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Abstract—Neuroevolution (i.e. evolving artificial neural net-
works (ANNs) through evolutionary algorithms) has shown
promise in evolving agents and robot controllers, which display
complex behaviours and can adapt to their environments. These
properties are also relevant to video games, since they can
increase their longevity and replayability. However, the design
of most current games precludes the use of any techniques
which might yield unpredictable or even open-ended results.
This article describes the game EvoCommander, with the goal
to further demonstrate the potential of neuroevolution in games.
In EvoCommander the player incrementally evolves an arsenal
of ANN-controlled behaviors (e.g. ranged attack, flee, etc.) for
a simple robot that has to battle other player and computer
controlled robots. The game introduces the novel game mechanic
of “brain switching”, selecting which evolved neural network
is active at any point during battle. Results from playtests
indicate that brain switching is a promising new game mechanic,
leading to players employing interesting different strategies when
training their robots and when controlling them in battle.

I. INTRODUCTION

While scripted Al can become predictable and allows play-
ers to find ways to exploit its limitations, neuroevolution (i.e.
evolving artificial neural networks), allows agents to evolve
and adapt in real time to the player [1, 2, 3, 4]. Game designers
are however in general reluctant to include evolutionary algo-
rithms or other learning algorithms for non-player character
(NPC) control. One important reason is that the outcome
of this process might be too unpredictable; the Al can end
up acting “weird”, breaking the gameplay experience for the
player [1]. Furthermore, it is likely that most current games
are designed so as to rely on predictable Al in the first place
because game designers have little experience with learning
Al algorithms. Thus an unfortunate cycle is perpetuated, in
which learning Al are not used in games because games are
designed to not need learning Al.

However, if games are specifically designed around the
fact that evolution can be unpredictable (i.e. through making
evolution part of the core game mechanics), evolutionary Al
can create new and interesting challenges every time the game
is played [1, 2, 3]. In addition to a constant stream of novel
challenges, NPC behaviors would not need to be hand-crafted
and painstakingly quality-controlled if automatically generated
by an evolutionary algorithm.
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The promise of this approach has been demonstrated in
a variety of different games, in which neuroevolution (NE)
algorithms allow both the NPC behaviors and the in-game
content to adapt while the game is being played [4]. Two
notable examples are Galactic Arms Race (GAR) [2], where
NE generates new weapons as the player plays the game, and
Neuroevolution of Robotic Operatives (NERO) [1], a game in
which the player trains an army of robots controlled by ANNs
for battle.

This paper introduces the game EvoCommander, which
extends and combines ideas introduced by NERO and GAR,
to further increase the player’s engagement with the game.
In EvoCommander the player trains a single robot for battle,
by evolving an arsenal of neural controllers. The player can
decide on a training regime for these controllers and evolve
them incrementally and interactively. In contrast to NERO, in
which the player takes the role of an observer after the training
phase is completed, the novel game mechanic! introduced
here allows players to switch between brains during battle
as an indirect way of controlling their robot. Evolving brains
displaying the “right” behavior, choosing a subset of evolved
brains to take into battle, and deciding when to switch between
them during the fight are the challenges that the players have
to master in EvoCommander.

The results in this paper suggest that players perceive
evolution and brain switching as a fun and engaging game
mechanic. Players are able to evolve brains that solve fairly
complex tasks and complete the provided game missions.
When playing online against each other, players employ
very different strategies (with varying degrees of success),
indicating that brain switching is a useful game feature. As
part of this project we also release UnityNEAT?, a port of
SharpNEAT? to Unity 4 and 5, with the hope to encourage
more NE-based game projects. In the future, the novel game
mechanic could be extended to a wide variety of other genres,
thereby creating entirely new type of engaging games that
would not be possible without advanced Al

The next section provides relevant background and Sec-

'We use the term game mechanic in the sense defined by Sicart [5]
2Source code at https:/github.com/lordjesus/UnityNEAT
3http://sharpneat.sourceforge.net/



tion III introduces the EvoCommander game. The playtests
and experimental setup are described in Section IV, followed
by the single- and multiplayer results in Sections V and VL.
Implications of the results and future work are discussed in
Section VIIL.

II. BACKGROUND

This section reviews relevant work on NE, incremental
evolution and NE-enabled games.

A. Neuroevolution of Augmenting Topologies (NEAT)

In neuroevolution (NE) [6, 7], which belongs to the class
of stochastic search-based optimization methods, ANNs are
trained through evolutionary algorithms. NE is especially
useful in domains with no available training data or when
the optimal network topology is not known in advance. NE
searches for the best solution in a given domain, tradition-
ally guided by a fitness function that measures the overall
evolutionary progress. As with all evolutionary methods, the
design of the fitness function is important in order to guide
the evolution in the right direction.

The particular NE algorithm which we use to evolve the
ANNs in EvoCommander is Neuroevolution of Augmenting
Topologies (NEAT; [8]). NEAT is capable of evolving both
the weights and the topology of an ANN at the same time.
Additionally, NEAT allows effective search even on problem-
atic fitness landscapes, through features such as speciation
and innovation protection. Little tuning is usually required
when applying NEAT to a new problem. In particular, NEAT
does not require the user to decide on the topology of the
ANN; only the number of input and output neurons have to
be specified a priori.

