
Future Generation Computer Systems

A Reference Architecture for provisioning of Tools as a Service:
Meta-model, Ontologies and Design Elements
Muhammad Aufeef Chauhan a,∗, Muhammad Ali Babar a,b, Quan Z. Sheng b

a Software and Systems Section, IT University of Copenhagen, Copenhagen, Denmark
b The University of Adelaide, Adelaide, Australia

Keywords:
Cloud computing
Software reference architecture
Tools as a Service (TaaS)
Meta-model
Ontologies

a b s t r a c t

Software Architecture (SA) plays a critical role in designing, developing and evolving cloud-based
platforms that can be used to provision different types of services for consumers on demand. In this
paper, we present a Reference Architecture (RA) for designing cloud-based Tools as a service SPACE
(TSPACE), which can provision a bundled suite of tools following the Software as a Service (SaaS) model.
The reference architecture has been designed by leveraging information structuring approaches and by
using well-known architecture design principles and patterns. The RA has been documented using view-
based approach and has been presented in terms of its context, goals, the RA meta-model, information
structuring and relationship models using ontologies and components of the RA. We have demonstrated
the feasibility and applicability of the RA with the help of a prototype and have used the prototype to
provision software architecting tools. We have also evaluated the RA in terms of effectiveness of the
design decisions and the RA’s completeness and feasibility using scenario-based architecture evaluation
method. The proposed TSPACE RA can provide valuable insights to information structure approaches and
guidelines for designing and implementing TSPACE for various domains.
1. Introduction

Provisioning of tools in a Tools as a service SPACE (TSPACE)
instance and providing support for the different activities and tasks
during lifecycle of a TSPACE instance is not trivial. TSPACE can
consist of a number of tools that can be used to perform various
activities related to software architecting. To provision the tools for
the end users, TSPACE not only requires facilitating the selection
and provisioning of the tools but also needs to provide seamless
operations of the tools in terms of distribution of the activities
over various tools and integration among the artifacts that are
generated and maintained by the tools. Multiple vendors using
different technology paradigms and using different programming
languages can provide the tools to be provisioned by TSPACE.
For example, majority of the tools that are used for architecture
modeling such as Microsoft Visio1 and ArgoUML2 are developed

∗ Corresponding author.
E-mail addresses: muac@itu.dk (M.A. Chauhan), ali.babar@adelaide.edu.au

(M.A. Babar), michael.sheng@adelaide.edu.au (Q.Z. Sheng).
1 www.microsoftstore.com/Visio.
2 http://en.wikipedia.org/wiki/ArgoUML.
on top of desktop-based paradigm. The desktop and cloud-based
word processing tools (e.g., Microsoft Office Suite3 and Google
Docs4) and specialized Web based applications (e.g., PakMe [1])
can be used for architecture documentation (architecture scenario
description, architecture significant requirements elicitation and
architecture design decisions documentation). Heterogeneous
technological paradigms and involvement of multiple vendors
highlight the importance of having a gluing mechanism that can
facilitate the selection of appropriate tools from a pool of available
tools and can support a seamless integration among the selected
tools. Involvement of the heterogeneous tools requires a solution
that is applicable and extendable for various types of the tools,
irrespective of the technological paradigms and the tools’ vendors.

We have leveraged semantic integration technologies for ad-
dressing the abovementioned challenges of hosting and provision-
ing tools as services. We have proposed ontologies for TSPACE.
The use of ontologies in a specific domain can provide a power-
fulmechanism to semantically relate unstructured information [2].

3 www.microsoft.com/Office.
4 docs.google.com.

http://dx.doi.org/10.1016/j.future.2016.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.12.002&domain=pdf
mailto:muac@itu.dk
mailto:ali.babar@adelaide.edu.au
mailto:michael.sheng@adelaide.edu.au
http://www.microsoftstore.com/Visio
http://en.wikipedia.org/wiki/ArgoUML
http://www.microsoft.com/Office
http://www.docs.google.com


Ontologies also facilitate communication, integration and reason-
ing [2]. Our ontology-based solution enables the provisioning of
Tools as a Service (TaaS) for performing different activities using
appropriate tools hosted on clouds without requiring the individ-
ual tools to focus on how to relate the artifacts and data acrossmul-
tiple tools. The users (stakeholders) can choose a set of tools to per-
form specific activities using the selected tools. The selection of the
relevant tools can be based on a number of reasons including but
not limited to organizational policies, stakeholders’ preferences for
the tools, the tasks and the activities related to the projects that are
to be performed using the tools, and process requirements of the
projects. Restricting stakeholders to a specific set of tools is not a
viable solution for performing complex activities. If the projects’
stakeholders have the flexibility to choose from a set of tools, the
provisioningmechanismneeds to provide a flexibleway to support
tools selection from the set of tools according to the desired needs
as well as to provide inter tool integration so that the artifacts that
are produced or consumed in one tool can be related/integrated
with the artifacts that are being maintained in other tools. The in-
tegration mechanism should also provide a support for additional
collaboration and awareness activities among the users who per-
form the activities using the different tools.

Our proposed ontologies provide solution to three main
lifecycle phases of the TSPACE. Firstly, the solution supports
selection of the tools that are to be provisioned as part of the
TSPACE. Once TSPACE is enacted, the solution provides support for
semantic integration among the heterogeneous artifacts that are
produced andmaintainedusing different tools. Finally, the solution
provides support for awareness of the activities that are performed
by the stakeholders using the different tools. The awareness
mechanism encompasses the activities that are performed on the
semantically related artifacts and any conflicts that can occur as
a result of the activities. However, as software architecting is a
highly complex domain, our proposed approach can only partially
automate the conflict identification mechanisms by identifying
the potential areas of conflicts. The stakeholders working on the
artifacts using different tools have to make the final decisions. The
main contributions of the research reported in this article are:

• The TSPACE ontologies that can be used to capture concepts
of TSPACE, including Capability Ontology, Tools and Artifacts
Ontology, Change Ontology and Annotation Ontology.

• A meta-model to characterize TSPACE and to design concrete
architecture for providing TSPACE, and the structure of a set of
ontologies that formalizes the tools selection, tools provisioning
and semantic integration among the artifacts consumed or
generated by the hosted tools.

• A detailed description of the TSPACE Reference Architecture
(RA) by using multiple levels of abstractions [3] and rationaliz-
ing the incorporation of different modules and components in
the RA that are described in terms of development view, logical
view, process view and deployment view as recommended by
view based approaches [3].

• A detailed description of the use of well-known design
principles and architectural patterns [4] for designing and
reasoning architectures for TSPACE and a selected set of
potential solutions to implement the RA.

The organization of the remainder of this paper is as follows.
Section 2 describes the TSPACE RA requirements and documenta-
tion approach. Section 3 provides details on the TSPACE RA devel-
opment approach and architecture meta-model. Section 4 elabo-
rates the TSPACE ontologies and Section 5 provides details on the
TSPACE RA design. Section 6 presents an overview of TSPACE pro-
totype alongwith details on evaluation. Section 7 discusses related
work and Section 8 concludes the paper.
2. TSPACE RA requirements and documentation approach

This section presents a brief background, functional and non-
functional requirements of the TSPACE RA. Our research on TSPACE
has been motivated by the need to provide a workspace where all
the required tools can be bundled in a tools suite and provisioned
as a service. The TSPACE purports to enable user(s) to have on
demand provisioning of tools and semantically integrated artifacts
in a Just-in-Time (JIT) fashion. The functional requirements are the
functionalities that should be supported and the non-functional
requirements are the quality attributes that should be achieved by
the design of a TSPACE RA. The reported requirements are based on
our previous work on a TaaS infrastructure [5] and a review of the
literature on important quality characteristics of the cloud-based
systems [6].

2.1. Functional requirements

We have identified the Functional Requirements (FRs) based
on the key features required by the RA according to different
lifecycle phases of a TSPACE, i.e., tools enactment and provisioning,
semantic integration among the artifacts associated with tools
after enactment and awareness of the stakeholders’ activities
during tools’ lifecycle. Following are the functional requirements
that have been enhanced based on our earlier work [5] in this line
of research.
• FR1—Enactment and provisioning of a TSPACE and associated tools

according to the requirements of different activities of a project:
While provisioning tools, the architectural support should
also consider the specific location and resource requirements’
parameters of the tools.

• FR2—Semantic integration among artifactsmaintained by the tools
constituting a TSPACE after enactment: The TSPACE consists of
multiple tools that may have their proprietary formats to store
artifacts. The TSPACE architecture should support semantic
integration among artifacts generated and maintained by the
different tools.

• FR3—Process centric integration to support collaboration among
the tools: The tools provisioned by TSPACE can also require
alignmentwith organizational process and required support for
process centric collaboration among the tools so that artifacts
can be exchanged by the tools following specific processes.

• FR4—Awareness of the operations that are performed on the
artifacts during the lifecycle of a TSPACE instance using multiple
tools: Multiple artifacts are produced or consumed during the
lifecycle of a specific project for which a TSPACE is instantiated.
Hence, there is a need to raise awareness about users’ activities
associated with the operations that are performed on the
artifacts.

2.2. Quality requirements

The quality (i.e., non-functional) requirements of a system
are classified into two categories: (i) design time requirements
that are discernable while a system is being designed and (ii)
runtime requirements that are discernable once a system is
operational [7,8]. The following are the design time and runtime
quality requirements for a TSPACE:
• QR1—Automated Provisioning: A RA shall support automated

provisioning of a TSPACE so that the required tools can be
acquired automatically for a project based on the constraints
on the location of the tools.

• QR2—Flexibility: As selection of the tools in a specific instance of
a TSPACE depends upon the activities to be performed within
a project, a RA shall be flexible enough to provide semantic
integration, awareness and traceability support for different
types of the tools.



 

Table 1
Reference architecture documentation requirements and the corresponding solutions.

Dimension Sub-dimension TSPACE Solution

Context Who defines it? It is defined as a part of a research project.
Where will it be used? It aims to facilitate implementation and evaluation of a TSPACE for industrial trials.
What is the maturity stage of the domain? The corresponding architecture domain is considered as preliminary because to the best of our

knowledge, comprehensive solutions are not yet available.

Goal Why is it defined? It aims to facilitate the design of a concrete TSPACE by providing the development, logical, process
and deployment views of the RA.

Design What is described? The RA is described in terms of high-level modules, connectors, details of the modules in terms of
components using multiple views and design principles of the RA.

How is it described? It is described using textual description and diagrams.
How is it represented? We have shown high-level representations using semi-formal approaches with the help of lines and

boxes, and have described details using UML diagrams.

Instantiation How is it instantiated? We have evaluated the instantiation of the RA by building a prototype.

Evaluation How is it evaluated? We have evaluated the RA using scenarios for functional requirements and quality parameters; and
assessed its feasibility by implementing a prototype.
• QR3—Interoperability: A RA shall provide semantic integration,
awareness, and traceability support for different types of
artifacts (e.g., knowledge management, textual documentation
and UML modeling tools used for software architecture related
activities).

• QR4—Completeness, Feasibility and Applicability: Bass et al. [7]
have presented a number of general quality requirements in-
cluding completeness, feasibility and applicability. Complete-
ness of a TSPACE RA is important so that it can serve as a guid-
ingmodel for designing a specific instance of a TSPACE. It should
be feasible that a RA is implementable. The applicability qual-
ity characteristic is also important so that a RA can be used to
design and evaluate a concrete architecture of a TSPACE.

• QR5—Modifiability and Integration: The tools associated with
a TSPACE may come from different vendors. Those tools can
be provisioned using public, private or hybrid deployment
models. Hence, a RA shall support modifiability and seamless
integration among different modules of a TSPACE with the
provisioned tools that can be provided by different vendors.

• QR6—Multi-tenancy: Being a Cloud-based infrastructure, a
TSPACE needs to be a multi-tenant platform (with architectural
support). Each TSPACE instance can have its own set of tools and
rules for awareness and traceability. A particular tenant should
be able to access all its specified features and configurations.

2.3. Reference architecture documentation requirements

Since a RA provides valuable guidelines for designing a concrete
architecture, it is important to describe a RA as comprehensively
as possible and in an easy-to-understandmanner. We describe the
proposed RA using a systematic approach that advocates the use
of context, goal and design dimensions of a RA [9,10]. The context
dimension covers the purpose, the development organization, and
maturity stage (e.g., preliminary or classic) of a RA [9]. The goal
dimension encompasses business goals and quality attributes as
well as the purpose of defining a RA (e.g., to standardize concrete
architecture or to facilitate design of concrete architecture). The
design dimension elaborates whether the RA is concrete or
abstract; and whether the RA has been described using formal,
semiformal or informal approaches. Avgeriou et al. [10] propose
that a RA description should address three main constituents:
(i) description of the approach used to document the RA, (ii)
guidelines on instantiation of the RA, and (iii) evaluation of the RA
corresponding to desired quality attributes. Table 1 lists different
dimensions of the RA documentation and our proposed TSPACE
solution.
Fig. 1. TSPACE meta-model.

