
ar
X

iv
:1

60
2.

02
62

0v
2

 [
cs

.D
B

]
 1

9
A

ug
 2

01
6

Scalability and Total Recall with Fast CoveringLSH ∗

Ninh Pham
IT University of Copenhagen

Denmark
ndap@itu.dk

Rasmus Pagh
IT University of Copenhagen

Denmark
pagh@itu.dk

ABSTRACT
Locality-sensitive hashing (LSH) has emerged as the domi-
nant algorithmic technique for similarity search with strong
performance guarantees in high-dimensional spaces. A draw-
back of traditional LSH schemes is that they may have false
negatives, i.e., the recall is less than 100%. This limits
the applicability of LSH in settings requiring precise per-
formance guarantees. Building on the recent theoretical
“CoveringLSH” construction that eliminates false negatives,
we propose a fast and practical covering LSH scheme for
Hamming space called Fast CoveringLSH (fcLSH). Inherit-
ing the design benefits of CoveringLSH our method avoids
false negatives and always reports all near neighbors. Com-
pared to CoveringLSH we achieve an asymptotic improve-
ment to the hash function computation time from O (dL) to
O (d+ L logL), where d is the dimensionality of data and L
is the number of hash tables. Our experiments on synthetic
and real-world data sets demonstrate that fcLSH is com-
parable (and often superior) to traditional hashing-based
approaches for search radius up to 20 in high-dimensional
Hamming space.

1. INTRODUCTION
Similarity search is a fundamental ingredient in algorithms

for a wide range of computer applications, including machine
learning, database management, information retrieval, and
pattern recognition and analysis. This problem has become
increasingly important and challenging in the era of big data
since the use of computational resources such as storage and
power becomes critical. For instance, a typical search engine
needs to crawl and index billions of web pages which accu-
mulate to a multi-terabyte database [21]. Content-based im-
age retrieval systems now have to answer similarity queries
over billion-size image databases [40]. Large-scale collabora-
tive filtering engines have to deal with tens of millions users’

∗The research leading to these results has received fund-
ing from the European Research Council under the EU 7th
Framework Programme, ERC grant agreement no. 614331.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

data [7]. The emergence of big data adds to both research
and commercial applications the challenges of scale and ac-
curacy for efficient similarity search.

In most such applications data can be represented or ap-
proximated as high-dimensional binary vectors, and Ham-
ming distance is used as a similarity measure. For instance,
a near-duplicate detection system uses hashing techniques [6,
17, 23] to represent documents as binary vectors, and identi-
fies them as near-duplicates if their Hamming distances are
smaller than a threshold radius. In content-based image re-
trieval systems, a standard approach is to learn short binary
codes to represent image objects such that the Hamming dis-
tance between codes reflects their neighborhood or semantic
similarity in the original space [16, 30, 36, 38]. Retrieving
similar images can be efficiently done by simply returning
all images with codes within a small Hamming distance of
the code of the query image.

Similarity search in Hamming space dates back to Min-
sky and Papert [22], who referred to it as the approximate
dictionary problem. The generalization to arbitrary spaces
is now known as near neighbor search. Due to the “curse
of dimensionality”, the performance of indexing techniques
based on data or space partitioning generally degrades as
dimensionality increases, and is eventually no better than
a simple linear search [37]. This poses a problem of scale
for near neighbor search in applications dealing with a very
large number of bit strings that might not even fit in the
main memory of one machine.

Since 1998 locality-sensitive hashing (LSH) [15] has emerged
as a basic primitive for near neighbor search in high-dimensional
space. It alleviates the effects of the “curse of dimension-
ality” by considering an approximate variant, and obtains
sub-linear time for the approximation problem. In a nut-
shell, LSH hashes similar points into the same bucket with
with high probability, and increases the gap between colli-
sion probability of similar and dissimilar points. The search
candidates are data points that are hashed into the same
bucket as the query point. Since its first introduction, sev-
eral LSH schemes [4, 6, 9, 15, 17, 38] and efficient LSH-based
methods for near neighbor search [3, 8, 10, 11, 12, 19, 20,
28, 31, 32, 34, 35] have been proposed for a wide range of
distance functions in high-dimensional space. However, a
drawback of classical LSH-based methods is the probabilis-
tic guarantees that result in false negatives (i.e., the recall
is below 100%). This limits applicability of LSH in settings
requiring high accuracy or precise performance guarantees,
e.g., fingerprint recognition, entity resolution, and plagia-
rism detection.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/81666684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1602.02620v2

Although the requirement of perfect recall ratio has not of-
ten been the primary focus when studying similarity search
in Hamming space, there are many applications where this
setting is relevant. For the problem of large-scale image
search and recognition, learning binary codes for images to
preserve their neighborhood or semantic similarity [24, 30,
36] is widely used due to the simplicity of the representation
and fast query processing. False negative findings in query-
ing a binary code can degrade the performance of classifi-
cation and retrieval tasks. In fact, such methods often per-
form brute-force search for answering near neighbor queries.
Recently researchers have found that the binary codes must
be long enough (hundreds of bits) to preserve discrimination
power and to achieve good performance [13, 29, 39]. As such
applications arise in large-scale image data sets, the problem
of scaling up similarity search in high-dimensional Hamming
space is getting more important and more challenging.

In a recent theoretical study, CoveringLSH [27] was pro-
posed to address the issue of false negatives in LSH for Ham-
ming space. Instead of independently selecting bit positions
from high-dimensional binary vectors as the classic LSH
method [15], CoveringLSH carefully chooses correlated bit
positions that “cover” all possible positions of r differences,
and thus eliminate false negatives. To explore the practi-
cality of this approach, we implemented the CoveringLSH
construction and carried out an experimental study. We
found that although the method can avoid false negatives
and match the asymptotic complexity bound of classical
LSH [15], substantial practical improvements are possible.
An issue of CoveringLSH is that it requires the computation
of L hash values of d bits, where d is the dimensionality of
data and L is the number of hash tables. This becomes a
bottleneck for large dimensions, since evaluation time pro-
portional to dL is unavoidable.

Fast CoveringLSH. This paper presents Fast Cover-
ingLSH (fcLSH), a fast and practical evolution of Cover-
ingLSH that scales much better to high dimensions. Inherit-
ing the design benefits of CoveringLSH, fcLSH can not only
answer approximate near neighbor search with provable sub-
linear guarantees, but also report the exact set of all near
neighbors. Our method is the first practical solution, to the
best of our knowledge, to bridge the gap between approx-
imate computation and exact results for similarity search
in high-dimensional Hamming space. In addition, for low di-
mensions where d ≤ L, fcLSH achieves higher precision than
CoveringLSH. Our experiments on synthetic and real-world
data sets demonstrate that fcLSH is comparable and often
superior to traditional hashing-based approaches for search
radius up to 20 in high-dimensional Hamming space.

Technical contributions. Observe that for d ≫ log(n)
we can decrease the size of the hash values from d toO (log n)
bits each, while not significantly changing collision probabil-
ities, by applying universal hashing [5]. In order to avoid
intermediate results of dL bits we show how to interweave
a carefully chosen universal hash function with the Fast
Hadamard Transform, such that L hash values of O (log n)
bits are computed directly. Since the Hadamard matrix is
related to the projection family used by CoveringLSH, the
values computed in this way are identical to those obtained
by hashing the d-bit hash values to O (log n) bits. This
approach achieves an asymptotic improvement to hash func-
tion computation time fromO (dL) toO (d+ L logL), where
d is the dimensionality of data and L is the number of hash

tables.
The organization of the paper is as follows. In Section 2,

we describe background and preliminaries, including near
neighbor search problems, an overview of LSH, the very re-
cent CoveringLSH scheme, and some background on Hadamard
codes. The proposed approach is presented and analyzed in
Section 3. In Section 4, we show experimental evaluations
of our proposed approach on both synthetic and real-world
data sets. Section 5 briefly reviews related work. Section 6
summarizes the paper and presents research directions con-
cerned with CoveringLSH scheme.

2. BACKGROUND AND PRELIMINARIES

2.1 Problem Setting
We study the problem of near neighbor search in Ham-

ming space under Hamming distance. Due to the“curse of di-
mensionality”, many proposed solutions for exact near neigh-
bor search in high-dimensional space become slower than
simple linear search. In order to trade precision for speed, ap-
proximate versions of near neighbor search have been widely
investigated in the literature, and locality-sensitive hashing-
based methods have emerged as the most widely used so-
lutions for such problems. The first approximate version,
called c-approximate r-near neighbor search, is defined as
follows.

Definition 1. (c-approximate r-near neighbor or (c, r)-

NN) Given a set S ⊂ {0, 1}d, |S| = n, the Hamming distance
function d, and parameters r > 0, c > 1, δ > 0, construct
a data structure such that, given any query q ∈ {0, 1}d, if
there exists a point x ∈ S and d(x, q) ≤ r, it reports some
point y ∈ S where d(y, q) ≤ cr with probability 1− δ.

We note that (c, r)-NN problem has two approximation
factors, consisting of the approximation of distance by a fac-
tor of c, and the approximation of the result set determined
by the success probability 1− δ. Due to the approximation
of distance, this problem formulation may give undesirable
quality of results. By setting c = 1, the second approximate
version, called r-near neighbor reporting, has more practical
applications [30, 31, 33, 34] since it reports all points within
distance r to the query.

