, we need to prove that the derivatives are in the candidate relation, i.e.,
that (Ψ, P | R ′, Q | R ′) ∈ X . This requires Ψ ⊗ ΨR

′ B P .∼ Q, but we only know that
Ψ ⊗ ΨR B P .∼ Q. Hence, we need a derivative frame lemma to prove that whenever two
processes are bisimilar in the frame of an agent, they are also bisimilar in the frame of any
derivative.

Cases 3 and 4 are symmetric, and we focus on Case 3. Since P and Q are bisimilar,

there is a derivative P ′ such that Ψ ⊗ ΨR B P MN−−→ P ′ and Ψ ⊗ ΨR B P ′ .∼ Q ′. We
prove that S = (νx̃)(P ′ | R ′) is the desired witness. In order to derive a communication

Ψ B P | R τ−→ (νx̃)(P ′ | R ′) we need to know that Ψ ⊗ ΨP B R M (νx̃)N−−−−−→ R ′ and

Ψ ⊗ (ΨP ⊗ ΨR) ` M .↔ K , but we only know that Ψ ⊗ ΨQ B R M (νx̃)N−−−−−→ R ′ and
Ψ ⊗ (ΨQ ⊗ ΨR) `M .↔ K . The frame switching lemma from Case 2 is not sufficient
here, but we need a frame/channel switching lemma that allows us to simultaneously re-

place ΨP for ΨQ in both Ψ ⊗ ΨQ B R M (νx̃)N−−−−−→ R ′ and Ψ ⊗ (ΨQ ⊗ ΨR) ` M .↔ K . Fi-
nally, in order to prove that the derivatives are in the candidate relation, the derivative frame
lemma from Case 2 is employed again.

To summarise, the lemmas required are a frame switching lemma to replace equivalent
frames in transitions, a frame/channel switching lemma to simultaneously replace equivalent
frames in channel equivalence entailment when agents communicate, and a derivative frame
lemma to replace the environment of a bisimilarity with any derivative environment.

The frame switching lemma and the frame/channel switching lemma are proved by
frame induction (Figure 4). To prove the derivative frame lemma, we observe that bisim-
ilarity is closed under extension (.∼-E3). It is, therefore, sufficient to show that if R ′ is a
derivative of R, then the assertion ΨR′ is an extension of ΨR, i.e., statically equivalent to
ΨR ⊗ Ψ ′ for some assertion Ψ ′. It turns out that this is not true in general, but that one
may have to alpha-convert names in ΨR in a suitable way [7]. Because of these technical
difficulties, the derivative frame lemma—which is otherwise proved by induction over the
operational semantics—is easily one of the most complex lemmas in our formalisation.

Psi-calculi in Isabelle 37

8 Strong equivalence

In the previous section, we proved that bisimilarity is preserved by all constructors of the
psi data type except Input (Theorem 3). Our formal development [8] also contains proofs
that bisimilarity is reflexive, symmetric, and transitive, hence an equivalence relation. In a
similar way as for the pi-calculus [10], we now obtain a congruence relation on agents by
closing bisimilarity under substitutions. This congruence is called strong equivalence.

8.1 Sequential substitution

For the pi-calculus, the standard way of defining strong equivalence is to close bisimilarity
under single substitutions. This can be made to work for psi-calculi as well, but it requires
extra axioms for substitution types (Section 4.3.1) that detail how empty substitutions be-
have, and when a substitution can be split into several smaller ones. In order to avoid these
extra axioms, we define strong equivalence for psi-calculi by closing strong bisimilarity un-
der sequences of parallel substitutions. A parallel substitution (Definition 7) is specified by
a pair consisting of a list of names and a list of terms. Sequential substitutions are modelled
as a list of such pairs.

Definition 26 (Sequential substitution) The sequential substitution σ applied to a term X
of substitution type is denoted Xσ.

