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Effective Bug Finding in C Programs
with Shape and Effect Abstractions

Iago Abal, Claus Brabrand, and Andrzej Wasowski
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Abstract. Software tends to suffer from simple resource mis-manipulation bugs,
such as double-locks. Code scanners are used extensively to remove these bugs
from projects like the Linux kernel. Yet, these tools are not effective when the
manipulation of resources spans multiple functions. We present a shape-and-
effect analysis for C, that enables efficient and scalable inter-procedural reasoning
about resource manipulation. This analysis builds a program abstraction based on
the observable side-effects of functions. Bugs are found by model checking this
abstraction, matching undesirable sequences of operations. We implement this
approach in the EBA tool, and evaluate it on a collection of historical double-lock
bugs from the Linux kernel. Our results show that our tool is more effective at
finding bugs than similar code-scanning tools. EBA analyzes nine thousand Linux
files in less than half an hour, and uncovers double-lock bugs in various drivers.
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1 Introduction

Today, the source code of the Linux kernel is continuously analyzed for bugs [12] using
a handful of static code scanning tools (so-called linfers). Code scanners find bugs by
pattern matching against the structure and flow of the program. For instance, Linux
commits ca9fel5 ! and 65582a7 fix locking bugs found by two of these tools. Linux-
tailored linters like SMATCH 2 have seen adoption because they are easy to use, run fast,
and are reasonably effective at finding certain classes of bugs. However, code scanners
are commonly restricted to intra-procedural analysis of isolated functions; hence, they
mostly find shallow bugs, and do not deal well with nested function calls.

Software bugs often cross the boundaries of a single function. The VBDb bug co-
llection [2] documents 30 runtime bugs in Linux, 80% of which involve deeply nested
function calls. Many of these bugs are conceptually simple, but will be missed by con-
ventional linters. Examples include bugs fixed in commits: 1c17e4d (read of uninitialized
data), 6252547 (null pointer dereference), 218ad12 (memory leak), and d7e9711 (double
lock). Traditionally, static analysis of inter-procedural data-flow, or symbolic execution,
could be used to find such bugs, but these analyses tend to be expensive, and have seen
little adoption in practice. We argue that the above bugs can be handled by code scanners
enriched with a minimal amount of semantic information.

! See https://github.com/torvalds/linux/commit/hash with hash replaced by the identifier.
2 http://smatch.sf.net
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void inode_get_rsv_space(struct inode *inode) {

1

2 if (*) return;

3 spin_lock(&inode->i_lock); // 2nd lock
4 spin_unlock(&inode->i_lock);

5}

6

7 void add_dquot_ref(struct inode *inode) {
8 spin_lock(&inode->i lock); // 1st lock
9 if (%) {

10 spin_unlock(&inode->i_lock); 7
1 return;

12 }

13 inode_get_rsv_space(inode); // call

14 spin_unlock(&inode->i_lock);

15 }

Fig. 1. An illustration of our bug-finding technique on a double-lock bug in Linux fixed by commit
d7e9711. The simplified code is shown to the left. To the right, the associated CFG annotated with
lock and unlock effects. The numbers next to the CFG nodes show corresponding line numbers.
The red edges visualize the path (via the function call in line 13) to the double-lock (in line 3).

We propose a bug-finding technique consisting in model-checking a lightweight
program abstraction based on the notion of side-effect [34, 37]. This abstraction is
automatically inferred by a flow-insensitive shape-and-effect analysis, built on the work
of Talpin and Jouvelot on polymorphic type-and-effect inference [47]. This analysis
infers types that approximate the shape of data in memory—hence the term shape-and-
effect analysis, and also computational effects that describe how data is manipulated by
the program. The inferred effects reveal at which points the program performs operations
like reading or writing variables, opening or closing files, acquiring or releasing locks,
etc. The domain of effects is extensible. The inference algorithm is a small variation
of the classic Damas-Milner’s Algorithm VV [18]. Since our goal is bug finding and not
program optimization nor verification, we trade soundness for scalability [33].

The inferred shape-and-effect information is superimposed on the control-flow graph
(CFG), obtaining what we call the shape-and-effect abstraction of the program. In this
abstraction, each program expression and statement is described by a set of computational
effects. The abstraction is built in a modular fashion, and each program function is given
a polymorphic shape-and-effect signature, that summarizes its computational behavior.
Bugs are found by matching temporal bug patterns on this abstraction, using a standard
model checking algorithm. The search is inter-procedural on demand, and function calls
can be inlined if they are of interest. Although, in practice, the majority of function calls
are deemed irrelevant simply by examining their effect signature, and hence treated as
opaque expressions. This prevents the path explosion associated with inter-procedural
bug finding. This technique scales and finds deep resource manipulation bugs in large
and complex software.

Figure 1 illustrates our approach using a simplified version of an actual Linux bug.

Function add_dquot_ref enters a deadlock by recursively acquiring a non-reentrant
lock. The first lock acquisition occurs in line 8, and the second occurs in line 3, after
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calling function inode_get_rsv_space in line 13; both conditionals (lines 2 and 9) must
evaluate to false (i.e., take the else branch). To the right, we show a simplification of the
effect-decorated CFG, annotated with locking effects on inode->i_lock. The red edges
mark the execution path leading to the double lock. The call to inode_get_rsv_space
is abstracted by a flow-insensitive summary of effects (the set: {lock, unlock}). These
summaries are extremely cheap to compute, but can be insufficient at times. In line 13,
from the effect signature of inode_get_rsv_space alone, it is unclear as to whether the
acquisition of the lock happens before or after its release. Our bug finder needs to inline
the call to inode_get_rsv_space, to find a path to the second lock in line 3, and finally
confirm the double-lock bug. Note that if this function did not manipulate the lock at all,
its effect signature would be the empty set, and the bug finder would have ignored it.

Our contributions are:

— An adaptation of Talpin-Jouvelot’s [47] polymorphic type-and-effect inference sys-
tem to the C language, that can be used to infer abstract discrete effects of com-
putations, and shapes of structured values on the heap (Section 3). We use shape
inference and polymorphism in order to add a degree of context sensitivity to our
analysis, and to handle some common patterns to manipulate generic data in C.