Definition 2. (r-near neighbor reporting or r-NN) Given

a set S ⊂ {0, 1}d, |S| = n, the Hamming distance function
d, and parameters r > 0, δ > 0, construct a data structure
that, given any query q ∈ {0, 1}d, return each point x ∈ S
where d(x,q) ≤ r with probability 1− δ.

We call this the“exact”r-NN problem in case δ = 0, other-
wise it is the “inexact” r-NN to distinguish with the approx-
imation term of (c, r)-NN problem. Note that the inexact
factor here is due to reporting each near neighbors, deter-
mined by the success probability 1− δ.

This work investigates the possibility of an exact guaran-
tee for r-NN problem in order to report every point x ∈ S
where d(x, q) ≤ r. It is worth noting that solving the ex-
act r-NN problem implies an exact solution to the nearest
neighbor problem with comparable performance by building
several solutions for different radii [1]. For convenience of
notation, we are now using a bold letter for a binary vector
(e.g., v) to distinguish it from a scalar quantity (e.g., v). In

what follows, we talk about near points at distance at most
r (those that should be reported), c-near points at distance
between r and cr, an far points at distance larger than cr.

2.2 Locality-sensitive Hashing Functions
LSH is one of the most widely used approaches to near

neighbor search in high-dimensional space because it is able
to break the O (n) barrier for the (c, r)-NN problem.

Definition 3. (Indyk and Motwani [15]) Fix a distance
function d : U × U → R. For positive reals r, c, p1, p2,
and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-
sensitive if for uniformly chosen h ∈ H and all x,y ∈ U:

• If d(x,y) ≤ r then Pr [h(x) = h(y)] ≥ p1;

• If d(x,y) ≥ cr then Pr [h(x) = h(y)] ≤ p2.

The classic LSH family for Hamming distance uses a bit
sampling approach [12, 15]. It is simply the family of all
the projections of points to one dimension, i.e., a hash func-
tion value is just a random bit sample. That is, given a
point x = {x1, . . . , xd}, the bit sampling LSH family B with
parameters p1 = 1− r/d, p2 = 1− cr/d is constructed as:

B =
{
h : {0, 1}d → {0, 1} | h(x) = xi for some i ∈ {1, . . . , d}

}
.

The performance of LSH-based algorithms is governed by
the parameter ρ = log p1/ log p2, and constructing an LSH
family with small ρ automatically leads to the improved al-
gorithms for the (c, r)-NN problem. For the bit sampling
family B, ρ ≈ 1/c which is optimal for data-independent
LSH in Hamming space [26].

The classical LSH-based algorithm for near neighbor search
problem is as follows. We concatenate k random hash val-
ues to increase the gap of collision probability between near
points and far points, and independently repeat the pro-
cess L times to increase the success probability of the al-
gorithm. In particular, given an LSH family H, construct L
hash tables by hashing data points using L hash functions
gj , j = 1, . . . , L, by setting gj =

(
h1
j , . . . , h

k
j

)
, where hi

j ,
i = 1, . . . , k, are chosen randomly from the LSH family H.
To process a query q, one needs to retrieve candidate points
from the bucket gj(q) in the jth hash table, j = 1, . . . , L.
For the candidate set retrieved, a filtering procedure is per-
formed to remove false positives. There are different filtering
strategies corresponding to (c, r)-NN and r-NN problems [1].

Strategy 1: Stop searching after finding the first 3L
points (including duplicates) and return the point with min-
imum distance to the query q.

Strategy 2: For each distinct point x from the candidate
set, compute d(x, q) and report x if d(x,q) ≤ r.

Strategy 1 that interrupts the search after retrieving 3L
points (including duplicates) is of significant importance in
theory because it introduces a sub-linear time algorithm
with suitable choices of k and L for the (c, r)-NN prob-
lem [12, 15]. In particular, it runs in O (nρ) time where
ρ = log p1/ log p2 if we suitably choose k = O (log n), L =
O (nρ), and interrupt the searching process after retrieving
the first 3L points. Using the bit sampling family B, it

solves the (c, r)-NN problem in sub-linear time O
(
n1/c

)
us-

ing O
(
n1+1/c

)
space. Despite of the attractive asymptotic

space and query performance, Strategy 1 may give undesir-
able quality of results compared to Strategy 2.

Strategy 2 enables us to solve the r-NN problem, which
has more practical applications [7, 14, 21, 31, 34]. It provides
better result quality since all reported points are within dis-
tance r to the query point. It might run in O (n) time in the
worst case, but for many natural data sets, proper settings of
k and L still result in a sub-linear query time [1]. However,
Strategy 2 can introduce false negatives if some near points
do not collide with the query under any hash function. That
limits the use of LSH in applications requiring high accuracy
or precise performance guarantees.

For practical implementation1, the value k = O (log n) is
large in a typical setting. One can reduce the time of check-
ing collision and the amount of memory for bucket identifi-
cation from O (k) to O (1) by using an associated universal
hash function to hash a k-bit hash value into an integer.
Moreover, since the domain of the hash function gj is too
large to store all possible buckets explicitly, and we only need
to store non-empty buckets, we use a hash table to contain
these non-empty buckets. Given a prime P and random in-
tegers bi, i = 1, . . . , k, from the interval {0, . . . , P − 1}, we
use hash functions of the form:

p(x1, . . . , xk) = b1 · x1 + · · ·+ bk · xk mod P. (1)

According to [5], this family is universal which means that
the probability of collision is small if P is sufficiently large
(say, P > n2 when hashing a set of n vectors).

2.3 CoveringLSH
In very recent work [27], a novel LSH scheme was proposed

to solve the exact r-NN problem. This method always in-
troduces a collision for every pair of binary vectors within
a given radius r. Instead of independently selecting bit po-
sitions as in the bit sampling approach, CoveringLSH care-
fully chooses correlated bit positions so that it can “cover”
all possible positions of r differences, which implies an exact
guarantee for the r-NN problem when used with Strategy 2.
The underlying LSH definition is as follows.

Definition 4. An LSH family A is r-covering if for ev-
ery two binary vectors x,y ∈ {0, 1}d with Hamming distance
d(x,y) ≤ r, there exists g ∈ A such that g(x) = g(y).

The proposed scheme relies on a random mapping m :
[d] → {0, 1}r+1 that maps bit positions to binary vectors
of length r + 1. This r-covering LSH family, A, consists of
2r+1−1 correlated hash functions via the mapping m. Each
hash function is associated with a binary vector of length d,
denoted by gv, v = 1, . . . , 2r+1 − 1 of the form

gv = (〈m(1),v〉 , 〈m(2),v〉 , · · · , 〈m(d),v〉) , (2)

where 〈m(i),v〉 = ∑r+1
j=1 m(i)jvj mod 2 is the dot product

modulo 2 of two vectors m(i) and v. The hash value of a
given binary vector x is simply the binary vector produced
by the bit-wise AND operation, i.e., gv(x) = gv ∧ x. The
2r+1 − 1 hash functions of A correspond to all distinct non-
zero binary vectors v ∈ {0, 1}r+1\{0} or equivalently binary
representations of v ∈ {1, . . . , 2r+1 − 1}. Hence, the non-
zero binary vector v or the corresponding integer v is used
to index the vth hash function gv, and we will use them
interchangeably.

1E2LSH. http://www.mit.edu/∼andoni/LSH/,
OptimalLSH. https://github.com/yahoo/Optimal-LSH.

Example 2.1. Given the two binary vectors x = 0011
and q = 1010, we have that d(x, q) = 2. A 2-covering
LSH family uses a random mapping m : [4] → {0, 1}3, e.g.,
m(1) = 011, m(2) = 100, m(3) = 101, m(4) = 001, to con-
struct 7 hash functions as follows:

g1 = (〈m(1), 001〉 , 〈m(2), 001〉 , 〈m(3), 001〉 , 〈m(4), 001〉) = 1011,

g2 = (〈m(1), 010〉 , 〈m(2), 010〉 , 〈m(3), 010〉 , 〈m(4), 010〉) = 1000,

g3 = 0011, g4 = 0110, g5 = 1101, g6 = 1110, g7 = 0101.

There is one collision between x and q corresponding to
g4 = 0110 since g4 ∧ x = g4 ∧ q = 0010. Note that the
2-covering LSH family can cover all possible positions of 2
differences in 4-dimensional Hamming space.

Theorem 1. [27, Lemma 3.2] For every mapping m :
[d] → {0, 1}r+1, the family A built as above is r-covering.

The new r-covering LSH scheme can not only eliminate
the problem of false negatives but also essentially match the
complexity bound of the seminal LSH construction of Indyk
and Motwani [15] if cr = log n. This is due to Theorem 2.

