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Abstract

It was estimated that there would be over 55 million end-user programmers in 2012 [1]
in many different fields such as engineering, insurance and banking, and the numbers are not
expected to have dwindled since. Consequently, technological advancements of spreadsheets is
of great interest to a wide number of people from different backgrounds. This literature review
presents an overview of research on spreadsheet technology, its challenges and its solutions. We
also attempt to identify why software developers generally frown upon spreadsheets and how
spreadsheet research can help alter this view.
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1 Introduction

Spreadsheets have existed since the 1970s [2, 3,
4] and many commercial and research spread-
sheet applications are in widespread use today:
LibreOffice’s open-source OfficeCalc [5], Gnu-
meric [6], Apple’s Numbers [7], VisiCalc [4, 8],
Lotus 1-2-3 [4] and Google spreadsheets [9].
The most popular commercial application is un-
doubtedly Microsoft Excel. Spreadsheet users
are so-called end-users or end-user programmers,
people who are not trained IT professionals, but
use programs such as spreadsheets as a means to
an end, and are often domain experts in their
respective fields. These communities include,
but are by no means limited to, scientific, finan-
cial, engineering and governmental domains [10].
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Spreadsheets have also been used for educational
purposes such as an introductory course in pro-
gramming [11, see section 6] [12, 13]. They vastly
outnumber the number of professional program-
mers, and so spreadsheet end-user programming
can be viewed as a highly ubiquitous form of pro-
gramming. As a result, the spreadsheet research
community is highly active and largely agrees on
the popularity and abundance of spreadsheets as
valuable organisational tools [14].

Despite their abundance, there seems to be
a tendency from the software development com-
munity to frown upon spreadsheet programming
as not being “real programming” [15, 16, 17, 18].
Casimir even suggests that spreadsheets are just
plain boring for programmers [17].

Spreadsheets can generally be described as
first-order, declarative and functional languages
with a visual interface. Compared to traditional
programs they do not have a compilation step,
but instead an edit-run work cycle [14]. Another
distinctive feature of spreadsheets is their sup-
port for automatic recalculation where cell values
are instantly updated in response to user modi-
fications.

This study explores the current challenges in
spreadsheet technology and consolidates, com-
pares and critiques state-of-the-art approaches
to solving them. More specifically, we aim to
answer the following questions:

1. What are some notable advances in spread-
sheet technology?

2. How do these advances affect end-user de-
velopment?

3. Do professionals in the software industry
not consider spreadsheet programming as
“real” programming, and if so, why?

The contributions of this paper are a broad
coverage and critical discussion of different
spreadsheet technologies and their different foci.
We stress that this literature review is not in-
tended to cover all the current literature on
spreadsheets, but to provide a general overview
of the research on spreadsheets for interested
readers. We have chosen to divide the litera-
ture in this study into several categories based
on which part of the spreadsheet paradigm they
address. In each section, we succinctly highlight
the research contributions, results and other rele-
vant points and compare the approaches to those

from other papers if applicable. For the reader’s
convenience, a table is available in the appendix
that gives an overview of the referenced litera-
ture and to which categories they belong.

We conclude with a small table of contents.

1.1 Spreadsheet Terminology

In this section, we provide a short introduction
to some of the general spreadsheet terminology
used throughout this paper.

A spreadsheet is a graphical user interface
tool that consists of a number of worksheets each
of which is composed of a rectangular grid of
cells. Each cell can contain different values such
as text, a number, a date or a formula to name
a few. A cell containing a formula can refer
to another cell by way of references. Rows and
columns in the cell grid each have a unique num-
ber and letter respectively. Numbers usually
start at 1 and letters at A. A reference can be
either absolute or relative. An absolute refer-
ence refers to a cell using its exact address such
as $B$10 (tenth row, second column). A relative
reference instead contains offsets relative to the
containing cell; the relative reference -1, 5 in
cell $B$10 would refer to the cell at $A$15. Note
that the type of a reference does not affect for-
mula evaluation, but affects the formula when it
is copied. There are different ways of displaying
references. The R1C1 format lists rows followed
by columns. For instance, R2C1 is an absolute
reference to the cell in the second row and first
column and R[-1]C[-1] is a relative reference to
a cell located one row and column above and to
the left of the cell containing the reference. In
the Al format, the columns are listed first. Ab-
solute references are prefixed with a dollar sign
and relative references omit it, thus relative to
cell B2, A1 is a reference to the previous column
and row, while $B$10 is an absolute reference to
column B and the tenth row. Both formats sup-
port combinations of absolute and relative rows
and columns in a single reference along with cell
ranges that refer to a cell area. Lastly, Funcalc
[19] uses another format called the CORO format,
which is zero-based and indexes with the column
first, but is otherwise similar to the R1C1 for-
mat. Zero-indexing is convenient for array access
in most contemporary programming languages
since they also use zero-based indices, so Fun-
calc uses this format internally.
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Formulas are expressions that perform op-
erations on cells to yield a result. A classical
example is the SUM function: SUM($A$1:$A$20)
sums the values in the cells spanned by the range
$A$1:$A$20, i.e. the first twenty rows of the first
column. Most modern spreadsheet applications
support a wide range of these types of aggre-
gation functions. They also generally support
functions for calendars, currencies and databases
etc.

2 Sheet Representation

Spreadsheets usually present the user with a
rectangular 2D grid of cells. Each cell can con-
tain values, formulas, graphs and even buttons
and graphics [20]. Each cell can reference other
cells through absolute or relative references and
can thus be viewed as a global, virtual address
space [18]. The spatial representation and inter-
nal memory layout is a fundamental and signifi-
cant part of a spreadsheet program. It requires
careful design in order to represent a multitude of
cell layouts efficiently. Unfortunately, not much
literature can be found on the subject. As an ex-
ample of its importance, consider a contrived ex-
ample where a user has inserted some data into
the four extreme corners of a spreadsheet. A
naive 2D block of cells would consume an unac-
ceptable amount of memory to store only these
four cells. Excel 2013 is capable of representing
16,384 columns and 1,048,576 rows [2], assuming
each cell took up only 1 byte for simplicity, the
naive approach would consume approximately
17GB of memory to represent these 4 cells, which
is a mere 2.33E-10% of the total available space.
Any cell representation scheme also affects the
efficiency of recalculation. Assume the same four
cells, that one of them is modified (triggering re-
calculation) and that there are no cyclic depen-
dencies, the recalculation process would need to
scan over 17 billion cells to update at most 3
cells. Surely, better alternatives must exist.

A more efficient strategy uses a quadtree [2],
a spatial data structure that can efficiently rep-
resent sparse objects in 2D. A 2D space is recur-
sively subdivided into four subquads. Each in-
ternal node has four children, one for each of the
subquads. The idea is to recursively subdivide
a large 2D space into four smaller, equally sized
quads or rectangles, usually to a certain depth or

dictated by some other criteria such as nesting
depth. To query the quadtree with a 2D point, it
is determined in which subquad the point should
lie in based on its coordinates. This approach is
recursively applied to subsequent subquads until
either the point is found or an empty subquad
is located, so the time complexity for querying
is O(lg(N)) where lg is the logarithmic function
with base 4, i.e. log,. When the user creates,
deletes, cuts or copies cells, the quadtree will
need to be updated accordingly.

A quadtree is a good fit for dense and sparse
data layouts, both of which should be accommo-
dated by a spreadsheet application. Sestoft uses
a modified, but similar, data structure dubbed
QT4, represented by a quadruple-nested array
of arrays of non-quadratic quads. Bit-shifting
of coordinates are used to query the QT4 data
structure and since its depth is fixed, access time
is constant. Experiments have shown good per-
formance results for various access patterns [2].

3 Recalculation

Automatic recalculation of cell values is a cor-
nerstone of spreadsheet applications: When a
user modifies a cell, all cells whose values de-
pend upon it, are automatically updated accord-
ingly. Therefore it is also vital to ensure that this
process happens without noticeable delay to re-
tain interactivity. The problem quickly becomes
complex when we consider cell references and cell
arrays, which can contain values, formulas, func-
tions or even data that needs to be fetched from
an external source.

As depicted in figure 1a most spreadsheet ap-
plications present users with a cell grid. Figure
figure 1b shows dataflow between the same cells.

< A B i — D
1 Grade Count Product Count %
2 |-3 1 =A2*B2 =B2/$B$9*100
3 0 6 =A3*B3 =B3/$B$9*100
4 |2 5 =A4*B4 =B4/$B$9*100
5 |4 9 =A5*B5 =B5/$B$5%100
6 |7 19 =A6*B6 =B6/$B$5*100
7 |10 14 =A7*B7 =B7/$B$9*100
8 12 4 =AB*B8 =B8/$B$9=100
9 Sum =SUM(B2:B8) =SUM(C2:C8)
10
11 Average =C9/B9
i

(a)
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(b)

Figure 1: A spreadsheet (figure 1a) and its cor-
responding support graph (figure 1b) [2].

Such a graph is used in many spreadsheet
applications to track dependencies between non-
empty cells and efficiently recalculate those af-
fected by an update. One such graph is the sup-
port graph defined by Sestoft [2]. In this graph,
there is an edge in the graph from a source cell
to a target cell if the target cell depends on the
source cell, and the source cell is said to sup-
port its target cells, hence the name. Because
the edges point in the inverse direction of data
dependencies, the support graph is analogous to
a dataflow graph [21] where data flows along its
edges. Conversely, the dependency graph is the
inverse graph of the support graph where edges
signify cell dependencies. The nomenclature for
these graphs is not standardised, so we define
exact terms for them here to avoid confusion.
For example, Hoon et al. use used-by and uses
respectively [22]. We choose to use the terms
support graph and dependency graph since they
most accurately capture their intent, and since
the latter is used extensively in the literature on
graphs and should thus be more immediate to a
larger audience.

Before discussing some approaches to recal-
culation, we explain the difference between static
and dynamic cell reference cycles [2]. When re-
calculating cells, cyclic dependencies are prob-
lematic. In Excel, the offending cells are marked

by a #CYCLE! error value. If one cell reference,
perhaps transitively, refers to itself, a static cy-
cle has been found. On the other hand, a dy-
namic cycle occurs when cells contain non-strict
expressions such as the IF function [2]. For non-
strict functions, not all arguments need to be
evaluated in order to fully evaluate the function.
Consequently, dynamic cycles may or may not be
discovered during recalculation. A spreadsheet
can have both types of cycles, and a spreadsheet
with a dynamic cycle also has a static cycle, but
the converse is not true.

Sestoft [2] proposes two different strategies
for recalculation which use the support graph.
We will only discuss the one which is currently
used in the Funcalc research spreadsheet applica-
tion [19], called standard minimal recalculation.