3. TSPACE reference development approach and architecture
meta-model

One of the core elements of the proposed reference architecture
is a meta-model, which characterizes the elements of a TSPACE
and the relations among the elements (Fig. 1). TSPACE meta-
model drives the detailed design of TSPACE reference architecture.
Since we intend to concretize the TSPACE reference architecture
for software architecting domain, we have decided to develop
TSPACE meta-model by following and extending the conceptual
meta-models of architecture description provided by IEEE 1471-
2000 [11] and ISO/IEC/IEEE 42010:2011 [12]. The extended TSPACE
meta-model is shown in Fig. 1. The meta-model shows an abstract
TSPACE and its specialization for architecting TSPACE (i.e., TSPACE
instance for the tools that are used for software architecting
activities). TSPACE meta-model provides a reference points for
detailed design of the TSPACE ontologies (to be described in
Section 4) and TSPACE RA (to be described in Section 5).

The details on different elements of the meta-model are as
follows. A user (tenant) can associate the required tools with a
TSPACE in twoways: (i) the tools can be provisioned by third party
vendors and are integrated with TSPACE via plug-ins, and (ii) the
TSPACE enacts the required tools and hosts them on the virtual
machines. As a result, TSPACE consists of two types of repositories,
namely tools repositories and virtual machine repositories on
which tools can be hosted. The hosted tools provide different types
of features and support different types of quality characteristics
(e.g., scalability and availability). In the meta-model, the features



and quality characteristics of the tools are represented as tools’
capability. The hosted tools provide support for different types of
activities and sub-tasks of those activities. Each tool can enable a
user to work on the required artifacts that may be in a standard
format such as UML models or a tool’s proprietary format.

As previously stated, a project’s stakeholders usually work
with multiple tools provided by commercial vendors or Open
Source community. These tools need architecture level support
for interoperability so that the artifacts produced in different
formats (texts, diagrams, standardized formats and proprietary
formats) can be integrated with each other. We have proposed to
leverage semantic technologies for tools integration; however, our
solution needs to be complemented by appropriate architecture
abstractions for information discovery from tools. The architecture
of a TSPACE also needs to have a set of rules to support
collaboration, awareness of the operations performed on the
artifacts and information discovery of the related artifacts as a
project’s stakeholders usually perform different activities using
multiple tools. The meta-model in Fig. 1 shows a specialization
of a TSPACE for the software architecting tools. As shown in
the figure, an instantiation of a TSPACE for a specific domain
may require additional concepts such as architecture viewpoints
and architecture views as in the case of software architecting
TSPACE. Hence, the TSPACE reference architecture meta-model
also provides flexibility to incorporate additional concepts by
supporting dynamic composition and aggregation of different
concepts in a TSPACE.

4. TSPACE ontologies

As described in the introduction that our research on TSPACE
has been motivated by the need of having an easy and on demand
access to tools required for performing specific activities associated
with software architecting (e.g., architecture documentation and
architecture modeling). Some of the advantages of TSPACE
include provisioning of tools for specific needs of a project, tools
alignment to organizational processes, support for organization
wide collaboration and awareness of the operations that are
performed on the artifacts using the tools, and support to work
with decentralized artifacts using the tools [5]. The key quality
requirements of TSPACE require support for bundling multiple
tools together in a suite because different stakeholders may
have different requirements of tools to perform specific activities.
In order to provision TaaS, TSPACE should provide support for
mechanisms through which (i) capabilities (functional and non-
functional characteristics) supported by the tools and required by
the stakeholders can be captured, (ii) related artifacts and data
elements maintained among different tools can be associated with
each other, and (iii) an awareness mechanism through which
notifications of operations and changes can be propagated across
tools, which are provisioned as a part of TSPACE.

An ontology is defined as ‘‘a formal and explicit specification
of a shared conceptualization’’ and consists of shared vocabulary
that can be used to model a specific domain [13]. Ontologies are
widely used to define semantic relationships among data and to
maintain knowledge of semantic relationships. The knowledge is
often maintained using Web-based application such as Semantic
Wikis [14]. Annotating digital documents is a common strategy
to adapt digital documents to the Web [15]. Ontologies are an
effective way of modeling, sharing and reusing organizational
knowledge [16].

In our work, the proposed TSPACE ontology model consists of
four specializations and it is represented with 4-tuple elements:

TspaceOnt = ⟨CapOnt,ArtToolOnt, ChaOnt,AnnOnt⟩.
A brief description of each specialization is as follows:

• Capability Ontology (CapOnt) is used to capture capability of
individual tools (functional and non-functional features) that
can be provisioned in a TSPACE instance and to capture
users’ requirements of the functionality from a TSPACE
instance. CapOnt is also used to instantiate underlying ontology
model with respect to the tools that are provisioned in a
TSPACE instance. The tools bundling is achieved by matching
tools supported capability with the stakeholders’ (end users)
required capabilities.

• Artifacts and Tools Ontology (ArtToolOnt) is used to establish
relationships among the artifacts, activities, tasks, and the tools
that are used to perform activities and tasks.

• Change Ontology (ChaOnt) complements ArtToolOnt and moni-
tors and tracks changes on a single content element (CE) in a
TSPACE instance.

• Annotation Ontology (AnnOnt) also complements ArtToolOnt.
AnnOnt acts in the context of multiple artifacts. AnnOnt is used
to annotate artifacts that are produced or consumed in a TSPACE
instance, establish relationships between multiple artifacts,
monitor changes that are performed and analyze impact of
changes among the artifacts (that are triggered as a result of the
stakeholders’ activities and operations on the artifacts).

While ArtToolOnt establishes and manages relationship among
the artifacts, activities and tools, ChaOnt and AnnOnt take care
of the activities that are performed on the artifacts using the
tools in a TSPACE instance. The details of the ontologies and their
constituting elements are to be described in the following sections.

The strategy to build ontologies for a specific domain is
a critical step. Two different approaches are used to build
ontologies: manual and automated [17]. The manual approach is
based on expert knowledge whilst the automated approach is
based on information extraction and natural language processing
techniques [17]. The automated ontology generation approach is
used to extract concepts from the data and structure the concepts
in hierarchical order [18], however the automated techniques
cannot be used to identify the complex relations between the
concepts associated with a particular domain.

Because of the complex nature of the activities involved in soft-
ware architecting and the relationship between the artifacts and
different elements of the artifacts, we have to adopt a combination
of manual and semiautomated ontology building approaches. We
have identified high-level core concepts and relationships between
the conceptswith the help of software architecture documentation
domain model. We have also leveraged our experiences with de-
signing architectures of the software systems to refine the concepts
extracted fromdomainmodel. The specializations of the high-level
core ontology concepts are populated using semi-automated tech-
niques as artifacts are produced in a specific instance of TSPACE
using respective tools. The relationship between the specializa-
tion of a dynamically identified concept or content element (CE)
is same as of its abstract parent with other concepts or CEs. As
in this paper, we focus on software architecting domain, and our
abstract ontology model is based on conceptual architecture doc-
umentation meta-models IEEE 1471-2000 [11] and ISO/IEC/IEEE
42010:2011 [12]. We have followed a bottom up approach to de-
velop ontologies for the TSPACE.Wehave analyzed Software Archi-
tecting domain using the conceptual meta-models of architecture
description.We have tailored and extended the conceptualmodels
for TSPACE by incorporating TSPACE’s specific functional and *aaS
model requirements.



4.1. TSPACE ontologies details

This section describes the details of the proposed TSPACE
ontologies and elaborates the context in which the ontologies
can be used. We also describe the algorithms that are proposed
to complement the ontologies and to raise awareness of the
activities and operations that are performed on the artifacts by
the users in a TSPACE instance. An activity may be performed
by using several tools, whose selection depends upon a number
of factors including project and organizational requirements. It is
vital to establish semantic relations between artifacts consumed
or created by different tools to support users performing different
tasks associated with an activity usingmultiple tools. For example,
software architecture design and documentation activity requires
the use of tools to document and design different aspects of
software architecture such as documentation of architecture
design decisions [7], tradeoffsmade during the design, architecture
patterns and styles [19] that are chosen to implement the design
decisions and models of the architecture using different views [3].
It is important to have a consolidated view of different activities
carried out using different tools. The activities, tasks and artifacts
should be linked to a TSPACE instance for establishing and
maintaining relations among them.

There are some important aspects of the activities and the
processes that need to be consideredwhile defining ontologies and
annotation. Artifacts and process, reuse and management should
be treated as a process not as an event [20]. There is also a
need to record and track actions and events throughout software
engineering process [20]. Process, task and product knowledge are
considered key elements to reuse system design [21]. An ontology
to support artifacts and information (knowledge) discovery should
track different activities performed and should support on
demand information discovery according to desired parameters.
Structuring information at different levels of abstraction using
ontology concepts and relationships between them using ontology
annotation is also an important factor to consider [22]. It facilitates
information discovery and analysis. In the following subsections,
we describe in details of 4-tuple elements of TspaceOnt.

4.1.1. Capability ontology (CapOnt)
The capability ontology captures the capabilities of individual

tools and users’ (stakeholders’) requirements of a specific TSPACE
instance. Attributes of the capability ontology are presented in
Fig. 2. The capability ontology provides a map between the
stakeholders’ requirements of the features required from a TSPACE
instance and the features supported by the tools available for
provisioning by TSPACE. If an exact match cannot be found, the
capability ontology can be used to provide the closest match
to the desired requirements and provision TSPACE accordingly.
Capability ontology corresponding to each tool consists of two
constituents. Functional capability captures activities, tasks and
artifact types supported by the tools or required by the users.
Non-functional capability deals with quality requirements and
deployment preferences of the tool. Roots of functional and non-
functional capabilities are associated with TSPACE with capableOf
relationship. The members of functional and non-functional
capabilities are associated with root elements with the support
relationship.

Fig. 2(a) shows meta-structure of the capability ontology.
TSPACE consists of multiple tools that are available for provision-
ing. Each tool has the capability to provide a number of features
(e.g., support for specific types of activities and tasks such as archi-
tecture documentation and providing support for certain types of
artifacts such as Unified Modeling Language diagrams) that is rep-
resented as Functional Capability and has a capability to provide a
number of runtime quality attributes (such as secured access, sup-
port formulti-tenancy and location specific enactment) that is rep-
resented as Quality Capability.

Fig. 2(b), (c) and (d) show the capabilities of three examples
of tools used for commonly performed software architecting
activities, i.e., architecture documentation (word processing tools
and spreadsheet), architecture knowledge management tools
(PAKME [1]) and architecture modeling tools (Microsoft Visio). In
the diagrams, only some of the functional and quality capabilities
are presented. Individual capabilities of the tools are combined
to formulate the aggregated capability of TSPACE, as shown
in Fig. 2(e). The aggregated capability ontology shows the
overall capability of the tools (including the features and quality
characteristics) that can be provisioned in a specific TSPACE
instance. In the diagrams, we have only shown one tool of each
kind. However, there can be multiple tools of the same type
that support different features and can operate under desired
runtime quality parameters (non functional requirement). The
capability ontology structure presented in Fig. 2(a) can also be
used to seek input of the users required capabilities in a TSPACE
instance. Fig. 2(f) shows an example of an enduser’s (stakeholder’s)
requirement of a TSPACE instance. The aggregated capability
ontology is used to find out the match of the tools available
for provisioning with the required tools using the corresponding
capability ontologies.

The approach for matching stakeholders’ tools requirements
with the tools available for provisioning is described in Algorithm
1. The match is established by taking intersection of the required
capabilities with tools’ (that are available for provisioning)
supported capabilities. Capability ontology can be used to find
toolsmatch for two categories of tools: (i) the tools that are enacted
and provisioned by TSPACE as part of a TSPACE instance on public
or private IaaS cloud and (ii) the tools that are enacted by third
party tool providers and are integrated with a TSPACE instance
by providing support for data integration using TSPACE semantic
model that is based on the ontologies.

To rank the tools according to their suitability with a desired
capability of the tools, Analytical Hierarchical Process (AHP) [23] is
applied as shown in the following formula.

Rank Score of Tooli =

N
j=1

Wij ∗ Propertyij

Propertyi represents a set of features or a quality that a tool i
supports. Value of j ranges from 1 to N , representing the indexes
of the properties set (Propertyi). Value at index j of Propertyi set
is 1 if a feature corresponding to index i is supported by the tool,
otherwise its value is zero.Wi is a set of weights for a tool i. Weight
value at index i of set Wi can be one of 0, 3, 5, 7 and 9 where zero



Fig. 2. Capability ontology structure.
indicates not important and nine indicates very important. Tools
providing a closer match with the desired features and qualities
have a higher rank score.

Registering the tools with the platform can be a challenging
task because of the possibility to provision a large number of
locally enacted and third party provided tools. Manual registration
of the tools with TSPACE may not be feasible to offer the tools
as a service model, especially when third party *aaS model
tools are to be integrated with TSPACE. The capability ontology
of each tool (functional/quality feature set) can be populated



Fig. 3. TSPACE abstract tool and artifact ontology.
manually by looking into features and quality characteristics that
are supported by the tool or with the help of an automated crawler
using term frequency and inverse document frequency technique
(TF/IDF) [18].