Theorem 2. [27, Theorem 3.1] For any two binary vec-
tors x,y ∈ {0, 1}d and a random mapping m : [d] → {0, 1}r+1,
A has two following properties:

1. If d(x,y) ≤ r then Pr [∃g ∈ A : g(x) = g(y)] = 1.

2. E [|{g ∈ A | g(x) = g(y)}|] < 2r+1−d(x,y).

It is obvious that, for the setting where cr = log n, the
number of hash functions is 2r+1 − 1 ≈ 2n1/c and the total
expected number of collisions for the far points among all
hash functions is at most 2r ≈ n1/c. This implies an efficient
sub-linear algorithm for solving the (c, r)-NN problem with
constant success probability, like the classic LSH schemes.
In addition, the r-covering LSH scheme with Strategy 2 will
answer the r-NN problem with an exact guarantee, return-
ing all points within distance r to the query. Since the
constraint cr = log n is a key requirement of r-covering LSH
schemes, the next section will introduce generalizations to
satisfy this constraint.

The basic r-covering scheme needs time O (d) to construct
one hash function (see Equation (2)). In practice, the dimen-
sionality of binary data can be high, e.g., documents, recom-
mendation data sets. Also, an embedding process to Ham-
ming space can require high dimensionality, e.g., embedding
ℓ1-norm into Hamming space by a unary representation [12],
semantic hashing to embed images into Hamming space [13,
39]. This issue demands significant computational resources
for computing r-covering hash codes.

2.4 Hadamard Codes
The Hadamard code is an error-correcting code that en-

ables efficient and reliable message transmission over noisy
channels. The message is encoded by adding some redun-
dant information such that, if a small part of the encoded
message is corrupted, we are still able to correct it and re-
cover the original message. Here we aim at using Hadamard
codes to construct LSH hash functions, and we will not use
its error-correcting properties. Instead, we explain how to
generate Hadamard codes over the binary alphabet {0, 1}
and how to leverage it to construct CoveringLSH hash func-
tions.

Given a binary vector v ∈ {0, 1}r+1, the Hadamard code
maps v into a binary vector Had(v) of length 2r+1 using an

encoding function Had : {0, 1}r+1 → {0, 1}2r+1

. In particu-
lar, Had(v) is generated as follows:

Had(v) =
(
〈a(0),v〉 , 〈a(1),v〉 , · · · ,

〈
a(2r+1 − 1),v

〉)
, (3)

where a(i), i = 0, . . . , 2r+1−1, are all possible binary vectors
in {0, 1}r+1, and 〈a(i),v〉 is the dot product modulo 2 of two
vectors a(i) and v. It is worth noting that the first bit of
the Hadamard code corresponding to 〈a(0),v〉 is not used in
practice since a(0) = 0 and this bit is always zero.

Consider the hash function vector gv in Equation (2) and
the Hadamard code Had(v) in Equation (3). It is observed
in [27] that gv can be seen as sampling a subset of Had(v)
since the random mapping m is a subset of {0, 1}r+1. We
note that the Hadamard code of a binary vector v corre-
sponds to the vth row of the so-called Hadamard matrix H
of the same size using the mapping 1 7→ −1 and 0 7→ 1. Con-
versely, we can use the Hadamard matrix of size 2r+1×2r+1

with the reverse mapping as Hadamard codes for vectors
v ∈ {0, 1}r+1. The next section will exploit this relation and
show how to use Hadamard codes and the fast Hadamard
transform FHT() to efficiently construct r-covering LSH fam-
ilies.

3. ALGORITHM

3.1 Description of fcLSH

3.1.1 A typical case
Let us now present an example of a typical setting of image

search where Hadamard codes can be used as r-covering
LSH functions without any modifications. Suppose that we
have a set of binary vectors S ⊆ {0, 1}8. Given a query
q, we would like to find all points within distance r = 2
from q. A 2-covering LSH family requires 7 hash functions
to cover all possible 2 differences between data points and
query. We generate Hadamard codes C7,8 by using the rows
of Hadamard matrix H8,8 as described above, and remove
the first row to avoid trivial collisions. We see that C7,8 is a
2-covering LSH family. (We will in fact use the first column
of the Hadamard matrix to simplify the fcLSH description
and construction; in the practical implementation we later
discard it due to its trivial collision.)

C7,8 =

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

It is obvious that there exists at least one collision for every
pair of vectors within distance 2. This implies an algorithm
for the 2-NN problem without false negatives using the C7,8

LSH family (see Example 3.1). Note that, in this case, the
mapping m(i) of the r-covering LSH scheme is simply the
vector representing i in binary.

Example 3.1. Given the two binary vectors x = 00110011,
y = 00110001 and the query vector q = 00111010, we have
that d(x,q) = 2, d(y, q) = 3. Given the 2-covering LSH
family C7,8, there is one collision between x and q (i.e.,
g3(x) = g3(q) = 00100010) corresponding to the 3rd row of
C7,8, and there is no collision between y and q.

In a typical setting for large-scale image search, suppose
that we have a set S of n = 224 vectors from {0, 1}128. Given
a query q, we may wish to search all vectors in S within dis-
tance r = 6 from q. Since an exhaustive search in Hamming
balls with r = 6 would take much more time than just lin-
ear search, we settle for a 4-approximate similarity search
(cr = log n).

The 6-covering LSH requires 127 hash functions and we
use a random column-based permutation of the Hadamard
codes C127,128 as the LSH family. Theorem 2 shows that
near vectors within radius 6 always collide with q in at
least 1 hash function. Moreover, in expectation, a far-away
vector at distance larger than 24 has collision probability at
most 1/224 = 1/n under each hash function. This means
that the r-covering LSH scheme can be used for efficiently
answering the exact r-NN search by pruning almost all far
vectors.

3.1.2 The general case
We now consider the general case of r-covering LSH schemes

for answering exact r-NN queries. Note that the constraint
cr = log n affects the efficiency of r-covering LSH-based al-
gorithms because it determines the pruning power. More-
over, it is also the key factor governing the “best tradeoff”
between space and time complexity for the (c, r)-NN prob-
lem. Another hurdle for r-covering LSH schemes is that high
dimensionality d requires significant hash function computa-
tion time.

Keep in mind that the number of hash tables of the r-
covering scheme and the classical scheme are 2r+1 − 1 and

O
(
n1/c

)
, respectively. The total expected number of colli-

sions for far points with r-covering LSH is at most n2r/2cr,

whereas that of the classic scheme is O
(
n1/c

)
. So it is clear

that when cr = log n, both approaches have the same time
complexity and space usage for near neighbor search.

We use a method from [27] to handle the constraint cr =
log n. It is clear that when cr < log n, the number of hash ta-
bles is smaller but the number of collisions is larger than for
the classic LSH scheme. Intuitively, we need to increase the
radius r by simply replicating the dimensionality of both
data and query points ⌊log n/cr⌋ times (see Example 3.2).
On the other hand, when cr > log n, the space usage for hash
tables is larger but the number of collisions is smaller than
for the classic LSH scheme. In order to reduce the radius r
while still maintaining the exactness guarantee, we leverage
the pigeonhole principle by first permuting and then parti-
tioning the dimensions of both data and query points into
⌈cr/ log n⌉ parts (see Example 3.2). Then we independently
build LSH data structures for each partition and candidate
vectors are generated for each partition.

Example 3.2. Given a binary vector q = 0011, replicat-
ing q 2 times returns a new vector q(2) = 00110011. A
random permutation of q gives q′ = 0110. Partitioning q′

into 2 parts returns two vectors q1 = 01, q2 = 10.

After replicating or partitioning the dimensions, we use
a new query radius r′ where cr′ ≈ log n. Denote by d′ the

new dimensionality of data and query points. If d′ > 2r
′+1,

we will need a random mapping m : [d′] → [2r
′+1] that

randomly samples d′ columns from the Hadamard codes
C2r

′+1−1,2r
′+1 to form the r′-covering LSH family. On the

other hand, if d′ ≤ 2r
′+1, we can leverage a 0-padding trick

Algorithm 1 Pre-processing algorithm

Require: A vector q = {q1, . . . , qd}, radius r > 0, approxi-
mation ratio c > 1, and data set size n

1: if cr < log n then
2: q is replicated t = ⌊log (n)/cr⌋ times to form a new

vector q(t) = q . . . q︸ ︷︷ ︸
t times

3: else if cr > log n then
4: Randomly permute q

5: q is partitioned into t = ⌈cr/ log n⌉ parts to form t
new vectors:
q1 = {q1, . . . , q⌊d/t⌋}, . . . , qt = {q(t−1)⌊d/t⌋, . . . , qd}

6: end if

to increase the dimensionality to 2r
′+1 without changing r′,

and simply use the Hadamard codes C2r
′+1−1,2r

′+1 with

columns randomly permuted as the r′-covering LSH family,
as in the typical case above. In both cases, if d′ is large, it
affects the hashing cost, i.e., computing the hash value and
identifying the bucket corresponding to the query. The trick
of converting long binary hash values into integers, see the

Equation (1), still requires O
(
d′2r

′+1
)

time. To address

this problem, we propose to use the fast Hadamard trans-

form for quickly computing integer hash values inO
(
d′ + r′2r

′+1
)

time, which is asymptotically faster when d′ > r′.

3.2 Construction
As elaborated above, we need to satisfy the constraint

cr = log n in order to achieve high pruning power like the
classic LSH scheme. We handle this issue by simply repli-
cating or partitioning the dimensionality of both data and
query points to increase or decrease the radius r to be ap-
proximately log (n)/c, as illustrated in Algorithm 1.