The recalculation algorithm is minimal in the
sense that it will visit each cell affected by a user
update at most once. Barring the discovery of
cycles, recalculation will make sure that the val-
ues of all cells are updated after its completion.
Each cell can be in any of four states: dirty be-
cause it has not been computed yet, computing
because its value is currently being computed,
enqueued because the cell is currently waiting to
be picked for computation on a queue, or upto-
date if the cell has been updated. Recalculation
is divided into two phases: Mark and Evaluate
as described below. The algorithm starts out by
identifying the recalculation roots, the set of cells
that have been modified and all volatile cells that
need to be recalculated, and putting them in a
recalculation queue. It then makes sure that all
cells affected by these roots are marked as dirty.
This is the Mark phase. In the Evaluate phase,
a cell is picked from the queue. If it is not already
uptodate or computing (which would mean that
there is a cycle), it is either dirty or enqueued,
so it is marked as computing and evaluated. The
evaluation of formulas lead to the evaluation of
the cells that the formula expression refers to by
way of recursive function calls. When a cell has
been fully evaluated, it is marked as uptodate
and its set of supported cells that are marked
dirty are added to the queue. All these cells are
marked as enqueued before they are added to
the queue. If a cell is discovered that is in state
computing, then a cycle has been found. The
use of the enqueued state means that the recal-
culation can distinguish between cells that are
waiting on the queue to be computed and cells
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which have already been picked from the queue
and are currently being computed. If we did not
use separate states but used computing for both
of them, cells could be put on the queue that
would have that state and then be reported as
wrongly causing a cycle when they were picked
off of the queue. We illustrate this fact in fig-
ure 2. Imagine that a user changed the constant
in cell A1 from 42 to 43, so A1l is the only recal-
culation root. All cells are initially marked as
dirty. Cell A1 will be marked as uptodate as it is
a constant and cells A2 and B1 will be added to
the recalculation queue. We would now normally
have the scenario depicted in figure 2b. Let cell
B1 be the next cell to be picked from the queue.
In this case the system would report a cycle be-
cause after cell B1 has been fully evaluated it will
add its set of supported cells to the recalculation
queue and marking each of them as computing
instead of enqueued. Then when cell A2 is picked
off of the queue and its state is found to be com-
puting, the system will erroneously believe that
it has found a cycle. Thus using enqueued allows
us to differentiate between cells that are on the
queue and those that are not.

A B
1 43 =A1+1
2 | =A1+B1

(a) A spreadsheet with some simple dependen-
cies. Cell Al supports both cells A2 and B1,
while cell B1 also supports cell A2.

@ @ enqueued
enqueued

(b) The corresponding support graph for the
spreadsheet in figure 2a.

Figure 2: A spreadsheet and its support graph.

Sestoft also proposes an approximate topo-
logical sort on the order of cell dependencies to
avoid deep recursive calls which may exceed the
stack depth. This approach is also suggested in
[23].

Serek and Poulsen examined optimised recal-
culation using the support graph in Funcale [24].
Flemberg and Larsen further improved this al-
gorithm in their Master thesis [25]. We discuss
their work in section 3.2.

In [22], Hoon et al. implement a spreadsheet
application using the pure and lazy functional
language Clean. This has an impact on recalcu-
lation, because the spreadsheet is evaluated in a
lazy fashion. Cell updates that are not visible to
the user, because they are outside the view port,
need not be re-evaluated until they come into
view. This recalculation strategy is especially
efficient if the user stays within the current area
in the spreadsheet and is modifying a particular
cell multiple times before moving the screen, be-
cause resources are not expended trying to eval-
uate dependencies of that cell until they become
visible. Using Sestoft’s strategy, recalculation
of affected cells is done regardless of whether
or not they are visible, wasting potentially un-
needed computations. In contrast, lazy evalu-
ation may affect moving around in the spread-
sheet if a user moves into an area with lot of de-
pendencies whose recalculation has been delayed.
However, this could be done asynchronously to
avoid affecting the user interface, and cells whose
values have not yet been computed could be as-
signed the value #GETTING_DATA which is used by
Excel for long-running calculations. The loading
could also be performed speculatively and asyn-
chronously by pre-computing some of the cells
that surround the user’s current viewport under
the assumption that users will eventually move
to some other part of the spreadsheet. More
work is necessary to fully understand and com-
pare these two approaches.

3.1 Dataflow

Dataflow will be a recurring term in this study,
and so requires a more precise definition since it
has multiple interpretations in the literature.
Fine-grained dataflow is implemented in
hardware and dates back to the 1970’s at MIT,
with active researchers like K. Arvind and R.
S. Nikhil. It was conceived in an attempt to
design an entirely new hardware model that
could rival the Von Neumann machine model
and avoid the so-called Von Neumann bottleneck
[26, 27]. Arvind and Nikhil developed the paral-
lel language Id that was compiled into a paral-
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lel machine language that used dataflow graphs
to model the flow of computations and their
dependencies [27]. The instructions were then
executed on a special Tagged Token Dataflow
Architecture (TTDA) with data-driven instruc-
tion scheduling based on the data dependen-
cies of the dataflow graph. Computations
had to wait for their dependencies to be com-
puted, but otherwise independent computations
could execute in parallel. Another example are
also so-called asynchronous or self-timed circuits
[28]. While not specifically associated with fine-
grained dataflow, they exhibit similar properties.
These circuits are not governed by a central clock
as in contemporary CPUs, but instead use sig-
nals to communicate, akin to the flow of data
that triggers execution of instructions in the Id
language.

The language SISAL or Streams and Itera-
tion in a Single Assignment Language, its accom-
panying compiler by Sarkar [29], and the works
of John Hennessy and David Cann [30, 31, 32,
33] are examples of coarse-grained dataflow, and
was implemented in software. This difference in
granularity led to their respective names, since
software can be considered coarse-grained com-
pared to a more low-level, fine-grained hardware-
and instruction-level approach. Coarse-grained
dataflow programming was at its peak in the
mid 1980’s, but later declined due to the scarcity
and cost of shared-memory multi-core proces-
sors, that are much more abundant today and
exist on smaller scales such as personal laptops
and smartphones.

The final type of dataflow is called syn-
chronous dataflow programming. Gilles Kahn
investigated this concept in 1974 with a formal-
isation of the semantics of a simplified language
for communicating parallel processes modelled
by a schema or network, that closely resembles
a dataflow graph [34]. Lustre was designed for
reactive systems in 1991 by Halbwachs et al. [35].
The authors define a dataflow model, and a lan-
guage which augments this model with a concept
of time-dependent flows, clocks and operators for
construction of time-sensitive and event-driven
programs. The synchronous aspect of Lustre is
the formulation of conditions and relations using
the semantics of the language that control the
interplay of events.

3.2 Parallel Recalculation

Parallel programming has received renewed in-
terest from the computer science research com-
munity in the last decade. A widespread man-
ifestation of parallel machines is the shared-
memory multi-core system where processors
share a global address space, used for both stor-
age and communication between parallel threads
and processes. Today such systems can be found
in anything from desktop and laptop computers
to graphics processing units and mobile phones.
However, leveraging this performance requires
expert knowledge and experience to deliver per-
forming and scalable solutions, something that
end-users are rarely equipped to do. Systems
that automatically use the available resources
and accelerate end-user software are thus very
attractive. This is further emphasised because
real-world spreadsheets can easily become huge
and overwhelming and contain complex formulas
that can take a long time to recalculate. Some
spreadsheets applications thus opt to allow the
user to temporarily disable automatic recalcula-
tion during the development of spreadsheets, and
later enable it when the spreadsheet’s design and
layout are satisfactory.

Contrary to what we expected, we did not
find significant literature about parallel spread-
sheets. We did discover a few patents nonethe-
less, but most of them are described in a vague
or slightly obfuscated manner.

Previously, in section 3, we discussed dif-
ferent recalculation strategies and the dataflow
and dependency graphs and mentioned how the
graphs are suitable for parallel execution. Given
this fact and the prevalence of contemporary
multi-core systems, it is perhaps surprising that
few attempts have been made to enable parallel
recalculation. This is possibly either a testament
to the difficulties in creating a satisfactory solu-
tion or that the subject is just not as interesting
as the other aspects of spreadsheets.

Flemberg and Larsen [25] attempted to ac-
celerate spreadsheet recalculation in Funcalc [19]
in their Master thesis based on Sarkar’s work on
an optimising compiler for the SISAL language
[36]. Sarkar developed algorithms for partition-
ing and scheduling dataflow computations which
he claimed could be used for SISAL and any par-
allel language. Flemberg and Larsen suggest an
improved heuristic for the partitioning algorithm
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and provide a new scheduling algorithm using
the Task Parallel Library (TPL) [37]. They do
not support sheet-defined or volatile functions
(see section 5.2 for the latter) and support a sub-
set of the built-in functions, in order to test the
general applicability of their partitioning algo-
rithm. They use the TPL’s dataflow constructs
to create a dataflow pipeline for the partitioned
tasks. They do not perform any benchmarks
due to the effort of engineering required to eval-
uate performance and the fact that any speed-
up could be attributed to either partitioning,
scheduling or both. The results indicated that
their new heuristic is better suited for partition-
ing spreadsheet computations than Sarkar’s orig-
inal heuristic. Furthermore, all the requirements
were fulfilled in all three example spreadsheets,
created by the authors themselves.

Distributed systems for accelerated evalua-
tion of spreadsheet computations have been ex-
plored by Abramson et al. and Nadiminti et al.
[38, 39]. Abramson et al. suggest a distributed
solution where an external tool is in charge of
scheduling computations. The results are then
read back into the spreadsheet. They focus
mainly on simulations in Excel. Their system,
ActiveSheets, consists of an Excel front-end and
a back-end that automates the entire process us-
ing Nimrod, a research tool [40] which has a com-
mercial counterpart, EnFuzion [41]. The parallel
evaluation of the spreadsheet is based on the flow
of data between cells, and is thus an example of
coarse-grained dataflow (see section 3.1). Inde-
pendent computations are sent to Nimrod and
executed in parallel. Their system exploits both
inter- and intra-cell parallelism. The authors do
not provide any details to the actual implementa-
tion of ActiveSheets, but provide two case stud-
ies.

Nadiminti et al. [39] developed the Excel plu-
gin ExcelGrid, and similar distributed systems
that use grid systems, using .NET and a ser-
vice oriented architecture (SOA). The system
was designed to run multiple instances of the
same task using different parameters, similar to
a distributed SIMD (Single Instruction, Mul-
tiple Data) model. The user activates Excel-
Grid through a graphical user interface, select-
ing input and output cells and the system col-
lects input parameters from the spreadsheet en-
tered by the user. The workload is distributed
to a cluster of desktop computers that share a

file system, then subsequently collected and re-
turned via callbacks. The system can run on
both enterprise-local networks and global net-
works. The authors conduct two experiments
using different grid systems, but disclose few de-
tails about them, such as the size of their exper-
iments.