4.1.2. Ontologies to manage relations among artifacts and relations
among artifacts and tools (ArtToolOnt)

The ontologies to manage the tools and the artifacts formally
describe the semantic model of tools and artifacts in a TSPACE
by defining possible types of TSAPCE elements (TE), content
elements (CE) and relation elements (RE). TEs describe the
concepts associated with TSPACE, tools that constitute a TSPACE,
and activities and tasks that are performed using the tools. CEs
describe the concepts that determine elements of artifacts’ logical
structure with respect to different types of the tools used in a
TSPACE instance. REs describe relationships among TEs and CEs
in a logical structure Fig. 3 represents an abstract description of
the TSPACE ontologies and shows the relationship among themain
constituents of TSPACE including activities, sub tasks within the
activities, artifacts that are associated with the activities, different
parts of the artifacts and relationships among the artifacts. In
the diagram, the dark nodes represent TEs and the light nodes
represent CEs. Aggregation Content (AC) and Aggregation Item
(AI) are two core TSPACE elements. AC is root node of the
TSPACE ontology. AC defines the logical structure of the elements
of the TSPACE (e.g., architecture design space) and establishes
a relationship between AC and different instances of AI with
a contain property. AC represents a common root of TSPACE
that all instances of TSPACE belong to, whereas AI represents a
specific TSPACE instance. Content Unit (CU) is a representation of a
specific process that encompasses multiple activities that are to be
performed within that process, e.g., software architecture design
process or software architecture evaluation process.

Each activity consists of a number of tasks and each task can
involve users working on at least one artifact. The artifacts are
organized in hierarchy according to their specialized type and
are linked with the root artifact element. The artifacts can be
related with other artifacts. Each artifact has at least two elements
associated with it: (i) a unique identifier that identifies an artifact
in TSAPCE and (ii) contents of the artifact. The artifact contents
can havemultiple sub attributes. Description of the contents of the
artifacts include artifacts contents and structure, e.g., in the case
of a textual artifact it contains its textual contents, and in case
of a diagram e.g., UML class diagrams, it can contain ontologies
generated from UML or XMI of the corresponding UML diagram. If



Table 2
TSPACE relations to manage the tools and artifacts.

Relationship Description Relationship Description

hasPart Relationship between a child and parent content unit (CU)
such that only one of the children CU of its type can exist.

isAssociated Association relationship between two CEs that are at same
level of abstraction.

consistOf Relationship between a parent CU and a child CU. isAggregated Aggregation relationship between two CEs such that the one
being aggregated can exist without the aggregator.

contain Containment relationship between parent content element
(CE) and child CE such that parents and child are at different
levels of abstraction.

isComposite Composition relationship between two CEs such that the one
being composed cannot exist without the composer.

containedBy Containment relationship between child CE and parent CE. It
is inverse of the contain relation.

presentedAs Diagrammatic or textual representation of a CE by another CE
such that both are of different forms. E.g., one in textual and
other one in diagrammatic form.

specializationOf Specialization of a generalized CE into a specialized CE. representedAs Representation of one type of CE with another type of CE with
same form. E.g., using textual description.

has Association between an actor (stakeholder) and a CE. attribute An attribute of a CE that represents its property.
framedBy Containment relationship between a child CE and a parent CE

such that the parent CE consists of one or more child CE and
the parent CE is not valid until it has all of its children CEs.

support A particular view that is supported by the respective tool
e.g., a scenario view or a use case view.
the artifact has a metric used for its description, measurement for
the metric and its measurement unit, it can also be specified using
ArtToolOnt. Depending upon the nature of the artifact, the contents
of the artifacts can have additional attributes associatedwith them.
The relationships that may exist between different elements of
TSPACE are listed in Table 2 and are explained in the remainder of
this subsectionwith the help of ArtToolOnt in software architecting
domain.

The tools that are available for provisioning in TSPACE have
capabilities and can be based on different paradigms (e.g., desktop
based stand alone tools, Web based tools or the tools built using
service-based principles in which different components of the
tools can be dynamically composed and provisioned). The tools
have associated virtual machines that can be used to provision the
tools. Semantic integration among the artifacts in a TSPACE is also
required. Fig. 3 shows common concepts and interaction among
the concepts in TSPACE. As per the requirements of a specific
domain, there can be more concepts added in ArtToolOnt. For
example, in the software architecting domain, architecture views
and architecture viewpoints are used [7] and Representation Class
concept that is shown in Fig. 3 has two specializations including
Architecture Views and Architecture Viewpoints.

The abstract ontologies and the relationship between different
elements are explained with the help of TSAPCE ontology instance
for software architecting domain and are shown in Fig. 4.
Containment relationship between different types of elements of
TSPACE and the tools that contain the elements is established via
themaintainedBy property. Specializations of tools are represented
via the specializationOf property. Aggregation and specialization
relationships between TEs enable structuring of content elements
in the form of tree structures. The relationships also enable the
establishment of a link between content elements according to a
given criterion. AI maintains a reference to ContentUnits (CU) of
a TSPACE via consistOf property. A CU is a container for multiple
activities that are performed in a TSPACE. An activity may consist
of multiple tasks. In Fig. 4, Modeling, Knowledge, and Requirements
and Scenarios are examples of CUs. The relationship of an activity
or a task with CE is captured by the contain property.

Each CE describes a uniquely identifiable resource in a TSPACE
instance. The resources represent elements of TSPACE. These can
be extracted from a specific TSPACE instance and can be reused in
other TSPACE instances. In Fig. 3, Artifact, its specializations and its
sub-concepts are the examples of CEs. Fig. 4 shows an instance of
CEs with references to architecture design of the TSPACE. In Fig. 4,
each of the sub-concepts represents content elements at a high
level of abstraction with reference to architecture design of the
TSPACE and consists of multiple sub-elements. The relationships
between CU, main concepts and sub-concepts are establishedwith
the containproperty. Nested relationship among themain concepts
of the same type is established with the hasPart property. The
relationship between abstract concepts and their specializations is
established with specializationOf property.

The details of relations and specializations of CEs with refer-
ence to software architecture design of the TSPACE are shown
in Fig. 4 Requirements and Scenarios contain two primary sub-
concepts: quality attributes and architecture concerns. Quality at-
tributes may have many specializations. The specialization of
a quality attribute is represented via the specializationOf rela-
tionship. There can be nested specializations and can be repre-
sented via the specializationOf relationship. Architecture concerns
consist of description, metrics and metrics’ values. Architecture
concerns are framed by architecture viewpoint and are repre-
sented by the framedBy relationship. An architecture framework
aggregates architecture viewpoints. Aggregation relationship of
architecture framework with architecture viewpoint and corre-
spondence rules is represented via the isAggregated relationship.
Architecture knowledge contains architecture significant require-
ments and scenarios, quality attributes, design decisions, and
styles and patterns. Architecture knowledge can be classified into
four specializations: design knowledge, architecture knowledge,
realization knowledge and evolution knowledge. The specializa-
tion is represented as the specializationOf property.

There can be more specialization of architecture knowledge,
although they are not depicted in the figures. Architecture is
modeled using different views and is a representation of different
viewpoints. This relation is depicted as the representedAs property.
Views can be further specialized as process view, logical view,
physical view, deployment view and scenarios, as depicted in 4+1
view model [24]. We only represent the details of scenarios that
are indirectly linked via architecture viewpoints. Every specialized
view can be presented with one or more diagrams, and this
relationship is represented via the presentedAs property. There can
be general association between CEs or different elements of the
CEs; association of architecture styles and patterns with models
and diagrams. This type of general association is represented
by the associatedWith property. The high-level relationships of
ArtToolOnt ontologies discussed above are listed in Table 2.

4.1.3. Change ontology (ChaOnt)
The change ontology tracks changes in the TSPACE’s content el-

ements (CE) and relationship between CEs. We extend the change



Fig. 4. TSPACE tool and artifact ontology instance example.
Fig. 5. TSPACE change ontology.
ontology of the semantic document model reported in [17] for
the elements of TSPACE. Pictorial representation of the root-level
change ontology is presented in Fig. 5. The change ontology con-
sists of three main concepts: AggregationContentChange, Aggre-
gationItemChange and ContentUnitChange corresponding to Ag-
gregationContext, AggregationItem and ContentUnit respectively.
Every change creates a new version of the content element. Both
old and new versions of the changed content elements are stored,
and oldVersion and newVersion properties are used to capture the
changes in CEs. The properties are also used to link the old and
new versions of the content elements. The changes in the con-
tent elements are determined by comparing old and new ver-
sions of the elements. In order to capture modifications in a CE,
addedUnit and updatedUnit properties are used. Addition of a new
content element in the TSPACE is captured by addedUnit prop-
erty. Any change in the contents after first time addition is cap-
tured using updatedUnit property. The changes that emerge in the
structure of the architecture design space are managed by link-
ing instances of rdf:Graph data structure with the changed con-
tent element. The property hasAllChanges links AggregationCon-
tentChanges with AggregationItemChanges. The property referTo
links AggregationItemChanges to ContentUnitChanges.

4.1.4. Annotation ontology (AnnOnt)
One of the main objectives of our semantic model for TSPACE

is to enable discovery and access to artifacts corresponding to the
activity and to reuse of CEs. In order to enable discovery, access
and reuse of artifacts and their elements in TSPACE, we have
developed an annotation ontology that is presented in Fig. 6. We
have extended the annotation ontology of the semantic document
model reported in [17] for the TSPACE.
Our approach for enabling TaaS leverages annotation ontology,
for semantic integration among artifacts maintained by different
types of tools used in a specific instance of the TSPACE. The
annotation ontology supports plug-ins and data collection probes.
The plug-ins, add-ins and probes discover CEs at different levels of
abstraction with the help of Annotation Ontology. By introducing
Annotation Ontology, we aim to provide common high-level
concepts in terms of classes and provide methods for adding
annotations to CEs. Both classes and properties can be evolved
and extended dynamically at runtime to support multiple types
of tools in the design space. The ontologies for annotation
provide a mechanism to semantically relate data and artifacts.
Considering CEs of TSPACE and tools, we have identified two types
of annotations:

• Context-independent annotations corresponding to the content
elements that are independent of the artifacts and the tools.

• Context-dependent annotations corresponding to the content
units that are part of artifacts and the tool that is maintaining
the artifact.

Context Independent Annotation. Artifacts and Tools Ontology
that is discussed in Section 4.1.2 complements the annotation
ontology, which relates context free annotations to the instances
of content elements. ContentUnitAnnotation and hasAnnotation
rules are introduced in the ontology to bind metadata to content
elements. Semantic document model (SDM) to enhance data
and knowledge interoperability for text documents [17] has
identified three categories of context independent annotations (for
annotating the data and tracing the activities that are performed
on the data): standardized metadata, usage metadata and subject
metadata. Standardization depends upon the specific domain in



50
Fig. 6. TSPACE annotation ontology.
which the TSPACE is to be used; hence, in this paper we are only
dealing with usage metadata and subject specific metadata.

The Usage meta-data tracks operations on the artifact’s content
elements in the TSPACE. One of the goals to have the TSPACE
is to provide a customizable and semantically integrated suite
of tools by bundling multiple tools together [5]. There are four
main concepts and two properties associated with each concept.
Main concepts are Addition, Modification, Sharing, Reuse and
TraceLink. The concepts are associated with type of interaction,
stakeholder who is participating in the interaction and trace
links among artifacts and data that are affected as a result
of interaction. Addition concept represents addition of new
artifacts and data associated with the activity (e.g., architecture
design activity). Modification, Reuse and Sharing concepts track
information of interactive activities and applications through
which stakeholders are performing the activities. Every time a
stakeholder interacts with a CE associated with the artifacts,
the metadata is added to the CE. With the help of TraceLink
concept, the metadata is used to determine how the CEs are
linked to each other. Each concept has two properties: data and
information. ContentUnitAnnotation also has five properties that
are corresponding to aggregated information of each concept.
Aggregated information is maintained to have a consolidated view
of stakeholders’ activities on the artifacts that are being used
as part of an activity (e.g., software architecture design). Fig. 6
shows pictorial representation of annotation ontology and usage
metadata.
Context Dependent Annotation. This annotation is a representa-
tion of the content elements when these are parts of a specific
TSPACE. The annotation ontology relates the context dependent
annotations to AggregationItem (Fig. 3) concept defined by the
TSPACE ontology.We have introduced the DesignSpaceAnnotation
concept in our annotation ontology that acts as a metadata binder
for AggregationItem (Fig. 6). In order to facilitate binding opera-
tions, we introduce two new concepts in the annotation ontology:
(i) SemanticElement to extract the relationship between sub con-
cepts of AggregationItem according to defined queries and pro-
cedures, and (ii) TraceElement to identify dependencies and trace
links between content elements of the TSPACE.