Xσ ≡ foldl (λQ (x̃, T̃). Q[x̃ := T̃]) X σ

Here, foldl is the usual left fold operation for lists. Thus, application of a sequential sub-
stitution iterates over the list σ of (parallel) substitutions and applies each one in turn, start-
ing from X. Sequential substitution is defined for terms, assertions, conditions, and agents.

8.2 Closure under substitution

The constraints on substitution types, defined in Section 4.3.1, require that the lists of names
and terms have equal length, and that the names being substituted are distinct. The following
predicate characterises well-formed substitutions.

Definition 27 (wellFormedSubst)

wellFormedSubst σ ≡ filter (λ(x̃, T̃). ¬(|x̃|= |T̃ | ∧ distinct x̃)) σ = ε

Intuitively, the predicate filters out all elements (x̃, T̃) of σ such that either x̃ is not
distinct, or the lengths of x̃ and T̃ differ. If the list of such elements in σ is empty, the
sequential substitution is well-formed.

We now define closure under substitution in a similar way as for the pi-calculus.

Definition 28 (Closure under substitution) The closure of a relation R under well-formed
substitutions is denoted R s.

R s ≡ {(Ψ, P, Q) : ∀σ. wellFormedSubst σ −→ (Ψ, Pσ, Qσ) ∈R}

38 Jesper Bengtson et al.

8.3 Strong equivalence

Strong equivalence, denoted ∼ , is defined by closing bisimilarity under well-formed se-
quential substitutions.

Definition 29 (Strong equivalence)

Ψ B P ∼ Q ≡ (Ψ, P, Q) ∈ .∼s

It follows from this definition that strong equivalence is subsumed by strong bisimilarity.

Lemma 29 If Ψ B P ∼ Q then Ψ B P .∼ Q.

Proof. The empty substitution is well-formed.

To prove that strong equivalence is a congruence, we must show that it is preserved
by the input prefix. As for the pi-calculus, we begin by proving that under certain circum-
stances, simulation and strong bisimilarity are preserved by the input prefix.

Lemma 30 ∧
T̃ .

|x̃| = |T̃ |
(Ψ, P[x̃ := T̃], Q[x̃ := T̃]) ∈R

Ψ B M(λx̃)N.P ↪→R M(λx̃)N.Q

Proof. Follows immediately from the definition of ↪→ by inversion on the input transition.

Lemma 31 ∧
T̃ .

|x̃| = |T̃ |
Ψ B P[x̃ := T̃] .∼ Q[x̃ := T̃]

Ψ B M(λx̃)N.P .∼ M(λx̃)N.Q

Proof. By coinduction with X set to

{(Ψ, M(λx̃)N.P, M(λx̃)N.Q) : ∀ T̃ . |x̃| = |T̃ | −→ Ψ B P[x̃ := T̃] .∼ Q[x̃ := T̃]}.

The simulation case is discharged using Lemma 30, and all other cases follow immediately
from the elimination rules of bisimilarity (Lemma 19).

We can now prove that strong equivalence is preserved by the input prefix.

Lemma 32
Ψ B P ∼ Q x̃] Ψ distinct x̃

Ψ B M(λx̃)N.P ∼ M(λx̃)N.Q

Proof. We need to show that Ψ B (M(λx̃)N.P)σ .∼ (M(λx̃)N.Q)σ for all well-formed
substitutions σ.

We obtain a permutation p such that set p ⊆ set x̃ × set (p · x̃) and p · x̃ is fresh for
everything in the proof context. After alpha-converting and pushing σ over the binders, we
have to prove that Ψ B Mσ(λ(p · x̃))(p · N)σ.(p · P)σ .∼ Mσ(λ(p · x̃))(p · N)σ.(p · Q)σ.

This follows from Lemma 31, provided we can show Ψ B (p · P)σ[(p · x̃) := T̃] .∼
(p · Q)σ[(p · x̃) := T̃] for all T̃ such that |x̃| = |T̃ |.