Commercial applications also exist. Spread-
sheetGear [42] is a collection of commercial plu-
gins for Excel, one of which is a calculation
engine that boasts multi-threaded recalculation.
HPC Services for Excel developed by Microsoft
enables workbooks and user-defined functions
(those defined in Visual Basic, not sheet-defined
functions, see section 5 for a discussion) to be off-
loaded to run on clusters of compute nodes via
a SOA interface [43].

3.3 Templates

Also known as models, templates are minimal
or compressed spreadsheets that specify a pre-
defined layout to be used in development. Tem-
plates have to be instantiated into actual spread-
sheets in which development can take place.
Spreadsheet templates provide several benefits.
First, the template is usually compressed such
that repeated columns and rows of similar data
are collapsed into a single one. For instance,
some columns might contain the same formulas
and can thus be collapsed into one. Second, they
can be created by a domain expert and used by
novice users, reducing errors and deviations. Fi-
nally, if the template is correct and error-free, so
are any spreadsheet instantiations [44, 45]. Tem-
plates are thus relevant for our continued discus-
sion on error handling in spreadsheets.
Abraham and Erwig [46] implemented an al-
gorithm for inferring templates in. In earlier
work, the Visual Template Specification Lan-
guage or VISTL [47] and the Gencel [45] system
were developed to specify, and generate spread-
sheets from templates, respectively. A user spec-
ifies the spreadsheet template in VISTL and in-
stantiates the template in Gencel according to
his or her requirements. Gencel ensures that
reference, range and type errors are not present
such that the instantiated spreadsheet is also free
from these errors, and that it abides by the orig-
inal structure of the template. The intent of this
work is to automate template creation by infer-
ring a minimal, underlying template from a given
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spreadsheet. The authors use the spatial analy-
sis algorithms from UCheck (see section 4.3.3) to
determine the overall layout of the current sheet.
This avoids inferring a template from unrelated
data in the same sheet. Next, sets of similar for-
mulas are identified. The sets include as many
of these as possible to generate a minimal tem-
plate. Two formulas are deemed similar if they
are cp-similar, i.e. if one could have resulted from
a copy-paste of the other. Additionally, if the
data is of the same type there is strong evidence
that two formulas are cp-similar, otherwise the
system has been made tolerant to minor data de-
viations in formulas. These sets, that are part of
a similar pattern, are then overlaid to produce
the template.

4 Bugs In Spreadsheets

In light of the ubiquity of spreadsheets, it is
alarming that many studies have found that they
often contain a large amount of errors [48, 49,
50], perhaps due to overconfidence in end-users’
ability to avoid errors [48, 51, 52] or the trust
that is put into computers to compute correct
results [53]. We do not mean the built-in error
codes such as #N/A or #DIV/0!, but bugs intro-
duced by human error such as referring to an
incorrect cell yielding an incorrect value in that
cell. As observed by Powell et al. No studies
on spreadsheets themselves have shown errors to
be rare or inconsequential [50]. This is escalated
by reports of losses of up to billions of dollars
[54, 55, 56, 57], because spreadsheets are used
for important business decisions. Consequently,
a large part of the research on spreadsheets has
been devoted to error detection and handling,
as well as methods for visual feedback to report
those errors in a manageable and understandable
manner. For further reading on spreadsheet er-
rors, Kruck [57] provides an overview of studies
of spreadsheet errors, Powell et al. [50] conduct
a critical review of the literature on spreadsheet
errors in and Zhang et al. [58] evaluate the effi-
ciency in spreadsheet anomaly detection of Am-
Check [59], UCheck [11] and Dimension [60] in
an empirical study.

There have been many suggestions for classi-
fying spreadsheet errors. Powell et al. [50] sum-
marise the requirements for a satisfactory taxon-
omy of error classification, and list some of the

problems with existing classifications. We will
not attempt to classify errors here. Instead we
will categorise the relevant literature and divide
them into the subsequent sections to reflect their
approach to error detection and handling. These
techniques include smells [10, 59, 61, 62], data
clone detection and reparation [63], type systems
[11, 14, 23, 64] and systems that use units, labels
or dimensions in the spreadsheet [16, 60, 65, 66,
67, 68], and debugging and testing [21, 51, 52,
69, 70, 71].

4.1 Smells

Code smells are yet another concept borrowed
from the world of software development. First
identified by Fowler [72], they are a collection
of indications of bad practices and patterns that
may warrant a refactoring of code. They make
the code “smell” wrong, hence the name. Re-
search has attempted to translate existing code
smells to spreadsheets or define new smells [10,
59, 61]. We will collectively refer to these as
spreadsheet smells.

Dou et al. [59] created AmCheck for detect-
ing and repairing ambigous computation smells,
which occur when a group of cells have different
computational semantics in their formulas. Such
a group is called a cell array and is a frequent
construct in spreadsheets. The smell can occur
when a cell formula is copy-pasted to other cells,
initially retaining its computational semantics,
but later on modifications change the semantics.
The authors define two types of smells: The
missing formula smell occurs when some cells
in a cell array are not defined by any formula,
and the inconsistent formula smell occurs when
cells have differing formulas. The system ana-
lyses the spreadsheet and tries to detect these
types of errors using a two-step process: First,
cell arrays are identified. This involves a prelim-
inary step of finding isolated regions (snippets in
the text) using the same approach suggested by
Abraham et al. [11] using soft and hard fences
(see section 4.3.3). Second, it tries to find a
common pattern, and if that fails, the program
synthesis method from [73] is employed to create
a common pattern that satisfies the constraints
imposed by the collective formulas of the cell ar-
ray. The user is then presented with suggestions
for correcting identified mistakes. Their exper-
iments on the EUSES corpus [74] showed that
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44.7% of the spreadsheets that contained cell ar-
rays, also contained at least one smell (and 27.3%
of spreadsheets with formulas). They also report
some cases of false positives, but AmCheck al-
lows users to reject such cases through manual
inspection. They also report false negatives that
are caused by cell arrays not being detected prop-
erly. AmCheck does not handle conditionals in
formulas which was one source of the false neg-
atives. This was left as future work. Dou et al.
remark that some smells will go undetected using
systems such as UCheck [11] that check consis-
tency using user-defined labels, or systems that
use dimension inference [60, 66, 67] if the smells
are not part of the erroneous cells detected by
those systems.

Zhang et al. [58] evaluate the precision, recall
rate, efficiency and scope of AmCheck, UCheck
[11] and Dimension [60], and found that Am-
Check outperformed them both, although the
other two systems could find different types of

anomalies. Suggestions for improvements are
given for all systems.
In later work, Dou et al. [75] cre-

ated CACheck based on AmCheck, yielding
higher precision in detecting smelly cell arrays.
CACheck differs from AmCheck in the following
ways: CACheck can detect inhomogeneous cell
arrays. A cell array is homogeneous if all cell
formulas in the array refer to cells in the same
row/column for column- and row-based cell ar-
rays respectively (a row-based cell array is a row
of consecutive cells). On the other hand, a cell
array is inhomogeneous if there exists a cell in the
cell array whose formula does not abide by the
criteria of homogeneity. New observations about
cell arrays enable CACheck to identify cell arrays
with higher precision. For instance, if two sets of
cell arrays, one row-based and one column-based,
can describe the same region, one is selected and
the other removed from consideration. CACheck
is evaluated on both the EUSES corpus [74] and
the Enron corpus [76], and not just the former.
Dou et al. [61] also developed the TableCheck
system for detecting clones of and smells in ta-
bles with the same or similar computational se-
mantics. Here, tables refer to rectangular areas
of cells and the smells refer to missing or incon-
sistent computations between table clones. This
is much like the cell arrays defined by AmCheck
and CACheck. More specifically, a table clone is
a pair of tables whose corresponding cells share

the same headers and have the same computa-
tional semantics. They are also required to have
at least two rows and columns. We now give a
terse description of the algorithm. TableCheck
proceeds by first determining the types of all
cells using the methods described in [77] and
[78], it then infers table headers and creates a
lookup table with headers as keys and cell ref-
erences that are covered by the given header as
values. Table headers are identified by scanning
left and up, for row and column headers respec-
tively, and finding the first label cell (a cell con-
taining text barring cases such as error values
like #N/A etc.). This lookup table is then used
to identify table clones by creating groups of ta-
ble clones that satisfy the requirements for ta-
bles being clones. Each group of table clones
is then examined for smells such as the missing
formula smell for cells that are missing formulas
when other cells in the table have formulas, or
the inconsistent formula smell for cells that have
different computational semantics. The algo-
rithm is also extended to suppress false positives.
The authors state that TableCheck outperforms
AmCheck [59], CACheck [75], CUSTODES [62],
UCheck [11], Dimension [60] and Excel, detect-
ing table clones and smells in the EUSES spread-
sheet corpus [74] with 92.2% and 85.5% precision
respectively, while those frameworks only achieve
at most a 35.6% smell detection rate. Also, some
of the aforementioned frameworks were built to
detect different smells, for instance, UCheck was
developed as a type checker for spreadsheets, not
for table clone detection. TableCheck found that
21.8% (352 out of 1617 spreadsheets with for-
mulas) in the EUSES corpus contain manually
verified table clones.

Cheung et al. [62] developed the CUSTODES
framework to detect smells using a clustering
technique that groups cells together based on
strong and weak features. Strong features are
formulas and references between cells (dependen-
cies), and their similarity with other cells. Weak
features are things such as labels, layouts and
fonts. Labels are also used in checking consis-
tency in spreadsheets, which we will discuss fur-
ther in section 4.3.3. CUSTODES works as fol-
lows: First, cell formulas are identified. Second,
the identified formulas are then clustered based
on their strong and weak features. Finally, a
bootstrapping algorithm is applied to the results.
Smells are detected by using a local outlier factor
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or LOF for each clustered cell, that finds out-
liers using the density of the feature space of the
cluster cells. LOF is based on the assumption
that the density of an inlier should be similar
to the density of its neighbours, while the den-
sity of an outlier is lower. The LOF score of
each cluster cell is the ratio of the local density
of the cell and the average local density of its
neighbours. Based on this detection, the out-
liers are then categorised into four smell cate-
gories: Missing formula smell, dissimilar refer-
ence smell, Dissimilar operation smell and Hard-
coded constant smell. Experiments showed that
CUSTODES outperforms existing smell detec-
tion frameworks.

4.2 Data Clones

A data clone is created when users copy and
paste cells that contain formulas. If the user
wishes to maintain consistency between all data
clones and their original, he or she needs to up-
date all copies. This is problematic since it may
not be clear where a clone originated. This is re-
lated to the don’t-repeat-yourself or DRY princi-
ple from software engineering, where data clones
are also used to identify repeated code. Detec-
tion of data clones can inform the user of their
presence and he or she can take actions by e.g.
employing alternative techniques to achieve a
similar goal such as linking where data clones
are automatically updated when their source
changes.