For simplicity of notation, let us denote by d and r the
new dimensionality of data and the new query radius, re-
spectively, after pre-processing data to satisfy cr ≈ log n.
We now present two variants of the fcLSH scheme: a gen-
eral construction using a random mapping m : [d] → [2r+1]
for d > 2r+1 as introduced in [27] and a specific construc-
tion using a random permutation m : [2r+1] → [2r+1] for
d ≤ 2r+1. In both cases, we exploit the fast Hadamard
transform for fast computation of hash functions.

The general construction for d > 2r+1. Recall that
the basic r-covering LSH family requires L = 2r+1 − 1 hash
functions and the construction of a hash function gv relies
on a random mapping m : [d] → {0, 1}r+1 and dot products
modulo 2 between m(i) and v, described in Equation (2).
This procedure is identical to randomly sampling d positions
among 2r+1 positions from Had(v), the Hadamard code of
the vector v. This implies that we can use a new random
mapping m : [d] → [2r+1] and rely on a simple construction
without computing d dot products as follows.

gv = {Had(v)m(1),Had(v)m(2), . . . ,Had(v)m(d)}. (4)

The specific construction for d ≤ 2r+1. It is obvious
that any collision caused by the random mapping m yields
more collisions for both close points and far points. That
might slightly degrade the performance of filtering mecha-
nisms. In typical settings of content-based image retrieval
applications where d ≤ 2r+1, we can combine the 0-padding

Algorithm 2 Generating hash values using the fast
Hadamard transform FHT()

Require: A point q ∈ {0, 1}d, a prime P
Ensure: A vector h of L = 2r+1 − 1 integer hash values
1: Pick a random integer-valued vector b ∈ [P]d

2: Compute a new integer-valued vector q̃ = q ∗ b by
component-wise multiplication

3: if d > 2r+1 then
4: Pick a random mapping m : [d] → [2r+1]
5: Compute a sketch vector t where tj =

∑
i:m(i)=j q̃i

6: else
7: Pick a random permutation m : [2r+1] → [2r+1]

8: t := m(q̃ ;02r+1−d)
9: end if
10: h = 1

2

(
‖q̃‖1 1− FHT(t)

)
mod P

11: Remove the first element from h

trick with a random permutation m : [2r+1] → [2r+1] over
columns of the Hadamard codes C2r+1−1,2r+1 to achieve bet-
ter results than the construction in Equation (4). This idea
is illustrated in Algorithm 2 (lines 7–8).

Fast computation of hash functions. We use a con-
ventional hash function to map a binary hash value of length
d into an integer hash value in order to reduce the amount
of memory for bucket identification and time complexity of
searching a bucket in a hash table. A näıve approach to
convert L binary hash codes into L integers asymptotically
requires O (dL) time complexity, see Equation (1). We show
that we can reduce this cost to O (d+ L logL) by using the
fast Hadamard transform FHT(). The pseudocode in Algo-
rithm 2 shows how to efficiently construct the r-covering
LSH family and compute hash values for any data point.

The algorithm for quickly generating hash values works
as follows. We generate a random seed vector b to con-
vert binary hash codes into integers (line 1) and compute a
new vector q̃ = q ∗ b by component-wise multiplication, i.e.,
(q ∗ b)i = qibi. Non-zero entries of q̃ correspond to 1s in
q. If the dimensionality of data is greater than the length
of Hadamard codes, i.e., 2r+1, we evaluate the random map-
pingm on each dimension i of q̃, and sum up colliding entries
to form the new sketch vector t of length 2r+1 (line 5). Oth-
erwise, we apply 0-padding trick on q̃ and randomly permute
it to get t (line 8). We note that applying a random permu-
tation on q is equivalent to applying a random permutation
on the Hadamard codes, because we are only concerned with
collisions. FHT(t) is then used to reduce the cost of comput-
ing 2r+1 integer hash values (line 10). Finally, we ignore the
first element corresponding to the first row of the Hadamard
matrix to get L = 2r+1 − 1 integer hash values (line 11).

Section 3.3 will present our theoretical analysis of the
correctness of Algorithm 2. It also shows that the fcLSH
scheme provided by Algorithm 2 is an efficient r-covering
LSH scheme for near neighbor search problems.

Time complexity analysis. We now analyze the time
complexity of the Algorithm 2. Denote by nnz(q) the num-
ber of non-zero entries of vector q. The running time at
line 11 using the fast Hadamard transform FHT() isO (L logL).
The other computational costs are bounded by O (nnz(q)).
The total running time is O (nnz(q) + L logL), which can
be compared to O (nnz(q)L) of the basic r-covering LSH
scheme [27]. When nnz(q) > logL, fcLSH is sufficiently
faster than the basic r-covering scheme.

3.3 Theoretical Analysis
Now we sketch a theoretical analysis of the correctness of

fcLSH. We first show that the general and the specific con-
struction are efficient r-covering LSH schemes with the two
properties stated in Theorem 2. Note that the first property
guarantees that fcLSH always eliminates false negatives and
reports all near neighbors for the r-NN problem. The sec-
ond property says that fcLSH has the same pruning power
as the classic LSH scheme [15]. Then we argue that Al-
gorithm 2 computes exactly the same results as using the
universal hash function p() defined in Equation (1) to con-
vert a binary hash value into an integer. As a consequence,
we prove that fcLSH with the pre-processing steps in Al-
gorithm 1 (replicating or partitioning) is also an efficient
r-covering LSH scheme for near neighbor search.

The following lemmas show that both the general and the
specific construction gives good r-covering LSH families.

Lemma 1. Given a random mapping m : [d] → [2r+1], an
r-covering LSH family A can be constructed by selecting d
columns m(1), . . . , m(d) from the Hadamard codes C2r+1−1,2r+1 .
This family satisfies properties 1 and 2 in Theorem 2.

Proof. The proof is straightforward since the procedure
of randomly sampling d columns from the Hadamard codes
C2r+1−1,2r+1 is identical to the basic construction of r-covering
LSH in Equation (2).

It is worth noting that we can use a random mapping
m : [d] → [2r+1]\{1} to ignore the first column 0 of the
Hadamard codes. This mapping produces an r-covering LSH
family A′ with a sharper bound for the 2nd property of
the r-covering scheme. Following up to the proof of [27,
Theorem 3.1], we have:

E
[∣∣{g ∈ A′ | g(x) = g(y)

}∣∣] < 2r+1(
1

2
− 1

2r+1
)d(x,y)

< 2r+1−d(x,y).

Lemma 2. A random column-based permutation of Hadamard
codes C2r+1−1,2r+1 is an r-covering LSH family A for data

sets with dimensionality d ≤ 2r+1. This family satisfies
properties 1 and 2 in Theorem 2.

Proof. This follows from the proof of [27, Theorem 3.1].
However, we sketch the proof here for completeness. Given
two near binary vectors x,y ∈ {0, 1}d with d(x,y) ≤ r,
let z = x ⊕ y satisfy ‖z‖1 ≤ r. It is clear that a collision
between x and y under a hash function vector g corresponds
to g∧z = 0. In other words, any r bit positions with 1s are
mapped to zero under the hash function vector g.

Since d ≤ 2r+1, according to Theorem 1, for every random
permutation m : [2r+1] → [2r+1], the construction shown in
Equation (2) leads to an r-covering LSH scheme. This means
that C2r+1−1,2r+1 is r-covering.

In order to satisfy the second property, we need a ran-
dom column-permutation of C2r+1−1,2r+1 . This trick will
prevent the worst-case data sets where far pairs always col-
lide due to d < 2r+1. The random permutation of columns
of C2r+1−1,2r+1 makes the bit value gi ∧ zi random, so the
probability that zi = 1 and gi ∧ zi = 0 is 1/2. It can be
shown that the probability that g ∧ z = 0 is bounded by
2−‖z‖1 . By linearity of expectation, summing over 2r+1 − 1
rows of C2r+1−1,2r+1 , the second property follows.

It is worth noting that in a typical setting where d = 2r+1,
the size of C2r+1−1,2r+1 is close to the smallest possible for

an r-covering LSH family. Observe that we have
(
2r+1

r

)
pos-

sible sets of r differences, and each row of C2r+1−1,2r+1 can

cover at most
(
2r

r

)
such sets. This means that the number

of hash functions needed is at least
(
2r+1

r

)
/
(
2r

r

)
> 2r, which

is within a factor of 2 from the upper bound. This implies
that the specific construction often gives better results than
the general construction.

Next, we argue that Algorithm 2 produces r-covering LSH
families. Before presenting lemmas, let us describe the main
technical insight used in Algorithm 2. Consider the ideal
case where d = 2r+1, and recall that the Hadamard code
matrix C can be generated by the Hadamard matrix H with
the same size by mapping 1 7→ 0 and −1 7→ 1. If we let
1 denote the matrix with 1 in every entry, we have C =
(1−H) /2. Given any binary vector q, the hash value of
q under the hash function vector Cv (the vth row of C)
is gv(q) = Cv ∧ q. Using the universal hash function p()
in Equation (1), we need a prime P and a random seed
vector b for computing b · gv(q) mod P . This means that
we need to compute the matrix-vector multiplication Cq̃,
where q̃ = q ∗ b is a component-wise product, as follows:

Cq̃ =
1

2
(1−H)q̃ =

1

2
‖q̃‖1 1− 1

2
Hq̃. (5)

Lemma 3. Given a prime P and any random seed vector
b ∈ [P]d, Algorithm 2 computes the same hash values as
using p() in Equation (1) on the r-covering LSH scheme
introduced in [27].