NEAT starts out with a population of simple networks
without any hidden nodes and only direct connections from the
inputs to the outputs of the ANN. Hidden nodes and additional
connections are then added to the network during evolution
through mutations and cross-overs. The benefits of this ap-
proach are twofold. First, the evolved neural networks start
minimal (i.e. no bloated networks), preventing NEAT from
searching in unnecessarily high-dimensional search spaces.
Additionally, complexification of networks over time leads to
more and more advanced solutions, thereby creating complex
behaviours evolved from simple foundations. This mechanism
matches well with the idea behind EvoCommander, which
lets players start with simple tasks and interactively evolve
increasingly complex behaviours. Importantly for this paper,
NEAT has also already been shown to perform well in a variety
of game domains [9, 3, 2, 4].

B. Incremental evolution and modular networks

Evolution of complex behaviour can be difficult and some-
times impossible when starting from a random population,
as evolution might get stuck in local optima in the search
space. Therefore, players in EvoCommander can incrementally
evolve complex robot behaviors.

Successful application of incremental evolution include the
work by Gomez and Miikkulainen [10] in a predator-prey
domain. By breaking up the task of preying into several, more
simple sub-tasks, evolution was able to first find a solution to
catch a stationary prey, then a slowly moving prey, and finally
a fast moving prey. By incrementally evolving the predator
on increasingly complex tasks, a solution was found to the
original problem that was not solvable with direct evolution.
The idea of incremental evolution has been shown to apply
well to other domains, for example Togelius and Lucas [11]
incrementally evolved simulated car racing controllers to drive
well on a series of increasingly complex tracks.

Incremental evolution was also successfully applied to the
complex task of helicopter control. De Nardi et al. [12] evolved
a controller for a simulated helicopter to follow a path of given
waypoints. While directly evolving a monolithic controller
failed, breaking the task into multiple subtasks and evolving
three separate neural networks that control different aspects of
flying lead to a well-performing modular network architecture.

Incremental evolution and a modular network architecture
were combined by Togelius [13] to evolve the layers in a sub-
sumption architecture robot controller. Thompson and Levine
[14] employed a similar method in the EvoTanks domain. In
EvoTanks two tanks battle each other, which resembles the
setup of EvoCommander. However, EvoTanks is a research
testbed that does not include any form of player interaction.
Schrum and Miikkulainen [15] evolved modular networks for
Ms. Pac-Man, where different networks perform different tasks
in gameplay, with good results. This echoes earlier results by
Calabretta et al. [16] on robot control. Modularity is thought
to play an important role in biological neural networks [17].

EvoCommander allows players to either start evolution from
scratch or from an already existing brain, thus facilitating
incremental evolution. In effect, players can create a whole
family tree of networks. The game thus resemblances applica-
tions such as Picbeeder [18], in which users evolve images
branching from existing images, or EndlessForms [19], in
which users collaboratively evolve three-dimensional shapes.

C. Neuroevolution in Games

Neuroevolution algorithms have shown promise in a variety
of different kinds of games, ranging from learning to control
PacMan purely from raw visual input [20], or forming teams
of PacMan ghosts trained through NEAT [21], over on-line
adaptation [22, 23] and imitation learning in the TORCS car
racing game [24, 25], to controlling bots in a first-person
shooter through a hierarchical neural network controller [26].
There is also a long history of evolving neural networks to
play classic board games such as Checkers [27]. An overview
of successful applications of NE in games is given in Risi and
Togelius [4]. Additionally, NE allows entirely new types of
games and some games were designed specifically to showcase
the possibilites NE affords game designers.

One such example is Galactic Arms Race (GAR; [2]), which
is a two-dimensional space shooter with weapon particle sys-
tems that evolve while the game is being played (Figure 1,left).



Fig. 1: Neuroevolution-based Games. Neuroevolution enables innovations in a variety of different game genres. In Galactic
Arms Race (left), the players can evolve an unlimited variety of ANN-encoded particular weapons (picture from Hastings et al.
[2]). Petalz (middle) shows that NE can also generate content for social games. Players can interactively breed flowers and
share them with each other through a global marketplace (picture from Risi et al. [3]). The objective in NERO (right) is to
evolve a team of robots that can battle teams evolved by other players. NERO allows players to create increasingly complex
behaviours enabled by evolutionary algorithms (picture from Stanley et al. [9]).

The idea in GAR is that the number of times a weapon is fired
can serve as an indication of how much the player enjoys that
particular weapon, allowing the game to adjust to preferences
of the player. A player in GAR can hold three weapons at a
time and sees a preview of new weapons before replacing his
current ones. The idea of a limiting arsenal of evolved artifacts
(e.g. weapons) that the player can chose from during battle
is also one of the main features of EvoCommander. However,
while the player in GAR can only indirectly influence the type
of weapons that should evolve next, players in EvoCommander
can train their tanks for a variety of specific and potentially
complementary behaviors.

NE has not only shown potential in competitive games but
also social video games. One such example is Petalz [3],
a social Facebook game that allows players to interactively
evolve flowers and sell them on a virtual marketplace (Fig-
ure 1,middle). Each flower is encoded by a special type of
neural network and evolved by NEAT. The players interact
with the flowers by either pollinating them (mutation), or
cross-pollinating two flowers (cross-over), which results in
flower seedlings that can be planted and grown.