Hermans et al. [63] developed a technique for
detecting data clones in spreadsheets. They de-
fine a clone as a copy of a cell and a clone cluster
as a collection of clones that have the same val-
ues as another cluster. Near-miss clone clusters
are clusters where almost all values are the same,
which can happen if a copy is modified, but the
original cluster is not. They are useful for de-
tecting data clones that should be equal, but are
not, perhaps due to missing updates in the clone.
The authors found that 86 of the spreadsheets
in EUSES corpus [74] (out of more than 4000
spreadsheets) contained manually verified data
clones (for sensible, minimal algorithmic param-
eters), yielding a precision of 54.8%. This sug-
gests that data clones are somewhat prevalent in
real-world spreadsheets (data clones were found
in approximately 5% of the spreadsheets in the
EUSES corpus that contain formulas).
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In their algorithm, cells that contain numer-
ical values or formulas are first identified (cells
that contain string values are ignored since they
are usually copied as labels, e.g. “Total” to de-
note a sum of values). A lookup table is created
for all cell values with their values as keys and
all their locations as values. Entries that occur
only once as either a constant or a formula can-
not have clones because they were never copied,
and are thus removed from the table. All cells in
the table are then clustered together with their
neighbours if the neighbours also occur in the ta-
ble and are all either constants or formula cells.
The clustering technique should be capable of
clustering irregular data layouts, similar to the
CUSTODES framework in [62] that is also inde-
pendent of existing layouts. However, the paper
does not mention whether diagonal neighbours
are considered, which would slightly limit its
ability to detect irregular layouts. Whether this
has any implications in practice is doubtful since
cells are usually structured as rectangular areas
consisting of rows and columns without mean-
ingful diagonals. In the final step, formula clus-
ters are compared to each constant cluster. Two
clusters match if they contain the same values
(and so are not near-miss clusters. The match-
ing criteria can be configured to detect them).
If the clusters differ in size, the smaller cluster’s
values must be a subset of the bigger cluster.

The algorithm finds some false positives due
to unforeseen use of data clones: E.g. student
grades are all low numbers that are repeated, and
values can denote labels, such as years, which are
also repeated as constants and in formulas across
the spreadsheet. The authors visualise the data
clones by generating a dataflow diagram (see sec-
tion 6 for further details) and displaying pop-ups
at each node of the diagram to distinguish a clone
from an original. The visualisation is based on
previous work in [10] and [78].

Two real-word case studies were made to un-
cover the implications of data clones. The au-
thors found that the visualisation of data clones
help users identify copies of data that they were
not previously aware of, and that near-miss
clones help indicate clones that should have been
updated.
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4.3 Type Systems

Type systems have long served to provide
compile-time error detection of type misuse in
programming languages, and today’s program-
ming languages have rich and powerful type sys-
tems. For example, it rarely makes sense to add
a string to an integer. Type systems generally
come in two forms: static and dynamic. Lan-
guages such as C/C++, C#, Java and Haskell
are statically typed. Values must be explicitly
annotated with their type (barring cases where a
type inference system can infer its type from con-
text) and types are determined at compile-time.
Furthermore, a value with one type cannot be as-
signed to a variable with an incompatible type,
although some systems relax this constraint e.g.
in order to allow assignment of an integer to a
variable of floating-point type. Languages such
as Python, Ruby and Smalltalk are dynamically
typed. Their types are determined and checked
at runtime and do not need to be explicitly an-
notated in the code (there are mixtures such as
Perl). Thus assignments between variables of
different types are usually allowed. Languages
like Scala and F+# also boast a robust type infer-
ence system to alleviate the task of type annota-
tion. Type systems could bestow the same ben-
efits onto spreadsheets as they do for imperative
and functional languages, especially considering
that spreadsheets can be considered first-order,
functional languages.

Most spreadsheet implementations use re-
laxed variations of a type system to differen-
tiate between integers, strings, dates etc. Mi-
crosoft Excel does little type checking [14] which
in some cases can result in unexpected errors.
For instance in Microsoft Excel, some compar-
isons between an empty string and a number
always results in false [23]. In Google spread-
sheets, summing a range of cells containing num-
bers with one cell containing a string, silently
ignores the string cell and sums the remaining
values as shown in figure 3. Type checking could
help avoid such (presumably accidental) situa-
tions. Whether this is actually an error depends
on user perception and the design of the spread-
sheet application, but in a programming lan-
guage context this should definitely constitute
an error.
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Figure 3: Cell range summation in Google
spreadsheets. The cell range A1:A8 is summed
in cell A9 using the SUM function. All cells ex-
cept for cell A3, that contains a string, contain
integers. Cell A3 is silently ignored in the sum-
mation.

The introduction of such a system requires an
investment from the end-users to learn how types
and type inference work, and the cost of such a
process is likely why type systems are not found
as integrated systems in commercial spreadsheet
applications [16]. As a result, many researchers
tend to draw on the principles of these systems to
implement their work, but keep the details trans-
parent and provide explanatory and clear error
messages in a format that is understandable for
end-users.

4.3.1 Template Inference

Abramson and Erwig [14] have developed a type
system and type inference algorithm for spread-
sheets that is used to guide the inference of accu-
rate spreadsheet templates created using the Vi-
sual Template Specification Language (VISTL)
[47].

The type checking system is based on the no-
tion of cp-similarity between cells. Two cells are
considered cp-similar if the contents of one cell
could have resulted from a copy-paste from the
other cell, much like data clones. This is a likely
scenario in spreadsheets, which support sophis-
ticated copy operations. The authors introduce
basic types and typing judgements for values, op-
erations, cells, formulas, spreadsheets and tem-
plates, as well as a complete typing system. The
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arguments for function types are explicitly given
basic types to restrict functions to be first-order.
Additionally, a type expectation is defined which
maps cell addresses to constant types. Rows and
columns in the template are then compressed if
their types agree, in the same sense that a list of
integers can be described as [Int] in functional
languages. The authors use this definition to de-
fine spreadsheet types as a set of column (and
row) types that each contain a sequence of cell
types. Adjacent columns and rows of the same
type can then be compressed.

The template inference algorithm proceeds
by annotating all cells in a spreadsheet by an
equivalence function a to generate an extended
spreadsheet. Here, the equivalence function is
the definition of wupstream type equivalent be-
tween two cells, i.e. two cells are defined to be up-
stream type equivalent if they have the same cell
types in a spreadsheet S. Since type-equivalence
is a stronger condition than cp-similarity, type
errors are detected which would not have been
caught using the definition of ¢p-similarity alone.
All columns are grouped according to this equiv-
alence, and each group is maximally overlaid,
i.e. grouped together as a single column in the
resulting template. Lastly, the formulas are up-
dated and the columns are shifted according to
the maximum possible overlay (maximal accord-
ing to the numbers of columns that can be over-
laid). The process repeats until there are no
more columns in S that can be overlaid and the
algorithm is repeated for all rows in the spread-
sheet. The result is a compressed version of the
original spreadsheet S. A user can try to infer
a template from a spreadsheet and the inference
algorithm will then report any type errors that
prohibit columns or rows from being overlaid.

We also mention ClassSheets by Engels et al.
[79], which the authors describe as a more ex-
pressive form of spreadsheet specification. In-
stead of specifying templates in a visual lan-
guage such as VISTL, it is specified in a di-
agram language that borrows concepts from
the object-oriented Unified Modeling Language
(UML). However, ClassSheets are automatically
transformed into VISTL templates. Similar to a
UML diagram, the template is specified by, pos-
sibly nested, relations that are annotated with
names for identification and can include cells
that they refer to. If a spreadsheet sums a list
of income values, its template might be specified
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by a diagram called Income with a total of type
integer and another diagram called Item with
a one-to-many relation between them. Item
also contains an integer called value that is
summed in the Income diagram to compute the
total income for a set of items. The sum can
refer to the values of Item using dot notation:
Item.value. Formal definitions of ClassSheets
are also given in the paper and ensure that
ClassSheets definitions are consistent and well-
formed. The benefits of ClassSheets over VISTL
templates include being more compositional in
structure, explicit type annotations and reuse by
referring to other diagrams. However, VISTL
should be much more accessible for end-users
than the UML-inspired layout of ClassSheets, es-
pecially with the type annotations.

4.3.2 Static Type Systems

Cheng et al. [23] devised a method for static
analysis of spreadsheets and associated programs
(macros or VBA programs) in the more classical
sense. They define a core spreadsheet language,
its syntax and semantics for the ensuing discus-
sion. One such language expression is the eval-
uation of an entire spreadsheet, where the au-
thors define a topological order similar to Sestoft
[2]. Interestingly, they do not define the topolog-
ical order as total to permit parallel computation
of the ordering (see section 3.2 for a discussion
of parallel recalculation strategies). The system
ties abstract predicates to zones in an abstract
domain, as defined in [64]. An abstract pred-
icate is either a type or an abstract formula,
while an abstract formula is defined as the ef-
fect on types in the spreadsheet which can be
propagated through the spreadsheet e.g. (77,
float), which denotes a sheet zone Z; with type
float. Types are simplified like in [14]. For ex-
ample, the type of the addition of two floats:
float + float can be simplified to just float.
Zones are thus compact representations of ab-
stract formulas or types that carry type informa-
tion through the spreadsheet, and are ultimately
used in the static analysis. During static analy-
sis, zones of equal type can be joined by a number
of operators. For instance, two adjacent zones of
type int can be joined into a single zone.
Cheng et al. implemented the static analy-
sis in VBA and OCaml for Excel, and the tool
was tested on the EUSES spreadsheet corpus
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(spreadsheets that only contain constants were
considered trivial and excluded in the experi-
ments since types can be directly inferred for
each cell) [74]. Their results indicate that their
type system is reasonably effective at finding true
positives in the EUSES corpus, with a manually
verified detection rate of 30% (45 true positives
out of 142 spreadsheets detected by the system).
Some of the false positives were caused by in-
tentional misuse of spreadsheet functions. The
authors argue that these false positives would
have been hard to detect in a testing framework,
and so the number of false positives is accept-
able. However, as the user would still need to
manually verify each identified case, we disagree
that this is acceptable. Furthermore, other type
systems such as those that infer and use user-
defined units and labels should also be able to
catch these kinds of errors. We discuss these
systems later in section 4.3.3.

Cheng et al. are the only authors that con-
sider data validation. In spreadsheets, a cell
can be augmented with data validation to ensure
that users fill in a name that is a string or a num-
ber that is within a specific range. Such infor-
mation is useful when devising a type system for
spreadsheets. An interesting question is whether
this would benefit other systems discussed in this
section. They also find that their assumptions
about the initial state of a spreadsheet and tak-
ing into account data verification information set
by the user, faults are detected that would oth-
erwise not be caught by testing frameworks such
as those presented in section 4.4.