— An inter-procedural bug-finding technique that combines shape-and-effect inference,
to build lightweight program abstractions, with model-checking, to match bug
patterns on those abstractions (Section 4). This technique finds several classes of
bugs, even when these span multiple functions. We use function inlining as a sort of
abstraction refinement, to disambiguate the ordering of operations when it is needed.

— An open-source proof-of-concept implementation of the shape-and-effect system,
and the proposed bug-finding technique: EBA (Effect-Based Analyzer).® EBA can
analyze individual Linux files for bugs in seconds and the entire x86 allyesconfig
Linux kernel in less than an hour, and has uncovered about a dozen of previously
unknown double-lock bugs in Linux 4.7-4.9 releases.

— An evaluation and comparison of our proposed analysis technique with two popular
bug-finding tools within the Linux kernel community (Section 5): (1) on a collection
of historical double-lock bugs in the Linux kernel, and (2) on the set of device
drivers included in the 64-bit x86 allyes configuration of Linux 4.7.

We proceed by discussing related work (Section 2) to contextualize our main contribution,
the shape-and-effect system (Section 3). We then outline our bug-finding technique
(Section 4), and evaluate it (Section 5). Finally, we present our conclusions (Section 6).

2 Related Work

Types and effects. Side-effect analysis is used to compute which memory locations are
accessed or updated by a function call [6, 15, 16]. Traditionally, this information is used
by compilers to determine whether it is legal to perform certain code optimizations.
Lucassen proposed a type-and-effect system [34] that, unlike previous analyses, correctly
handles function pointers. Talpin and Jouvelot developed a complete type reconstruction

3 http://www.iagoabal.eu/eba/
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algorithm for such a polymorphic type-and-effect system [47]. We extend their work
to the C programming language. In order to accommodate the use of type casts in
C, our system infers the shape of objects in memory, rather than standard C types.
KOKA [32] is a functional programming language featuring an effect system based on
row types [41]. This effect system is designed to be exposed to, and understood by
the programmer. Our effect system is an internal program abstraction, thus we settled
on Talpin-Jouvelot’s system as a basis instead. Nielson and Nielson [37] survey the
development of type-and-effect systems and their applications [35, 49, 50].

Pointer analysis. Pointer analysis is used to approximate the values of pointer expres-
sions at compile-time [43]. Side-effect analysis tracks operations on memory locations,
hence it naturally embeds pointer analysis. Our shape-and-effect system implements
context-sensitive alias analysis. Shapes are annotated with regions that abstract the loca-
tions where objects are stored in memory. Aliasing relations are recorded by unification
during shape inference. This is similar to Steensgaard’s points-to analysis [45], but it is
significantly more precise thanks to shape and region polymorphism [20, 22, 26]. We
prioritized a precise analysis of C structure types, as this is a well-known requirement to
analyze real-world programs [44, 52].

Type-safe resource management. These techniques impose stricter typing disciplines
that guarantee safe manipulation of resources. They are valuable for languages with
restricted aliasing, but often do not work well for C. Some of these disciplines are
too strict to accommodate complex resource manipulation patterns, like those used in
Linux. EBA is different in that it employs type inference to build abstractions, rather
than to check specifications. We discuss the simplest flow-insensitive approaches first.
Kyselyoiv and Shan rely on monadic regions to ensure the safe use of file handles [30].
Foster et al. implemented CQUAL, a constraint-based type checker that extends the C
type system with user-defined type qualifiers [23]. CQUAL could be used to enforce the
correct manipulation of user- and kernel-space pointers in Linux [27].

Strom and Yemini introduce the concept of typestate [46], a flow-sensitive abstraction
of the state of an object, where operations specify typestate transitions—e.g. fclose
will turn an open file into a closed file. In [24] Foster et al. extend [23] and introduce
Sflow-sensitive type qualifiers. This is essentially the same concept of typestate, but they
support subtyping and consider the problem of aliasing in C. This newer version of
CQUAL can be used to find double-locks and similar bugs. However, using CQUAL
requires code annotations and rewrites, and otherwise reports too many false positives.
Using a similar analysis to that of [24], LOCKSMITH infers the set of locks that protect
shared memory locations and detects data races [40]. LOCKSMITH uses an effect system
to infer which locations are thread-shared.

Code scanning. Static code scanners are mostly syntax-based bug finding tools. They
are lightweight and know little about semantics: do no compute function summaries,
ignore aliasing, and work intra-procedurally. Hence they are fast and scale well. For
the same reasons, they are able to find relatively simple and shallow bugs. The degree
of sophistication of these tools varies significantly. Some do not even fully parse the
source code [10], whereas others check finite-state properties against the control-flow



of programs [21]. One of the first tools of this class was LINT [19], a static checker for
C created by Stephen Johnson at Bell Labs in 1970s. We discuss three tools that are
used to analyze the Linux kernel source code for bugs [12], and have led to thousands of
bug-fixing commits; these are SPARSE, COCCINELLE and SMATCH.

SPARSE exploits Linux-specific annotations to perform simple checks. However,
some checks, like those related to locking, require too many annotations and are un-
popular among developers. COCCINELLE is a program transformation tool [11], with
an associated language (SmPL) to specify flow-based transformations. While originally
conceived for managing collateral evolution of code [38], COCCINELLE can also encode
bug-finding rules [31, 39]. SMATCH realizes the idea of meta-level compilation proposed
by Engler et al. [21], where bug checkers are scripts run by an intra-procedural data-flow
analysis engine.

These tools cannot directly find interprocedural bugs such as that of Fig. 1. For
SPARSE to find this bug, the functions involved need to be properly annotated with
their locking behavior—they are not. COCCINELLE and SMATCH would have to rely
on ad-hoc scripts to traverse the source code and collect all functions that may perform
locking. Compared to an effect system, these scripts are more difficult to extend, do not
track aliasing, nor handle function pointers appropriately. SMATCH ships with such an
script which, in addition, only explores one level of function calls on each run. EBA
works similarly to code scanners, but effectively supports inter-procedural bug finding.