The game most closely related to the approach taken in this
paper is NeuroEvolving Robotic Operatives (NERO) [9]. In
NERO the player trains a team of virtual robots for combat
against other players’ teams. To train the robots, the player
can set up objectives through sliders in the UI to reward the
robots to perform certain behaviours. These objectives can
be approaching or fleeing from a target, attacking a target or
avoiding enemy fire. The player can interact with the evolution
by changing the fitness objectives or by acting as an enemy
himself (Figure 1,right). The goal of the training is to create
a team of robots that can handle themselves in battle. Once
the training is complete, the team can compete against other
players online.

In this paper, the idea of training robots through evolution
is inspired from NERO. However, there are several important
design differences between EvoCommander and NERO, most
importantly the brain switching mechanic. In NERO the game

“ends” when the training is done; during battle the player is
reduced to a spectator role that now has no further control over
the battle’s outcome. EvoCommander aims to keep the players
engaged during the battles by allowing them to control several
aspects of the match, most importantly which evolved behavior
is active at any point during the fight. The hope is that this
approach should offer a more satisfying playing experience
and engage the player both before and during the battle.

III. EVOCOMMANDER

This section presents the game EvoCommander®, its me-
chanics and details its development. The goal of the game
is to evolve behaviors that can control a simple tank in a
battle against another human or computer-controlled robot.
The player can decide which types of behavior to evolve,
ranging from tasks such as moving around, attacking with
melee weapons, attacking with ranged weapons and shoot-
ing mortars. After evolving an arsenal of ANN-controlled
behaviors, players can test their robots by completing missions
(single player) or by competing against each other online.

In effect, the game offers three distinct challenges: First, the
player has to decide what behaviors to evolve and design their
training regimen. Second, the player has to chose a subset of
the evolved behaviors (a total of four) to take into battle; the
goal is to chose behaviors that work well together, such as an
defensive and an offensive one. Third, during battle the player
has to decide which behavior to use at what point during the
fight. The hope is that these three mechanisms open up tactical
perspectives not possible with only a single ANN controlling
the robot, engaging the players even after the training period is
completed. Thus, EvoCommander offers the players a variety
of different areas to master, which is an essential aspect of
many successful competitive video games.

The game consists of two main parts: a training part, in
which the player evolves the behaviors for the robot, and

4The game can be downloaded from http://jallov.com/thesis/. A video
showing the basic game mechanics can be found here: http://youtu.be/
Fz-R4xwtsGM



Fig. 2: EvoCommander Robot. This figure shows the robot
standing in the impact of its own mortar explosion. The robot
tank is able to move forward and backwards and turn in
place. It has three weapon slots for melee, ranged and mortar
weapons. In EvoCommander the player does not control the
robot directly but instead decides which of four evolved brains
should be active at what time during battle.

a battle part, in which the player can switch between the
evolved behaviors to compete against other robots. Before
detailing these two main components, the EvoCommander
robot together with its controller architecture is described next.

A. Robot and Neural Network Setup

The robot is a small, tank-like vehicle that is able to move
forward and backwards and turn in place (Figure 2). While the
robot attacks, its speed is reduced and it is then regained at
a constant rate after the attack. (This adds a small movement
penalty to all attacks.) The robot starts with 100 health; when
reaching a level below zero it explodes and the player loses the
battle. The tank has three slots for different types of weapons
that the player can equip before the training phase begins:

1) Melee Weapon: The robot has a slot for one melee
attack weapon. If opponents are hit with the melee
weapon, they lose health according to the damage of the
currently assigned weapon. Whenever the robot attacks,
it incurs a speed penalty. Therefore it is not beneficial
for a robot to constantly use its melee weapon, since it
will heavily impede its movement speed.

2) Ranged Weapon: In front of the robot is a slot for
its ranged weapon. This weapon has a range of 50
meters and instantly hits. The ranged weapons generally
fire much quicker than the melee weapons, but deal
substantially less damage and result in lower speed
penalties.

3) Mortar Weapon: On top of the robot is an indepen-
dently turning turret. This turret fires mortars, which are
big cannon balls that inflict area damage on hit. The
damage falls off linearly from the center of impact and
out to the periphery of the impact area. Firing mortars
results in a 80 % - 100 % speed penalty, rendering the
robot almost completely stationary while firing.

The different weapons in the game allow the players to tailor

the robot to their particular playing style and to choose what
suits them best. For each weapon category three weapons can
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Fig. 3: Robot Sensors. The robot in EvoCommander has
seven different sensor types. It can detect enemies with its
pie-slice sensors that activate when a line from the target to
the centre of the robot falls within the pie-slice. The two wall
sensors indicate the closest distance to the closest object in that
direction. The other inputs are a on-target sensor, distance to
target, turret-on-target sensor and nearest pickup sensor.
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Fig. 4: Evolved Network Example. A network evolved for
50 generations that can approach a target. Red connections
are positive weights, blue connections are negative weights.
The width of a connection is proportional to the value of the
weight, i.e. thicker lines means larger numerical values. NEAT
is able to discover a compact ANN that is able to solve the
task defined by the player.

be selected. The weapons in each category have almost equal
damage per second, but vary in attack speed and how much
they slow down the robot’s movement speed.