4.2. Use of ontologies for notifications and information extraction

Annotation ontology along with change ontology also supports
notifications for collaborative activities that are being performed
Table 3
Sample rules for TSPACE notifications.

Notification Formation

R1: Addition ∀x,y : ⟨NotifyAddition⟩y H⇒ Parentx,y ∧ ⟨Addition⟩x
R2: Modification ∀x,y : ⟨NotifyUpdate⟩y H⇒ Parentx,y ∧ ⟨Modification⟩x
R3: Sharing ∀x : ⟨NotifySharing⟩x H⇒

⟨Select⟩⟨User1⟩x ∧ ⟨Select⟩⟨User2⟩x
R4: Conflict ∀x,y : ⟨NotifyConflict⟩y H⇒

Parentz,x ∧ Parentz,y ∧ ⟨Modification⟩x → ⟨Conflict⟩y

using multiple tools in a TSPACE. The rules use elements of
annotation and change ontology to raise awareness on the
activities performedusing the tools and to sendnotifications across
the tools corresponding to actions associated with the activities.
Let x and y be content elements of the artifacts that are produced in
the TSPACE, Relationx,y be a relationship that exists between x and
y (e.g., Parentx,y represents x is parents of y), ⟨Action⟩x is an action
triggered for x, and ⟨Select⟩⟨U⟩x as selection of a content element
to be used in a particular activity by a user U . Table 3 shows
some sample notifications rules corresponding to the addition,
modification, conflict identification and sharing of the content
elements. These rules can be implemented using SPARQL5 queries
in combination with complimentary algorithms.

Algorithm 2 depicts the details of the algorithm to fire addition
and modification notifications when a content element of any of
the parent (of the content element) that is under investigation is
modified, or additional attributes are added.

5 http://www.w3.org/TR/sparql11-query/.

http://www.w3.org/TR/sparql11-query/


5. TSPACE architecture design and decomposition of architec-
ture elements

We have designed the TSPACE reference architecture for sup-
porting software architecting activities such as architecture anal-
ysis and design. TSPACE reference architecture is generic enough
to be adopted for supporting engineering efforts in other domains.
We have developed the presented reference architecture experi-
mentally and iteratively. For designing the reference architecture,
we have followed the functional decomposition and part-whole
principles [7] and several architectural styles. TSPACE reference ar-
chitecture consists of two abstraction layers. The components and
sub-components on each layer have been structured based on the
part-whole principle to achieve functional and non-functional re-
quirements.

Functional decomposition and part-whole principles help to
achieve a number of quality characteristics such as modifiability
and integrability. Functional decomposition also makes it easy for
practitioners and researchers to understand different components
of the reference architecture and to tailor it for their specific needs.
We have used an ontology-based semantic integration approach to
support flexibility and interoperability. Ontology-based semantic
integration enables the reference architecture to accommodate
different types of artifacts produced or consumed by different tools
using standardized or proprietary formats.We have defined a clear
connection between the interfaces of semantic integration layers.
We have also defined explicit components for managing process-
centric integration to facilitate exchange of the artifacts among the
tools.

We present TSPACE reference architecture at two levels of
abstractions. First we describe the top-level modules; then we
decompose those modules into components and sub-components.
There are some components that provide abstraction of the
external systems (e.g., provisioning components) whereas other
components are described in detail as part of the reference
architecture. The legend presented in Fig. 7 shows the notations
that are used in the diagrams of the reference architecture.

According to the functional requirements (Section 2.1), three
lifecycle phases of tools (enactment and provisioning, semantic
integration and awareness of activities and operations on the
artifacts) constituting TSPACE are supported by TSPACE reference
architecture. Fig. 7 provides an overall representation of the
reference architecture (the development view). The modules at
the first level of decomposition are organized following the
layered architecture style [7]. The TSPACE reference architecture
conceptually consists of four modules: (i) Tools Selection and
Provisioning Manager, (ii) Integration Manager, (iii) Collaboration,
Awareness and Information Discovery Manager, and (iv) Tenant
(User) Manager and Event Logger.

The Tools Selection and Provisioning Manager enables users to
select the tools that are suitable for the activities to be performed.
The Integration Manager supports process centric and semantic
integration among the tools and the artifacts that are maintained
by the provisioned tools. The Awareness and Information Discovery
Manager helps extract the information that can be used to notify
users about different events that are triggered in a TSPACE. The
events are triggered according to the rules defined in an instance
of TSPACE with respect to corresponding domain in which the
reference architecture is used. The Tenant Manager and Event
Logger manages the tenants’ authentication and identification. It
also logs operations that are performed on the artifacts using
the tools. At the core of the reference architecture, there is an
ontology-based semantic integration model (Section 3). All the
tools constituting a TSPACE and the relevant artifacts are annotated
using the Annotation Ontology of the semantic integration model
(Section 4.1.4).
Fig. 7. TSPACE architecture—first level decomposition.

Each module is further divided into multiple components and
sub-components. Each component provides methods that can
be invoked by components in other modules. We have used
façade pattern [25] to support integration among components
and modifiability (QR5). We have also described the collaboration
(using collaboration diagrams) between the components of each
module to show data exchange between the components.

5.1. Details of the reference architecture components

This section describes the detailed decomposition of the im-
portant modules and components of TSPACE reference architec-
ture. Multiple architecture and design patterns have been adopted
for detailed design. Moreover, high-level abstractions of the im-
portant functions and Application Programmable Interfaces (APIs)
have also been shown. However, only important functions are pre-
sented in the diagrams to avoid cluttering. The diagrams in this sec-
tion are represented using Unified Modeling Language (UML).

5.1.1. Decomposition of tools selection and provisioning manager
The Decomposition of Tools Selection and Provisioning Man-

ager describes details of how the tools repositories are managed
and how tools are selected and provisioned according to the de-
fined parameters. Fig. 8 shows the details of the components and
classes encompassing the Tools Selection and Provisioning module.
The façade of themodules have<<Service>> stereotype, indicat-
ing that the façade can be implemented as services to provide easy
access to client applications.

The TSPACE repository consists of Virtual Machine Templates
and Elements. Elements are an abstract representation of Tools and
OperationalServices. As indicated earlier in this paper, tools are
attached to different nodes of the process whereas operational
services are used to perform intermediate operations when
artifacts are exchanged among the tools. VirtualMachineTemplate is
used to host the tools for provisioning. When a request is received
for the enactment of a set of tools, the tools are selected by



Fig. 8. Tools selection and provisioning—detailed design.
ToolSelector by establishing a closest match between the required
tools and the tools that are available for provisioning. ToolSelector
contains references to the ontologies that are used for tools
selection and provisioning. Once a list of tools is selected for
provisioning, the tools are provisioned in two different ways:

• If the tools have deployment scripts associated with them and
the tools can be deployed remotely (e.g., using Apache Ant6
scripts), then the tools are deployed on virtual machines and
provisioned.

• If the tools cannot be deployed remotely, then a preconfigured
Virtual Machine (VM) template with a specific tool installed on
it (e.g., AmazonMachine Images—AMIs) is used to provision the
tool.

A pre-configured VM template hosts only one tool. When more
than one tool is required, multiple VM templates that are host-
ing the tools are instantiated. ToolsSelectionAndProvisioningMan-
ager fetches information from ToolsSelector and RepositoryMan-
ager and calls respective method of IaaSCloudManagementWrap-
per to instantiate and deploy the tool on underlying IaaS cloud.
ToolsPrefereneManager takes care of enactment constraints (loca-
tion constraints, constraints to choose a specific IaaS cloud to host
the tools, and quality constraints on tool enactment e.g., to launch
a separate instance of tool for every tenant etc.) of the tools.

Other thanprovisioning of the tools, ToolsSelectionAndProvision-
ingManager also needs to instantiate TSPACE artifacts, annotation
and change ontologies according to a specific set of tools that are
provisioned in a TSPACE instance. TSPACE initialization factory is
represented in Fig. 9, which is at higher level of class hierarchy
that is shown in Fig. 8. Different elements of initialization factory
are shown in Fig. 9(a). For example TspaceManager is composed of
TspaceInitializer and uses its methods to launch tools and ontology
instances of a TSPACE instance. Details of the methods and cardi-
nality between different elements are shown in the figure.

6 http://ant.apache.org/.
5.1.2. Decomposition of integration manager
The decomposition of Integration Manager shows core ele-

ments of TSPACE integration mechanism and shows how specific
tools can be integrated with TSPACE. The detailed elements are
represented in Fig. 10. In the figure, <<TSPACE>> stereotype
shows elements of TSPACEwhereas<<Tool>> stereotype shows
element of the tools that interact with TSPACE elements.

As TSPACE integration consists of semantic integration and pro-
cess centric integration, Fig. 10 shows two separate layers corre-
sponding to each type of integration. SemanticIntegrationManager
is at the core of semantic integration. It is composed of ContentUnit.
ContentUnit represents a specific type of content in TSPACE.

For example, in a TSPACE instance hosting three different
tools (one for architecture knowledge management, one for
architecture modeling and one to support decision making), there
are three types of ContentUnit corresponding to each type of tool.
A ContentUnit can be composed of multiple artifacts, which are
represented as Artifact in Fig. 10. SemanticIntegrationManager has
one AnnotationManager and one NotificationManager associated
with it, which exposes their interfaces to outside tools with their
respective façade. These components use annotation ontology to
annotate parts of the code and change ontology to track changes
on the artifacts that are semantically related. The client services to
utilize annotation and notification services can be written in the
tools to access TSPACE respective features, which are represented
as AnnotationClient and NotificationClient in Fig. 10 in the Tools
layer.

The core component of the Process Integration layer is
ProcessIntegrationManager, which can aggregate more than one
process that is represented as Process in Fig. 10. Each Process in
turn can aggregate multiple nodes. The nodes are represented
as ProcessNode in the figure. Once tools and operational services
are attached to ProcessNode, these can post and retrieve artifacts
as well as register for push notifications or use pull notification
APIs. Once tools are assigned to a ProcessNode, TSPACE itself takes
care of which tool is part of which process and handles artifacts
and notification accordingly. Detail of the methods and cardinality
between different elements is shown in Fig. 10.

http://ant.apache.org/


Fig. 9. TSPACE provisioning—initialization factory.
Details of the Simple Storage Manager are shown in Fig. 9(b).
In the figure, <<Service>> stereotype shows that methods
of SimpleStorageWrapper can be exposed as service interfaces.
<<Cloud>> stereotype shows that the elements are part of a
specific cloud service provider. In the figure, the methods with
keyword metamodel in these are used to post and update data
associatedwithmeta-model of the storage files such as file authors,
file versions etc., whereas other methods are used to post, update
and delete the files. watchFile() method allows to register for a
notification when a particular file is updated or deleted.

5.1.3. Decomposition of collaboration and awareness manager
The detail of Collaboration and Awareness Manager is shown

in Fig. 11. The elements in the figure that are marked by
<<Service>> stereotype indicate that these elements can be
implemented as services. CollaborationAndAwarenessFactory takes
care of initialization of Collaboration and Awareness Manager
by interactingwithNotificationManager, InformationDiscoveryMan-
ager and AnnotationManager. NotificationRules and InformationDis-
coveryRules are used to fetch the desired information from ontol-
ogy RDFs using SPARQL queries. TheNotificationManager, the Infor-
mationDiscoveryManager and the AnnotationManager interactwith
SparqlQueryExecuter to execute the queries on RDF data stores.

NotificationManager can handle two types of notifications: (i)
ChangeNotification that is triggered when a change is made in se-
mantically integrated artifacts and (ii) ConflictNotificationwhen se-
mantically integrated artifacts may present conflicting informa-
tion. AnnotationManager facilitates to semantically integrate the
artifacts using annotations. NotificationManager interacts with In-
formationDiscoveryManager for SPARQLquery execution and trans-
formation of the extracted information to higher levels of abstrac-
tions. Detail of the methods and cardinality between different
elements is shown in Fig. 11.

5.1.4. Decomposition of multi-tenancy and authentication
The core of TSPACE multi-tenancy in combination with tenant

and user authentication is presented in Fig. 12. In the figure, the
stereotype<<Service>> shows the elements that can be exposed
as services and the stereotype <<IaaSCloudService>> shows ex-
ternal IaaS cloud services that are used to complement TSPACE
components. CommonQueue, TenantQueue and their corresponding
façade present details of the data input streams queues. Every Ten-
ant can consist of more than one user. All the users belonging to a
specific tenant can access TSPACE instance of that tenant. Authen-
tication generates a unique authentication code for the tools that
are provisioned via TSPACE. The authentication code is generated
and sent to the tools when a user signs in a tool or virtual machine
that is hosting the tool. The authentication code needs to be sent
with every call to TSPACE APIs. The authentication code is based
on OAuth protocol [26] and is only valid for a specific IP address
for which it is generated. The authentication code is also used by
the FilterationRules to identify the tenant when data is sent by the
tools to TSPACE. ScalabilityController (e.g., Amazon cloudwatch and
elastic load balancer7,8,9) is an external IaaS monitor that is used
to replicate the queues according to defines parameters. Queues’
façade provides a unified access point when queues are repli-
cated. The important methods and cardinality between different
elements of Multi-tenancy and Authentication is shown in Fig. 12.