Static analysis & software model checking. Static analyzers and software model checkers
have a deep understanding of program semantics, and they quite precisely track the
values of expressions, and the shape of the objects in the heap. These tools can find
very complex and deep bugs, even when these involve non-trivial data dependencies. In
order to scale, they rely heavily on abstraction [3, 8, 14, 17] to model the program state.
Maintaining such precise descriptions of the program state incurs in longer execution
times and higher memory utilization. EBA offers a compromise solution between code
scanners and these heavyweight tools, for bugs involving simple data dependencies.

ASTREE is a tool for analyzing safety-critical embedded C software based on abstract
interpretation [17]. ASTREE can prove the absence of runtime errors, such as null-pointer
dereferences, but only for a restricted subset of C. Reps, Horwitz and Sagiv show how
an important class of inter-procedural data-flow analyses can be performed precisely
and efficiently [42]. Their algorithm is popularly known as RHS. In [25] Hallem et al.
extend xgcc [21] to perform inter-procedural analysis based on the RHS algorithm. The
software model checkers BLAST [8] and SLAM [4, 5] employ path-sensitive extensions
of RHS. CBMC is a bounded model checker that reduces the verification of C programs
into Boolean satisfiability problems [13]. These are whole-program analyses and do not
scale to the extent of being adequate for regular use by developers.

INFER is a static analyzer based on symbolic execution and separation logic [7, 9]. It
is used by Facebook and others to find specific kinds of memory and resource manip-
ulation errors in mobile apps. Similarly, SATURN is a SAT-based symbolic execution
framework for checking temporal safety properties [51]. Both INFER and SATURN com-
pute elaborated path-sensitive summaries for functions, and can model the runtime shape
of complex data structures precisely. We do not model the heap as precisely as these two
tools, and our function summaries are flow-insensitive; but we tackle the loss in precision



by relying on heuristics and inlining, respectively. As a result, EBA is significantly
simpler, and scales better.

3 The Shape-and-Effect System

At the core of EBA there is a new type-and-effect inference system for C in the style
of Talpin and Jouvelot [29, 47]. Because of unsafe casts, the standard C type system
provides only a meager description of run-time objects. Thus, as known in pointer
analysis [44, 45], we describe objects by their memory shape. Our system is polymorphic
in shapes, regions, and effects; and it supports sub-effecting. We use shape and region
polymorphism to add context-sensitivity to our analysis, and to handle the most common
pattern of use for unsafe casts: generic data structures in C. Effect polymorphism and
sub-effecting allow handling function pointers.

EBA analyzes programs in CIL (C Intermediate Language), an analysis-friendly
intermediate representation of C [36]. CIL has a simpler syntax-directed type system than
C, without implicit type conversions. Using CIL allows us to scaffold a tool prototype
faster, while still being able to handle the entire C (via a C-to-CIL front-end). For space
reasons, we present the shape-and-effect system declaratively and for a much smaller
language than CIL. The declarative and algorithmic formulations for CIL [1], including
support for structures, are available online.*

3.1 The Source Language

We assume that the analyzed programs are well-typed with respect to a C-like base type
system. This is easily ensured using a compiler. We consider only the following types in
the base type-system:

l-value types T* : ref TR | ref (TE x - - xTE = TF)

r-value types T : int | ptr TT

We distinguish 1-value (7'%) and r-value (T%) types, corresponding to the left and right
sides of assignments, respectively. Unlike in C, reference types are explicit. A reference
object, of type ref T, is a memory cell holding objects of type 7. We distinguish between
mutable references to r-values (data), and immutable references to function values (code).
A pointer value, of type ptr ref T, is the address of a reference in memory. Like in C,
functions are not first-class citizens, but function pointers are allowed. Expressions are
also split into 1-values (L) and r-values (F):

l-value expressions L x| f 1 «E

r-value expressions E I Ei + Es | if (Eg) E1 else E> | (THE
| newz : T=FE;E, | 'L | &L | Li:=FEs; Fs
I fun T f(Ty 21, -+ ,Tn Tn) = E1; B2 | Lo(E1, -+, Ep)

4 http://dl.iagoabal.eu/eba/cil.pdf
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L-value expressions (L) designate memory locations and are always assigned refer-
ence types T'". We distinguish between mutable variables 2 and immutable function
variables f. Dereferencing a pointer, *E, looks up the corresponding reference cell in
memory; e.g., *& evaluates to x.

R-value expressions (F), or simply expressions, denote data values, i.e. integers
and pointers. Basic integer expressions are constants (n) and additions. The language
includes if conditional expressions. As in C, a type cast (71') E converts the value of an
expression E to type T'. The expression new = : T' = Ej; Es introduces a new local
variable z, initialized to £ and visible in F5; x names a memory cell of type ref T'. (We
assume that memory is automatically managed.) The bang operator, ! L, reads an 1-value.
Pointer values are obtained from reference cells using the address-of operator & L-values
can be assigned a new value before evaluating another expression, as in x := Ey; Fs.
The expression fun T f(1y x1, -+ ,T, x,) = Fy; E5 introduces a function variable
f visible in Es; function f binds n arguments (x1, ... ,z,) and evaluates F;. Function
variables name immutable reference cells holding function values. Functions may either
be invoked, or passed as pointers (using &). We assume that fetching of and assignment
to function references is forbidden by the base type system.

For clarity, we omit loops and jumps, which do not present specific challenges for
our flow-insensitive inference system. Yet, they are considered in our implementation.

3.2 The Shape and Effect Language

Effects. Types describe what expressions compute, whereas effects describe how expres-
sions compute [28]. From the type perspective, the expression y :=1 + !x; !y evaluates
to an integer value. From the effect perspective, it reads from locations x and y, and
writes to y. Effects are a framework to reason about such and similar aspects of compu-
tations. An example set of effects is ¢ = {read,, read,,, write, }, which records reading
variables x and y, and writing y. A set of effects is a flow-insensitive abstraction of
an execution. It specifies the effects that may result from evaluating an expression (or
statement), disregarding the flow of control.

