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Abstract. For program families (Software Product Lines), specially
designed variability-aware static (dataflow) analyses allow analyzing all
variants (products) of the family, simultaneously, in a single run without
generating any of the variants explicitly. They are also known as lifted or
family-based analyses. The variability-aware analyses may be too costly
or even infeasible for families with a large number of variants. In order to
make them computationally cheaper, we can apply variability abstractions
which aim to tame the combinatorial explosion of the number of variants
(configurations) and reduce it to something more tractable. However, the
number of possible abstractions is still intractably large to search naively,
with most abstractions being too imprecise or too costly.
In this work, we propose a technique to efficiently find suitable variability
abstractions from a large family of abstractions for a variability-aware
static analysis. The idea is to use a pre-analysis to estimate the impact of
variability-specific parts of the program family on the analysis’s precision.
Then we use the pre-analysis results to find out when and where the
analysis should turn off or on its variability-awareness. We demonstrate
the practicality of this approach on several Java benchmarks.

1 Introduction

Software Product Lines (SPLs) [7] appear in many application areas and for
many reasons. They use features to control presence and absence of software
functionality in a product family. Different family members, called variants,
are derived by switching features on and off, while reuse of the common code
is maximized. SPLs are commonly seen in development of embedded software
(e.g., cars and phones), system level software (e.g., the Linux kernel), etc. While
there are many implementation strategies, many popular industrial SPLs are
implemented using annotative approaches such as conditional compilation.

One challenge in development of SPLs is their formal analysis and verification
[26]. Variability-aware (lifted, family-based) dataflow analysis takes as input only
the common code base, which encodes all variants of a program family (SPL), and
produces precise analysis results corresponding to all variants. Variability-aware
analysis can be significantly faster than the naive “brute-force” approach, which
generates and analyzes all variants one by one [3]. However, the computational
?
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cost of the variability-aware analysis still depends on the number of variants,
which is in the worst case exponential in the number of features. To speed-up
variability-aware analysis, a range of abstractions at the variability level can
be introduced [14]. They aim to abstract the configuration space (number of
variants) of the given family. Each variability abstraction expresses a compromise
between precision and speed in the induced abstract variability-aware analysis.
Thus, we obtain a range of (abstract) variability-aware analysis parameterized by
the choice of abstraction we use. The abstractions are chosen from a large family
(calculus) that allows abstracting different variability-specific parts (features,
variants, and preprocessor #ifdef statements) of a family with varying precision.
This poses a hard search problem in practice. The number of possible abstractions
is intractably large to search naively, with most abstractions being too imprecise
or too costly to show the analysis’s ultimate goal.

In this paper, we propose an efficient method to address the above search
problem. We present a method for performing selective (abstract) variability-
aware analysis, which uses variability-awareness only when and where doing so is
likely to improve the analysis precision. The method consists of two phases. The
first phase is a pre-analysis which aims only to estimate the impact of variability
on the main analysis. Hence, it aggressively abstracts the semantic aspects of
the analysis that are not relevant for its ultimate goal. The second phase is the
main analysis with selective variability-awareness, i.e. the abstract variability-
aware analysis, which uses the results of pre-analysis, selects influential features
and variants for precision, and selectively applies variability-awareness only to
those features and variants. The pre-analysis represents an over-approximation
of the main analysis. However, it uses very simple abstract domain and transfer
functions, so it can be efficiently run even with full variability-awareness. The pre-
analysis and the resulting abstract variability-aware main analysis are different:
the pre-analysis is more precise in terms of variability-awareness, but it is worse in
tracking non-variability specific parts (i.e. language specific parts that operate on
the program state) of the program family. We aim to use the pre-analysis results
in order to construct an abstraction which is effective at slicing away (discarding)
variability-specific program details (features and variants) that are irrelevant
for showing the analysis’s goal. The experiments show that the constructed
abstract variability-aware analysis achieves competitive cost-precision tradeoffs
when applied to Java SPL benchmarks.

In this work, we make the following contributions: (1) We show how to
design and use a pre-analysis that estimates the impact of variability on a client
(main) analysis; (2) We present a method for constructing a suitable abstract
variability-aware analysis that receives guidance from the pre-analysis; (3) We
experimentally show the effectiveness of our method using Java program families.