Proof. Since the random permutation used in the spe-
cific construction is a special case of the random mapping
used in the general construction, we need only prove the
claim for the general construction.

Given any binary vector q, we let q̃ = q ∗ b. It is clear
that the contribution of biqi to the integer hash value is
determined by the random mapping value m(i). We form

a vector ξi ∈ N2r+1

corresponding to the contribution of
biqi whose entry at position m(i) is qibi and the others are
zero. The integer-value hash values of q is then computed
as follows:

C

(
d∑

i=1

ξi

)
=

1

2

d∑

i=1

(biqi −Hξi) =
1

2

(
d∑

i=1

biqi −
d∑

i=1

Hξi

)

=
1

2

d∑

i=1

biqi −
1

2
H

d∑

i=1

ξi =
1

2
‖q̃‖1 1− 1

2
Ht,

where the vector t is computed by tj =
∑

i:m(i)=j biqi. Ap-
plying FHT() on the second term proves the claim.

Corollary 1. Given a sufficiently large prime P , a con-
struction of fcLSH provided by Algorithm 2 is an r-covering
LSH scheme with properties 1 and 2 of Theorem 2.

Now we consider fcLSH with the pre-processing step in
Algorithm 1. Due to the replication and partitioning step to
satisfy cr ≈ log n, fcLSH does not have as strong a guaran-
tee as the 2nd property in Theorem 2. However, according
to [27, Theorem 4.1], we derive the following extension of
Theorem 2 for fcLSH.

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

Webspam 64 bits

po

in
ts

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Webspam 256 bits

po

in
ts

Figure 1: The distance histogram between 50 ran-
dom queries and a sampled set of data points of Web-
spam 64 bits (left) and Webspam 256 bits (right).

Lemma 4. For any two binary vectors x,y ∈ {0, 1}d and
a random mapping m : [d] → {0, 1}r+1, an LSH family A
constructed by fcLSH has following properties:

1. If d(x,y) ≤ r then Pr [∃g ∈ A : g(x) = g(y)] = 1.

2. For the case requiring replication factor t = ⌊log (n)/cr⌋,
E [|{g ∈ A | g(x) = g(y)}|] < 2n1/c2−td(x,y).

For the case requiring t = ⌈log (n)/cr⌉ partitions,

E [|{g ∈ A | g(x) = g(y)}|] < 2n1/ct
(
1− 1

2t

)d(x,y)
.

From Lemma 4, the performance of fcLSH with a parti-
tioning step is slightly worse than classic LSH. This obser-
vation matches the theoretical analysis in [27], which states
that the r-covering scheme differs from the classic LSH scheme
by at most a factor ln (4) < 1.4 in the exponent for the gen-
eral values of cr.

3.4 Discussion
It is clear that for the problem of reporting all near neigh-

bors, any algorithm may return many (or even all) points if a
large fraction of the data set is close to the query point. This
means that there is no sublinear guarantee on the running
time of such algorithms. However, there are many natural
data sets with the property that the distance gap between
near points and far points is large. For these data sets, LSH-
based approaches with their efficient pruning mechanism en-
able us to quickly report all near neighbors given a query
point. We chose the Webspam data set2 and applied the
standard cosine similarity LSH [6] to each document to get
data sets of 64-bit and 256-bit fingerprint vectors, respec-
tively.

Figure 1 shows the distance histogram between 50 random
queries and a sampled set of points of Webspam 64 bits and
Webspam 256 bits. Given a vector query q, we wish to search
all vectors within distance r = 10 from q. It is clear that
any approach to answer this problem on Webspam 64 bits
needs to return almost half number of points. LSH-based
approaches with approximation ratio c = 1.5 are only able
to filter away less than 30% number of points. This means
that LSH-based approaches might be outperformed by sim-
ple linear search. However, on the 256-bit version, the fil-
tering mechanism of LSH-based approaches works efficiently.
With an approximation ratio c = 3, LSH-based approaches
can filter away up to 70% of points. This implies a possible
speedup of 3 times compared to linear search. In this setting,

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

Table 1: Hash function computation time
Method fcLSH bcLSH LSH MIH
Time O (d+ L logL) O (dL) O (kL) O (d)

Table 2: Data set properties
Data sets n d Binarization

ANN SIFT1M 1M 128 LSH
Webspam 0.35M 254 LSH
Enron ∼ 40K ∼ 28K Word freq. > 10

MovieLens ∼ 0.23M ∼ 140K Rating > 2

fcLSH clearly outperforms linear search while preserving the
exactness guarantee.

In general, LSH-based approaches are able to efficiently
solve the problem of reporting all near neighbors for data
sets that have large distance gap between near points and
far points. For data sets that do not have such large distance
gap, linear search might be a better choice.

4. EXPERIMENT
We implemented fcLSH in C++ and conducted experi-

ments on an Intel Xeon Processor E5-1650 v3 with 64GB
of RAM. We compared the performance of hashing-based
algorithms for reporting all near neighbors, including our
fcLSH scheme, the basic r-covering LSH [27], the classic LSH
scheme [15], and the multi-index hashing approach [25] on
synthetic and real-world data sets. Each result is the average
of 5 runs over a query set of an algorithm.

4.1 Experiment Setup
We consider alternative hashing-based approaches with

performance guarantees in Hamming space for comparison.
The following algorithms are used.

• fcLSH: Our method with fast computation of hash func-
tion using FHT().

• bcLSH: The basic covering construction [27] based on
random samples from Hadamard codes.

• LSH: The classic LSH [15] using bit sampling approach.

• MIH: The recent multi-index hashing approach [25] run-
ning in sub-linear time for exact r-NN over uniformly
distributed data sets.

Note that MIH is an alternative to exhaustive search in
Hamming balls over data sub-dimensions. Based on the pi-
geonhole principle, MIH partitions data dimensions to re-
duce the radius, which is similar to our approach. However,
the sub-linear guarantees of MIH is based on the strong as-
sumption of uniform distribution of data points which is not
true in many natural data sets [18, 16, 21].

Parameter settings. It is obvious that each hashing-
based method achieves the best performance given the proper
choices of parameters. Since such proper choices primar-
ily depend on the distance distribution between queries and
data points, we use suggested settings as below.

• For the general r-covering LSH schemes, including fcLSH
and bcLSH [27], we only need the partition trick when
r is large (say, r ≥ 10) since in that case we might not
have enough space for L = 2r+1 − 1 hash tables.

10K 20K 30K 40K 50K
Size of dataset (n)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

MIH
bcLSH
fcLSH
LSH δ=0.1
LSH δ=0.01

10K 20K 30K 40K 50K
Size of dataset (n)

0.95

0.96

0.97

0.98

0.99

1

R
ec

al
l

MIH
bcLSH
fcLSH
LSH δ=0.1
LSH δ=0.01

Figure 2: Comparison of precision/recall rate be-
tween fcLSH and bcLSH without pre-processing,
MIH, the classic LSH with δ = 0.1 and δ = 0.01 on
synthetic data sets of n = 10K − 50K and r = 6.

• For classic LSH, we simply set the number of hash tables
L = 2r+1−1 for the sake of comparison. The number of

bit samples is set as k =
⌈
log (1− δ1/L)/ log (1− r/d)

⌉

where δ is the false negative ratio3.

• For MIH, the number of partitions is ⌈d/ log2 n⌉ as sug-
gested in [25].

Cost measurement. To report all near neighbors, we
need to follow the Strategy 2. In general, for each query,
any hashing-based approach needs to process the following
operations:

• Step S1: Compute hash functions to identify the bucket
of the query on each of the L hash tables.

• Step S2: Look up in each hash table the points in the
bucket of the query, and merge them together for dupli-
cate elimination to form a list of candidates.

• Step S3: Compute the actual distance between candi-
dates and the query to report near neighbor points.

We decompose the total search cost per query into 3 cost
components of the three main steps above. The cost of S1 is
dependent on the dimensionality of data and the parameter
settings for each algorithm which can be analyzed precisely
(see Table 1), whereas the costs of S2 and S3 significantly de-
pend on the data distribution and the distance distribution
between query and data points, respectively. Since the data
sets used in our experiment are both in low-dimensional and
high-dimensional space, we focus on the cost of S2 and S3.

The cost of S2, called Clookup, is for merging and removing
duplicates since very close points might collide many times
in different hash tables. Typically, we use a bitmap string
of n bits to remove such duplicates [25, 34]. Every time
a candidate is found, we set the bit corresponding to that
candidate. Thus this cost is proportional to the number of
collisions #Collisions over all hash tables.

The cost of S3, called Ccheck, is proportional to the num-
ber of distinct candidates #Candidates returned from step S2.
Dependent on the dimensionality d, the size of candidates,
and cache and disk access implementation, this cost may
or may not dominate Clookup. Hence, for the sake of com-
parison, we report separately these two main costs for each
algorithm.