We assume a finite number of effect constructors of finite arity, including nullary. A
constructor ¢ applied to a tuple’ 5 of memory regions (see below) defines a discrete effect
€. Built-in effects, inherent to the C language, include reading and writing of memory
locations, recorded as read,, and write,; and calling to functions (e.g. through function
pointers), recorded as call,,. Other effects can be introduced to capture new kinds of bugs.
The example of Sect. 1 used effects lock,, and unlock, to represent lock manipulation
actions. Effects are combined into sets (), ordered by the usual set inclusion. We use
effect variables () to stand for sets of effects, to achieve effect polymorphism.

Regions. In practice, it is not enough to track effects involving single variables. A
variable is one of many possible names for a particular memory cell. Consider the
C program int x; int xy = &; S. Within S’s scope, both = and =y denote the same
memory cell—they alias. To address aliasing, we track abstract sets of possibly-aliased
memory references, memory regions (p).

> We use overline to denote tuples.



The shape-and-effect system performs integrated flow-insensitive alias analysis,
similar to Steengaards’s points-to analysis [45] but polymorphic. The analysis assigns a
memory region p to each reference. If during pointer manipulation two regions become
indistinguishable for the analysis, they are unified into a single one. For instance, if refer-
ence x belongs to region p; and y belongs to po, the effect of evaluating y :=1 + 'z; ly
is {read,, , read,,, write,, }. If the analysis determines that p; and p, may alias, they
will be merged —as py; 2}, reducing the effect set to {readp{m} swritep o, }.

Shapes. A shape approximates the memory representation of an object [44, 45]. Whereas,
in the base type system, an expression can be coerced to a different type, in this system,
the shape of an expression is fixed and preserved across type casts (cf. Sect. 3.3). Shapes
are annotated with regions, recording points-to relations between references. We use the
following terms to represent shapes:

l-value shapes Z% . vet, Z% | ref, (ZE¥ x - x ZE R )

r-value shapes Z% : L | pr 2L | ¢

As for types, we split shapes into 1-value (7 Ly and r-value (Z%7) shapes. The shape
language resembles the type language, without integer type but with shape variables (¢).

R-value shapes denote the shape of r-value objects. An atomic shape L denotes
objects that have no relevant structure, for instance integers, when these are not mas-
querading pointers to implement genericity (see below). Pointer expressions have pointer
shapes, ptr ZX, where Z* is the shape of the target reference cell of the pointer. A
pointer represents the address of a reference cell, and therefore a pointer shape neces-
sarily encloses a reference shape. Pointers may be cast to integers to emulate generics;
such integer values will thus have a pointer shape. Shape variables ¢ are used to make
shapes polymorphic, they stand for arbitrary r-value shapes. For instance, functions
manipulating a generic linked list are shape polymorphic, since they abstract from the
shape of objects stored in the list.

L-value shapes denote references to either data or functions. Data (r-value) references
have shape ref, Z R where p is a memory region, and Z is the shape of the objects that
it holds. If a reference p; holds a pointer to another reference ps, as in ref,, ptrref,, Z,

we say that p; points to pa. Function references have shape ref, (7L x---x ZL %5 7).
A function shape maps a tuple of reference shapes (Z{ x - - - x ZL), corresponding to the
formal parameters, to a value shape (Z{?), corresponding to the result. The shape-and-
effect system describes function parameters as I-value shapes, since actual parameters
are in fact stored in stack variables. The returned value is an r-value expression, hence
ZE Function shapes carry a so-called latent effect, , which accounts for the actions that
(depending on the flow of control) may be performed during execution of the function.
Figure 2 shows the shapes in-
ferred for a small C program.
We assign constant 42 the shape
L (Fig.2(a)). Variable x holding L ref, L ptrref, L ref s ptrref, L
the Value 42 at 1OCation p, gets OxCAFE: OxCAFE: OxCODE: OxCAFE:

the shape ref, L (Fig.2(b)). Re- . OXCAFE — —

gion p is an abstraction of the (42 ()« (c) &x (dp

Fig.2. Shapes of expressions in the C program:
int x = 42; int *p = &x; return p;




actual memory address, 0xCAFE. Figure 2(c) shows the shape of &x, which is ptr ref, L.
Finally, Fig. 2(d) shows the shape of the pointer variable p, ref,/ ptrref, L.

Shape-type compatibility. As mentioned in the shape description above, there is often
correlation between types and shapes. The compatibility of a shape Z with a type T,
written Z < T, is defined as follows:

zZ<T Z<T
[INT] —5 [PTR] — 2=~ [REF] — 2=~
Z7" < int ptr Z < ptr T ref, Z < refT
Z; < T; fori € [0,
[FUN] < T fori € [0 ]

refp, Z1 X - - Xrefy, Zp i» Zo < Ty x---xT, — To

Intuitively, shape-type compatibility requires that the given shape and type are structurally
equivalent (rules [PTR] and [REF]), with two exceptions. First, any r-value shape is
compatible with the integer type. The relations L < int, ptr Z < int, and ¢ < int are
subsumed by rule [INT]. In other words, integer values can be used to encode arbitrary
r-value objects at runtime, when they are used as pointers. Second, function shapes
capture the storage location of function parameters, thus they are reference shapes,
which is ignored by function types (rule [FUN]).

Environments and shape schemes. An environment /' maps variables x to their reference
shapes: I'(x) = ref, Z; and function variables f to function shape schemes:

I(f)=Vo.rety, (ZF x---xzE % ZE)  wherepy ¢ T

A function shape scheme is a function shape quantified over shape, region, and effect
variables v for which the function poses no constraints. We say that the function is
polymorphic on such variables, which should occur free in the function shape (i.e. they
are mentioned in Zf x --- x ZL RN ZE). As such, these variables are parameters
that can be appropriately instantiated at each call site. If o is of the form ¢’ U &
where &, € £, we say that f is effect-polymorphic: the effect of f is extended by the
instantiation of &y. In general, it is unsound to generalize reference types [48], but we can
safely generalize function references because they are immutable. The memory region
po identifies the function; it is used to track calls to it through function pointers, and it
cannot be generalized (thus py ¢ U).