Lastly, we briefly mention a type system im-
plemented by Florian Biermann in the Funcalc
project [19]. As a spreadsheet is evaluated in
the order described in section 3, the type system
simply checks the types for all function applica-
tions and formulas, and raises appropriate errors
if the expected types do not match. This system
does not verify dynamic type errors that are only
visible at runtime, e.g. an IF statement in a for-
mula. The system is still in development at the
time of writing and subject to change, so we will
not discuss it further.

4.3.3 TUnits and Labels

As remarked by Erwig et al. in [16], a static
typing may incur a high learning cost for end-
users who are not acquainted with type systems.

13

This higher cost is similar to what is described
in the attention investment model discussed in
[15], that models the likelihood of the investment
of programmers in an activity based on the ac-
tivity’s expected payoff, cost and risk. FErwig
et al. take a different approach to types where
units are inferred from cells, that are then used
to perform unit checking. A unit is simply an ab-
stract concept such as fruit. A cell may denote
the number of apples harvested by a company,
although the type apple does not really exist
in the spreadsheet. One could easily imagine a
spreadsheet where a user attempts to add two
different, abstract units. An ordinary type sys-
tem would not be able to detect this, since the
addition of “apples” and “oranges” involve the
addition of two integers which would type check
(unless of course units were embedded in the type
systems as types or can be defined by the user as
such [53]). The authors did not implement the
system in this work, but discuss and flesh out the
details for a fully fledged system. Their efforts
are implemented in [11] which we discuss later.

Similar to the other literature discussed so
far, Erwig et al. define a calculus to reason about
spreadsheets, but in the context of units. Unit
expressions are defined to allow for meaning-
ful combinations of units: Dependent units and
and and or units. In the context of the au-
thors’ fruit harvesting example, dependent units
represent units such as Fruit[Apple[Green]]
(or alternatively Fruit[Apple] [Green]) be-
cause an apple is a fruit and has a colour.
The colour is also dependent on the Apple
unit as not all units may be green. The
other two expressions allow the system to ex-
press units like Fruit [Orange]&Month [May] or
Fruit[Apple|Orange], which are both situa-
tions that can arise in two-dimensional tables, in
this instance with fruits as columns and months
as rows. They also define a context-free syn-
tax, unit transformations for spreadsheet func-
tions and operations, typing judgements, and
unit simplification rules that allow complex units
to be reduced to well-formed units. Failure to
perform this reduction leads to a unit error in the
spreadsheet which can be reported to the user.
Although the authors avoid types entirely in the
work described here, future work will attempt
to consolidate their unit checking system with a
type system by treating units as types.

Burnett and Erwig [65] implement the system
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described above in later work. A base layout rule
is given that is used to infer units based on the
layout of cells. The system allows the user to
visually reconfigure the inference if the inferred
units are not satisfactory, by inserting lines that
delimit cells and help the system correctly dis-
tinguish headers, borders and content. Borders
are denoted by blank cells. Compared to the sys-
tems we have discussed thus far, this system is
not fully automated and requires some user in-
tervention to define and refine the logical rules
that govern the unit inference. The authors also
briefly discuss how the system could incorporate
dimensions (such as meters per second etc.) in
their system, which would need additional rules
to infer division of e.g. meters with square me-
ters. They also suggest a “unit view” for Ex-
cel, where the units for all cells are displayed
instead of their cell contents. This is similar to
the “formula view” where the formula definitions
are displayed. This is a very interesting sugges-
tion, in part because no other paper has sug-
gested a similar extension to the author’s knowl-
edge. This would allow end-users to quickly get
an overview of the inferred units to help define
custom rules or understand and correct mistakes.
The next unit system we discuss, will feature an
automated unit inference system. As with any
other non-automated system for end-user devel-
opment, one is inclined to ask how much work
must be done by the user, and if they are willing
to invest resources into learning the system. No
empirical studies were done in this work, but is
left as future work.

In later work, Erwig et al. [11] define a new
concept of proxy headers and implement a set of
algorithms for header and unit inference. Their
system is called UCheck. One benefit of auto-
matic unit and header inference is that spread-
sheets do not have to be manually annotated
with units as some other work has done [53].
Nevertheless, in the first example given (using
fruit harvesting), the Fruit unit is explicitly
given as a unit in order to give the fruits in the
spreadsheet a common ancestor. This is required
since the system has no notion of the concept of
fruits, and thus cannot infer this information it-
self, and so the base unit must be introduced
somehow. A similar argument can be used for
the months given in another example. Although
the necessary amount of annotation is minimal
in this example, the system still seems to require
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some annotation, and whether the amount of
annotation will remain minimal in bigger, real-
world spreadsheets is not known. The header
inference algorithm uses a combination of cell
classifications based on spatial and cell informa-
tion. For example, a cell can be a header, a core
cell that participates in some intermediate cal-
culations, a footer that contains an aggregation
formula or a filler cell used to separate tables.
The system also uses cell distances and cell refer-
ences to further classify cells. Configurable con-
fidence levels are used to combine classification
information from different algorithms. Headers
are also assigned a level, since one header can
have sub-headers. The inference algorithm also
accounts for individual preference in header po-
sitioning. The system assumes sensible table lay-
outs in spreadsheets. This is a fair assumption,
but indicates that the system may fail in cases
where an uncommon layout is used, but it would
be very difficult to design a system that could
account of all possible, arbitrary scenarios, so it
makes sense for UCheck to focus on common lay-
outs.

In the evaluation of their system, a compar-
ison between UCheck and a static type system
with user-defined annotations [53] is made based
on a single case of unit error detection in only
10 spreadsheets, and the systems are deemed
equally effective. In our opinion, this is a some-
what unfair comparison since the comparison is
made for a relatively small set of spreadsheets.
The authors also remark the lack of a represen-
tative set of spreadsheets is not available, though
two years prior to their publication, the EU-
SES spreadsheet corpus was published [74] which
many systems in this literature review has used
in the evaluation of their work. The authors
might not have been aware of this, but the set
of spreadsheets used in their work (28 in to-
tal) is relatively small. They suggest an exten-
sion to the UCheck framework which can pro-
vide context-specific examples and change sug-
gestions to the user. The latter is something that
the GoalDebug system provides and has been de-
veloped by the same authors [69]. We will dis-
cuss GoalDebug in section 4.4. The authors ar-
gue that explicit type annotation is cumbersome
for users, especially in large spreadsheets where
manual annotation might become extensive. In
contrast, their system requires fewer annotations
that introduce the base units from which the re-
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maining units can be inferred. They also argue
that the system in [53] fails to detect some errors
that their system does not.

Labels and dimensions can also be used in
combination to locate errors in spreadsheets.
Here, we mean labels similar to units as defined
in UCheck [11] and dimensions as in units of
measure e.g. meters squared or m2. One could
imagine a user trying to add different currencies
or other units of measure. This is the approach
taken by Chambers et al. [60, 66], and has been
successfully implemented in F# [80]. They com-
bine label and dimension inference [67] to check
for errors that neither system would have dis-
covered on their own. For example, adding the
price per item of two different items is perfectly
legal when considering only dimensions, but is
illegal for labels as the addition is done using
two different items such as apples and oranges.
Conversely, adding quantities of apples is fine for
labels, but if one quantity is specified in thou-
sands, only dimension checking would catch the
error. The paper does not discuss dimensions
as ranges of cells, but as units of measurement
such as those found in the SI unit system [81].
One benefit to using an existing system is that
ST units can be combined and inferred based on
pre-existing conventions, and so this system does
not need additional annotation as was the case
with Abramson et al.’s UCheck system and a
system discussed later [53]. However, some an-
notation might still be needed in order to avoid
ambiguous or dimensions that prove difficult to
parse. On the other hand, units can be arbi-
trary rather than confined to the definitions of
the SI system. The combination and textual rep-
resentation of labels are taken from Erwig et al.’s
work in [16] with some simplified rules. The sys-
tem follows five steps: First, headers are inferred
as described in [11, 77], and then labels are in-
terpreted from the strings found in the headers.
The system then assigns the horizontal and verti-
cal axes to dimension and label checking. This is
a common pattern in spreadsheets, where one ta-
ble header denote some properties and the other
axis denotes some objects that possess said prop-
erties. Dimension and label inference is then
determined for each cell using a series of typ-
ing judgements and rules given in the paper. If
no errors occur in this step, all dimensions are
considered fully qualified. For example, the di-
mension {m, ¢}, where m signifies meters and ¢
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signifies a missing dimension, can be both speed
= and acceleration 7z based on the choice of 4.
The most common choice is picked based on a
heuristic.

Coblenz et al. [68] introduce their frame-
work for error detection in spreadsheets called
SLATE, or A Spreadsheet Language for Accen-
tuating Type Errors, which closely resembles the
work by Erwig et al. [16, 65]. In this paper,
dimensions such as acceleration 73 are referred
to as units, while labels are properties such as
an apple. To avoid confusion, we instead refer
to these as dimensions and units respectively.
As in [16], units can be generalised into a com-
mon ancestor type. For example, both apples
and oranges are fruits. There are a few differ-
ences however. Users must manually enter di-
mension and unit information in parentheses in
cells, requiring them to learn the system, and
because the annotation is simply added paren-
theses, there is no highlighting or differentiation
from actual cell content. Errors are propagated
through operations, and a resulting label from a
multiplication or division retains all labels of its
operands. This means that a multiplication of
apples and oranges results in the label: (apples,
oranges) which is used to detect an error. For
addition and subtraction, the label is instead the
common ancestor of the labels of the operands:
(fruit), since it is common in spreadsheets to add
and subtract different objects.

Inspired by the theoretical foundations laid
out by Erwig et al. in [16], Ahmad et al. [53]
also developed a static type system. Their sys-
tem differs from Erwig’s because it requires ex-
plicit type annotations, and the former is also a
type system based on units. The authors deviate
from Erwig et al. by defining two relationships
similar to those known from object-oriented pro-
gramming: is-a and has-a. The first relationship
describes units that are subcategories of some
header. For example, a Toyota is-a car. The
second describes unit properties, such as a car
has-a steering wheel. Unit notation, rules and
formal typing judgements are also introduced to
reduce unit expressions to well-formed ones that
the system can reason about. Operators for join-
ing unit declarations on common relationships
are also defined. Two advantages to explicit type
annotation is that the system can accommodate
uncommon spreadsheet layouts where it would
be harder for the UCheck system to infer the
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correct units and labels, and secondly the units
are less prone to ambiguity since they are given.
Although structured layouts are more common,
this advantage should not be overlooked [11].
The generated error messages require the user
to understand the is-a and has-a relationships to
decipher the error messages and correct the mis-
takes. Constructing error messages that bridge
the gap between formal type systems and end-
users is a difficult problem, which could limit the
system’s commercial use. The authors note that
an automated system is planned in future work.