5.2. Design decisions summary

A number of design decisions have been taken to incorporate
functional and quality requirements in the TSPACE reference
architecture. A summary of the design decisions is presented in
Table 4.

7 http://aws.amazon.com/autoscaling/.
8 http://aws.amazon.com/cloudwatch/.
9 http://aws.amazon.com/elasticloadbalancing/.

http://aws.amazon.com/autoscaling/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/elasticloadbalancing/


Fig. 10. Integration manager—detailed design.
6. Prototype and evaluation of TSPACE reference architecture

We have implemented a prototype of TSPACE reference
architecture using JavaEE technologies. Interfaces of TSPACE
prototype have been exposed as Web services (REST and SOAP)
using JAX-RS10 and JAX-WS11 service technologies. We have used
Apache Jena Framework12 to implement the semantic integration
in the prototype. Persistence of TSPACE is handled following
principles of Object Oriented Paradigm [27] and Java Persistence
APIs (JPA) have been used to store data objects in the underlying
database that is used for persistence.

We have used jBPM core library13 to handle process workflow
related features in TSPACE prototype. All the core TSPACE
components and services have been deployed in GlassFish version
3.1.2.2 application server.14 Amazon IaaS cloud15 has been used
to deploy TSPACE prototype and the tools that are provisioned by

10 http://jax-rs-spec.java.net/.
11 https://jax-ws.java.net/.
12 https://jena.apache.org/.
13 http://www.jbpm.org/.
14 https://glassfish.java.net/downloads/3.1.2.2-final.html.
15 http://aws.amazon.com/.
TSPACE. The core components of TSPACE have been deployed on
Amazon EC2.

Windows Server 2012 instance16 with 8 GB of RAM and 2.4 GHz
Intel Xeon processor. Amazon Cloud Watch [8] and Elastic Load
Balancer [9] have been attached with the core services to enable
autoscaling. Amazon EC2 instances and Amazon Machine Image
(AMI) templates [16] have been used to host the tools that are
provisioned by TSPACE. Amazon RDS for MySQL17 have been used
for persistence of the data objects. There is a Java Persistence
API (JPA)18 based wrapper that acts as bridge between TSPACE
components and underlying database. Having a JPA wrapper
also enables to easily replace the underlying database if TSPACE
requires porting on a private or hybrid cloud infrastructures. We
have used object representation of different elements (e.g., TSPACE
meta-model shown in Fig. 1 and ontology as discussed in Section 3)
of TSPACE reference architecture as persistence objects and JPA’s
object to relational mapping features are used. We have also used

16 http://aws.amazon.com/ec2/.
17 http://aws.amazon.com/rds/mysql/.
18 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-
140049.html.

http://jax-rs-spec.java.net/
https://jax-ws.java.net/
https://jena.apache.org/
http://www.jbpm.org/
https://glassfish.java.net/downloads/3.1.2.2-final.html
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/rds/mysql/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html


Fig. 11. Collaboration and awareness manager—detailed design.
Table 4
Summary of architecture design strategies.

Design decisions Benefits Adaptation tactics

Using ontologies to formalize TSPACE constituents
(tools, artifacts and operations)

Makes RA dynamic and flexible to support different
types of tools

Ontology model can easily be tailored and enhanced
for other domains.

Using SOA for TSPACE façade Positively addresses modifiability of TSPACE RA and
its integration with different types of tools

Glue code components can be written to support
tools for accessing TSPACE façade.

Centralized repository pattern to share abstract
ontology templates

Provides single point of access to the TSPACE
ontologies and positively addresses TSPACE
flexibility and adaptability

New ontology templates can be added to support
specific needs of a TSPACE instance.

Two staged pipes and filters pattern Positively addresses performance and
multi-tenancy

Support for flexible and customizable tenants’
identification rules can be provided using SPARQL.

Loosely coupled layered architecture Positively addresses modifiability and evolvability
of TSPACE components

Data caching and indexing can be incorporated to
mitigate negative impact of layers on performance.

Use of ontologies as a baseline for tenant specific rules
for semantic integration, information discovery and
awareness of the operations

Positively addresses multi-tenancy by providing
support for tenant specific integration and
information discovery rules

More sophisticated support for tenant isolation and
indexing can be provided by using approaches such
as presented in [28,29].



Fig. 12. Multi-tenancy and authentication—detailed design.
Amazon’s Simple Storage Service (S3)19 for storing plain artifacts
and data.

We have adopted a multi-facet strategy for the evaluation of
TSPACE reference architecture. We have demonstrated the feasi-
bility and applicability of the reference architecture by implement-
ing its prototype. We have combined classical reasoning approach
with existing architecture evaluation methods to evaluate effec-
tiveness and completeness of the reference architecture.

6.1. Evaluation for feasibility using prototype tools

We have developed management applications for TSPACE and
have integrated a selected set of tools using TSPACE prototype.
Fig. 13 shows management interfaces for TSPACE prototype.
Process centric tools provisioning can be achieved by opening
process manager from Process Centric Provisioning menu of
Fig. 13(c). We have enhanced KIE Workbench workflow process
modeler20 to introduce the notion of tools in process workflow
designer of KIE. Fig. 13(a) showsGUI that is used for process centric
tools provisioning. Every node of the process has two elements:
(i) process node stage (e.g., design node or implementation node)
and (ii) tools. A tenant can be assigned to each process node stage.
All the users belonging to a specific tenant can have access to the
attached tool. Once a process is enacted, tools are provisioned on
underlying IaaS cloud and their collaboration scheme is defined by
the process collaboration engine according to the defined process
flow (as described in Section 5.1.2).

Process-centric Tools Provisioning and Integration Manager takes
care of exchange of the artifacts among different nodes of the
process (as discussed in Section 5.1.2). Fig. 13(a) shows a simple
scenario in which a UML design tool ArgoUML, an IDE Netbeans
and a test instance is provisioned as part of the process centric
provisioning. ArgoUML generates skeleton of the classes, Netbeans
IDE takes skeleton of the classes generated by ArgoUML (as input
from preceding node of the process) and allow user to write code,
and a test instance that takes output of the program and allow
testers to run test cases on it.

Fig. 13(c) shows main Graphical User Interface (GUI) of TSPACE
for semantically integrated tools provisioning. The GUI is used to

19 http://aws.amazon.com/s3/.
20 https://docs.jboss.org/jbpm/userguide/wb.Workbench.html.
specify tools requirements in a TSPACE instance and specify noti-
fication. As indicated earlier, in TSPACE reference architecture we
have focused on software architecting domain, hence the tools that
are used in the prototype for proof of concept are related to soft-
ware architecture requirements specification, architecture knowl-
edge management, architecture analysis, architecture design and
architecture modeling. Semantically integrated tools can be pro-
visioned in two different ways using the GUI shown in Fig. 13(c).
First way is that the desired activities and features can be selected
and TSPACE provides the closest match of the tools that are avail-
able in a TSPACE. Once desired activities and features are selected,
a request is sent to TSPACE platform deployed on Amazon cloud
by pressing Find Matching Tools button as shown in top left of
Fig. 13(c). TSPACE selects the tools that qualify the tools require-
ments criteria by looking for the closest match of the features that
are supported by a tool and required by a tenant, and returns the
list of tools that are available for provisioning as shown in bottom
left of Fig. 13(c). As figure shows, PAKME, ArchDesigner, Microsoft
Visio and ArgoUML qualify search criteria corresponding to speci-
fied activities and features shown in Fig. 13(c). After selecting the
tools and pressing the Initialize button, the tools are provisioned
using Amazon Machine Images (AMIs) and access information of
the tools is presented. Second way is that the tools can also be di-
rectly selected for provisioning from the tree shown in bottom left
of Fig. 13(c). When the tools are provisioned, the ontologies are
initialized that are subsequently populated as the users perform
different activities and operations using the tools (as discussed in
Section 5.1.1).

Fig. 14 shows the selected tools used with the prototype
implementation of TSPACE. Fig. 14(a) shows semantic relation
between the artifacts and corresponding tools with respect
to the ontologies described in Section 4. Whereas Fig. 14(b),
Fig. 14(c) and Fig. 14(d) show the modified versions of PAKME,
ArchDesigner and ArgoUML tools that are provisioned by TSPACE
as semantically integrated tools. As our main focus has been to
demonstrate the feasibility of TSPACE for software architecting
tools, we have selected an architecture knowledge management
tool (PAKME), architecture decision support tool (ArchDesigner)
and an architecture modeling tool (ArgoUML). The diagrams
demonstrate how semantically integrated tools can facilitate
users to use PAKME to capture architecture design decisions, use
ArchDesigner to evaluate and rank the design decisions and use
ArgoUML to make architecture diagrams corresponding to the
finalized design decisions. Notifications on actions performed on

http://aws.amazon.com/s3/
https://docs.jboss.org/jbpm/userguide/wb.Workbench.html


Fig. 13. TSPACE administration GUIs.
the semantically related artifacts are generated and transmitted
with the help of Change and Annotation ontologies (as described
in Sections 4.1.3 and 4.1.4).

6.2. Evaluation for completeness of TSPACE reference architecture

We have evaluated the completeness of TSPACE reference
architecture for functional requirements (FR1, FR2, FR3 and FR4)
and have used scenarios based evaluation for non-functional
requirements (QR1, QR2, QR3, QR4, QR5 and QR6). We report
the key reasoning points and the outcomes of the evaluation
decisions. Table 5 shows themapping between the lifecycle phases,
functional requirements and corresponding components from
decomposed architectural representations. It is clear from Table 5
that different parts of the reference architecture provide support
for all the phases and corresponding requirements (Req).

We have presented TSPACE reference architecture in terms
of its goals [30] that are transformed into functional and
non-functional requirements, the TSPACE meta-model and its
formalization using ontologies, differentmodules and components
of the reference architecture at four levels of abstraction,
and collaboration diagrams to show interaction between the
components of the reference architecture. It covers all the
important dimensions for reporting a reference architecture as
per [9]. It also positively addresses the completeness of the
reference architecture (QR4). Our decision of using a layered
approach supports separation of concerns among the components
and high degree of modifiability (QR5). The Global Ontology
Knowledgebase provides an abstract representation of the TSPACE
ontologies and is a representation of the abstract data repository
style. It not only achieves indirection in ontologies but also
positively addresses flexibility (QR2) and integration (QR5). Façade
pattern is used at the interface layer to provide interoperability
(QR3) between the tools and TSPACE reference architecture. Pipes
and filter pattern is used to support scalability for handling
ontology construction for multiple instances of a TSPACE and
to support multi-tenancy (QR6) in the ontology-based semantic
integration. The adoption of ontology-based approach for tools
selection, provisioning, integration, collaboration and awareness
enables the reference architecture to be applicable (QR4) to
heterogeneous tools and activities. Although security is not
explicitly considered, it is addressed with the help of the
Authentication component.

6.3. Evaluation of awareness support

TSPACE can be used to raise awareness for different types
of the operations that are performed on the artifacts by the
users (stakeholders) using the provisioned tools. The awareness
operations are supported using the ontologies described in
Section 4. The awareness support of TSPACE can also be used
to identify conflicts. For example, for software architecture
knowledge management tools, the different types of knowledge
conflicts can occur when the users use different metric or metric
measurement values for same quality attribute while capturing
non-functional quality requirements.

Fig. 15 shows the requirements capturing GUI of the modified
PAKME tool used in the TSPACE prototype. In Fig. 15, two
availability requirements and two scalability requirements (non-
functional requirements) are presented where respective parts
of the requirements are annotated with quality, value and
metric annotations. Availability scenarios shown in Fig. 15(a)



Fig. 14. Semantic integration structure and prototype tools.
Table 5
Activities, requirements an component mapping.

Life cycle phase Req. ID RA components

Tools registration FR1 Tools/Capability ontology and (Tools’) Repository manager.
Tools selection FR1 Tools/Capability ontology and tools selector.
Enactment and provisioning FR1, QR1 Tools/Capability ontology, Tool preference manager, Tools enactment engine and IaaS cloud

management wrapper.
Semantic and process centric integration FR2, FR3, QR5 Artifact ontology, Global ontology knowledgebase, Common queue and tenant queues, Filtration

rules, Ontology RDFs, Annotation manager, Semantic integration manager and information
discovery manager.