2 Motivating Example

We illustrate our approach using the interval analysis and the program family P :
1 x := 0; 3 #if (B) y := y+2 #endif;
2 #if (A) x := x+2 #endif; 4 #if (¬A) x := x-2 #endif
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The set of (Boolean) features in the above program family P is F = {A,B}, and
we assume the set of valid configurations is K = {A∧B,A∧¬B,¬A∧B,¬A∧¬B}.
Note that the variable y is (deliberately) uninitialized in P . For each configuration
a different variant (single program) can be generated by appropriately resolving
#if statements. For example, the variant corresponding to the configuration A∧B
will have both features A and B enabled (set to true), thus yielding the single
program: x := 0; x := x+2; y := y+2. The variant for ¬A∧¬B is: x := 0; x := x-2.
The interval analysis computes for every variable a lower and an upper bound for
its possible values at each program point. The basic properties are of the form:
[l, h], where l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}, and l ≤ h. The coarsest property
is > = [−∞,+∞]. We want to check the following two queries on P : “find all
configurations for which x and y are non-negative at the end of P , and determine
accurately the corresponding intervals”.

Full variability-aware analysis. Full variability-aware (lifted) analysis oper-
ates on lifted stores, a, that contain one component for every valid configuration
from K. For the “#if (θ) s” statement, lifted analysis checks for each config-
uration k ∈ K whether the feature constraint θ is satisfied by k and, if so, it
updates the corresponding component of the lifted store by the effect of analyzing
s. Otherwise, the corresponding component of the lifted store is not updated.
We assume that the initial lifted store consists of uninitialized x and y, i.e. they
have the initial property >. We use a convention here that the first component
of the lifted store corresponds to configuration A∧B, the second to A∧¬B, the
third to ¬A ∧B, and the fourth to ¬A ∧ ¬B. We write a stm n7−→ a′ when the lifted
store a′ is the result of analyzing the statement “n” at the input lifted store a.(
[x 7→>, y 7→>],[x 7→>, y 7→>],[x 7→>, y 7→>],[x 7→>, y 7→>]

)
stm 17→ ([x 7→ [0, 0],y 7→>], [x 7→ [0, 0], y 7→>], [x 7→ [0, 0], y 7→>], [x 7→ [0, 0], y 7→>])
stm 27→ ([x 7→ [2, 2], y 7→>], [x 7→ [2, 2],y 7→>], [x 7→ [0, 0], y 7→>], [x 7→ [0, 0], y 7→>])
stm 37→ ([x 7→ [2, 2],y 7→>], [x 7→ [2, 2], y 7→>], [x 7→ [0, 0], y 7→>], [x 7→ [0, 0], y 7→>])
stm 47→ ([x 7→ [2, 2], y 7→>], [x 7→ [2, 2], y 7→>], [x 7→ [-2, -2], y 7→>],[x 7→ [-2,-2],y7→>])

As the result of analysis, we can deduce that at the end of P , x is non-negative
(the exact interval is [2, 2]) for configurations that satisfy A (that is, A ∧B and
A∧¬B), whereas x is negative for configurations that satisfy ¬A (that is, ¬A∧B
and ¬A∧¬B). But, y is always > so we cannot prove any query for it.

Need for abstraction. However, using full variability-aware analysis is not
always the best solution. It is often too expensive to run such an analysis with
large number of configurations. More importantly, in many cases, full variability-
awareness does not help, i.e. either it does not improve some analysis results
or the full precision is not useful for establishing some facts. For example, full
variability-awareness is not helpful to establish the interval of y. Also, we can
ignore variants that satisfy ¬A (the last two components) if we only want to
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establish the exact interval when x is non-negative. Moreover, we can see that
analyzing the feature B is unnecessary for establishing the interval of x.