In their experimental evaluation, the authors
claim that they did not need to understand the
problem domains to annotate the spreadsheets
(23 spreadsheets in total from [82]). We argue
that this might not always be the case in com-
mercial settings, where domain knowledge is es-
sential to annotate cells with sensible unit names.
We found the set of spreadsheets used for the ex-
periments relatively small. Nonetheless, the au-
thors find a single, true error in the spreadsheets.
The authors do however mention a larger, more
detailed, empirical study as part of their future
work. They also suggest a header inference algo-
rithm that uses natural language processing and
machine learning techniques that learn from user
feedback.

Ahmad et al. [16] also compare their work
with that of Erwig et al. [65]. They note that
they describe a type system with weaker rules
and that the lack of a distinction between the is-a
and has-a relationships leads to incorrect unit in-
ference. To support their claim, they present two
examples where their system would have failed
but Ahmad et al.’s system would not. On the
other hand, Erwig et al. argue that their sys-
tem catches errors that Ahmad et al.’s system
does not, and that while the has-a relationship
enables more fine-grained information, it compli-
cates automatic header inference. Further work
needs to be done in order to fully compare these
works. Finally, we suggest a combination of au-
tomatic and manual type or unit annotation, to
allow users to disambiguate cases where the au-
tomatic inference fails.

Lastly, we touch on an interesting observa-
tion. It would useful to have type systems that
could be toggled, so that ordinary users are
not overencumbered by information and that the
system would normally only be used by expert
users.
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4.4 Testing

Testing is an essential and ubiquitous part of
software development. It reassures us that the
programs we construct do what they are sup-
posed to do and/or fail on the appropriate in-
put, although they cannot prove the absence of
bugs. Given the large number of errors found in
spreadsheets and the grave financial implications
they have, there is a lot of research in this area.
Testing calculations in a spreadsheet is impor-
tant in order to ensure proper results in critical
engineering and business applications. This re-
emphasises the intuition that it is beneficial to
apply software development principles to spread-
sheets, as noted by Panko, and that spreadsheet
development must embrace extensive testing in
order to be taken seriously as a profession [49)].

Testing is especially important for spread-
sheets as several of the commercial and non-
profit applications exhibit behaviour that would
constitute an error in a software development
context, but are nonetheless allowed. For ex-
ample, summation across cell ranges silently ig-
nore non-integer values (see figure 3 on page 11).
Whether this should be treated as an error is up
to the designers of the spreadsheet, but the re-
viewed literature favours treating these as errors
[22].

A focus of much research is the “What You
See Is What You Test” or WYSIWYT approach
[21, 83], where the user incrementally tests the
spreadsheet as it is being developed, and test-
ing is complemented by visual feedback to guide
the user through the process [14, 21, 69]. This
enables errors to be caught earlier and recti-
fied rather than later. The methodology is
based on dataflow analysis and testing criteria
of imperative programs. Rothermel et al. intro-
duce the notion of definition-use-adequacy or du-
adequacy. A definition is the location of a cell’s
value and a wuse is the location of the usage of
that cell. Together they form a du-pair, and a
cell can have multiple du-pairs associated with
it if there is more than one cell using its defini-
tion. The du-adequacy of a cell is thus the de-
gree of exercised du-pairs that directly or tran-
sitively reference a cell’s definition and so con-
tributes to its output value. This is extrapolated
to include all du-pairs such that each pair is ex-
ercised and they influence a given output cell.
Du-associations and execution traces are com-
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bined in order to determine the degree to which
a cell is tested. The du-associations are given by
the cell relation graph, which resembles the sup-
port graph defined by Sestoft in [2], but whose
edges are only defined by the relation between
formulas. To invoke the system, a user clicks on
a validation tab in a cell to tell the system that
the cell’s value is correct. This action is prop-
agated through the cells that contribute to this
cell’s output. The validation tab contains a ques-
tion mark if a cell’s output was previously tested,
but a change in the spreadsheet requires that it
be retested. If the cell is fully tested, it contains a
checkmark instead. The degree to which this ad-
equacy criterion is satisfied determines the bor-
der colours of cells in the spreadsheet. Cells that
are more tested appear bluer and less tested cells
appear redder. The border colours of these cells
are therefore similar to the degree of test cover-
age, a term found in software development where
it denotes the percentage of code paths that have
been tested in a project. For example, cells us-
ing non-strict functions such as IF will only be
fully tested if both branches have been taken.
The authors’ choice of colours can be drawn into
question. In our opinion, the combination of red
and green provide a better notion of contrast and
meaning for end-users as these colours are com-
monly found in our everyday lives (e.g. traffic
lights and entrance-exit signs.). However, this is
also a matter of taste and aesthetics, so there is
no inherently “correct” choice. Another issue is
cells that have a range of correct values where a
single test may not be representative of its cor-
rectness: The test might succeed for a couple of
values within the range, but fail for others. Oth-
ers have investigated automatic test case gener-
ation for spreadsheets which could be combined
with the WYSIWYT methodology [70, 71, 84].

Property-based testing has seen much inter-
est since the invention of the Haskell library
QuickCheck [85] for automatically generating in-
put values for tests, alleviating the burden of de-
vising test cases. Property-based testing would
be attractive in a spreadsheet context as well, es-
pecially when considering user-defined functions,
which we explore in section 5.

Fisher et al. [71] have developed a system
for automatic test case generation based on the
WYSIWYT methodology, and implemented in
the Forms/3 spreadsheet language [20]. The sys-
tem only handles integer values. Untested cells
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are initially marked by a red border. The user
selects one or more cells to test, and the cell
is tested with the current input and marked as
tested by a check mark. In addition, the colour
of its border, and that of all other cells that
transitively helped produce the final result, is
changed to a shade of blue to reflect their test
coverage, where opaque blue represents full cov-
erage. This is very similar to the work in [21,
83]. The system keeps track of test coverage via
cell references. The system can optionally en-
hance the visual feedback by displaying dataflow
arrows, which is found in most spreadsheet ap-
plications, using the colouring scheme just de-
scribed. Any modification to a tested cell will
emit a change of the colour if some cells subse-
quently need to be retested. The end-user thus
has a highly intuitive, visually enhanced, testing
framework available which can be used incremen-
tally during spreadsheet development. The test
case generation process is initiated by pressing a
“Help Me Test” button, and the user can refine
the test case generation by selecting a subset of
cells that he or she wishes to test. The system
then attempts to generate test cases that exer-
cise the du-associations that are involved in the
selected output cells. Although not explained in
detail in the paper, it is assumed that the user
will then validate the outputs resulting from the
generated tests with the WYSIWYT methodol-
ogy.

The authors present two approaches to test
case generation. A straight-forward random
approach, where sample input values to cells
are generated randomly, and a more intelligent,
goal-oriented approach that uses constraints and
branch functions to generate more meaningful
test cases. For random test case generation it
may be difficult to generate appropriate input
values that ensure that user-selected cells are
tested properly, but on the other hand it is sim-
pler to implement and may provide satisfactory
results for most trivial scenarios. Conversely,
the goal-oriented approach is more complex, but
may provide better test cases. The goal-oriented
method is a simplified version of the Chaining
approach by Ferguson et al. [70]. Both ap-
proaches were extended with range information
which the authors included themselves based on
inspection of the formulas in the spreadsheets.
Ultimately, the goal-oriented approach proves
most effective according to a series of empiri-
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cal studies without any range information for
test input data providing the best percentage of
test case generation coverage with a 100% cov-
erage on feasible du-associations on half of the
spreadsheets (10 in total), and the same method
with range information having the better per-
formance. In general, the two Chaining ap-
proaches outperformed the random test case gen-
eration strategy. We make one crucial observa-
tion: Since property-based testing relies heavily
on a solid type system to infer appropriate test
cases, it would be sensible to assume that a ro-
bust type system for spreadsheets would benefit
such a testing framework.

The papers discussed thus far have been con-
cerned with testing spreadsheets. In contrast,
Abraham et al. lay the theoretical groundwork
for a system for debugging spreadsheets called
GoalDebug [86] and substantiate it in [69]. The
framework lets users input the expected value
for a cell that outputs an incorrect value and are
then given a list of suggested changes that will
yield the expected value in that cell. The list is
ranked using heuristics to provide the user with
the best solutions first.

The system provides a graphical interface,
from which the GoalDebug system can be ini-
tialised. Different types of change suggestions
can be achieved using different strategies defined
by the authors, and different heuristics are used
for different suggestions. Examples of a change
suggestion would be changing a reference to an-
other or replacing a constant. Constraints are
simplified as much as possible to simplify con-
straint solving.

The authors define copy-equivalence where
two formulas contain the same relative refer-
ences and one could therefore have been created
from the other by copy. This is analogous to
the cp-similarity defined by Abramson and Er-
wig in [14] and clones defined by Hermans et al.
[56]. Copy-equivalence is considered more pre-
cise than structural equivalence and is used to
rank suggestions. References that are closer by
Manhattan distance are also ranked higher by
the assumption that proximity and relevance are
correlated.

The GoalDebug system is interesting because
it deals with guiding the user through solving
his or her mistakes (as one would expect from
a software debugger) while the other literature
in this section informs the user that something
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is wrong, but not necessarily what the cause is
or how the problems should be rectified. For
example, a message: “Type conflicts: In D8: ex-
pected Num, found Undef” from [14] does not
tell the user how to fix the conflict nor does it
tell him or her where the problem originates in
the spreadsheet. This observation is not meant
to devalue the research in the other papers, but
simply highlights an important difference from
the viewpoint of end-users. The authors inte-
grate the UCheck system from [11] to rank sug-
gestions that keep units intact higher than those
who do not. Presumably using the UCheck sys-
tem, all change suggestions are type-checked in
order to ensure that they do not introduce type
conflicts if they are introduced.

The paper reports that GoalDebug is effec-
tive at generating suggestions that correctly re-
cover from spreadsheet errors and at ranking
change suggestions. The authors intend to con-
duct empirical studies with end-users to evaluate
the system’s usability, and also suggest combin-
ing WYSIWYT with GoalDebug.

4.5 Assertions

Assertions are usually used in tests or to ensure
that the program never enters an illegal state.
They test some condition and if that condition
proves false, the program is terminated. For ex-
ample, assert (x 1) will terminate the pro-
gram if x is not equal to one. In this section, we
will look at how assertions can be used in spread-
sheets.

To start things off, we examine a simplistic
approach used in the Funcalc project. A par-
ticular worksheet is used for testing, where cer-
tain cells contain a 1 if the output matched the
expected output, 0 otherwise, similar to asser-
tions but without terminating the program. The
spreadsheet then needs to be manually inspected
in order to assess the result of the tests. In soft-
ware development, it is commonplace for a test
tool to automatically collect all tests in a project,
execute them and then output a report that re-
capitulates the results as well as a multitude of
other useful features. The lack of a standard-
ised testing tools may be one reason as to why
software developers frown upon spreadsheets. A
slightly more sophisticated approach is taken by
Gnumeric [6], where a collection of Perl scripts
check one or more cell values after a spreadsheet
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has been evaluated [87]. In this sense, testing
is slightly more automated but test spreadsheets
still need to be created and tests are created in
an external language with a steep learning curve
for end-users. The simplistic approaches taken
by Funcalc and Gnumeric are effective from an
end-user usability perspective since they can in-
spect and verify values themselves without any
training.