Relationship management FR2 Annotation ontology, Ontology RDFs and semantic integration manager.
Awareness of the operations on the artifacts FR4 Annotation ontology, Change ontology, Information discovery manager, SPQRQL query executor,

Notification manager and notification rules.
and Fig. 15(b) have different metric units but same values.
Scalability scenarios depicted in Fig. 15(c) and Fig. 15(d) have the
same metric unit but different values of the metrics. When this
information is saved in PAKME, the probes implemented in PAKME
send non-functional requirements data and annotations to the
TSPACE. When the TSPACE is initialized and tools are launched,
different types of notifications can be configured (as shown with
check boxes in Fig. 13(c)). Conflict notifications are one of the
notifications that can be configured. By pressing View Conflict
Details button, the details of the conflicts can be viewed, as shown
in Fig. 16. Some sample notification rules are described in Table 3.
The conflict notifications that are presented in Fig. 16 are generated
by running SPARQL queries and complimentary algorithms, which
search for same quality attributes in non-functional requirements
but with either different metric units or different metric values.

6.4. Evaluation of TSPACE reference architecture via potential stake-
holders

We have used a tailored Architecture Tradeoff Analysis
Method (ATAM) [31] to evaluate TSPACE reference architecting
by conducting an evaluation session with potential stakeholders.
ATAM can be used to analyze software design strategies that are
used to incorporate architecture qualities in a software system’s
architecture. It also helps to identify potential conflicts, sensitivity
points and tradeoff points in a software architecture [7]. While
analyzing architecture for identifying sensitivity and tradeoff
points, architecture scenarios are used.

6.4.1. Evaluation settings
We had organized an architecture evaluation session with

six software architects/designers. Although all participants were
familiar with software architecture evaluation methods and
techniques, we provided them an overview of ATAM and other
architecture evaluation methods in a preliminary session. All the
participants of the evaluation session have at least a university
degree (one participant had a bachelor degree, four participants
had masters degree and one participant had a Ph.D. degree)
in Software Engineering/Computer Science. The participants of
the evaluation session have detailed knowledge of design and
development of cloud-enabled software systems. As TSPACE



Fig. 15. PAKME requirements capturing GUI.
Fig. 16. Conflict notifications.
reference architecture deals with different dimensions of TaaS
including both semantic and process centric integration, the
participants were invited in the evaluation session who could be
a good combination to analyze all aspects of TSPACE reference
architecture.

Expertise of the participants were as follows: two participants
(P1 and P2) had expertise in designing and developing workflow
based tools and system (bothwith 11 years ofworking experience),
two participants (P3 and P4) had experience with designing and
developing software engineering tools for distributed software
development (with 8 and 5 years of experience respectively), and
two participants (P5 and P6) had experience with design and
development of cloud based and web based applications (with
5 and 2 years of experience respectively). All the participants
were given a document describing TSPACE reference architecture
requirements, architecture design decisions and different view of
the reference architecture a week before the evaluation session.
In the beginning of the evaluation session, an introduction and
context of TSPACE reference architecture was presented to the
participants. Once a particular activity of the evaluation session
was conducted, the participants were given an evaluation form
to give feedback on TSPACE reference architecture corresponding
to that evaluation activity. First participants were presented with
TSPACE functional and quality requirements and were asked to
provide their feedback on them. Then different design decisions
corresponding to the requirements were described, which was
followed by an exercise of identifying sensitivity and tradeoff
points, and building utility tree. Finally the applicability of TSPACE
reference architecture in broader context of TaaS (not only
software architecting tools, rather on applicability of tools in
general that can be used for software design and development
activities) was discussed.

The participants of the evaluation session were asked to fill
in a questionnaire during the session. In the questionnaire, there



Fig. 17. Architecture evaluation utility tree.
were two types of questions: (i) the questions (Q1, Q2, Q4, Q6, Q7)
those had a qualitative scale to be chosen for their answers and
(ii) the questions (Q1-D, Q2-D, Q3-D, Q5-D, Q6-D, Q7-D) those had
descriptive answers. Five option value for qualitative scale have
used as follows: (a) very low⇓, (b) low⇐, (c) medium⇔, (d) High
⇒ and (e) very high ⇑. Following is the list of questions that were
used for the evaluation questionnaire.

• Q1: To what extent (detail) TSPACE functional requirements
cover drivers for providing software architecting TaaS?

• Q1-D: What additional requirements do you think should be
address by the reference architecture? Please described in
sufficient detail?

• Q2: Towhat extent quality attributes that are considered for the
quality of TSPACE aswell as quality of the reference architecture
are relevant to runtime and design time quality of TSPACE?

• Q2-D:What additional quality attributes do you think should be
included? Please mention the quality attribute name and your
rationale i.e., why you think that it should be included?

• Q3-D: Are there scenarios/requirements (that are discussed
during the presentation) that you think are not relevant for
TSPACE?

• Q4: To what extent the design decisions that are taken
to address the design time and runtime quality of TSPACE
reference architecture are relevant to TSPACE?

• Q5-D: Please indicate if there are risks, sensitivity points and
tradeoff points that are important for TSPACE but are not
considered while designing the reference architecture. Please
identify each risk in a separate bullet point and indicate your
rationale why it should be considered.

• Q6: To what extent the functional requirements and quality
characteristics are addressed in TSPACE reference architecture?

• Q6-D: Please provide details on which requirements are not
addressed in the reference architecture.

• Q7: To what extent the presented reference architecture ad-
dresses challenges associated with TSPACE in general context
of TaaS? I.e., For other domains other than software architect-
ing.

• Q7-D: Please provide your comments/details if additional
dimensions should be considered in the reference architecture.
Table 6
Quality evaluation results.

Participant ID Questions
Q1 Q2 Q6 Q7

P1 ⇒ ⇒ ⇑ ⇒

P2 ⇒ ⇒ ⇑ ⇔

P3 ⇒ ⇒ ⇒ ⇒

P4 ⇒ ⇒ ⇒ ⇔

P5 ⇒ ⇒ ⇒ ⇒

P6 ⇒ ⇑ ⇒ ⇒

Medium (⇔), High (⇒), Very high (⇑).

6.4.2. Evaluation results
Q1 and Q2 aimed to seek input on functional and quality

completeness of TSPACE reference architecture. Q6 aimed to
identify to which extent the solutions that have been proposed
in TSPACE reference architecture address the stated requirements
and quality characteristics. Q7 aimed to identify relevance of
TSPACE reference architecture for the general tools (not only
software architecting tools) that can be used to perform software
engineering activities. The results of the questions (Q1, Q2, Q6 and
Q7) are shown in Table 6. The results show that on average a high
value score (corresponding to the questions) was assigned by the
participants.

Q4 aimed to identify effectiveness of the important design
decisions that had been made during design of TSPACE RA. During
the evaluation session, key design strategies (that have been
discussed in Section 5) were presented to the participants of the
evaluation session and the participants were asked to rank the
design decisions and strategies according to the scale described in
Table 7. The results show that on average all the design decisions
were ranked high.

Questions Q1-D and Q2-D were aimed to identify if there were
additional functional and quality aspects to be incorporated in
TSPACE reference architecture. The feedback of the session partici-
pants has been incorporated in TSPACE reference architecture. For
example, one of the concerns was to have more details on multi-
tenancy, security and integration features of TSPACE. The RA has
been decomposed at three-level to providemore details on the im-
portant components of TSPACE reference architecture. There was
no concern raised for Q6-D.



Table 7
TSPACE RA design decision ranking.

Design decisions Participant’s score for effectiveness of the design decisions
P1 P2 P3 P4 P5 P6

TSPACE ontology meta-model ⇒ ⇑ ⇑ ⇑ ⇑ ⇔

Using ontologies ⇑ ⇒ ⇒ ⇒ ⇒ ⇒

Using SOA (SOAP and REST) ⇒ ⇒ ⇑ ⇒ ⇑ ⇑

Shared repository templates (shared repository pattern) ⇑ ⇑ ⇑ ⇒ ⇒ ⇑

Tenant neutral queues and tenant specific queues and filters ⇒ ⇑ ⇒ ⇒ ⇑ ⇑

Layered architecture style ⇒ ⇑ ⇒ ⇑ ⇑ ⇑

Medium (⇔), High (⇒), Very high (⇑).
Q5-D aimed at identifying the risks, sensitivity points and
tradeoff points [7] in TSPACE RA. Utility trees of ATAM [31]
were used to facilitate discussion on risks, sensitivity points and
tradeoff points. The identified risks and tradeoff points were
mainly related with performance of TSPACE. A risk was identified
during the evaluation session concerning comprehensiveness of
the ontologies to capture artifacts and different types of tools
(other than software architecting domain) in TSPACE. This risk
is mitigated in the reference architecture by providing flexibility
to extend the ontologies and having possibility to add new
ontology templates if needed. While discussing sensitivity and
tradeoff points, it had been figured out that Queues and Shared
Ontology Repositories (described in Section 5.1) could become a
bottleneck to the performance when a large number of tenants
are to be served by TSPACE. These risks can be mitigated with the
help of scalability features of hosting IaaS cloud (by replicating
queues and repositories and by having automated scalability
and load balancing components). Queues and Shared Ontology
Repositories were also identified as tradeoff points (tradeoff
between unified access point and scalability). Tenant independent
and tenant specific queues alongwith respective façade (described
in Section 5.1.2) are proposed in TSPACE RA to provide a single
point of access and shared ontology repositories are prosed to
provide a common ontology knowledgebase.

During the evaluation session, two utility trees were generated.
Fig. 17(a) shows system qualities of TSPACE reference architecture,
whereas Fig. 17(b) shows the utility tree for architecture design
qualities of TSPACE RA (i.e. completeness, feasibility, applicability
andmodifiability). Feasibility of the reference architecture is evalu-
ated in terms of structure and conceptual integrity aswell as by im-
plementing its prototype. Applicability of the reference architec-
ture is analyzed bydemonstrating provisioning of different types of
tools in TSPACE and by supporting integration among the artifacts
at different levels of abstractions. Moreover, TSPACE applicability
for different types of tools was also analyzed during the evalua-
tion session. Layered and components based architecture enables
addition of new components, enhancements in integration ap-
proach and incorporation of different IaaS cloud in TSPACE. TSPACE
system qualities shown in the utility tree of Fig. 17(a) deal with
runtime qualities of TSPACE reference architecture. These include
automated provisioning, multi-tenancy, scalability, security and
integration. Although security is not explicitly discussed while
describing TSPACE requirements, it is considered while design-
ing TSPACE reference architecture to achieve multi-tenancy. De-
sign decisions to achieve TSPACE system qualities are shown in
Fig. 17(a).

7. Related work

A number of studies have reported adoption of ontology-
based approaches to address software engineering challenges, in
particular for software process, knowledge management, software
design documentation and software design traces [14]. A handful
of studies have also reported the architecture of services and
tools in an integrated environment. In this section, we provide an
overview of the related work with reference to the following key
attributes: problems that are addressed in the reported research,
approach to provide solutions to the problems and constraints (if
any) of the presented solutions.

7.1. Ontologies to support process workflows and integration

Process ontologies focus on capturing the process and identify-
ing relationships between elements of the process [14]. Boškovic
et al. [32] have presented an ontology for configurable business
processes by identifying the relationship between features of in-
dependent software families, and verifying and validating the re-
lationships between business process customers and developers.
Feature modeling is performed using semantic annotations but it
does not provide integration among the services with respect to
business logic and operations. Valiente et al. [33] have proposed an
ontology-based approach to integrate software development and
information technology service management processes and corre-
sponding support tools. However, the presented approach does not
deal with issues specific to tools integration and information con-
sistency, especiallywhenmultiple tools generate artifacts that can-
not be transmitted among tools and services (opposite to how the
artifacts are handled in a workflow-based system).

Artifact ontologies attempt to capture relations between
views and corresponding artifacts. Athanasiadis et al. [34] have
proposed a technique for object to relational mapping based
on semantic web. Ameller and Franch [35] have presented an
ontology to describe relationship between architecture views,
frameworks, architecture styles, variants of architecture styles
and their implementation in context of a web-based application.
Antunes et al. [36] have presented a semantic web based approach
to facilitate developers to search knowledge repository and to
suggest knowledge relevant to a current task that a specific
user is performing. Happel et al. [37] have presented a software
reuse methodology based on ontologies to facilitate software
libraries reuse by providing background knowledge, and semantic
integration of implicit and explicit metadata to derive new facts
from the existing knowledge.

Software documentation ontologies focus on formalizing soft-
ware documentation semantics. Witte et al. [38] have proposed a
semantic web-based approach to automatically integrate source
code and source code documentation by populating corresponding
ontologies using code analysis and textmining for easy traceability
recovery between source code and software documentation. Zhang
et al. [39] have proposed a traceability recovery approach based
on ontologies to establish a relationship between source code and
corresponding source code documents at semantic level. The pre-
sented approach is limited to simple relationships between de-
sign documents describing its different elements and correspond-
ing source code.

A number of studies have also reported use of ontologies for
software architecture documentation. Boer et al. [40] have pre-
sented ontologies reuse approach named ‘‘QuOnt’’ [41] to visual-
ize architecture design decisions. The presented approach estab-
lishes a relationship between quality criterion and corresponding



Table 8
Criteria for comparing work related to ontologies.