3.3 Shape-and-Effect Inference

L-values. Judgment I' -7, L : ref, Z & ¢ (Fig. 3a) specifies that, under environment
I', the l-value expression L has shape ref, Z, and evaluating it results in effects . The
shape of a variable z is obtained directly from the environment (rule [ VAR]). Pointer
dereferencing proceeds by evaluating an expression E, obtaining a shape, from which we
drop the pointer constructor obtaining a reference shape (rule [DEREF]). Dereferencing
has no effects by itself, but transfers the effects ¢ from evaluating F. The shape of a
function variable f is obtained by appropriately instantiating its shape scheme (rule



(a) Inference rules for 1-value expressions, -7, C ENV X L-VALUE x SHAPE X EFFECT.

I'tg E :ptrref, Z &
[DEREF] — 2 = ‘P 2% ¥
z:ref, Z& 0 I'bp «E :ref, Z& ¢

[VAR] I'(z) =ref, Z
Ik

I(f)y=vV(pEretyy 2 Z=2_x---x2zt & ZF

[FUN]
Try f el (ZC— Z1p = PIE— ') &0

(b) Inference rules for r-value expressions, -z C ENV X EXP X SHAPE X EFFECT.
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[INT] [ADDJ E 1 (21 E L2 Y2
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[NEW] -
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'ty L:ref, Z & I'byp L:ref, Z &
[FETCH] L p2*?P [ADDR] L p2x?P
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[CALL]
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Fig. 3. Shape-and-effect inference system.

[FUN]). This instance is generated by substituting quantified variables with concrete
shapes, regions and effects. In a typing derivation, these will depend on the calling
context: the actual parameters passed to the function, and the expected shape of the
function’s return value in that context.

R-values. The judgment I' - E : Z & ¢ (Fig. 3b) specifies that, under environment
I', r-value expression E has shape Z, and side effects .

Scalars. A constant n is given an arbitrary shape Z (rule [INT]). Each use of a constant
can receive a different shape depending on the surrounding context. The shape of an
integer is unknown a priori and depends on how this integer value is used by the program.
For instance, in a expression like ptr + 1, where ptr is a pointer variable, constant 1
would be given the same shape as ptr. The effect of scalar addition is the combined



effect of evaluating its operands (rule [ADD]). Both operands must have the same shape.
Arithmetic between pointers with incompatible shapes is disallowed.

Conditionals. Both alternatives of an if conditional contribute to the effect of the entire
expression (rule [IF]). In a particular execution, either F; or E» will be evaluated, but
not both. The union of all three effects is a flow-insensitive over-approximation. (Loops,
which we have omitted in this presentation, are treated analogously.) Both branches shall
have the same shape, which is also the shape of the overall expression.

References. The new operator allocates a reference cell in a region p (rule [NEW]).
The shape of the initializer expression F; must be compatible with the type 1" of x.
Fetching the value stored in a reference returns an object of the expected shape, and
produces a read effect on the corresponding memory region (rule [FETCH]). Given a
reference cell, the computation of the memory address of such cell is side-effect free (rule
[ADDR]). Assignment writes the result of evaluating an expression £ into a memory
location denoted by L (rule [ASSIGN]). This requires evaluating both expressions, which
introduces effects ¢ and 5. Left- and right-hand side must be of the same shape. Hence,
given a pointer assignment like ptr = &x;, this system considers that «ptr and x alias.
In addition, we record the effect of writing to memory region p.

Functions. When introducing a function definition (rule [DEF]) we analyze the body £
under a new environment, where each parameter x; is given a shape ref,,, Z;. This shape
Z; should be chosen according to the use of x; in £y, and must be compatible with its
type, T;. The shape (Z) and effects () of evaluating Ej constitute the result shape and
latent effects of f, respectively. The shape of function f is generalized over U and added
to the scope of E’. Variables T must be unique to f and hence cannot occur in I". The
C(L) version of this type system [1] handles recursive definitions through monomorphic
recursion. Function application takes a function reference L and a tuple of arguments of
the right shape (rule [CALL]). Calls to functions are recorded with calling call,, effects,
where region p identifies the callee. The latent effects ¢’ of the function are recorded
as potential side-effects of the invocation. A particular application may perform only a
subset of these effects, but cannot perform any effect outside ¢’.

Subsumption. It is always safe to enlarge the set of effects inferred for an expression

(rule [SUB]). Consider two function variables: f with shape ref,, ({) e, 1) and g
wr[tepl

with shape ref,, (() 1) , where () is the empty tuple. Without subsumption we
could not write a program like if (x) &f else &g. Functions f and g perform different
kinds of effects (one reads from and the other writes to p;) and hence their shapes are
not equal, as required by rule [IF]. With subsumption, we can enlarge the latent effects of
f with write,, and the latent effects of g with read,,, so that their shapes match —now
both having latent effects {read,, , write,, } .

Type casts. In this system, type casts are reduced to shape-type compatibility checks
(rule [CAST]). A type cast is allowed only if the shape Z of the expression is compatible
with the target type T'. Type casts between integer and compatible pointer types, often



used to work around type genericity, are correctly handled by this system. Casts that are
not generally sensible are rejected, for instance, casting between pointers to functions
with different number of arguments.

Principality. We have not proven principality of the inference system. However the
original work of Talpin-Jouvelot [47] does guarantee principality, and we have followed
their method closely. We have no reason to believe that the same does not hold here.

Soundiness. Our inference system for C(IL) was deliberately made unsound, to gain in
simplicity and in precision. This is a necessary trade-off for a bug finding technique [33].
For instance, analyzing the Linux kernel, we have found some complex pointer usage
that leads to cycles in the inferred shapes, and also casts between incompatible structure
types. We approximate cyclic shapes, and accept any type cast, at the cost of missing
aliasing relations. We invite the reader to look at the CIL formulation of our inference
system for more details [1]. In any case, our implementation produces an effect-based
abstraction for any program that the compiler accepts.