The robot is equipped with seven different sensor types in
order to perceive the world around it (Figure 3). There are
11 active input sensors: five pie slices, two wall sensors, an
on-target sensor, a distance to target sensor, a turret-on-target
sensor and a distance to nearest pickup. These inputs are fed
to a neural network evolved by NEAT.

The 360° around the robot are divided into five pie slices. If
the target is in pie slice p; (within 100 meter), the correspond-
ing input is activated: p; = 1 — %, where d is the distance
to the target and SR is the sensor range, set to 100 meters.
The input is scaled between [0, 1], with a higher activation
the closer the target is to the robot.

The on-target sensor is activated if the target is within (-
10°, 10°) in front of the robot and the turret-on-target sensor
is activated if the target is in front of the turret. The activation
level ¢ is calculated as follow: t = 1 — ’% , where « is the
angle between the forward vector and the vector from the robot
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Fig. 5: Robot Bootcamp. The bootcamp allows the player to
create and choose robot brains, select unlocked weapons and
perform the missions. Players can chose to either create new
brains from scratch or elaborate on previously evolved ones
thus creating a whole hierarchy of networks.

to the target.

Two wall sensors originate from the center of the robot and
detect any walls to its left or right side. If the sensors detect a
wall (up to a maximum distance of 100 meters) the network
inputs are activated proportionally to the distance between the
robot and the wall (normalized between [0, 1]).

The six outputs of the network are Steer, which rotates
the robot in place, Turret rotation, which turns the turret,
Gas, for forward/backward moving, Melee attack and Ranged
attack which activate melee/ranged attacks if the output value
is greater than 0.5, and Mortar force, which determines the
length of the mortar shot and fires if the output value is greater
than 0.5. All output values are scaled between [-1, 1].

The aforementioned inputs and outputs allow players to
evolve a diversity of different robot behaviors. One such
example network evolved by NEAT is shown in Figure 4,
which is able to approach a target in the game.

B. Training Mode

The main overview screen in EvoCommander is the Robot
Bootcamp (Figure 5). Here the player can train the robot, see
its progress and the mission progress. For each mission players
can find information on what is required to complete them
and chose which missions to play. Additionally, the player
can switch weapons for each of the three weapon slots. To
gradually familiarize the players with the game, more missions
and weapons become available as they proceed (e.g. at Level
1 the robot is only able to move around the arena without
using any of its weapons). Furthermore an important part of
this game is an extensive tutorial system, which is activated
when the player first starts the game and which can be opened
again later if needed.

To train their robots, players can create and select brains
for training and battle from the middle panel in the bootcamp
screen. Players can either decide to start from a new blank
brain or branch from an already existing one. After selecting
a brain, the player is taken to the Training Area (Figure 6).
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Fig. 6: Training Area. In the training area the player can
choose which areas to focus on during the evolutionary train-
ing and how the practice target should behave. Information on
how many generations the network was already evolved for is
also given. The sliders in the UI allow the players to precisely
describe a variety of different robot behaviours, thereby giving
them the ability to evolve an arsenal of behaviours that work
well together in battle.

1) Setting Up Training: In typical scenarios involving evo-
lutionary algorithms, the user has to define a fitness function
a priori that guides the evolutionary search. The approach
in EvoCommander is more interactive and allows players to
describe ideal robot behaviors by adjusting sliders in the Ul
(Figure 6), resembling the setup in the NERO game [9]. For
example, the sliders specify how much the robot is rewarded or
punished for staying close to its opponent, facing its opponent,
hitting the target with a melee weapon, etc. The sliders are
grouped in semantic categories, so called focus areas:

1) Movement: The robot is rewarded or punished for
moving around, for staying close to the target, and for
facing the target.

2) Melee: The robot is rewarded or punished for melee
attacks, for hitting the target, and for precision (hitting
on each attack).

3) Ranged: The robot is rewarded or punished for ranged
attacks, for hitting the target, and for precision.

4) Mortar: The robot is rewarded or punished for mortar
attacks, for hitting the target, for precision, and for
dealing as much damage as possible per hit (damage
falls off linearly from the center of impact).

By adjusting the sliders for each of the focus areas the player
has detailed control over the robot’s evolutionary training.
Each focus area is directly related to a component in the fitness
function, which is a weighted linear combination of all the
focus areas: f = b+ ZZEF a; -w;. Here F is the set of active
focus areas (some focus areas are disabled if the player has
not yet reached a certain level), a; is the observed value of the
focus area scaled to [0, 1], w; is the weight given by the player
through the UI sliders in the range [-100, 100] and b = 1000
is a bias to prevent negative fitness values.

Because players new to EvoCommander might be over-
whelmed by the variety of different settings, they can also
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Fig. 7: Optimization Screen. From the optimization screen
the player can observe the evolutionary process in action.
25 individuals are concurrently evolved and their behaviours
displayed to the player. The current generation number and
best overall fitness is also shown. At any point the player can
choose to run the best individual evolved so far or stop the
evolutionary search.

chose from a number of predefined target behaviors (e.g. stand
still, move around or follow the target) with already specified
slider settings.

Players can also select how the practice target should
behave. There are four different movement patterns: Target
stands still, target moves back and forth, and target moves
randomly. To allow the evolution of more complex behaviours,
the target can also be set to follow the robot or its size can
be adjusted through a slider in the UI. While it is easier to hit
a large target, more precise firing often requires training on
small targets. The player can see statistics about the evolved
networks, such as the number of training generations and their
fitness values.