Study reference Focus Relations type and granularity Methods or approaches

Boskovic et al. [32] Configurable business processes Business process customers and
developers

Feature modeling and semantic annotation

Valiente et al. [33] Management processes Services and tools Integration ontologies
Athanasiadis et al. [34] Artifacts management Object to relational mapping Semantic web
Ameller and
Franch [35]

Artifacts management Architecture views, architecture styles and
implementation

Relations ontologies

Antunes et al. [36] Knowledge repositories Knowledge repositories Semantic web
Happel et al. [37] Software reuse Knowledge artifacts Semantic integration
Witte et al. [38] Code analysis and text mining Source code and source code

documentation
Semantic web and traceability

Zhang et al. [39] Traceability recovery Software design documents and source
code

Semantic integration

Boer et al. [40] Architecture design decision
visualization

Quality criterion and corresponding
quality attributes

Ontologies reuse

Tang et al. [42] Architecture documentation Requirements, architecture design
decisions and components

Relations ontologies

Graaf et al. [43,44] Architecture documentation Concepts’ structures and relations Semantic Wiki
Zhou et al. [45] Systems reengineering Software components Reverse engineering and model transformation
Brandt et al. [46] and
Rilling et al. [47]

Knowledge management Descriptive documents and source code Ontology schemas
quality attributes. Tang et al. [42] have presented a lightweight on-
tology to establish a relationship between different elements of
architecture documentation including requirements, architecture
structure, architecture components and architecture design deci-
sions. Graaf et al. [43,44] have presented ontology for software doc-
umentation using a semantic Wiki named ArchiMind. The studies
on architecture documentation show the significance of using on-
tologies to structure and relate concepts involved in software ar-
chitecture documentation activities. The studies on software archi-
tecture documentation do not address the root cause of the inte-
gration challenge, i.e., how to provide a common integrationmodel
for multiple types of artifacts maintained by heterogeneous tools
that are used to perform activities associated with software archi-
tecting.

Zhou et al. [45] have presented an approach for reengineering
software for cloud-based systems using ontologies. Ontologies for
enterprise applications are built using reverse engineering and
model transformation techniques. Brandt et al. [46] and Rilling
et al. [47] have presented a flexible ontology-based schemas for
knowledge management, and a meta-model and ontology to link
documents with source code. The presented approaches do not
provide details of the ontologies associated with tools, tasks and
the artifacts. It remains vague how the information is structured
and how different types of rules are applied to link the knowledge
documents with source code.

We have identified a set of attributes to compare the related
work on ontologies for process workflows and integration. The
identified attributes include Focus of the research approach, Type
and Granularity of the Relations among the artifacts, and Method
or Approach that have been proposed in a particular study.
Focus of the research approach attribute describes key focus of
the proposed ontologies for process workflows and integration,
e.g., artifacts management. Type and Granularity of the relations
attribute describes the types of artifacts that are considered by
the ontologies relations, e.g., source code documentation and
source code. Method or Approach attribute describes research
approach used to define the ontologies, e.g., feature modeling and
semantic annotation. The relatedwork described in this subsection
is elaborated with respect to the identified attributes in Table 8.

7.2. Frameworks and architectures for services provisioning and
integration

A number of frameworks and architectures for provisioning
integrated systems have been proposed. Rezaei et al. [48] have
presented a framework to provide semantic interoperability
among SaaS on clouds. The authors have argued using a unified
interoperability interface and service semantic description editor
that can be used to define semantic integration rules. However,
manually defining semantic integration rules for every single
service in SaaS stack limits applicability of this approach in
commercial solutions. Xu et al. [49] have presented a framework
to bridge the gap between low-level features and high-level
semantics of the video contents on cloud by building the ontology
model for basic concepts, events and relations. A semantic
intermediate layer is proposed to organize the video data based
on their semantics. Though the presented framework is promising,
its limitation to work only with video data makes it less useful for
heterogeneous artifacts.

Barbosa et al. [50] have presented software-testing ontology
for the development of software testing tool. Oliveira and
Nakagawa [51] have proposed a Service Oriented Architecture
(SOA) for software testing tools. Their work provides the detail
on architectural requirements and a layered model to map tools
onto the business process. As their work focuses on SOA, it
does not cover a complete lifecycle of tools provisioning and
operations for cloud-based software systems. Nakagawa et al. [52]
have also presented an aspect oriented reference architecture for
software engineering environments. The presented architecture
do not explicitly focus on integration among the tools and the
authors encourage the use of workflows to facilitate information
and artifacts exchange. Chapman et al. [53] have presented a
software architecture for on-demand cloud provisioning. The
presented architecture manages service repository and deploys
the services on underlying cloud infrastructure with the help
of virtual execution environment manager. Lin et al. [54] have
presented a reference architecture for workflow management of
scientific applications following SOA principles. The presented
reference architecture focuses on workflow and provenance
management, however it does not provide any insight to the
special needs of the workflow-based tools composition. Moser
and Biffl [55] have proposed a semantic integration approach
for engineering environments. They have proposed usage of
engineering knowledgebase and a common virtual data-model
to provide semantic integration between different types of
engineering models. Tajalli and Medvidovic [56] have presented
a reference architecture for integrated software environments
named iDARE, which has an adaptation engine at its core that can
transform artifacts to support integration among the applications.



Table 9
Criteria for comparing work related to frameworks and architecture.

Study reference Focus Methods or approaches General applicability

Rezaei et al. [48] Semantic interoperability Unified interoperability interfaces and services semantic description ✓

Xu et al. [49] Features and semantics
alignments

Semantic integration layer and ontology model for concepts events and
relations

×

Barbosa et al. [50] Software testing Testing ontologies ✓

Oliveira and Nakagawa [51] Software testing SOA and business process to tools modeling ×

Nakagawa et al. [52] Software engineering Aspect oriented architecture and workflows ✓

Chapman et al. [53] On-demand provisioning Service repositories and virtual execution manager ✓

Lin et al. [54] Scientific workflows
management

SOA ×

Moser and Biffl [55] Semantic integration Engineering knowledgebase and common virtual data-model ✓

Tajalli and Medvidovic [56] Integrated software
environments

Artifacts transformation and adaptation engine ✓

Calvo et al. [57] Textual information retrieval Tools for business process modeling ×
Calvo et al. propose an architecture for textual information
retrieval from cloud-based collaborative writing tools [57] but
their effort is only limited to support automated feedback and
process analysis of students’ academic assignment write-ups.
Their work provides the detail on architectural requirements and
a layered model to map tools onto the business process but
does not cover a complete lifecycle of tools provisioning and
operations. Integration approaches using service and graphical
user end points have been reported in [58,59]. An extensible
architecture description language (xADL) to support integration
among architecture centric tools is presented in [60]. We
have proposed TSPACE ontology meta-models for the reference
architecture because the reported software engineering ontologies
do not satisfy the specific needs of TSPACE. There are also
commercial offerings of cloud-based tools such as Cloud9 IDE21 and
a diagramming tool Griffy.22

We have also identified a set of attributes to compare
the related work on frameworks and architectures for service
provisioning and integration. The identified attributes include
focus of the research, method and approach that have been
used to achieve the research objectives and applicability of the
proposed solution in a broader context. Focus attribute describes
a specific dimension of service provisioning and integration that
is focused in a study, e.g., semantic interoperability. Method or
Approach attribute describes architecture design tactics, decisions
and methods that are used to achieve the research objectives,
e.g., interoperability interfaces and service semantic description.
General Applicability attribute indicates if the solution proposed
in a particular study can generally be applied for provisioning
and integration of cloud-based systems. If a solution proposed
in the study is generally applicable then a check mark (✓) is
shown corresponding to the study. If the solution is not generally
applicable, then a cross mark (×) is shown. The related work
described in this subsection is elaborated with respect to the
identified attributes in Table 9.

7.3. TSPACE RA with respect to related work

In comparison to the discussed related work, the TSPACE
reference architecture has been designed not only to support on
demand tools provisioning but also to enable bundling of tools
based on stakeholders’ needs and to provide a mechanism to raise
awareness of the operations that are performed on the artifacts
as a result of stakeholders’ activities in a bundled suite of tools.
Contrary to the existing ontologies research discussed in the
related work section, the TSPACE ontologies focus on providing

21 https://c9.io/.
22 https://www.gliffy.com/.
integration among artifacts at multiple abstractions. The TSPACE
ontologies also provide foundation for tools selection, provisioning
and awareness of the operations that are performed on the artifacts
using the tools. The TSPACE RA uses common metamodel as
a control point for design and enhancement of the reference
architecture. The proposed TSPACE reference architecture also
supports process-centric integration among the tools and semantic
integration (using the TSPACE ontologies) among the artifacts that
are consumed or produced during different activities that are
performed using the tools.

8. Conclusions

We have presented and discussed Tools as a service SPACE
(TSPACE) Reference Architecture (RA) in terms of: TSPACE meta-
model that identifies the RA elements, an ontology-based semantic
integration framework that provides the backbone for semantic
integration model of the proposed RA and relations among the
elements, and views of the RA at two levels of abstractions. Keeping
TSPACE RA meta-model at the core of our adopted RA design
strategy provides a centralized point for the identification of the
TSPACE RA elements and can facilitate the RA adoption in different
domains. The identified ontologies provide a structured approach
for not only tools selection, but also for semantically relating and
annotating the artifacts produced by the provisioned tools and
for providing support for awareness of the operations that are
performed on the artifacts using the tools. The presented reference
architecture introduces a standardized view of a TSPACE and has
the potential of providing a number of benefits to practitioners and
researchers. The reference architecture can provide an increased
understanding of TSPACE for the software architecting domain
in particular and other engineering domains in general. The
main aim of the reference architecture is to facilitate the design
of concrete TSPACE systems in various domains. Practitioners
can use the reference architecture to communicate a TSPACE’s
requirements and the main architectural principles in software
engineering teams. Researchers can use the reference architecture
for the identification of potential research areas. Investigation of
the application of the existing automated information retrieval
mechanisms in the context of the TSPACE to provide fully
automated semantic integration among different types of artifacts
is one possible direction for future research. There can be a need
for extending the reference architecture meta-model for other
domains and analyzing the reference architecture components for
the extended model. In the proposed reference architecture, we
have discussed security implicitly as part of the multi-tenancy.
As a future enhancement, the reference architecture also needs to
be extended by considering security as an explicit non-functional
requirement to provide more comprehensive security support in
TSPACE reference architecture.

https://c9.io/
https://www.gliffy.com/


Acknowledgments

We acknowledge Zhi Wang and Hao Zhang for their contribu-
tion for implementing graphical user interface for process centric
tools provisioning presented in Fig. 13(a).

References

[1] M.A. Babar, I. Gorton, A tool formanaging software architecture knowledge, in:
presented at the Proceedings of the SecondWorkshop on SHAring and Reusing
Architectural Knowledge Architecture, Rationale, and Design Intent, 2007.

[2] B. Decker, E. Ras, J. Rech, B. Klein, C. Hoecht, Self-organized reuse of software
engineering knowledge supported by semantic wikis, in: Proceedings of the
Workshop on Semantic Web Enabled Software Engineering, SWESE, 2005.

[3] P. Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley
Professional, 2004.

[4] N. Harrison, P. Avgeriou, U. Zdun, Using patterns to capture architectural
decisions, IEEE Softw. 24 (2007) 38–45.

[5] M.A. Chauhan,M.A. Babar, Cloud infrastructure for providing tools as a service:
quality attributes and potential solutions, in: presented at the Proceedings of
the WICSA/ECSA 2012 Companion Volume, Helsinki, Finland, 2012.

[6] M.A. Chauhan, M.A. Babar, A Systematic Mapping Study of Software
Architectures for Cloud Based Systems, Technical Report TR-2014-175, 2014.

[7] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-
Wesley Professional, 2012.

[8] S. Angelov, P. Grefen, An e-contracting reference architecture, J. Syst. Softw. 81
(2008) 1816–1844.

[9] S. Angelov, P. Grefen, D. Greefhorst, A framework for analysis and design of
software reference architectures, Inf. Softw. Technol. 54 (2012) 417–431.

[10] P. Avgeriou, Describing, instantiating and evaluating a reference architecture:
A case study, Enterp. Archit. J. (2003) 24.

[11] IEEE recommended practice for architectural description of software-
intensive systems, in: IEEE Std 1471-2000, 2000, p. i-23.

[12] ISO/IEC/IEEE systems and software engineering – architecture description,
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000), 2011 pp. 1–46.

[13] F. Arvidsson, A. Flycht-Eriksson, Ontology I, http://www.ida.liu.se/janma/
SemWeb/Slides/ontologies1.pdf, (Retrieved 23.06.14).

[14] Y. Zhao, J. Dong, T. Peng, Ontology classification for semantic-web-based
software engineering, IEEE Trans. Serv. Comput. 2 (2009) 303–317.

[15] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, et al.,
Semantic annotation for knowledgemanagement: Requirements and a survey
of the state of the art,Web Semant.: Sci. Serv. AgentsWorldWideWeb4 (2006)
14–28. 1.