From Ψ B P ∼ Q we have p · Ψ B p · P ∼ p · Q, and hence Ψ B p · P ∼ p · Q
since x̃] Ψ and (p · x̃)] Ψ . From |x̃| = |T̃ |, distinct x̃, and wellFormedSubst σ we obtain
wellFormedSubst (σ[(p · x̃, T̃)]). Therefore, Ψ B (p · P)σ[(p · x̃, T̃)] .∼ (p · Q)σ[(p · x̃, T̃)]
by the definition of ∼ .

Psi-calculi in Isabelle 39

Our main result about strong equivalence is the following theorem.

Theorem 4 Strong equivalence is a congruence relation.

Proof. That strong equivalence is preserved by Input follows from Lemma 32. That it is
also preserved by the remaining constructors follows immediately from Theorem 3 and the
definition of ∼ , where any bound names are alpha-converted to avoid the substitutions.

9 Related Work

Taking the step from intuitive informal reasoning, in the style of Barendregt’s variable con-
vention [6], to a theory of alpha-equivalence that can be checked by computer has proven
difficult. Aydemir et al. [4] give an excellent overview of the many techniques that have been
devised to represent terms with binders. The four most prominent approaches in the litera-
ture are de Bruijn indices, higher-order abstract syntax, the locally nameless representation,
and nominal logic. In the following discussion of related work, we focus on their application
to process calculi. Solutions to the POPLmark challenge [43] provide a comparison of these
techniques on a common set of benchmark problems from programming language theory.

Of these techniques, de Bruijn indices are the oldest. They were originally introduced by
de Bruijn in [19], whose key idea was to represent all names by natural numbers that indi-
cate the nesting level of the corresponding binder. With this representation, alpha-equivalent
terms are syntactically equal. De Bruijn indices have proven useful for automated tools that
reason about binders, but they are cumbersome when used in interactive proofs. The main
problem appears when the semantics of a theory modifies the structure of its terms, forcing
binding depths to be recalculated. Moreover, the representation is not intuitive for humans.
Nevertheless, de Bruijn indices have been used successfully for large-scale formalisations
in interactive proof assistants. In [26], Hirschkoff formalises a substantial part of the meta-
theory of the pi-calculus in Coq. Of roughly 800 proved lemmas, 600 are concerned with
manipulation of de Bruijn indices. Briais’ formalisation of the spi-calculus in Coq [18] suf-
fers from similar technical tedium.

Higher-order abstract syntax (HOAS) treats binders as functions from names to terms.
This approach leaves all reasoning about bound names to the meta-theory of the logic.
Alpha-equivalence is thereby obtained for free. On the other hand, it becomes impossible to
reason specifically about bound names, as they are hidden by function abstractions. HOAS
has been used to model the pi-calculus both in Coq, by Honsell et al. [28], and in Isabelle,
by Röckl and Hirschkoff [45]. Earlier strenuous efforts to encode the pi-calculus in the HOL
proof assistant [33,40] used explicit names, and a manual definition of alpha-equivalence.

The locally nameless representation [22] employs de Bruijn indices to represent bound
variables, but retains names for free variables. Again, alpha-equivalent terms are syntacti-
cally equal. Moreover, substitution and beta-reduction have much simpler definitions than
with a pure de Bruijn representation. Aydemir et al. applied this approach to reason about
core ML and other calculi in Coq [4]. They observe that the locally nameless representation,
when combined with cofinite quantification over free names, leads to “developments that
are faithful to informal practice, yet require no external tool support and little infrastructure
within the proof assistant.” However, in the absence of such infrastructure, key lemmas must
be proved manually.

In the Isabelle proof assistant, infrastructure for reasoning about binders is available in
the form of Urban’s Nominal Isabelle [47] framework. The framework is based on nominal
logic, originally devised by Gabbay and Pitts [24,44]. Nominal logic, described in more

40 Jesper Bengtson et al.

detail in Section 2.1, is a first-order theory of names and binding that builds on name swap-
ping as a primitive concept. We have previously used Nominal Isabelle to formalise Milner’s
CCS [7] and the pi-calculus [10]. Kahsai and Miculan [32] implemented the spi-calculus in
Nominal Isabelle. The psi-calculi framework presented in this paper is more expressive than
either of these calculi.