2) Evolution in Action: When the player has chosen the
ANN’s focus areas the evolutionary training can be started
(Figure 7). The Optimization Screen shows a square arena
with a target in the middle, and 25 robots spawning at
random positions in a 20 meter distance from that target. Each
generation is evolved concurrently, with all the 25 robots being
evaluated at the same time. For each generation each robot is
run for five iterations of 20 seconds each, to evaluate how well
the underlying ANN performs under varying starting positions.
The game runs at an increased speed during this phase in
order to complete as many generations possible in the shortest
amount of time. The robots do not interact with each other in
any way during training; the reason why parallel evaluation is
used at at all is that the Unity game engine limits how much
the simulation can be sped up. The fastest computers may be
able to run the simulation at 25 times normal speed, while
older computers only reach 12-15 times normal speed. Thus
a generation in EvoCommander can be processed in around
four to ten seconds.

After a generation is complete, the best individuals are kept
for reproduction while the worst individuals are removed from
the population. It usually takes about three to five minutes for
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Fig. 8: Mission Screen. This figure shows an example of a
battle between the player and the computer-controlled robot
during EvoCommander’s missions. The player is about to win
the battle, having brought the opponent down to 0.47 health
and is just in need of one more hit to win. The four brains
chosen by the player are shown at the bottom, with the fourth
brain 'Mortar distance’ selected as currently active.

evolution to find a brain that performs well on the task defined
by the chosen focus areas (e.g. moving close to the target,
shooting lasers at the target, etc.).

The left sidebar of the optimisation screen shows the
number of generations passed, by how much the average
fitness has increased (or decreased) and the fitness of the best
individual evolved so far. The player is also presented with a
detailed breakdown of how the best individual performed on
the selected focus areas. The right sidebar gives an overview
of how the system functions and describes its settings.

C. Battle Mode

1) Missions: At any point in the game the player can test
the performance of the evolved behaviours in the missions
(Figure 8). The missions are designed to give a gentle introduc-
tion to how the battles in EvoCommander work, preparing the
player for fights against other players in the online arena. They
consist of several quests each, which are usually structured in
a way that the first couple of quests test the abilities of the
newly unlocked weapons. Once the player completes a mission
by beating the computer-controlled robot, the next level of
weapons and missions are unlocked in the bootcamp. The last
mission is a “Boss battle”, in which the player has to beat
an opponent with 150 health, opposed to the 100 health of
enemies in the missions and the player’s own robot.

Before going into battle the player chooses four of the
evolved brains to take into combat. Part of the challenge is to
choose the “right” combination of brains that will allow for an
effective strategy. During battle the players can, at any point,
switch between the brains in their arsenal, thereby activating a
different behavior. Thus players in EvoCommander are free to
decide to e.g. evolve one very general behaviour that is active
for most of the battle, or evolve a variety of very specialised
behaviours that they often switch between.



2) Champion’s Arena: Once all the missions are completed,
the player is encouraged to go to the Champion’s Arena to fight
against other players online. Any player regardless of level can
enter the Champion’s Arena, but players who are below level
4 will face a warning before entering; their robots are not yet
fully developed and lack the offensive abilities of opponents
of level 4 and higher. The arena resembles the robot bootcamp
with the exception of the missions panel that has been replaced
with an online lobby. The online lobby allows players to join
open games or create new online games.

Matches against other players can either be played as a
single game, a best out of three or a best out of five. The
controls are the same as in the missions: The robot’s behaviors
is determined by the currently active brain, and players can at
any point switch between the four brains they have chosen to
take into battle.

D. EvoCommander’s Beginner’s Guide

An important aspect of a game build around novel Al
techniques is to introduce players gradually to the main
game features and guide them through potentially challenging
aspects. Therefore EvoCommander includes a number of such
features designed to improve the overall player experience,
which were found useful through earlier play tests.

1) Level system: A level system gradually introduces the
player to the complexity of the game by unlocking new
features for each new level. At levels 2—4 new attack types
are unlocked, and by reaching the last level the player should
have all the skills needed to battle online.

2) Missions: The missions serve as an introduction to the
game and the control system, and guide the player towards
evolving behaviors that are useful in battle situations. The
missions act as an indicator of whether the player has evolved
brains that are “good enough” for online play. Each mission is
designed to test the newly unlocked feature (e.g. get close to
a target, flee from a target). When one mission is completed a
new mission and new feature are unlocked. The five missions
test the player in basic movement, the different attack types
and concludes with a boss battle in mission 5. The UI and
control scheme is the same in the missions as in the online
arena, thus preparing the players for online battle.

3) Tutorials and hints: Because players are typically not
used to game mechanics based on learning AI, EvoCom-
mander can be challenging to master initially. There are a
number of concepts the player has to be introduced to in
order to convey a meaningful playing experience. Therefore
an important part of this game is the many tutorials and hints
that guide the player; almost every screen includes a set of
tutorial dialogues that gives further explanations on how to
play the game.