A family of abstractions. We consider a range of variability abstractions
[14] which aim to reduce the size of configuration space. In effect, we obtain
computationally cheaper but less precise abstract variability-aware analyses. The
three basic abstractions are: (1) to confound (join) all valid variants into one
single program with over-approximated control-flow, denoted αjoin; (2) to project
(divide-and-conquer) the configuration space onto a certain subset of variants
that satisfy some constraint φ, denoted αproj

φ ; (3) to ignore a feature, A ∈ F,
deemed as not relevant for the current problem, denoted αfignore

A . We also use
sequential composition, denoted ◦, and product, denoted ⊗. Any abstraction α
induces an abstract variability-aware analysis, denoted Aα, which is derived in
[14]. Since variability abstractions affect only the variability-specific aspect of
the variability-aware analysis (i.e. the transfer function of #if statement), it was
shown in [14] that they can be also defined as source-to-source transformations.
More specifically, for each program family P and abstraction α, we can define
an abstract program α(P ) such that Aα[[P ]] = A[[α(P )]], where A represents
(unabstracted) variability-aware analysis.

The coarsest abstraction. If we apply the coarsest abstraction αjoin, which
confounds control-flow of all valid configurations into a single program with
over-approximated control-flow, we will obtain the following program αjoin(P ):

1 x = 0; 3 if (∗) then y:=y+2 else skip;
2 if (∗) then x:=x+2 else skip; 4 if (∗) then x:=x-2 else skip

where ∗ models an arbitrary integer. Note that αjoin(P ) is a single program
with no variability in it. When αjoin(P ) is analyzed using the standard (single-
program) interval analysis we obtain the same analysis results as analyzing P
with abstract lifted analysis Aαjoin . As result of the above analysis, at the end of
P we obtain the output store:

(
[x 7→ [-2, +2],y 7→>]

)
. These estimations are not

strong enough to show any of our queries for x and y.

Finding suitable abstractions. The abstract variability-aware analysis aims
at analyzing families with only needed variability-awareness. It takes into account
only those features and configurations that are likely to improve the precision
of the analysis. For the family P , our method should predict that increasing
variability-awareness is likely to help answer the first query about the non-negative
interval of x, but the second query about the non-negative interval of y will not
benefit. Next, our method should find out that we can bring the full benefit of
variability-awareness for the first query by taking into account only variants that
satisfy A. This abstraction is denoted αproj

(A∧B)∨(A∧¬B), or α
proj
A for short. Also,

the feature B does not influence the final value of x so we can ignore it obtaining
the abstraction αfignore

B ◦αproj
A . The abstract program αfignore

B ◦αproj
A (P ) is:

1 x := 0; 3 if (∗) then y := y+2 else skip;
2 x := x+2; 4 skip
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The single-program interval analysis of the above program produces the store:(
[x 7→ [2, 2], y 7→>]

)
. In this way, we can successfully prove that the first query

holds for all configurations that satisfy A since the analysis always analyzes the
statement “2”, and skips the statement “4”.

Pre-analysis. The key idea is to use a pre-analysis and estimate the impact
of variability on the most precise main analysis. The pre-analysis uses a simple
abstract domain and simple transfer functions, and can be run efficiently even
with full variability-awareness. For example, we approximate the interval analysis
using a pre-analysis with the abstract domain: Var→ {F,>}, where F means a
non-negative interval, i.e. [0,+∞]. This simple abstract domain of the pre-analysis
is chosen because we are interested in showing queries that some variables are
non-negative. We run this pre-analysis under full variability-awareness for P :(
[x 7→>, y 7→>],[x 7→>, y 7→>],[x 7→>, y 7→>],[x 7→>, y 7→>]

)
stm 17−→

(
[x 7→F, y 7→>], [x 7→F, y 7→>], [x 7→F, y 7→>], [x 7→F, y 7→>]

)
stm 27−→

(
[x 7→F, y 7→>], [x 7→F, y 7→>], [x 7→F, y 7→>], [x 7→F, y 7→>]

)
stm 37−→

(
[x 7→F, y 7→>], [x 7→F, y 7→>], [x 7→F, y 7→>], [x 7→F, y 7→>]

)
stm 47−→

(
[x 7→F, y 7→>], [x 7→F, y 7→>], [x 7→>, y 7→>], [x 7→>, y 7→>]

)
The pre-analysis in this case precisely estimates the impact of variability: it
identifies where the interval analysis accurately tracks the possible (non-negative)
values of x. In general, our pre-analysis might lose precision and use > more
often than in the ideal case. However, it does so only in a sound manner.