Work on Nominal Isabelle continues. A recent re-implementation [29], known as Nomi-
nal2, was in large part motivated by our formalisation. It simplifies the framework’s theoret-
ical foundations, and adds built-in support for multiple binders [49]. We intend to port our
formalisation of psi-calculi to Nominal2, expecting that this will considerably simplify the
current treatment of multiple binders via binding sequences (Section 3). However, because
Nominal2 is fundamentally different from its predecessor, this is not a straightforward task.
As a first step, we plan to enhance Nominal2 with support for Isabelle’s locales [5], which
our formalisation uses extensively to achieve parametricity. Until this has been achieved,
the former version of Nominal Isabelle—which, despite being limited to single binders, re-
mains the version that is bundled with the Isabelle proof assistant [30]—also remains the
framework of choice for our formalisation.

10 Conclusion

The psi-calculi framework is the most advanced process calculus framework to date. It is
expressive, it is general, and it has a simple semantics. In this paper, we presented the for-
malisation of its meta-theory in Isabelle.

A fully formalised framework has several benefits. The most obvious one is that we
know with certainty (relative to the soundness of Isabelle) that our theorems are correct.
This claim is not to be taken lightly, since there is a clear need for robust theories. As the
complexity of process calculi increases, so does the complexity of proofs about them. During
our formalisation efforts, we found errors in the published meta-theory of other popular
process calculi [9]. The Isabelle formalisation precludes the kind of human oversight that
happens all to often in complex pen-and-paper proofs.

Another benefit is that formalised theories are extensible. The ramifications of changes
are instantly apparent, making it safe to modify the calculus without risking inconsistencies.
While pen-and-paper proofs would have to be carefully reexamined, formal proofs can be
checked mostly automatically, sometimes in minutes [7]. The psi-calculi formalisation de-
scribed here has already been used as a basis for the implementation of various extensions
of psi-calculi in Isabelle, notably broadcast psi-calculi [17], higher-order psi-calculi [42],
and sorted psi-calculi [16].

What sets our formalisation apart from formalisations of other process calculi is that the
theory of psi-calculi was developed simultaneously with the formalisation. This had advan-
tages and disadvantages. Theory development is an intricate process, where new insights
invariably lead to changes that must then be mirrored also in the formalisation. Fortunately,
the amount of backtracking required for psi-calculi was tolerable. One change was severe.
We had finished the formalisation; all proofs were done; strong bisimilarity was proven to
be a congruence. At the time, requisites on entailment were formulated in terms of frames,
but it turned out to be too difficult to develop instances of the framework. This led to the cur-
rent design, with requisites on the entailment relation in terms of assertions (Section 4.4).
Accordingly, a nearly complete rewrite of the semantics and Isabelle theories was neces-
sary. The lesson learned is that a proof assistant will only prove theorems correct, it will not
determine their relevance.

Psi-calculi in Isabelle 41

Topic Lines of code Percentage
Basic nominal lemmas 1,240 4%
Substitution, agents, frames 3,379 10%
Operational semantics 9,322 29%
Strong bisimilarity 2,828 9%

Structural congruence 2,805 9%
Weak bisimilarity 7,889 24%

Structural congruence 613 2%
Weak congruence 1,633 5%

Structural congruence 285 1%
Simplified weak bisimilarity 774 2%
Tau-laws 1090 3%
Other results and extensions 419 1%
Total 32,277 100%

Fig. 7 Size of different parts of the psi-calculi formalisation in Nominal Isabelle. The lion’s share of the
structural congruence proofs is done for strong equivalence; later congruence results follow as a corollary
because strong equivalence is subsumed by all other versions of bisimilarity. Simplified weak bisimilarity is
a simpler version of weak bisimilarity; the two are equivalent when the weakening axiom Ψ ≤Ψ⊗Ψ ′ holds.