IV. PLAYTESTS

Single- and multiplayer play tests were conducted to in-
vestigate how the game was played and to test whether
brain switching offers an interesting new game mechanic. In
the single-player tests, data was recorded while the players

were playing the EvoCommander missions. These tests also
included some testing of the multiplayer functionality. In the
main multiplayer testing, the behaviors of players competing
against each other was analyzed. Information about brain
switches during the matches was recorded, including how long
each brain was active, and the amount of damage it inflicted.
An interesting question in this context is how players use the
mechanic of brain switching and if this system allows them to
employ a variety of effective strategies. Additionally, a moti-
vating aspect of many popular games is to find strategies that
work well together. Therefore, the focus areas chosen by the
players were also recorded to determine if EvoCommander’s
interface allows players to evolve complementary behaviors.
Note that these studies do not test the computational efficiency
of the evolutionary algorithms, mainly because the game is
based on the well-known NEAT algorithm [8] and paradigm
of input/output representation.

A. Experimental Setup

To use NEAT in the Unity game engine, the Cf implementa-
tion of NEAT, SharpNEAT?, was ported to work with Unity’s
Mono version to interact with the scenes in the game engine.
This port is called UnityNEAT and is publicly available®.
NEAT is run with a population size of 25. Sexual offspring
(50%) did not undergo mutation. Asexual offspring (50%) had
a 88.8% chance of weight mutation, a 0.5% chance of adding
a node, and a 5% probability of adding a connection. The
activation function in the ANNSs is the following steepened

sigmoid function: S(x) = H—e*%

V. SINGLE-PLAYER RESULTS

During our single-player test, a total of 62 players down-
loaded the game. Of these 62 players, 48 evolved behaviors
(referred to as ’active’ players). More than half of the active
players completed the first mission, about 30 % unlocked all
weapons by reaching level 4 and 17 % completed the entire
game.

A. Neural Network Data

The players evolved a total of 557 ANNSs, from which
165 are unique. The remaining 392 are archived versions of
brains, which are automatically created when a player changes
a brain’s focus areas. Generally, as the players progress to
higher levels, they create more ANNs and refine their existing
ones, resulting in more versions of the same networks.

To get a better understanding of which focus areas are
commonly used together, the focus areas of all unique 165
ANNs were mined with the Apriori association mining algo-
rithm [28]. The Apriori algorithm can find all the rules in
the form of X — Y (e.g. if somebody bought bread they
also bought milk), with a certain support (probability that a
transaction contains X U Y') and confidence (probability that
transaction having X also contains Y'). Five rules were found
with a minimum support of 10% and confidence of 100%:

Shttp://sharpneat.sourceforge.net/
Shttps://github.com/lordjesus/UnityNEAT



(Branch) mot

Face Target

Fitne 1057 3¢

Goto Target
Fitne 14228

Age

Hit Target

Fitne 1108.37

(b)
Fig. 9: Example Training Regimen. While some players
prefer to create new behaviors from scratch (a), other players
prefer to first evolve networks with rudimentary skills (facing
the target), and then incrementally elaborate on them to
perform more complex tasks (b).

1) Ranged precision — Ranged hits (12% support)

2) Keep distance, Melee hits — Melee precision (10%
support)

3) Move around, Melee precision — Melee hits (10%
support)

4) Face target, Keep distance, Melee hits — Melee preci-
sion (10% support)

5) Keep distance, Melee attacks, Melee hits — Melee
precision (10% support)

These rules suggest that players tend to use focus areas that
go well together and that they understand the principles of
how to train their robot. For example, training for precision
together with rewarding hitting a target is a good strategy to
encourage behaviors that hit the target often (i.e. precision
rewards the robot for not doing unnecessary attacks while hit
rewards the robot for hitting the target many times).

B. Training Battle Skills

EvoCommander allows players to incrementally train robot
behaviors by changing what behaviors to reward as training
progresses. Figure 9 shows two examples of how differ-
ent players that finished the game approach the training in
EvoCommander. While some players create most of their
behaviors starting from scratch (Figure 9a), other players chose
a single master brain to elaborate on. Figure 9b shows an
example of a player that first evolves a brain that is able to
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Fig. 10: Incremental Evolution Example. This figure shows
the evolution of a behavior that is able to approach a randomly
moving target. The main result is that players in EvoCom-
mander can guide the evolutionary search towards relevant
behaviors by incrementally and interactively influencing the
evolutionary search.

face the target and then further evolves this brain to perform
melee attacking and ranged shooting; both behaviors which
rely on the ability to face the target.

Figure 10 shows a breakdown of the training process of
the brain, which can approach a moving target. Initially, the
network is only trained to face a stationary target. After ten
generations the player changes focus areas to both face the
target and stay close to it. After 76 generations the network
has increased in complexity and the robot is now able to
approach the stationary target but uses quite a lot of turns in its
approach. To further fine-tune the network the player decides
to train against a moving target. This training proceeded
until generation 125, resulting in a very efficient approaching
behavior; once the robot is on target it goes straight for it.
Finally, the player changes the size of the target to small
and runs evolution for another 250 generations. This evolved
network is even quicker at finding the target and proceeds
straight to it once it is found.