Burnett et al. [51] implement assertions for
spreadsheets in the Forms/3 spreadsheet lan-
guage [20]. Contrary to the two previous ap-
proaches, these assertions are an integrated part
of the spreadsheet and are specifically geared to-
wards end-user development. Assertions on cell
values can be defined by the user, and these as-
sertions are automatically propagated through
the implicit dataflow graph in the spreadsheet
using logical reasoning and interval arithmetic
(the authors do not explain this process in de-
tail). Consequently, the system can also report
assertion conflicts due to propagated assertions
that do not agree on an output, apart from a
cell’s assertions that report an erroneous value
in that cell. The propagation takes cell formu-
las into account: If cell A has the assertion that
its value must be in the interval [1,10] and cell
B contains the formula A — 1, then the propa-
gated assertion on cell B is [0,9]. This is very
useful as assertions can be defined on input cells
that are part of a long set of dependent cells
that use these inputs for intermediate computa-
tion. Otherwise, the user would need to define
all these assertions manually. In software termi-
nology, a cell’s own assertion is its postcondition
that must hold after the cell’s contents has been
evaluated, while the upstream assertions that af-
fect the cell are its preconditions that must hold
before the cell is evaluated. Empirical studies
have shown that users were comfortable with us-
ing assertions and that they discouraged over-
confidence in users, something that behavioural
science denotes as common in software develop-
ment and end-user programming, and in humans
in general.
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5 Functional Spreadsheets

5.1 User-defined Functions

Most modern spreadsheet applications already
allow users to define their own functions. For
example, Excel permits user-defined functions
through Visual Basic and can interface with
other external languages, and attempts have
even been made to embed programs in cells [18].
Visual Basic can also be slow [15]. However,
writing and debugging functions in an external
language requires end-users to understand a pro-
gramming language and thus requires a high in-
vestment. Many of the implementations in the
literature use an external language to interface
with the spreadsheet application. Cheng et al.
used VBA as glue between an OCaml implemen-
tation of their type system and Excel [23]. Of
course, IT professionals can write the required
functions for the end-users at the cost of effi-
ciency and control [2]. Research has thus at-
tempted to find alternative ways of letting end-
user programmers define their own functions, but
what are some of the benefits to user-defined
functions? First, they embody the don’t-repeat-
yourself or DRY principle from software devel-
opment that discourages unnecessary repetition
of code, which in turn lowers the risk of errors.
Second, they create a logical and physical lo-
cation for function code and its accompanying
documentation that is easy to distribute. Third,
functions can be compiled to high-performance
byte- or machine code, and in fact this is what
happens in Funcalc [19].

5.2 Sheet-defined Functions

Research has investigated user-defined functions
that can be defined directly in the spreadsheet [2,
15]. Peyton-Jones describes these as user-defined
functions and argues that functions must be de-
fined in the spreadsheet “because it is the only
computational paradigm understood by our tar-
get audience” [15], but this is not a suitable term
as it uses the same name for referring to func-
tions defined in an external language. Sestoft
coined the term sheet-defined functions for this
exact purpose, so to avoid confusion, we hence-
forth refer to functions defined directly in the
spreadsheet as sheet-defined functions and those
that are defined in an external language as user-
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defined functions.

Sheet-defined functions are a relatively new
concept, first introduced in the Forms/3 spread-
sheet language [15, 20]. There are additional
benefits to sheet-defined functions [2, 15]: Func-
tions are defined directly in the spreadsheet us-
ing the concepts that end-users are already fa-
miliar with, and so require a lower investment
than using user-defined functions, and bestows
some self-documenting qualities to the functions.
Additionally, documentation can be localised to
the function definition. It is also more straight-
forward to add sheet-defined functions to older
spreadsheets that lack them, and can be done by
end-users. Sharing functions is a matter of shar-
ing the function definitions in worksheets and
not binary files such as shared libraries (although
this would certainly be possible). Sheet-defined
functions also do not have any side effects like
some external languages, because they must re-
spect the restriction that you cannot modify a
cell from another cell. Immutability has long be
heralded by functional programming advocates
as promoting correctness, among other things
[26]. The function bodies can be separated on
different lines to make it easier to understand
the purpose of the function, and avoids single-
cell monolithic formulas. The programming lan-
guage equivalent would be a function with inter-
mediate calculations on separate lines versus a
one-liner. Finally, they do not break the audit
trail, i.e. the list of recorded changes to a cell.

To further emphasise the advantages of sheet-
defined functions, consider a programming lan-
guage where you cannot define your own func-
tions. This reflects the lack of functions in end-
user development in spreadsheets. As eloquently
put by Peyton-Jones et al.:

“Can you imagine programming in
C without procedures, however clever
the editor’s copy-and-paste technol-
ogy?” [15]

One of Casimir’s criticisms [17] of the Lo-
tus 1-2-3 spreadsheet software was its lack of
user-defined functions which he argued would in-
crease memory consumption because copies of
formulas must be stored in each cell. A single
copy stored in a sheet-defined function would be
much more sensible and less error-prone as we
have already mentioned. Sheet-defined functions
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also complicate matters. How should higher-
order functions be represented in a primarily
first-order language? Should recursive functions
be allowed? Are these concepts too difficult for
end-users to understand? In the following discus-
sion of the literature we will attempt to answer
some of these questions.

Peyton-Jones et al. [15] proposed a design of
sheet-defined functions. Functions are defined in
special function instance sheets that represent a
single instance of the function. As the name im-
plies, function instance sheets are instances of
the function invocations. This means that each
invocation has a copy of the function definition;
there is no single definition of a function. The
authors argue that this lowers the learning cost
as function instances behave like ordinary work-
sheets. Consequently, when a user edits a func-
tion, a pop-up appears that prompts the user for
editing this single function instance or all func-
tion instances. This is reminiscent of some calen-
der systems and repeated events, where you can
choose to modify a single instance of the event
or all of its repetitions. They can also be defined
using a graphical interface and defined based on
existing formula in the spreadsheet. When edit-
ing the function, graphical user interface tools
are provided to easily navigate up and down the
call tree. This approach raises some interesting
questions. If a user changes a single function
instance but not its name, there are now two
or more functions where one single function be-
haves differently from the rest. However, the
system then changes all the invocations of the
function. While this is fine, it breaks the sep-
aration of the function instances, yet the alter-
native (having multiple functions with the same
name but different behaviour) would increase
memory consumption and unnecessarily compli-
cate future edits because the system now has
to distinguish different functions with the same
name. They incorporate program usability stud-
ies from human-computer interaction research,
namely the Cognitive Dimensions of Notations
[88, 89] and Attention Investment models [90],
to assess multiple criteria of their proposed de-
sign of sheet-defined functions and to determine
the likelihood of users adopting their approach.
It is a known problem that end-users do not wish
to expend too much time and energy when try-
ing to learn a new system, so this criterion is
crucial for the success of sheet-defined functions.
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Letting end-users define functions with the tools
they already know, lowers their entry-barrier.

Inspired by the work of Peyton-Jones et al.,
Sestoft [91] implemented sheet-defined functions
in Funcalc [19]. One significant inspiration was
the performance aspect mentioned by Peyton-
Jones et al.: That functions could be compiled to
byte code or executed by a just-in-time compiler.
While Peyton-Jones et al. implement their de-
sign in VBA, sheet-defined functions in Funcalc
are compiled to efficient .NET bytecode, more
specifically the Common Intermediate Language
or CIL, by an internal compiler using the run-
time code generation facilities of C#. VBA is
both interpreted and compiled to Microsoft p-
code (pseudo-code) [92], and but initial experi-
ments indicate that executing .NET bytecode is
comparable to or faster than VBA[91]. In con-
trast to the design of Peyton-Jones et al.; func-
tions have a single definition and are cached and
reused. Functions are defined in function sheets,
worksheets whose names are prefixed with an @
sign and whose tabs are pink. Since each func-
tion instance sheet in Peyton-Jones et al. is sep-
arate, function parameters use inter-worksheet
references. In Sestoft’s function sheets, a call to
the DEFINE function defines a new function, e.g.
=DEFINE("F", out, inputy, ., inputy) de-
fines the function F with an output cell and zero
or more input cells. An example is depicted in
figure 4. Performance results show competitive
and even improved runtime performance over
functions in Microsoft Excel [2].

=DEFINE("'ndie", B36, B35) ‘General n-side die

n=

8 &R

‘eyes = =FLOOR(RAND()"B35, 1)+1

Figure 4: A example of a sheet-defined func-
tion in Funcalc that calculates a random value
using an n-sided die [2]. The call to DEFINE is
on the first line along with a short description,
and the in- and output parameters are defined
on the next couple of lines.

In a video presentation at the 2009 Commer-
cial Users of Functional Programming or CUFP
conference, Lee Benfield [93] presents the Func-
tional Model Deployment or FMD framework for
Excel that attempts to retain the expressive-
ness of spreadsheets while provided users with
auto-generated code for communicating with ex-
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ternal libraries without resorting to VBA, or
any other external language. It allows vari-
able declarations and function handles. For ex-
ample, variable("date") creates a single vari-
able called “date”, and @@11 refers to a function
handle. Once available, functions can be eval-
uated with arguments using an eval function.
Like Sestoft’s sheet-defined functions, FMD in-
troduces functions from functional programming
such as map as an alternative to copy-pasting
cell formulas, which we have already discussed
is a source of errors in section 4. Like Peyton-
Jones and Sestoft, FMD also introduces higher-
order functions, but unlike them, FMD provides
tuples, an important concept in functional pro-
gramming. When Excel traverses the under-
lying graph of cells, FMD generates the boil-
erplate code that communicates with other li-
braries, thus removing the need for VBA glue
code that would normally be needed to use these
libraries in Excel.

The major conceptual difference in Benfield’s
work, lies in his more direct approach to im-
plementing functional programming in spread-
sheets. This means that the power and expres-
siveness of functional programming can be lever-
aged by users and variables encourage additional
reuse alongside functions. The downside is the
investment people have to make in order to learn
concepts such as map. Hoon takes a similar ap-
proach [22] which we discuss later. Peyton-Jones
and Sestoft take a more user-oriented approach
where they attempt to reuse the already familiar
spreadsheet concepts to implement higher-order
functions.