On the other hand, the chances of finding bugs early in the theoretical development
increase with the use of a proof assistant, as the proofs are constantly being verified. In
this there is a similarity to rapid prototyping in software development, where design bugs
are weeded out by experiments as early as possible. Formalising the proofs for psi-calculi in
parallel with the theoretical development has turned out to be invaluable, and we would most
likely not have finished the latter successfully without it. Uncountable times during formal-
isation we stumbled over slightly incorrect definitions and lemmas, prompting frequent (if
minor) changes in the theoretical framework. Some errors escaped careful manual revision
and were published [31], before we ultimately detected them with the help of Isabelle [7].

Machine-checked formalisations also encourage developers to keep theories simple,
thereby serving as a version of Occam’s razor. The simpler the theories, the easier they
are to formalise, and the easier they are to use. A good example of this is how psi-calculi
treat the entailment of conditions. Another example is that we prefer calculi without struc-
tural congruence in their semantics; the bugs that we found in other process calculi involved
structural congruence in one way or another.

For our formalisation efforts, nominal logic has worked exceptionally well. One of its
main benefits is that it provides reasoning about binders without referring to any particular
structure of the nominal data type. The arbitrary binding schemes that we touched on in
the previous sections also follow this notion, since alpha-equivalence and alpha-conversion
lemmas can be established independently of the exact structure of the data type. Reason-
ing about alpha-equivalence with single binders is relatively well understood, but for psi-
and other more complex calculi, the ability to reason about multiple binders is an essen-
tial requirement. We have shown that nominal logic, and in particular its implementation in
Nominal Isabelle, are well suited for this task.

Our theory files, which comprise approximately 32,000 lines of definitions and proofs,
are available from the Archive of Formal Proofs [8]. Figure 7 summarises the size of dif-
ferent parts of the formalisation in more detail. In particular, the formalisation of the opera-
tional semantics is significantly larger than for our previous formalisations of CCS and the
pi-calculus [10]. One reason is that much of the extra infrastructure for induction and inver-
sion rules, which Nominal Isabelle derives automatically for the simpler calculi, must be set
up manually for psi-calculi. The congruence result for weak bisimilarity re-uses definitions

42 Jesper Bengtson et al.

and preservation lemmas that were originally developed for strong bisimilarity. Therefore,
it appears smaller in size, despite being technically more challenging. The time spent on
formalisation (including backtracking due to changes in the simultaneously developed the-
oretical framework) was roughly two years.

Our formalisation occasionally pushed Nominal Isabelle beyond its limits. We benefited
from subsequent enhancements to the framework, which continues to be developed today.
Improved automation allowed us to remove thousands of lines of proof script from our
Isabelle theories.

Our next steps will be to further extend the meta-theory of psi-calculi, and to develop
tools that support the verification of programs and protocols expressed as psi-calculi agents.
Ideally, these tools would be verified with a proof assistant as well.

Acknowledgements We want to convey our sincere thanks to Stefan Berghofer for his hard work on en-
hancing Nominal Isabelle to include the features that we needed for this formalisation.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. ACM SIGPLAN Notices
36(3), 104–115 (2001)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Information and
Computation 148, 36–47 (1999)

3. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, N.J., Pierce, B.C., Sewell, P., Vytiniotis, D., Wash-
burn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The POPLmark challenge.
In: J. Hurd, T. Melham (eds.) Proceedings TPHOLs 2005, LNCS, vol. 3603, pp. 50–65. Springer (2005)

4. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal metatheory.
In: G.C. Necula, P. Wadler (eds.) Proceedings POPL 2008, pp. 3–15. ACM (2008)

5. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: S. Berardi, M. Coppo, F. Damiani (eds.)
Types for Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 – May 4,
2003, Revised Selected Papers, LNCS, vol. 3085, pp. 34–50. Springer (2003)