3http://www.mit.edu/∼andoni/LSH/manual.pdf

2 3 4 5
Radius (r)

(a) Replication

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

2 3 4 5
Radius (r)

(b) Replication

0.95

0.96

0.97

0.98

0.99

1

R
ec

al
l

10 12 14 16
Radius (r)

(c) Partition

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

10 12 14 16
Radius (r)

(d) Partition

0.95

0.96

0.97

0.98

0.99

1

R
ec

al
l

MIH bcLSH fcLSH LSH δ=0.1 LSH δ=0.01

Figure 3: Comparison of precision/recall rate between fcLSH and bcLSH with pre-processing, MIH, classic
LSH with δ = 0.1 and δ = 0.01 on the synthetic data set of n = 64K points.

4.2 Data Sets
We evaluated the performance of fcLSH using synthetic

data sets and 4 real-world data sets from images, text, and
recommendation systems. Properties of these data sets are
summarized in Table 2, and presented in more detail below.

• Synthetic contains uniformly distributed binary data
sets of dimension 128. Given the query point, we gener-
ated uniformly distributed binary vectors in Hamming
balls of radii from 1 to 128. Since the MIH approach
runs in sub-linear time for uniformly distributed binary
vectors, we use these data sets to verify its performance.
In addition, we also compare the performance of the ba-
sic r-covering scheme to fcLSH with the replication and
partitioning trick.

• ANN SIFT1M [16] contains 1 million 128-dimensional
SIFT feature vectors of images. We generate standard
binary codes [6] to each image to get 64-bit and 128-bit
fingerprints of vectors. The fingerprints have the prop-
erty that if two original images are similar, then the
Hamming distance between their fingerprints is small.

• Webspam4 contains 350,000 web documents. We apply
the standard LSH [6] to each document to get 256-bit
and 512-bit fingerprint vectors. The fingerprints have
the property that if two original documents are near-
duplicates, then the Hamming distance between their
fingerprints is small.

• Enron5 contains a collection of about 40,000 emails. Af-
ter tokenization and removal of stop words, the vocabu-
lary of unique words was binarized by only keeping words
that occurred more than ten times. We obtained a very
high-dimensional binary text document with d = 28, 102
unique words.

• MovieLens6 contains ratings applied to 140,214 movies
by 234,834 users. Ratings are made on a 5-star scale,
with half-star increments (0.5 stars - 5.0 stars). We bi-
narized this data set by only considering ratings at least
2.5 to represent ‘positive’ and ratings smaller than 2.5
or no ratings for ‘negative’. We obtained a very high-
dimensional binary data set where each data point cor-

4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
5http://archive.ics.uci.edu/ml/data sets/Bag+of+Words
6http://grouplens.org/data sets/movielens/

responds to a user, and we would like to find similar
users given their movie ratings.

We randomly remove 50 points from the ANN SIFT1M
and Webspam data sets, and 100 points from the Enron
and MovieLens data sets to use them as query points in our
performance study. We need more query points for the latter
cases for the sake of comparison, since with small radius (up
to 20), there are some query points that do not have any
near neighbors. The ground truth for each query point is
computed by a linear scan of the entire data sets.

4.3 Synthetic Data Sets
We carried out experiments to evaluate the accuracy and

efficiency of our constructions with and without a pre-processing
step (replicating/partitioning), over synthetic data sets for
the task of reporting all near neighbors. We used preci-
sion/recall rates to measure the performance of hashing-
based methods, including fcLSH, bcLSH, MIH, and classic
LSH with recall ratio of 90% (i.e., δ = 0.1) and 99% (i.e.,
δ = 0.01), for a wide range of query radii and data set sizes.
We note that if we ignore the Clookup cost, the precision ratio
corresponds to the speedup compared to linear search.

Figure 2 displays the precision/recall rate of algorithms
for reporting points within distance r = 6 from a query.
The number of hash tables for the LSH-based method is
L = 2r+1−1 = 127 whereas that of MIH is at most 10. It is
obvious that LSH-based approaches achieve almost 3 times
higher precision than the MIH approach. In other words,
Ccheck of MIH is around 3 times larger than LSH-based ap-
proaches. In addition, fcLSH achieves slightly better preci-
sion than both bcLSH and classic LSH. Classic LSH shows
a tradeoff between precision and recall rate where the one
with recall ratio 99% has lower precision than that of re-
call ratio 90%. Regarding recall ratio, both CoveringLSH
schemes and MIH achieve perfect recall whereas classic LSH
obtains a high recall ratio (at least 97.5%) but not 100%.

Figure 3 shows the precision/recall rate of fcLSH and
bcLSH with preprocessing tricks (replication and partition)
and other algorithms. We replicated {4, 3, 2, 2} times cor-
responding to r = 2, 3, 4, 5, respectively. This leads to space
overhead L = 511, 1023, 511, 2047 for LSH-based methods
compared to L = 8 of MIH, and explains why the preci-
sion ratio of MIH fluctuates. The results are very similar
to the case without a pre-processing step: LSH schemes
show their superiority compared to MIH, fcLSH has slightly

higher precision than bcLSH, and the classic LSH approach
always introduces false negatives. We used 2 partitions
for r = 10, 12, 14, 16. The number of hash tables is L =
126, 254, 510, 1022 for LSH-based methods, and L = 8 for
MIH. Again, LSH-based approaches outperform MIH regard-
ing precision ratio. However, the precision of r-covering
approaches is worse than classic LSH approaches since the
partition trick introduces more unexpected collisions. This
difference is at most nln (4) in the worst-case data sets as
analyzed in [27].

Figure 4 concludes the experimental results on synthetic
data sets by showing the hash function computation time
per query between two approaches: fcLSH and bcLSH. It
is clear that fcLSH gives substantially faster hash function
computation time due to the fast Hadamard transform for
a wide range of d and r.

4.4 Real-world Data Sets
The experiments on synthetic data sets illustrate that

fcLSH achieves better performance than bcLSH: less hash
function computation time and higher precision with total
recall. Hence, we now use fcLSH as the representative of r-
covering LSH to compare to other approaches on real-world
data sets. Since the recall ratios of classic LSH with δ = 0.1
and with δ = 0.01 are almost the same and very high, we
only use the classic LSH with δ = 0.1 for comparison.

We observe that the replication trick often results in more
collisions since it uses more hash tables. In practice, the
pruning power of LSH-based approaches is primarily de-
pendent on the distance distribution between data points
and query points. Moreover, the space usage for indexes is
usually limited by RAM. This requires the query radius r
to be rather small (say, up to 10) for large data sets (up
to 1M points). Therefore, we do not usually need the pre-
processing step for small r and only use the partition trick
for large r.

As discussed in Subsection 4.1, we used the total number
of collisions and the distinct candidate set size, denoted by
#Collisions and #Candidates, respectively, to measure sep-
arately the two main costs Clookup and Ccheck. Due to mem-
ory constraints we only consider search radius up to 20 on
all data sets, except the Enron data set. We use 1 partition
(without pre-processing step) for r < 10 with L = 2r+1 − 1,

and 2 partitions for r ≥ 10 with L = 2(2⌊r/2⌋+1−1) for LSH-
based methods. For MIH, we used the standard setting, i.e.,
L = ⌈d/ log2 n⌉ hash tables.

4.4.1 Low-dimensional data sets
This subsection compares the performance of 4 approaches:

covering LSHs (fcLSH and bcLSH), classic LSH with δ =
0.1, and MIH on the ANN SIFT1M (images) and Webspam
(texts) data sets. Since we aim at measuring the efficiency
of these algorithms in low-dimensional space, we generated
binary data sets of {64, 128} bits for ANN SIFT1M, and
{256, 512} bits for Webspam. Due to similar results on
both data sets, we only report representative recall ratios
of ANN SIFT1M 64 bits for small radii r = 5− 9, as shown
in Table 3. The results confirm that classic LSH cannot
avoid false negatives while the other approaches do.

Figure 5 shows the two main costs per query on the ANN SIFT1M
and Webspam data sets with different dimensionality. Since
fcLSH and bcLSH have the same hash values, the two main
costs are identical. It is obvious that LSH-based approaches

3 4 5 6 7
Radius (r)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
(m

s)

fcLSH
bcLSH

32 64 128 256 512
Dimensionality (d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
im

e
(m

s)

fcLSH
bcLSH

Figure 4: Comparison of hash function computation
time per query between fcLSH and bcLSH on syn-
thetic data sets of n = 64K: d = 128 and r = 3 − 7
(left), and r = 5 and d = 32− 512 (right).