Sheet-defined functions introduce new chal-
lenges. We mentioned earlier that spreadsheets
are first-order functional languages, but func-
tional languages support higher-order functions
that greatly increase expressiveness. Should
higher-order functions be allowed in spread-
sheets? Will their introduction cause more con-
fusion than good? Their advantages should be
clear. For example, a sheet-defined function
can be passed to functions such as COUNTIF and
SUMIF to obtain new, more advanced function-
ality, particularly when combined with partial
function evaluation. Modifying such a function
would involve a single edit in its correspond-
ing function sheet, while modifying the formula
would need to be done for all instances. Peyton-
Jones et al. do not discuss higher-order functions.
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Sestoft implements this using the CLOSURE and
APPLY functions. A closure for the NDIE function
in figure 4 is defined by CLOSURE("NDIE", 20)
and returns a function value, which can then be
called using APPLY (ca) where ca is the cell ad-
dress containing the closure. Alternatively, the
closure can be given directly in a call to a func-
tion such as COUNTIF. It is also possible to define
partially applied functions.

Hoon et al. implemented a spreadsheet ap-
plication in the functional, lazy and higher-
order language Clean [94] in order to evaluate a
spreadsheet with such functional properties [22],
as well as a symbolic evaluator for equations
which would be useful for the financial and scien-
tific communities. The resulting application was
called FunSheet. While functional concepts are
certainly powerful, there are things such as map
and variations of fold that will demand a high
investment cost from end-users. Since Clean al-
ready uses term graph rewriting systems under
the hood, cyclic references are easy to express,
and so all function applications are thus replaced
with their definition or with a predefined func-
tion as necessary.

Another aspect is recursion. Is it possible
for these types of functions to support recursion,
and should they? Casimir claims that recursion
is problematic because it may require many re-
calculations to iteratively compute a result [17].
Yoder et al. [18] dispute this claim, and argue
that natural-order recalculation, i.e. calculating
all dependencies of a cell before evaluating the
cell itself akin to topological sorting, elegantly
solves this problem. They do note though that
the lack of formula-local variables can lead to
considerable memory usage as intermediate val-
ues can only be stored in the “global” memory of
the spreadsheet cells. Let us assume for now that
recursion can be implemented efficiently in the
spreadsheet paradigm, then the question remains
if it should. Recall that a substantial amount
of the discussed literature attempts to use prin-
ciples from the software development and com-
puter science fields in a manner that is transpar-
ent or at least easier for the user to understand
since they lack a formal education in IT. An
example is using units instead of types to detect
errors [16, 65]. Recursion is a useful tool for solv-
ing problems that can be defined recursively but
requires that end-users can grasp the concept in
order to use it. Regardless, it would undoubt-
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edly be invaluable for more advanced users or
those with an IT background. Peyton-Jones et
al. also argue that the lack of inductive types
(besides the integer) means that recursion might
not be as expressive as it is in functional lan-
guages [15]. In the case of Hoon et al.’s work,
their spreadsheet is already defined using a func-
tional language and recursion is readily available.
They deal with recursion similarly to how the Y-
combinator is used in lambda calculus. Sestoft’s
sheet-defined functions are fully capable of re-
cursion and are also tail-recursive, but there is
currently no guard against infinite recursion al-
though this is a purely practical problem.

As described in section 4.3.3, Burnett et al.
[65] suggested a unit view for spreadsheets, sim-
ilar to how one can view formulas in a formula
view. This would be very useful in general, but
also in combination with sheet-defined functions
as one can more accurately determine the source
of type errors. In Funcalc [19], a type error in
a sheet-defined function is signalled by the error
value #ERR: ArgType. The user has no informa-
tion about the position or expected type of the
erroneous argument. A unit view that is aware of
sheet-defined functions would help in this case.

6 Visualisation

Visualisation techniques are important due to
the invaluable and intuitive feedback that they
can provide to end-users. Visual feedback is im-
portant for most, if not all, aspects of spread-
sheets since a big part of spreadsheets is their
visual representation of data. It provides visible
feedback for errors and dataflow through cells
and worksheets, and their very nature makes
these types of tools easy to grasp.

We do not discuss visualisation in terms of
the graphical user interface or its enhancements
in spreadsheet applications, nor graphical re-
porting facilities such as graphs or charts. We
only discuss visualisation in terms of tools that
are specific to spreadsheets and provide some
benefit to spreadsheet end-users in terms of the
categories we have previously discussed.

Dataflow diagrams have been used to give a
high-level view of the inter-worksheet relations
of a spreadsheet, to allow end-users to reason
what the structure of a spreadsheet and more
clearly explain their intentions. Hermans et al.
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[95] developed such a tool called Breviz. It
is common that end-users inherit spreadsheets
from co-workers within an organisation and must
spend some time deciphering the spreadsheet.
Dataflow diagrams are a means to alleviate this
process. The dataflow diagrams are annotated
with arrows to depict the inter-worksheet ref-
erences. The thickness of the arrows are pro-
portional to the number of cell references be-
tween worksheets. This is a style related to
the dataflow that is used for program analy-
sis. Hermans et al. completed a series of em-
pirical studies at the Dutch asset management
company Robeco. They found that almost all
of their interviewees understood the dataflow
diagrams and there was a 80% consensus that
dataflow diagrams would be beneficial in their
daily work. Some participants noted that the
diagrams lacked information such as the filter-
ing of data from one worksheet to another, while
others felt that they needed more time to study
the diagrams to assess their merit. One partic-
ipant wanted the visualisation to be within Ex-
cel to get a better overview. The authors also
found that when a spreadsheet was transferred
between people, Breviz helped give the recipient
a high-level layout of the spreadsheet and its in-
tended purpose. The same was true for a case
study with spreadsheet auditors. In later work,
Hermans et al. enhance the dataflow diagrams in
Breviz with inter-worksheet code smells [56], as
described in section 4.1.

We briefly mention a commercial counter-
part to Breviz, SLATE [96], not to be confused
with the testing framework we discussed in sec-
tion 4.4 with the same name [68]. It is an Ex-
cel plugin and provides added features to Breviz.
SLATE opens a new window with its visualisa-
tion. SLATE shows you formula dependencies
and highlights its relevant parts when the mouse
is hovered above the formula’s subsections. For
example, when hovering over the condition in an
IF function, SLATE will highlight the cell or cells
that are used to determine the condition. Press-
ing a cell address in SLATE will take you back
to Excel and momentarily highlight that cell.

7 Related Work

To the author’s knowledge, no comprehensive lit-
erature review of spreadsheet technology exists.
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Sestoft’s book on spreadsheet technology [2] de-
scribes many different aspects, but its main fo-
cus is on the implementation details of spread-
sheet technology, notably Funcalc, and is not in-
tended to serve as a general literature review of
spreadsheet technology. Biermann [97] surveys
approaches to declarative parallel programming
in spreadsheets using array programming, but
does not cover general spreadsheet technology.
It is the intention of this paper to provide such
a review with a satisfactory coverage of existing
spreadsheet technology, and bring readers up to
speed on spreadsheet technology.

8 Conclusion

In this study, we have examined the current chal-
lenges in spreadsheets and the research that has
tried to overcome them. The main challenges
have been weak type systems, unruly error re-
porting, and a lack of standardised tools for
testing and debugging, best practice guidelines
and strong type systems. The cumulative effect
of these shortcomings is likely the reason why
software developers do not seem to hold spread-
sheets in high regard, and even regard spread-
sheets as boring [17]. We believe that the sur-
veyed research not only makes spreadsheets more
sophisticated and usable, but could help change
how software developers view spreadsheets be-
cause it draws on principles of software develop-
ment and computer science that they are famil-
iar with. Burnett and others have coined this
as end-user software engineering [98, 99] where
end-user programming and development incor-
porate the principles from traditional software
engineering which ensure the same level of re-
liability, efficiency and usability [100] as found
in software development. This is usually done
in a manner that is user-friendly or even fully
transparent to the user, so that they can take
full advantage of the system, while lowering the
investment required to learn it. Omne notable
strategy for achieving this is the use of (immedi-
ate) visual feedback such as with the WYSIWYT
methodology [21, 83] or dataflow diagrams [10,
78, 95]. Furthermore, Burnett et al. remark that
their approach has been “...to gently alert them
[end-users] to dependability problems, to assist
them with their explorations into those problems
to whatever extent they choose to pursue such ex-
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plorations, and to work within the contexts with
which they are familiar” [98]. This approach has
been adopted by the majority of the covered lit-
erature and is a combination of the best of both
worlds.

Another notable example of end-user soft-
ware engineering is sheet-defined functions that
promise to give end-users a higher degree of ex-
pressiveness, e.g. through the use of higher-order
functions, and modularity and reuse of functions
defined in a paradigm that they are already ac-
quainted with, steering clear of the often incon-
venient need for collaboration with an IT depart-
ment.

We conclude with a summarising list of high-
level observations.

Efficient data structures are vital for effi-
cient recalculation and spatial representa-
tion of cells (section 2).

Lazy evaluation of cell expressions is an at-
tractive prospect in terms of performance
and visualisation, but more work needs to
be done in order to evaluate this strategy
and identify challenges (section 3).

Parallel recalculation promises to speed up
the recalculation process, but has seen less
interest than expected in relation to other
subjects (section 3.2).

Templates ensure spreadsheets that are
free from errors and provide a common ba-
sis for a set of similar spreadsheets (sec-
tion 3.3).

Bugs in spreadsheets are abundant (sec-
tion 4)

Bug detection and elimination is by far the
most prominent subject for spreadsheets in
terms of research activity, due to the previ-
ous point (section 4 and the following sec-
tions).

Error and smell classification is not stan-
dardised (section 4.1).

Most type systems in spreadsheet applica-
tions are weak and afford few guarantees
about the correctness of expressions (sec-
tion 4.3).
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There seems to be a balance to be struck
between static and dynamic (i.e. inferred)
type systems (section 4.3).

A “unit view” for types, similar to a for-
mula view, is an interesting idea that
should be investigated further, especially
in combination with sheet-defined func-
tions section 4.3.3.

An interesting direction for future work
would be to explore how different type sys-
tems and error detection systems can be
integrated and work in harmony.

A majority of the surveyed literature uses
software development and computer sci-
ence techniques as a foundation for their
work.

Sheet-defined functions show promise in
bridging the gap between IT profession-
als and end-users, and allowing the lat-
ter group to create powerful functions.
They also bring about new challenges (sec-
tion 5.2).

9
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Rothermel [21] v
Scaffidi [1] v
Serek [24] v
Sestoft [2] v v v v
Zhang [58]f v

Table 1: An overview of the surveyed literature and their respective categorisation within spread-
sheet technology, sorted by authors. Not all literature has an entry in this table. For example,
[55] is a list of reports of erroneous spreadsheets on the EuSpRiG website, but does not constitute
a paper that examines a particular aspect of spreadsheets per se. The t symbol signifies that the
paper is a survey or provides an overview of some subject.
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