C. Brain Switches

The number of brain switches and outcomes for each
mission played is shown in Figure 1la. There is a clear
tendency towards using few switches in the missions; in two
thirds of the missions the players only switched brains between
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Fig. 11: Brain Switches Histogram of brain switches and
percentages of matches won for (a) all missions and only for
the boss battle (b). The main result is the number of brain
switches is relatively low in the missions but that only relying
on one evolved behavior is not a winning strategie.

zero and three times. However, relying on only one evolved
behaviors seems to not be very efficient, as it only wins 42,5%
of the times. Two brain switches on the other hand is much
more efficient and more than doubles the chances of success,
yielding a win percentage of 85,7%.

It is interesting to analyze how the use of brain switches
changes in different situations in the game. For example,
while the player has to fulfill certain goals in the missions
(e.g. approach the target), the only goal for the player in the
boss battles is to beat their opponent. This difference is also
reflected in the number of brain switches (Figure 11b). In the
boss battles, one brain switch is the most common, but not the
most efficient strategy with only 22.2% wins. More switches
seems to be a better choice for the boss battle, with two
switches reaching the highest win rate of 60%. These result
suggest that the number of switches does in fact influence the
robot’s success rate and that the ideal number depends on the
current goals in the game.

VI. MULTIPLAYER RESULTS

A second playtest was performed on site at the IT University
of Copenhagen with a specific focus on the multiplayer aspect
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Fig. 12: Brain Switches During the Multiplayer Playtest.
Switching brains three times during a match significantly
increases the chances of winning compared to two switches.
However, switching two often actually reduces the chances of
winning.

TABLE I: Multiplayer Playtest Results

Total Number Players 20
Total Matches 143
Average Matches Per Player 34 (sd=29)
Average Match Length 40s (sd=19)
Brains Evolved 69
Average Generations Per Brain 120 (sd=111)
Max Generation 552
Average Brains Used in Battle 2.72 (sd=0.86)
Total Switches 4,858
Mode Switches 4
Max Switches 102
Min Switches 2
Total Melee Attacks 8,137
Total Ranged Attacks 38,605
Total Mortar Attacks 3,865

of the game. A total of 20 testers played 143 games; Table I
summarizes the results. Brain switching is shown to be a
frequently used game mechanic, with a total amount of 4,858
switches. Every player switched at least twice per match,
and the maximum number of switches per player was 102.
The mode of brain switches was four. Additionally, with 120
generations on average players invest considerable time in
evolving their brains.

Importantly, the number of brain switches also influences
the outcome of the match (Figure 12). While switching two
times only results in winning the game 29% of the time,
switching three times during a match seems to give the best
chances with a percentage of 67%. This difference is signif-
icant, following Fischer’s exact test (p < 0.05). Switching
more seems to generally result in decreased win chances.
Interestingly there is a significant positive correlation between
the player’s health and the number of switches (r = 0.69,
p < 0.05), i.e. the higher the player’s health, the higher the
number of brain switches.

A. Questionnaire results

In order to analyze the players’ subjective experience,
we asked them to fill out a questionnaire after they played
the game. A total of 14 questionnaires was filled out. To
characterize patterns in the players’ responses we labeled them



with tags and then created aggregated tags consisting of several
related tasks.

o Most interesting part: Multiplayer (4), brain switching
(2), training/evolution (7)

o Least interesting part: Long training time (4), training
too overwhelming/too many parameters (7)

o What could have been improved: training could be
made clearer (4), ability to evolve more complex and
different behaviors (2)

o Did you identify any strategy for playing (and win-
ning): yes (10), switching brains/switching at the right
time (8), approaching target (with laser) then melee (3),
no (4)

e Other comments: fun (6), cool (2), fresh concept (1),
boring (1), frustrating (2), physic bugs (1), lack of particle
effects (1)

The results suggest that the players found the aspect of
battling other players in the online arena especially engaging
and that the combination of brain switching and evolution
works well together. Even though the players enjoyed the game
in general and many reported they had fun, a recurring theme
was also that the training is too complex and takes a rather
long time.

Importantly, players reported that they found a variety of
strategies for playing and winning in multiplayer mode. Some
examples include: (1) approach target (with laser) then melee,
(2) approach, shoot, retreat, and (3) four brain strategy: mortar
over distance, approach/melee, one to counter melee attacks,
one to stay still to break out of loops.

Players playing against each other online employed very
different strategies due to the differences in the behaviors
they evolve. Some players preferred only using a few effective
behaviors, whereas others used a combination of networks to
control their robot more closely. The next sections presents
a breakdown of four online battles that are representative of
different strategies that players in EvoCommander developed.

B. Multiplayer Battle Examples

Figure 13a shows a progression of two mortar battles from
the same match. Each player uses only two brains throughout
the battles; Player 1 chooses ’Damage Joe’, which is a mortar
firing brain, and 'Hit face’, which is a brain that is good
at firing the ranged weapon over long distances. Player 2
chooses the brains ’fglge efter’ (“pursue”), which is good
at approaching and following the opponent, and 'ny mortar’
(“new mortar”), which is a mortar firing brain. In the first
battle, Player 1 quickly switches to a brain firing ranged
weapons (‘“Hit face”) and Player 2 employs and approaching
brain. After a few seconds Player 2 is close enough to Player
1 to switch to the brain “ny mortar” and begins hitting Player
1 with mortars. While Player 1 inflicts some damage with his
ranged weapons, Player 2 deals much more damage with the
mortar and wins the game comfortably. In the second battle,
Player 1 resolves to only employing the “Damage Joe” brain
throughout the entire battle. Player 2 first employs a brain to

approach until the player is in range, and then also switches
to the brain that uses mortar attacks.