6. Barendregt, H.P.: The lambda calculus : its syntax and semantics. North-Holland Pub. Co (1981)
7. Bengtson, J.: Formalizing process calculi. Ph.D. thesis, Uppsala Universitet (2010)
8. Bengtson, J.: Psi-calculi in Isabelle. Archive of Formal Proofs (2012). http://afp.sf.net/entries/Psi

Calculi.shtml, Formal proof development
9. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile processes with

nominal data and logic. Logical Methods in Computer Science 7(1) (2011)
10. Bengtson, J., Parrow, J.: Formalising the pi-calculus using nominal logic. Logical Methods in Computer

Science 5(2) (2008)
11. Bengtson, J., Parrow, J.: Psi-calculi in Isabelle. In: S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (eds.)

Proceedings TPHOLs 2009, LNCS, vol. 5674, pp. 99–114. Springer (2009)
12. Berghofer, S.: Simply-typed lambda-calculus with let and tuple patterns. http://isabelle.in.tum.de/repos/

isabelle/file/81e8fdfeb849/src/HOL/Nominal/Examples/Pattern.thy (2010). Retrieved on February 20,
2013.

13. Berghofer, S., Urban, C.: Nominal inversion principles. In: O.A. Mohamed, C.A. Muñoz, S. Tahar (eds.)
Proceedings TPHOLs ’08, LNCS, vol. 5170, pp. 71–85. Springer (2008)

14. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control
60(1–3), 109–137 (1984)

15. Bertot, Y.: A short presentation of Coq. In: O.A. Mohamed, C. Muñoz, S. Tahar (eds.) Proceedings
TPHOLs 2008, LNCS, vol. 5170, pp. 12–16. Springer (2008)

16. Borgström, J., Gutkovas, R., Parrow, J., Victor, B., Pohjola, J.Å.: Sorted psi-calculi with generalised
pattern matching. Submitted, 2012

17. Borgström, J., Huang, S., Johansson, M., Raabjerg, P., Victor, B., Pohjola, J.Å., Parrow, J.: Broadcast psi-
calculi with an application to wireless protocols. In: G. Barthe, A. Pardo, G. Schneider (eds.) Proceedings
SEFM 2011, LNCS, vol. 7041, pp. 74–89. Springer (2011)

18. Briais, S.: A formalisation of the spi calculus in Coq (2007). Email to the Coq-club mailing list sent
on Nov 2, 2007. Retrieved from http://permalink.gmane.org/gmane.science.mathematics.logic.coq.club/
1865 on February 20, 2013.

Psi-calculi in Isabelle 43

19. de Bruijn, N.G.: Lambda calculus notation with nameless dummies. A tool for automatic formula ma-
nipulation with application to the Church-Rosser theorem. Indagationes Mathematicae 34, 381–392
(1972)

20. Buscemi, M.G., Montanari, U.: CC-Pi: A constraint-based language for specifying service level agree-
ments. In: R. De Nicola (ed.) Proceedings ESOP 2007, LNCS, vol. 4421, pp. 18–32. Springer (2007)

21. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in π-calculus. Nordic
Journal of Computing 10(2), 70–98 (2003)

22. Charguéraud, A.: The locally nameless representation. Journal of Automated Reasoning pp. 1–46 (2011)
23. Church, A.: An unsolvable problem of elementary number theory. American Journal of Mathematics

58(2), 345–363 (1936)
24. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of

Computing 13, 341–363 (2001)
25. Gardner, P., Wischik, L.: Explicit fusions. In: M. Nielsen, B. Rovan (eds.) Proceedings MFCS 2000,

LNCS, vol. 1893, pp. 373–382. Springer (2000)
26. Hirschkoff, D.: A full formalisation of pi-calculus theory in the calculus of constructions. In: E.L. Gunter,

A.P. Felty (eds.) Proceedings TPHOLs ’97, LNCS, vol. 1275, pp. 153–169. Springer (1997)
27. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM 21(8), 666–677

(1978)
28. Honsell, F., Miculan, M., Scagnetto, I.: pi-calculus in (co)inductive-type theory. Theor. Comput. Sci.