4 Effect-Based Bug Finding

We propose the following bug-finding method based on the inference system presented
in Sect. 3, which we have implemented in the EBA tool and evaluated in Sect. 5.

1. Specification of effects for basic operations. We axiomatize the behavior of each
relevant operation f with a signature of the form ZF 25 Zo (cf. Sect. 3.2). The axiom
specifies shapes of the input arguments expected by the function (references Z}), the
shape of the output produced by the function (Zj), and the effects of executing the
function (y). For example, to find the double-lock bug of Fig. 1, we specify the operations
spin_lock (effect lock,) and spin_unlock (effect unlock,) with the following:

lock

spin_lock : ref,, ptrref,, ( —= L (1)
. unlock .,
spin_unlock : ref,, ptrref,, ¢ L 2)

These signatures specify that the functions spin_lock and spin_unlock receive a pointer
as argument (stored as formal parameter in p;) which points to some object stored in po;
the effects above the function arrows indicate that the operations respectively lock and
unlock the object in py. The shape of the object in question is not relevant and thus has
been abstracted away by a shape variable (. Note that variables p1, p2, and ( are local to
each signature, and implicitly universally quantified.

2. Shape-and-effect inference. Following Jouvelot and Talpin [29] we derived an in-
ference algorithm from the declarative system of Sect.3 (a classical example is the
derivation of Damas-Milner’s Algorithm VV [18]). Essentially, we distributed the effect
of the non syntax-directed rule [SUB], and replaced guesses with meta variables and
constraints. We use the obtained algorithm to infer the memory shapes and aliasing
relationships of all program variables, and the effects for all statements. Each function is
assigned a shape-and-effect signature, which establishes aliasing relationships between
inputs and outputs, and provides a flow-insensitive summary of its observable behavior.



3. Effect-CFG abstraction. We construct the Effect-based Control-Flow Graph (-
CFQG) of the program as in Fig. 1. We begin with a standard CFG, where nodes represent
program locations and edges specify the control-flow. We distinguish branching decisions
(diamond nodes), atomic operations (circles), function calls (dotted squares), and return
statements (double-circles). A ¢-CFG is an effect-abstraction of a program obtained
from the standard CFG by annotating variables with their memory shapes, and nodes
with the effects inferred for the corresponding locations. Function call nodes hold a
flow-insensitive over-approximation of the callee’s behavior. This abstraction can be
refined, if needed, by inlining the callee’s ¢-CFG into the caller’s -CFG (cf. Fig. 1).

4. Specification of bug patterns. We express bug patterns using existential Computational
Tree Logic (CTL) formulae with effects as atomic propositions. The formulae must
describe incorrect execution paths. In our example, an execution containing a double-lock
bug can be matched using the following CTL formula:

T EU (lock, N EX (—unlock, EU lock,)) 3)

The region p works as a meta variable specifying that we are interested in finding a
second lock on the same memory object, rather than two unrelated lock calls. As shown
in Fig. 1, this formula reveals buggy execution paths of the form:

T —unlock,

5. Model checking. Matching execution patterns representing bugs can be reduced to
the standard CTL model-checking problem for dual safety formulae over the ¢-CFG
graph. A ¢-CFG is interpreted as a transition system where program statements act as
states, and effects act as propositions. For instance, a proposition lock, holds in a state
(statement) S iff the effects of .S; include lock,. The dual property, testifying absence of
double-locks, for the example above is AG (lock, = AX (unlock, AR —lock,)).

We analyze each function’s p-CFG separately, in a modular fashion, relying on the
effect-summaries of called functions. A match (a counterexample of the safety property)
is a bug candidate represented by an error trace. If no counterexample is found, we may
regard the function as “correct” only if no complex use of pointers is involved (e.g.,
the use of container_of macro in Linux). In general, some complex cases are handled
unsoundly, and hence bugs may be missed. This is part of a necessary trade-off [33].

6. Abstraction refinement. Our function summaries are flow-insensitive, so a match may

be inconclusive. For instance, in Fig. 1 we first model-check add_dquot_ref indepen-
dently of inode_get_rsv_space and obtain the following bug candidate:

inode geT rsv_space



Yet, in this match, the second lock acquisition happens at node 13, which is a call
to inode_get_rsv_space. As reflected in its signature, function inode_get_rsv_space
both acquires and releases the lock, but the order of these operations is unknown when
model-checking add_dquot_ref. In such a case, we refine the effect-abstraction of add_-
dquot_ref by inlining the call to inode_get_rsv_space. The model-checker resumes
the search on the refined ¢-CFG and a new match, this time conclusive, is found (cf.
Fig. 1). This inlining strategy is a simple form of Counter Example Guided Abstraction
Refinement (CEGAR) [14]. It allows us to support precise inter-procedural bug finding
with a very simple effect language—which otherwise would have to capture ordering.

Other types of bugs. Notice that this technique is fairly general. It can be instructed to find
other kinds of resource manipulation bugs using different bug patterns. For example:

double free T EU (free, A EX (—alloc, EU free,)) (1)
memory leak T EU (alloc, N EXEG —free,) )
use before initialization —init, EU use, (3)

5 Evaluation

Our objective is to assess the effectiveness and scalability of our bug-finding technique.
For this purpose, we have implemented a prototype static analyzer, EBA, that realizes
the bug-finding method described in Sect. 4.