Figure 13b shows an example of a more melee oriented
match. In the first battle, Player 1 mostly just uses a brain that
fires ranged weapons and at the same time employs the melee
weapon (“Hit face”) and Player 2 is trying to get close to
Player 1 with an approaching brain. After receiving 15 ranged
damage, Player 2 switches to his own ranged brain, but fails to
hit Player 1 with any ranged shots. Once the players get close
enough, Player 2 switches to the melee brain. After around 19
seconds Player 2 tries to once again face the opponent with an
approaching brain but is destroyed by Player 1 in the process.
In the second melee battle both players rely on their ranged
and approaching brains to get close to each others. Once they
are close, they employ two different strategies. Player 1 uses
only his “Hit face” brain, which both inflicts melee damage
and ranged damage at the same time. Player 2 quickly switches
between a melee and approaching brain. The melee brain is
good at inflicting damage, but it also causes the robot to rotate,
which can be countered by switching to the approaching brain.

The battle examples and the questionnaire results demon-
strate that EvoCommander allows players to design unique
strategies with different tactical implications by (1) deciding
what behaviors to evolve, (2) choosing which subset of the
evolved behaviors to take into battle, (3), deciding which
behavior to use at what point during the fight. The next section
discusses some implications of this novel game mechanic and
points out future work.

VII. DISCUSSION AND FUTURE WORK

More than half of the players who played the game managed
to complete the first level, and one out of six completed the
entire single player campaign. More than 550 brains evolved
by 62 players suggest that the game is engaging enough for
the players to keep refining their existing brains and create
new ones. The novel game mechanic of brain switching allows
players to employ a variety of different strategies and separates
this game from NERO [9]. Players are not merely spectators
during the battles, but actively influence their outcomes.

The analysis of the number of brain switches in the single
player campaigns shows that the players mostly preferred
to use none or one brain switch. This might however be a
result of the mission’s level design. Each mission only has a
single objective, which in many cases could be solved by a
single brain (e.g. hit the opponent with the hammer or with
lasers). The design of the missions were intended to encourage
the player to evolve an arsenal of complementary brains that
would make an all-round robot for later combats against other
players (e.g. one brain for approaching the opponent, one
for for shooting either lasers or mortars, and another one for
dealing melee damage once the robots got in close combat).
And in fact, players that did use more brain switches (two) in
the missions and boss battles had a higher chance of winning,
which is likely related to a proper use of these allround skills.

The qualitative and quantitative results collected during
the multiplayer playtest show that players employ a variety
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Fig. 13: Example Battle Timelines.

of different tactics when playing against each other. Some
players had a preference of using very few behaviors and brain
switches, while other players employed more behaviors and
switched rapidly between them. This strategic richness is a
direct consequence of the brain switching mechanic.

One of the challenges in creating a game based on advanced
Al techniques is to create a player-friendly wrapper for the

evolutionary component of the game. Players are not used
to terminology such as ’Fitness function’ and ’Evolutionary
algorithm’, and might not directly know what a ’generation’
or ’iteration’ means in the context of a game. These concepts
have to be presented in a way that is more intuitive for
the player to grasp and this challenge is not fully solved in
EvoCommander, as also suggested by some of the answers
in the questionnaire. In order to appeal to more players, the
process of setting up the training parameters should be less
complex or be introduced by a step-by-step tutorial.

The sheer time required to perform evolution is also a
factor to consider and people noted that this part could have
been improved. Currently, it usually takes about three to five
minutes to get an approaching brain working starting from
scratch — given that the parameters are set correctly. Therefore,
an important area for future research is to increase the chances
of finding useful behaviors and to increase the speed of the
evolutionary search in general. Evolution could for example
be run in the background while the player plays the game.
Additionally, instead of starting from random populations, the
initial populations could be seeded with pre-evolved behaviors.

Some planned features still need to be improved and were
not included in the current version of the game. Health pickup
sensors are already a part of the robot’s ANN, but the input
to the sensor is not yet implemented. Such an addition would
allow more tactical opportunities, such as players training their
robot to flee when low on health and seeking health pickups.
Additionally, in the future the robot could be trained against
other evolved robots instead of the current dummy target. This
way, the training would bear more resemblance to the actual
multiplayer battles. Players could also be allowed to trade
robot brains with others or offer them on a global marketplace,
similar to the flower marketplace in Petalz [3].

VIII. CONCLUSION

A new video game called EvoCommander was introduced,
which consists of a training part where evolution is used to
train a robot to achieve player-defined goals, and a battle
part where players take their robots online and battle against
other players’ robots. The novel game mechanic introduced
in this game is allowing the player to switch the brains
of the robot during battle, thus giving the player indirect
control over the robot. An analysis of the evolved brains
showed that players often use focus areas together which are
semantically related to the task and increase the effectiveness
of the robot. These results indicate that evolution works as
an interesting game mechanic, and that players are able to
evolve diverse behaviors. Additionally, the results show that
EvoCommander allows players to employ a variety of different
strategies thereby providing room for continuous improvement
and innovation in competitive gaming. The main result is that
brain switching works as a game mechanic. It could potentially
be extended to many other game genres in the future.
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