Table 3: Recall ratios on ANN SIFT1M 64 bits

Radius 5 6 7 8 9

fcLSH / MIH 1 1 1 1 1
Classic LSH 0.96 0.94 0.93 0.93 0.92

outperform the MIH approach on the ANN SIFT1M data
set. For the 64-bit version, #Candidates and #Collisions

for MIH are dramatically larger than for fcLSH and classic
LSH. In particular, MIH’s #Collisions is up to around 7
times larger than that of LSH-based approaches. The largest
gap starts at r = 9. This is because MIH uses 3 hash tables
and r ≥ 9 indicates a new radius r′ = 3 for each partition.
This change influences both #Candidates and #Collisions

of MIH.
As the theoretical analysis shows that r-covering LSH

schemes and classic LSH have similar pruning power for
far points, their performance, including #Candidates and
#Collisions, are very similar for r = 5 − 10. For 2 parti-
tions, CoveringLSH is slightly worse than classic LSH due
to the probability of splitting distances unevenly over the
partitions. However, when we target to approach 100% re-
call ratio, covering LSH schemes clearly outperform MIH,
obtaining up to 7 and 14 times speedup regarding #Colli-

sions and #Candidates, respectively.
On the Webspam data set, #Candidates returned by MIH

is orders of magnitude larger than for the LSH-based ap-
proaches. This is because d is rather large, so the estimated
cost of MIH, O ((d/r)r), tends to be very large, even compa-
rable to the data set size. Hence, in terms of guaranteeing
perfect recall, CoveringLSH provides superior performance
compared to MIH. Compared to classic LSH, the perfor-
mance of CoveringLSH is similar when using 1 partition and
slightly worse with 2 partitions. In particular, #Candidates
and #Collisions provided by fcLSH using 2 partitions is
approximately twice that of classic LSH.

Figure 6 shows the superiority of LSH-based methods (fcLSH,
bcLSH, and classic LSH with δ = 0.1) to the MIH method
with respect to the average CPU time per query in millisec-
onds on the ANN SIFT1M and Webspam data sets. We
note that the standard setting of MIH requiring number of
hash tables L = ⌈d/ log2 n⌉ does not result in a good per-
formance since the real-world data sets are not uniformly
distributed. For the sake of comparison, we choose L = 4, 8
corresponding to the two different versions of these data sets,

5 6 7 8 9 10
Radius (r)

(a) SIFT 64 bits (partition = 1)

0

1

2

3

4

5

C
ol

lis
io

ns
×104

fcLSH
LSH δ=0.1
MIH

16 17 18 19 20 21
Radius (r)

(b) SIFT 128 bits (partition = 2)

0

2

4

6

8

10

C

ol
lis

io
ns

×104

fcLSH
LSH δ=0.1
MIH

3 4 5 6 7 8
Radius (r)

(c) Webspam 256 bits (partition = 1)

0

1

2

3

4

5

C

ol
lis

io
ns

×105

fcLSH
LSH δ=0.1
MIH

10 11 12 13 14 15
Radius (r)

(d) Webspam 512 bits (partition = 2)

0

2

4

6

8

10

C

ol
lis

io
ns

×105

fcLSH
LSH δ=0.1
MIH

5 6 7 8 9 10
Radius (r)

(e) SIFT 64 bits (partition = 1)

0

1

2

3

4

C

an
di

da
te

s

×104

fcLSH
LSH δ=0.1
MIH

16 17 18 19 20 21
Radius (r)

(f) SIFT 128 bits (partition = 2)

0

2

4

6

8

C

an
di

da
te

s

×104

fcLSH
LSH δ=0.1
MIH

3 4 5 6 7 8
Radius (r)

(g) Webspam 256 bits (partition = 1)

0

0.5

1

1.5

2

C

an
di

da
te

s

×105

fcLSH
LSH δ=0.1
MIH

10 11 12 13 14 15
Radius (r)

(h) Webspam 512 bits (partition = 2)

0

0.5

1

1.5

2

2.5

C

an
di

da
te

s

×105

fcLSH
LSH δ=0.1
MIH

Figure 5: Comparison of the number of collisions and distinct candidate set size for fcLSH, MIH, classic LSH
with δ = 0.1 on two data sets: ANN SIFT1M and Webspam.

3 4 5 6 7 8
Radius (r)

(a) SIFT 64 bits (partition = 1)

1

2

3

4

5

6

7

C
P

U
 T

im
e

(m
s)

MIH
LSH δ=0.1
bcLSH
fcLSH

10 11 12 13 14 15
Radius (r)

(b) SIFT 128 bits (partition = 2)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

C
P

U
 T

im
e

(m
s)

MIH
LSH δ=0.1
bcLSH
fcLSH

3 4 5 6 7 8
Radius (r)

(c) Webspam 256 bits (partition = 1)

0

2

4

6

8

10

C
P

U
 T

im
e

(m
s)

MIH
LSH δ=0.1
bcLSH
fcLSH

10 11 12 13 14 15
Radius (r)

(d) Webspam 512 bits (partition = 2)

1.5

2

2.5

3

3.5

4

4.5

5

C
P

U
 T

im
e

(m
s)

MIH
LSH δ=0.1
bcLSH
fcLSH

Figure 6: Comparison of CPU Time (ms) per query of 4 approaches: fcLSH, bcLSH, classic LSH with δ = 0.1,
and MIH on two data sets: ANN SIFT1M and Webspam.

that leads to the best performance of MIH. Even in such least
favorable scenario, LSH-based approaches still run at least 2
times faster than MIH on the ANN SIFT1M data sets. On
the 64-bit version, since the cost Ccheck and Clookup of LSH-
based approaches are very similar, fcLSH provides superior
performance compared to bcLSH and classic LSH due to
the fast hash computation. For r = 6− 8, bcLSH is slightly
slower than classic LSH. This is because the increase in the
of number of hash tables, L = 2r+1 − 1 leads to a slightly
larger gap in hash computation time, dL of bcLSH com-
pared to kL of classic LSH. On the 128-bit version, classic
LSH is favorably compared to bcLSH because #Candidates

and #Collisions provided by bcLSH considerably increase
due to partitioning. However, fcLSH still gains substantial
advantages from the fast hash computation and outperforms
bcLSH and classic LSH.

On the Webspam 256-bit dataset, MIH is slightly slower
than LSH-based approaches for small radii r = 3− 7. This
CPU time gap is more significant at the radius r = 8 because
this new radius yields to a new radius r′ = 2 on each par-
tition of MIH, noting that MIH uses L = 4. This degrades
the performance of MIH due to the significant growth of
#Candidates and #Collisions. It is worth noting that this

observation is also illustrated in Figure 5 when MIH uses the
standard setting L = ⌈d/ log2 n⌉. On the Webspam 512-bit
version, both fcLSH and classic LSH outperform MIH for
r = 10− 15. Moreover, fcLSH is comparable to classic LSH
for r = 10−13, but is superior for r = 14−15 since the hash
computation time dramatically contributes to the total cost.
That also explains why bcLSH is worse than MIH on this
parameter setting. In general, fcLSH is favorable compared
to the other approaches regarding both CPU time and total
recall.

4.4.2 High-dimensional data sets
This subsection studies the ability of scale and accuracy

of 3 approaches, fcLSH, bcLSH and classic LSH with δ = 0.1
on the two high-dimensional binary data sets: MovieLens
and Enron. Since the data sets are very high-dimensional,
the MIH approach is outperformed by the simple linear search
and we do not report the results for MIH here. Due to similar
results on the two data sets, we report representative recall
ratios of MovieLens for small radii r = 3 − 7, as shown in
Table 4. The results once again confirm that fcLSH always
eliminates false negatives while classic LSH cannot.

For the MovieLens data set, we use 1 and 2 partitions for

2 3 4 5 6 7
Radius (r)

(a) MovieLens (partition = 1)

0

1

2

3

C

ol
lis

io
ns

×104

fcLSH
LSH δ=0.1

8 9 10 11 12 13
Radius (r)

(b) MovieLens (partition = 2)

0

0.5

1

1.5

2

2.5

C

ol
lis

io
ns

×105

fcLSH
LSH δ=0.1

15 16 17 18 19 20
Radius (r)

(c) Enron (partition = 2)

0

2000

4000

6000

8000

10000

12000

C

ol
lis

io
ns

fcLSH
LSH δ=0.1

24 25 26 27 28 29
Radius (r)

(d) Enron (partition = 3)

0

2

4

6

8

10

C

ol
lis

io
ns

×104

fcLSH
LSH δ=0.1

2 3 4 5 6 7
Radius (r)

(e) MovieLens (partition = 1)

0

1000

2000

3000

C

an
di

da
te

s

fcLSH
LSH δ=0.1

8 9 10 11 12 13
Radius (r)

(f) MovieLens (partition = 2)

0.5

1

1.5

2

2.5

C

an
di

da
te

s

×104

fcLSH
LSH δ=0.1

15 16 17 18 19 20
Radius (r)

(g) Enron (partition = 2)

0

500

1000

1500

2000

C

an
di

da
te

s

fcLSH
LSH δ=0.1

24 25 26 27 28 29
Radius (r)

(h) Enron (partition = 3)

1000

2000

3000

4000

5000

6000

C

an
di

da
te

s

fcLSH
LSH δ=0.1

Figure 7: Comparison of the number of collisions and distinct candidate set size between fcLSH and classic
LSH with δ = 0.1 on two data sets: MovieLens and Enron.