Implementation. EBA is implemented in OCAML and built on top of the CIL [36] front-
end infrastructure. We use CIL to generate the CFG of the program, and subsequently
decorate it with the inferred shapes and effects. A custom reachability engine matches
patterns, of the form P EU @, against the decorated CFG of each function; a trace is
returned upon a match. This engine can perform function inlining on demand. A bug
checker is a small script that combines reachability queries to search for specific bug
patterns. The source code of EBA is publicly available under an open-source license.®

Method. We measure the performance of EBA in terms of analysis time and bugs found.
We compare EBA against similar bug-finding tools on (1) a benchmark of historical
Linux bugs (Sect. 5.1) and (2) the set of device drivers shipped with Linux 4.7 (Sect. 5.2).
For simplicity, we only target one type of bug: double locks. (Yet our technique is general
and can find other types of bugs, see Sect. 4.) Locking bugs are a good representative
of resource mis-manipulation, they are introduced regularly, and often have bad conse-
quences for the user (e.g. a device driver hangs). Double-lock checkers are also part of
many research tools that have used the Linux kernel for evaluation [24, 39, 51].

Subjects. We compare EBA against SMATCH and COCCINELLE, two tools that are
popular within the Linux kernel community. SMATCH is developed and used at Oracle.

6 https://github.com/iagoabal/eba/
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COCCINELLE is a program matching and transformation tool, but it is also used as a bug
finder [12] and a double-lock checker is shipped with the Linux distribution.”

We selected these two baseline tools for two reasons. First, they are able to run
out-of-the-box on the source code of Linux, without major adaptation or further research.
Second, there exist double-lock checkers tailored to the Linux kernel available for both
of them. Neither CPPCHECK, CLANG STATIC ANALYZER, nor INFER ship with a
double-lock checker, so they could not be used for an independent comparison. SPARSE
and CQUAL both require modifications to the analyzed source code. Finally, we excluded
SATURN, which we could not build against a recent version of OCAML.

Reproducibility. Evaluation artifacts and detailed instructions are available online.?
All experiments have been conducted on a virtualized machine with a physical 8-core
(16-thread) Intel Xeon E5-2660 v3 CPU, running at 2.6 GHz and with 16 GB of RAM.

5.1 Performance on a benchmark of historical Linux bugs

Setup. We evaluate our tool on a benchmark of 26 known double-lock bugs extracted
from historical bug fixes in the Linux kernel. In establishing this benchmark, we first
obtained a set of 77 candidates by selecting all commits containing the phrase “double
lock” in its message.’ We filtered out 30 cases of false positives (i.e., commits not fixing
a double-lock bug), and 18 cases of bugs spanning multiple files. To avoid bias, we
removed two commits (3c13abl and 1d23d16) that were fixes to bugs found by EBA.
However, we kept any bug-fix derived from the other two contenders.

7 At scripts/coccinelle/locks/double_lock.cocci.
8 https://github.com/iagoabal/2017-vmcai
? Extracted from the Linux kernel’s Git repository as of August 3, 2016.

Table 1. Comparison of EBA, SMATCH, and COCCINELLE on 26 historical double-lock bugs in
Linux. Times in gray strikeout font indicate that the bug was not found by the tool.

bug TIME (seconds) bug TIME (seconds)

hashID |depth|| E | S | C hashID [depth| E | S | C

00dfff7 | 2 5.0 +5 0t 1173ffe | 0O 0.6 1.3 0.1
5c51543 | 2 2.3 5 0.3 1492051 | 0 07 0.6 03
b383141 | 2 6.1 29 03 16da4bl | O 0.4 0.8 0.1
1c81557 | 1 5.0 19 0.6 344e3c7| O 0.7 1.3 01
328be39 | 1 8.9 17 02 2904207 | O 5.8 2.0 28
5a276fa | 1 0.9 12 02 59a1264 | 0 0.2 0.6 0.1
80edb72 1 63 2.1 07 5ad8b7d | O 0.6 34 0.1
872c782 | 1 1.7 28 19 8860168 | 0 0.7 1.0 0.1
d7e9711 | 1 21 1+3 27 a7eef88 | 0 0.6 1.2 0.2
023160b | 0O 1.0 2.6 o1 b838396 | 0 33 2.8 1.1
09dc3cf | O 1.2 14 o1 ca9fel5 | O 0.4 0T 1.8
0adb237 | O 1.1 1.5 0.2 eldb4ce | O 0.4 1.1 0.2
0e6f989 | 0 0.4 1.0 0.3 e50fb58 | O 0.5 0.9 0.1



https://github.com/torvalds/linux/commit/3c13ab1
https://github.com/torvalds/linux/commit/1d23d16
https://github.com/iagoabal/2017-vmcai
https://github.com/torvalds/linux/commit/00dfff7
https://github.com/torvalds/linux/commit/5c51543
https://github.com/torvalds/linux/commit/b383141
https://github.com/torvalds/linux/commit/1c81557
https://github.com/torvalds/linux/commit/328be39
https://github.com/torvalds/linux/commit/5a276fa
https://github.com/torvalds/linux/commit/80edb72
https://github.com/torvalds/linux/commit/872c782
https://github.com/torvalds/linux/commit/d7e9711
https://github.com/torvalds/linux/commit/023160b
https://github.com/torvalds/linux/commit/09dc3cf
https://github.com/torvalds/linux/commit/0adb237
https://github.com/torvalds/linux/commit/0e6f989
https://github.com/torvalds/linux/commit/1173ff0
https://github.com/torvalds/linux/commit/149a051
https://github.com/torvalds/linux/commit/16da4b1
https://github.com/torvalds/linux/commit/344e3c7
https://github.com/torvalds/linux/commit/2904207
https://github.com/torvalds/linux/commit/59a1264
https://github.com/torvalds/linux/commit/5ad8b7d
https://github.com/torvalds/linux/commit/8860168
https://github.com/torvalds/linux/commit/a7eef88
https://github.com/torvalds/linux/commit/b838396
https://github.com/torvalds/linux/commit/ca9fe15
https://github.com/torvalds/linux/commit/e1db4ce
https://github.com/torvalds/linux/commit/e50fb58

For the 27 remaining commits, we obtained a preprocessed version (under 64-bit
x86 allyes configuration) of the file where each bug is located. This step excluded one
file (commit 553f809) that failed to preprocess. For COCCINELLE, we retain the original
source file, since it is designed to run on unprocessed C files. We then verified that the
alleged bug was indeed present in this particular configuration. Thus, we arrived at a
benchmark of 26 double-lock bugs from Linux.