253(2), 239–285 (2001)
29. Huffman, B., Urban, C.: A new foundation for Nominal Isabelle. In: M. Kaufmann, L.C. Paulson (eds.)

Proceedings ITP 2010, LNCS, vol. 6172, pp. 35–50. Springer (2010)
30. Isabelle 2013. Retrieved from http://isabelle.in.tum.de/ on February 20, 2013.
31. Johansson, M., Parrow, J., Victor, B., Bengtson, J.: Extended pi-calculi. In: L. Aceto, I. Damgård, L.A.

Goldberg, M.M. Halldórsson, A. Ingólfsdóttir, I. Walukiewicz (eds.) Proceedings ICALP 2008, LNCS,
vol. 5126, pp. 87–98. Springer (2008)

32. Kahsai, T., Miculan, M.: Implementing spi calculus using nominal techniques. In: A. Beckmann, C. Dim-
itracopoulos, B. Löwe (eds.) Proceedings CiE 2008, LNCS, vol. 5028, pp. 294–305. Springer (2008)

33. Melham, T.F.: A mechanized theory of the pi-calculus in HOL. Nordic Journal of Computing 1(1), 50–76
(1994)

34. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer (1980)
35. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
36. Milner, R.: The polyadic pi-calculus: a tutorial. In: F.L. Bauer, W. Brauer, H. Schwichtenberg (eds.)

Logic and Algebra of Specification, pp. 203–246. Springer (1993)
37. Milner, R.: Communicating and mobile systems - the Pi-calculus. Cambridge University Press (1999)
38. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I/II. Information and Computation

100(1), 1–77 (1992)
39. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML – Revised. MIT Press

(1997)
40. Mohamed, O.A.: The theory of the pi-calcul in HOL. Ph.D. thesis, Henri Poincare University (1996)
41. Park, D.M.R.: Concurrency and automata on infinite sequences. In: P. Deussen (ed.) Theoretical Com-

puter Science, 5th GI-Conference, Karlsruhe, Germany, March 23-25, 1981, Proceedings, LNCS, vol.
104, pp. 167–183. Springer (1981)

42. Parrow, J., Borgström, J., Raabjerg, P., Pohjola, J.Å.: Higher-order psi-calculi. Accepted for publication
in MSCS, 2012

43. Pierce, B.C., Weirich, S.: Preface. Journal of Automated Reasoning 49(3), 301–302 (2012)
44. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2), 165–193

(2003)
45. Röckl, C., Hirschkoff, D.: A fully adequate shallow embedding of the π-calculus in Isabelle/HOL with

mechanized syntax analysis. Journal of Functional Programming 13(2), 415–451 (2003)
46. Slind, K., Norrish, M.: A brief overview of HOL4. In: O.A. Mohamed, C. Muñoz, S. Tahar (eds.)

Proceedings TPHOLs 2008, LNCS, vol. 5170, pp. 28–32. Springer (2008)
47. Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning 40(4), 327–356

(2008)
48. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule inductions. In: F. Pfen-

ning (ed.) Proceedings CADE-21, LNCS, vol. 4603, pp. 35–50. Springer (2007)
49. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in Nominal Isabelle. Logical Methods

in Computer Science 8(2) (2012)
50. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: O.A. Mohamed, C. Muñoz, S. Tahar

(eds.) Proceedings TPHOLs 2008, LNCS, vol. 5170, pp. 33–38. Springer (2008)
51. Wenzel, M., et al.: The Isabelle/Isar Reference Manual (2013). Retrieved from http://isabelle.in.tum.de/

dist/Isabelle2013/doc/isar-ref.pdf on February 20, 2013.