[16] J.R. Hilera, x Ferna, L. ndez-Sanz, Developing domain-ontologies to improve
sofware engineering knowledge, in: 2010 Fifth International Conference on
Software Engineering Advances, ICSEA, 2010, pp. 380–383.

[17] S. Nešić, Semantic document model to enhance data and knowledge
interoperability, in: V. Devedžić, D. Gaševic (Eds.), Web 2.0 & Semantic Web,
Vol. 6, Springer, US, 2009, pp. 135–160.

[18] A. Segev, Q.Z. Sheng, Bootstrapping ontologies for web services, IEEE Trans.
Serv. Comput. 5 (2012) 33–44.

[19] F. Buschmann, R.Meunier, H. Rohnert, P. Sommerlad,M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley & Sons, Inc., 1996.

[20] D. Baxter, J. Gao, K. Case, J. Harding, B. Young, S. Cochrane, et al., A framework
to integrate design knowledge reuse and requirements management in
engineering design, Robot. Comput.-Integr. Manuf. 24 (2008) 585–593. 8.

[21] D. Baxter, J. Gao, K. Case, J. Harding, B. Young, S. Cochrane, et al., An engineering
design knowledge reuse methodology using process modelling, Res. Eng. Des.
18 (2007) 37–48. 2007/05/01.

[22] O. Zimmermann, C. Miksovic, J.M. Küster, Reference architecture, metamodel,
andmodeling principles for architectural knowledgemanagement in informa-
tion technology services, J. Syst. Softw. 85 (2012) 2014–2033. 9.

[23] F. Zahedi, The analytic hierarchy process-a survey of the method and its
applications, Interfaces 16 (1986) 96–108.

[24] P.B. Kruchten, The 4+1 View Model of architecture, IEEE Softw. 12 (1995)
42–50.

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Pearson Education, 1994.

[26] B. Leiba, Oauth web authorization protocol, IEEE Internet Comput. (2012)
74–77.

[27] A.J. Riel, Object-Oriented Design Heuristics, Vol. 338, Addison-Wesley,
Reading, 1996.

[28] J.B. Bernabe, J.M.M. Perez, J.M.A. Calero, F.J.G. Clemente, G.M. Perez, A.F.G.
Skarmeta, Semantic-aware multi-tenancy authorization system for cloud
architectures, Future Gener. Comput. Syst. 32 (2014) 154–167.

[29] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne,
et al., Multi-tenant SOA middleware for cloud computing, in: 2010 IEEE
3rd International Conference on Cloud Computing, (CLOUD), IEEE, 2010,
pp. 458–465.

[30] P. Clements, L. Bass, Relating Business Goals to Architecturally Significant
Requirements for Software Systems, DTIC Document, 2010.
[31] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere,
The architecture tradeoff analysis method, in: Fourth IEEE International
Conference on Engineering of Complex Computer Systems, 1998. ICECCS’98.
Proceedings., 1998, pp. 68–78.

[32] M. Boškovic, E. Bagheri, G. Grossmann, D. Gaševic, M. Stumptner, Towards
integration of semantically enabled service families in the cloud, in: WS2,
2011, p. 58.

[33] M.-C. Valiente, E. Garcia-Barriocanal, M.-A. Sicilia, Applying ontology-based
models for supporting integrated software development and it service
management processes, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42
(2012) 61–74.

[34] I.N. Athanasiadis, F. Villa, A.-E. Rizzoli, Enabling knowledge-based software
engineering through semantic-object-relational mappings, in: Proceedings
of the 3rd International Workshop on Semantic Web Enabled Software
Engineering, 2007.

[35] D. Ameller, X. Franch, Ontology-based architectural knowledge representa-
tion: Structural elements module, in: C. Salinesi, O. Pastor (Eds.), Advanced
Information Systems EngineeringWorkshops, Vol. 83, Springer Berlin, Heidel-
berg, 2011, pp. 296–301.

[36] B. Antunes, P. Gomes, N. Seco, SRS: a software reuse system based on the
semantic web, in: 3rd International Workshop on Semantic Web Enabled
Software Engineering, SWESE, 2007.

[37] H.-J. Happel, A. Korthaus, S. Seedorf, P. Tomczyk, KOntoR: an ontology-enabled
approach to software reuse, in: Proc. of The 18Th Int. Conf. On Software
Engineering and Knowledge Engineering, 2006.

[38] R. Witte, Y. Zhang, J. Rilling, Empowering software maintainers with semantic
web technologies, in: The SemanticWeb: Research and Applications, Springer,
2007, pp. 37–52.

[39] Y. Zhang, R. Witte, J. Rilling, V. Haarslev, An ontology-based approach
for traceability recovery, in: 3rd International Workshop on Metamodels,
Schemas, Grammars, and Ontologies for Reverse Engineering, ATEM 2006,
Genoa, 2006, pp. 36–43.

[40] R.C. de Boer, P. Lago, A. Telea, H. Van Vliet, Ontology-driven visualization
of architectural design decisions, in: Joint Working IEEE/IFIP Conference on
Software Architecture, 2009 & European Conference on Software Architecture.
WICSA/ECSA 2009., 2009, pp. 51–60.

[41] R.C. de Boer, H. Van Vliet, QuOnt: an ontology for the reuse of quality criteria,
in: ICSE Workshop on Sharing and Reusing Architectural Knowledge, 2009.
SHARK’09., 2009, pp. 57–64.

[42] A. Tang, L. Peng, H. van Vliet, Software architecture documentation: The Road
Ahead, in: 2011 9th Working IEEE/IFIP Conference on Software Architecture,
WICSA, 2011, pp. 252–255.

[43] K.A. de Graaf, P. Liang, A. Tang, W.R. van Hage, H. van Vliet, An exploratory
study on ontology engineering for software architecture documentation,
Comput. Ind. 65 (7) (2014) 1053–1064.

[44] K.A. de Graaf, A. Tang, L. Peng, H. Van Vliet, Ontology-based software
architecture documentation, in: 2012 Joint Working IEEE/IFIP Conference
on Software Architecture (WICSA) and European Conference on Software
Architecture, ECSA, 2012, pp. 121–130.

[45] H. Zhou, H. Yang, A. Hugill, An ontology-based approach to reengineering
enterprise software for cloud computing, in: Computer Software and
Applications Conference, COMPSAC, 2010 IEEE 34th Annual, 2010, pp.
383–388.

[46] S.C. Brandt, J. Morbach, M. Miatidis, M. Theißen, M. Jarke, W. Marquardt,
An ontology-based approach to knowledge management in design processes,
Comput. Chem. Eng. 32 (2008) 320–342.

[47] J. Rilling, Y. Zhang, W.J. Meng, R. Witte, V. Haarslev, P. Charland, A unified
ontology-based process model for softwaremaintenance and comprehension,
in: Models in Software Engineering, Springer, 2007, pp. 56–65.

[48] R. Rezaei, T.K. Chiew, S.P. Lee, Z. Shams Aliee, A semantic interoperability
framework for software as a service systems in cloud computing environ-
ments, Expert Syst. Appl. 41 (2014) 5751–5770. 10/1/.

[49] Z. Xu, L. Mei, Y. Liu, C. Hu, L. Chen, Semantic enhanced cloud environment for
surveillance data management using video structural description, Computing
(2014) 1–20. 2014/05/16/.

[50] E.F. Barbosa, E.Y. Nakagawa, A.C. Riekstin, J.C. Maldonado, Ontology-based
development of testing related tools, in: SEKE, 2008, pp. 697–702.

[51] L.B.R. Oliveira, E.Y. Nakagawa, A service-oriented reference architecture for
software testing tools, in: Software Architecture, Springer, 2011, pp. 405–421.

[52] E.Y. Nakagawa, F.C. Ferrari, M.M. Sasaki, J.C. Maldonado, An aspect-oriented
reference architecture for software engineering environments, J. Syst. Softw.
84 (2011) 1670–1684.

[53] C. Chapman, W. Emmerich, F. Márquez, S. Clayman, A. Galis, Software
architecture definition for on-demand cloud provisioning, Cluster Comput.
(2011) 1–22.

[54] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, et al., A reference architecture
for scientific workflowmanagement systems and the VIEW SOA solution, IEEE
Trans. Serv. Comput. 2 (2009) 79–92.

[55] T. Moser, S. Biffl, Semantic integration of software and systems engineering
environments, IEEE Trans. Syst.Man Cybern. Part C Appl. Rev. 42 (2012) 38–50.

[56] H. Tajalli, N. Medvidović, iDARE—a reference architecture for integrated
software environments, Softw. - Pract. Exp. 44 (2014) 299–316.

[57] R.A. Calvo, S.T. O’Rourke, J. Jones, K. Yacef, P. Reimann, Collaborative writing
support tools on the cloud, IEEE Trans. Learn. Technol. 4 (2011) 88–97.

http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref3
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref4
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref6
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref7
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref8
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref9
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref10
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref14
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref15
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref17
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref18
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref19
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref20
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref21
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref22
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref23
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref24
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref25
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref26
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref27
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref28
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref29
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref30
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref33
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref35
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref38
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref43
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref46
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref47
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref48
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref49
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref51
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref52
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref53
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref54
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref55
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref56
http://refhub.elsevier.com/S0167-739X(16)30722-1/sbref57


[58] R. Wolvers, T. Seceleanu, embedded systems design flows: integrating
requirements authoring and design tools, in: 2013 39th EUROMICRO
Conference on Software Engineering and Advanced Applications, SEAA, 2013,
pp. 244–251.

[59] M. Biehl, J. De Sosa, M. Torngren, O. Diaz, Efficient construction of presentation
integration for web-based and desktop development tools, in: Computer
Software and Applications Conference Workshops, COMPSACW, 2013 IEEE
37th Annual, 2013, pp. 697–702.

[60] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, R.N. Taylor, xADL:
enabling architecture-centric tool integrationwith XML, in: Proceedings of the
34th Annual Hawaii International Conference on System Sciences, 2001. 2001,
p. 9.

MuhammadAufeef Chauhan received the Ph.D. degree in
Computer Science from IT University of Copenhagen, Den-
mark. He is currently working as a Postdoctoral researcher
at IT University of Copenhagen (ITU). He holds master de-
grees in Software Engineering from ITUniversity of Copen-
hagen, Denmark and Mälardalen University, Sweden; and
holds bachelor degree in Computer Science from National
University of Computer and Emerging Sciences (FAST-NU),
Pakistan. His research interests include software architec-
tures for cloud-enabled and distributed software systems,
migration of applications to Software as a Service (SaaS)

model, software evolution and Global Software Development (GSD).
Muhammad Ali Babar is a Professor in the School
of Computer Science, University of Adelaide. He is an
honorary visiting professor at the Software Institute,
Nanjing University, China. He also holds an academic
position at the IT University of Copenhagen, Denmark.
He has established an interdisciplinary research centre
called CREST, Centre for Research on Engineering Software
Technologies, where he directs the research and education
activities in the areas of software systems engineering,
security and privacy, and social computing. He obtained
a Ph.D. in Computer Science and Engineering from the

school of computer science and engineering of University of New South Wales.
Further details can be found at http://malibabar.wordpress.com.

Quan Z. Sheng received the Ph.D. degree in Computer
Science from the University of New South Wales, Sydney,
Australia. He is a professor in the School of Computer
Science at the University of Adelaide. His research
interests include service-oriented architectures, web of
things, distributed computing, and pervasive computing.
He was the recipient of the 2011 Chris Wallace Award
for Outstanding Research Contribution and the 2003
Microsoft Research Fellowship. He is the author of more
than240publications. He is amember of the IEEE andACM.

http://malibabar.wordpress.com

	A Reference Architecture for provisioning of Tools as a Service: Meta-model, Ontologies and Design Elements
	Introduction
	TSPACE RA requirements and documentation approach
	Functional requirements
	Quality requirements
	Reference architecture documentation requirements

	TSPACE reference development approach and architecture meta-model
	TSPACE ontologies
	TSPACE ontologies details
	Capability ontology (CapOnt)
	Ontologies to manage relations among artifacts and relations among artifacts and tools (ArtToolOnt)
	Change ontology (ChaOnt)
	Annotation ontology (AnnOnt)

	Use of ontologies for notifications and information extraction

	TSPACE architecture design and decomposition of architecture elements
	Details of the reference architecture components
	Decomposition of tools selection and provisioning manager
	Decomposition of integration manager
	Decomposition of collaboration and awareness manager
	Decomposition of multi-tenancy and authentication

	Design decisions summary

	Prototype and evaluation of TSPACE reference architecture
	Evaluation for feasibility using prototype tools
	Evaluation for completeness of TSPACE reference architecture
	Evaluation of awareness support
	Evaluation of TSPACE reference architecture via potential stakeholders
	Evaluation settings
	Evaluation results


	Related work
	Ontologies to support process workflows and integration
	Frameworks and architectures for services provisioning and integration
	TSPACE RA with respect to related work

	Conclusions
	Acknowledgments
	References