Results. Table 1 shows the results of running EBA, SMATCH, and COCCINELLE on this
benchmark. We identify each bug by the commit that fixes it, and we group bugs by
depth. The depth of a bug corresponds to the number of function calls involved from the
first to the second acquisition of the lock, e.g. the bug of Fig. 1 involves one function call
and therefore has depth one. For instance, for the first bug in the table, 00dfff7, EBA
takes five seconds (5.0) and correctly reports the bug. SMATCH and COCCINELLE take
1.5 and 0.1 seconds respectively, yet are unable to find the bug.

Regarding effectiveness, we observe that EBA finds 22 out of the 26 bugs. In compar-
ison, SMATCH and COCCINELLE find 14 and 12 bugs respectively. More specifically,
EBA finds six out of the nine interprocedural bugs (depth one or more), whereas SMATCH
and COCCINELLE do not manage to find any at all. For the remaining 17 intraprocedural
bugs (depth zero), EBA finds all but one (16 out of 17). Remarkably, any bug found by
either SMATCH or COCCINELLE, is also intercepted by EBA. Thus, on this benchmark,
EBA is more effective at finding double-lock bugs than its contenders.

Regarding false negatives, we observe that EBA misses five bugs due to limitations in
our pointer analysis. This happens, for instance, when the lock object is obtained through
the Linux container_of macro (defined in include/linux/kernel.h). For SMATCH,
false negatives seem to be due to path-insensitivity and lack of inter-procedural support.
COCCINELLE lacks inter-procedural support and, in addition, its double-lock checker
does not recognize some common locking functions. All three bug finders make the
assumption that the formal parameters of a function do not alias one another—as indeed
mostly the case; and thus, all three tools missed bug 149a051.

Regarding analysis time, we observe that, for the bugs that all three tools find, EBA
is on average about 1.4 times faster than SMATCH, yet COCCINELLE is about five
times faster than EBA. Note, however, that SMATCH is checking for more bugs than
double locks. Also, EBA and SMATCH analyze a total of 665 KLOC of preprocessed
C code, whereas COCCINELLE analyzes only 27 KLOC of unprocessed C files. In this
benchmark, all bugs can be found without including headers, which is an advantage for
COCCINELLE. We also observe that variance of execution times is higher for EBA, with
six files taking more than five seconds to analyze, and one file taking 21 seconds. These
files contain large functions that manipulate multiple locks and, as of now, EBA will
check one lock object at a time. We foresee that EBA will speed up considerably with
some optimization work, e.g. by performing multiple checks in a single traversal.

5.2 Performance of analyzing device drivers in Linux 4.7

Setup. We use EBA to analyze widely the entire drivers/ directory of Linux in search
of double-lock bugs. EBA was run on the Linux 4.7-rc1 kernel in the 64-bit x86 allyes
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configuration, invoked by Kbuild during a parallel build process with 16 jobs (i.e.,
make -j16). About nine thousand files in drivers/ were analyzed, and we manually
classified each one of the bugs reported, as either a true or a false positive. We repeated
this process for SMATCH and COCCINELLE, to confront analysis times and number of
false positives. All tools were given 30 seconds to analyze each file.

Results. EBA reported nine bugs in nine different files (i.e., 0.1% of the files analyzed).
Five of these bug reports have been reported and confirmed by the respective Linux
maintainers, and three are now fixed in Linux 4.9 (see commits 1d23d16, e560525b and
bea6403).'0 These bugs affected some TTY, SCSI, USB, Intel IOMMU, and Atheros
wireless drivers. The five bugs had depth one or more, and required an inter-procedural
analyzer. (SMATCH and COCCINELLE found no bugs, but that is somewhat expected
because, presumably, any bugs would have already been reported and fixed.)

EBA analyzes all Linux drivers in less than half an hour (23 minutes) and is only
slightly slower than SMATCH which does the same in 16 minutes (1.4 times faster
than EBA). COCCINELLE is significantly faster and completes the analysis in only two
minutes, as it scans much smaller unprocessed files.

We classified four of the nine bugs reported by EBA as false positives. Three cases
were due to limitations in our pointer analysis, and in one case the reported error trace
was not a feasible execution path. One of the false positives reported by EBA still led to a
cosmetic fix (see 3e70af8). Both SMATCH and COCCINELLE report more false positives
(eight and six, respectively). It is worth noting that, at least in eight of these cases, there
was an unlock operation being performed through a nested function call—that these
tools were not aware of.

6 Conclusion

We have presented a two-step bug-finding technique that uncovers deep resource manip-
ulation bugs in systems-level software. This technique is lightweight and easily scales
up to large code bases, such as the Linux kernel. First, a shape-and-effect inference
system is used to build an abstraction of the program to analyze (Section 3). In this
abstraction, objects are described by memory shapes, and expressions and statements
by their operational effects. Second, bugs are found by matching temporal bug-patterns
against the control-flow graph of this program abstraction (Section 4).

We have implemented our technique in a prototype bug finder, EBA, and demon-
strated the effectiveness and scalability of our approach (Section 5). We have compared
the performance of EBA with respect to two bug-finders popular within the Linux com-
munity: COCCINELLE and SMATCH. On a benchmark of 26 historical Linux bugs, EBA
was able to detect strictly more bugs, and more complex, than the other two tools. EBA
is able to analyze nine thousand files of Linux device drivers in less than half an hour, in
which time it uncovers five previously unknown bugs. So far, EBA has found more than
a dozen double-lock bugs in Linux 4.7-4.9 releases, eight of which have already been
confirmed, and six are fixed upstream.

19 Bug e50525b was independently found and fixed during beta testing, but that bug-fix was
unknown to us.


https://github.com/torvalds/linux/commit/1d23d16
https://github.com/torvalds/linux/commit/e50525b
https://github.com/torvalds/linux/commit/bea64033dd7b
https://github.com/torvalds/linux/commit/3e70af8
https://github.com/torvalds/linux/commit/e50525b
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