2 3 4 5 6 7
Radius (r)

(a) MovieLens (partition = 1)

0

50

100

150

200

250

300

350

400

C
P

U
 T

im
e

(m
s)

LSH δ=0.1
bcLSH
fcLSH

8 9 10 11 12 13
Radius (r)

(b) MovieLens (partition = 2)

50

100

150

200

250

300

350

400

450

500

C
P

U
 T

im
e

(m
s)

LSH δ=0.1
bcLSH
fcLSH

15 16 17 18 19 20
Radius (r)

(c) Enron (partition = 2)

0

100

200

300

400

500

600

C
P

U
 T

im
e

(m
s)

LSH δ=0.1
bcLSH
fcLSH

24 25 26 27 28 29
Radius (r)

(d) Enron (partition = 3)

0

50

100

150

200

250

300

350

C
P

U
 T

im
e

(m
s)

LSH δ=0.1
bcLSH
fcLSH

Figure 8: Comparison of CPU Time (ms) per query of 3 approaches: fcLSH, bcLSH, and classic LSH with
δ = 0.1 on two data sets: Movielens and Enron.

Table 4: Recall ratios on Movielens

Radius 3 4 5 6 7
fcLSH 1 1 1 1 1

Classic LSH 0.97 0.99 0.99 0.98 0.98

r = 2 − 7 and r = 8 − 13, respectively. Since the Enron
data set is rather small, we can use 3 partitions and mea-
sure the performance of fcLSH with radius up to 29. It is
worth noting that the data sets are very high-dimensional
and distance computation is time consuming, the cost Ccheck

dominates the cost Clookup. Hence, we focused on discussing
#Candidates and CPU Time (ms) per query of the 3 ap-
proaches. We again used #Collisions and #Candidates to
measure the costs Clookup and Ccheck, respectively, of the 3
approaches, as shown in Figure 7. This result again supports
our theoretical comparison of fcLSH to classic LSH. #Candi-
dates of CoveringLSH is slightly smaller than classic LSH
in the case of 1 partition on MovieLens but up to 3 times
larger when using 2 and 3 partitions on Enron.

Figure 8 shows superiority of fcLSH to bcLSH with re-
spect to the CPU time in milliseconds due to the fast hash
computation time on the two data sets. On the MovieLens

data set, fcLSH is faster than classic LSH with 1 partition
but is slower with 2 partitions. This is because #Candidates
provided by fcLSH using 2 partitions is approximately twice
larger than that of classic LSH. However, on the Enron data
set, fcLSH outperforms classic LSH even though it uses par-
titioning trick. This is due to the fact that #Candidates

on Enron is rather small and the hash computation time
dominates the total running time. In conclusion, fcLSH is
favorably compared to classic LSH but is superior to both
MIH and bcLSH in settings requiring precise performance
guarantees.

5. RELATED WORK
Due to the“curse of dimensionality”, one typically uses lin-

ear search for (exact) near neighbor search in high-dimensional
Hamming space [24, 30, 36]. To trade precision for speed,
approximate retrieval is widely investigated in the research
literature, and LSH [15] is a widely used technique due to its
attractive “tradeoff”between time and space. However, false
negatives findings limit the applicability of LSH in settings
requiring precise performance guarantees.

Recently, Norouzi et. al. [25] proposed the MIH approach
which partitions each data vector to reduce the search radius,

and then applies exhaustive search. Although the MIH ap-
proach has sub-linear running time behaviour for uniformly
distributed data sets, it does not work well in general. This is
because its performance relies on the ability to select a small
number of random bit positions (around log n) for which
there are almost no collisions between the query point and
points in the data set – an assumption that is not true in
general. An approach similar to MIH was taken in [18], with
the same vulnerability. We have chosen to compare against
MIH as a representative of these schemes.

Arasu et al. [2] proposed the idea that randomly permut-
ing the dimensions of data vectors increases the robustness of
partitioning, and make performance guarantees possible for
data sets that are not uniformly distributed. They combined
this idea with another level of partitioning within which a
“brute force” r-cover is found. For r > 2 the scheme is never
better than CoveringLSH [27]. In the case of a single parti-
tion the number of hash values needed by [2] is

(
2r
r

)
≈ 4r/

√
r,

which is much larger than 2r+1 required by our Hadamard
code-based method for the same filtering efficiency. In the
case of several partitions, Arasu et al. leave it unspecified
how to best choose the parameters of their method, so it is
really a family of methods. For these reasons we have not
implemented this method.

6. CONCLUSIONS
This paper proposes Fast CoveringLSH, a fast and practi-

cal LSH scheme for Hamming space. Inheriting the design
benefits from CoveringLSH, our method avoids false nega-
tives and always reports all near neighbors. Our main tech-
nical contribution is asymptotic improvement to the hash
function computation time from O (dL) to O (d+ L logL),
for d dimensions and L hash tables. Our experiments on
synthetic and real-world data sets demonstrate the efficiency
of fcLSH in comparison with traditional hashing-based ap-
proaches for search radius up to 20 in high-dimensional Ham-
ming space.

An obvious open direction is to extend our work to other
spaces or similarity measures, aiming at rigorous performance
guarantees without false negatives. Since the recent cover-
ing LSH framework demands a large number of hash tables
for large radii, another interesting question would be to re-
duce the space usage to linear (or near-linear) in the data
size while maintaining the property of total recall.

7. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 2008.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

[3] M. Bawa, T. Condie, and P. Ganesan. LSH forest:
self-tuning indexes for similarity search. In WWW,
2005.

[4] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations (extended abstract). In STOC, 1998.

[5] L. Carter and M. N. Wegman. Universal classes of
hash functions (extended abstract). In STOC, 1977.

[6] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, 2002.

[7] A. S. Das, M. Datar, A. Garg, and S. Rajaram.
Google news personalization: Scalable online
collaborative filtering. In WWW, 2007.

[8] A. Dasgupta, R. Kumar, and T. Sarlós. Fast
locality-sensitive hashing. In KDD, pages 1073–1081,
2011.

[9] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SOCG, 2004.

[10] J. Gan, J. Feng, Q. Fang, and W. Ng.
Locality-sensitive hashing scheme based on dynamic
collision counting. In SIGMOD, 2012.

[11] J. Gao, H. V. Jagadish, B. C. Ooi, and S. Wang.
Selective hashing: Closing the gap between radius
search and k-nn search. In KDD, 2015.

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In VLDB, 1999.

[13] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik.
Learning binary codes for high-dimensional data using
bilinear projections. In CVPR, 2013.

[14] M. R. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR, pages
284–291, 2006.

[15] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC, 1998.

[16] H. Jégou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. TPAMI,
2011.

[17] P. Li and C. König. b-bit minwise hashing. In WWW,
2010.

[18] A. X. Liu, K. Shen, and E. Torng. Large scale
Hamming distance query processing. In ICDE, 2011.

[19] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen.
SK-LSH: an efficient index structure for approximate
nearest neighbor search. PVLDB, 2014.

[20] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: efficient indexing for
high-dimensional similarity search. In VLDB, 2007.

[21] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In WWW, 2007.

[22] M. Minsky and S. Papert. Perceptrons - an
introduction to computational geometry. MIT Press,
1987.

[23] M. Mitzenmacher, R. Pagh, and N. Pham. Efficient
estimation for high similarities using odd sketches. In
Proc. WWW, pages 109–118, 2014.

[24] M. Norouzi, D. J. Fleet, and R. Salakhutdinov.
Hamming distance metric learning. In NIPS, 2012.

[25] M. Norouzi, A. Punjani, and D. J. Fleet. Fast exact
search in Hamming space with multi-index hashing.
TPAMI, 2014.

[26] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower
bounds for locality-sensitive hashing (except when q is
tiny). TOCT, 6(1):5, 2014.

[27] R. Pagh. Locality-sensitive hashing without false
negatives. In SODA, 2016.

[28] R. Panigrahy. Efficient hashing with lookups in two
memory accesses. In SODA, 2005.

[29] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier.
Large-scale image retrieval with compressed fisher

vectors. In CVPR, 2010.

[30] R. Salakhutdinov and G. Hinton. Semantic hashing.
Int. J. Approx. Reasoning, 2009.

[31] V. Satuluri and S. Parthasarathy. Bayesian locality
sensitive hashing for fast similarity search. PVLDB,
2012.

[32] A. Shrivastava and P. Li. Asymmetric LSH for
sublinear time maximum inner product search. In
NIPS, 2014.

[33] M. Slaney, Y. Lifshits, and J. He. Optimal parameters
for locality-sensitive hashing. Proceedings of the IEEE,
2012.

[34] N. Sundaram, A. Turmukhametova, N. Satish,
T. Mostak, P. Indyk, S. Madden, and P. Dubey.
Streaming similarity search over one billion tweets
using parallel locality-sensitive hashing. PVLDB, 2013.

[35] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
efficiency in high dimensional nearest neighbor search.
In SIGMOD, 2009.

[36] A. Torralba, R. Fergus, and Y. Weiss. Small codes and
large image databases for recognition. In CVPR, 2008.

[37] R. Weber, H. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB, 1998.

[38] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In NIPS, 2008.

[39] F. X. Yu, S. Kumar, Y. Gong, and S. Chang.
Circulant binary embedding. In ICML, 2014.

[40] L. Zhang and Y. Rui. Image search—from thousands
to billions in 20 years. ACM Trans. Multimedia
Comput. Commun. Appl., 2013.