Constructing an abstraction out of pre-analysis. From the pre-analysis
results, we can select those features and configurations that help improve precision
regarding given queries. We first identify queries whose variables are assigned
with F in the pre-analysis run. Then, for each query that is judged promising, we
find variability-specific parts of the program family that contribute to the query.
In our example, pre-analysis assigns F to x in two valid configurations, A∧B and
A ∧ ¬B, which is a good indication that fully variability-aware interval analysis
is likely to answer the first query accurately. We keep precision with respect to
these two configurations by calculating the abstraction αproj

(A∧B)∨(A∧¬B). We can
also see that the feature B does not affect the possible values of x at all. Thus,
we can ignore the feature B obtaining αfignore

B ◦αproj
(A∧B)∨(A∧¬B). For the second

query that y is non-negative, we obtain that y is > for all configurations. This
is indication that we cannot prove this query even with full variability-aware
analysis. Our method guarantees that if the pre-analysis calculates F for a
variable, then the constructed abstract variability-aware analysis will compute an
accurate non-negative interval for that variable. However, it is possible that the
pre-analysis returns > for a query due to its own over-approximation, and not
because the main analysis cannot prove the query. In this case, our approach will
miss the possibility to use variability-awareness to improve the analysis precision.
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3 A Language for Program Families

A finite set of Boolean variables F = {A1, . . . , An} describes the set of available
features in the family. Each feature may be enabled or disabled in a particular
variant. A configuration k is a truth assignment or a valuation which gives a
truth value to each feature, i.e. k is a mapping from F to {true, false}. If a
feature A ∈ F is enabled for the configuration k then k(A) = true, otherwise
k(A) = false. Any configuration k can also be encoded as a conjunction of
literals: k(A1) · A1 ∧ · · · ∧ k(An) · An, where true · A = A and false · A = ¬A.
We write K for the set of all valid configurations defined over F for a family.
Note that |K| ≤ 2|F|, since in general not every combination of features yields a
valid configuration. We define feature expressions, denoted FeatExp, as the set of
well-formed propositional logic formulas over F generated using the grammar:
φ ::= true |A ∈ F | ¬φ |φ1 ∧ φ2.

We use the language IMP for writing program families. IMP is an extension
of the imperative language IMP [22] often used in semantic studies. IMP adds a
compile-time conditional statement for encoding multiple variants of a program.
The new statement “#if (θ) s” contains a feature expression θ ∈ FeatExp as a
presence condition, such that only if θ is satisfied by a configuration k ∈ K then
the statement s will be included in the variant corresponding to k. The syntax is:

s ::=skip | x:=e | s; s | if (e) then s else s | while (e) do s | #if (θ) s, e ::=n | x | e⊕e

where n ranges over integers, x ranges over variable names Var, and ⊕ over
binary arithmetic operators. The set of all generated statements s is denoted by
Stm, whereas the set of all expressions e is denoted by Exp. Notice that IMP is
only used for presentation purposes as a well established minimal language. The
introduced methodology is not limited to IMP or its features.

The semantics of IMP has two stages: first, given a configuration k ∈ K com-
pute an IMP single program without #if-s; second, evaluate the obtained variant
using the standard IMP semantics [22]. The first stage is a simple preprocessor
which takes as input an IMP program and a configuration k ∈ K, and outputs
a variant corresponding to k. The preprocessor copies all basic statements of
IMP that are also in IMP, and recursively pre-processes all sub-statements of
compound statements. The interesting case is the “#if (θ) s” statement, where
the statement s is included in the resulting variant iff k |= θ (means: k entails θ),
otherwise the statement s is removed.

4 Parametric (Abstract) Variability-Aware Analysis

Variability-aware (lifted) analyses are designed by lifting existing single-program
analyses to work on program families, rather than on individual programs. In this
section, we first briefly explain the process of “lifting” introduced in [21]. Then,
we recall the calculus of variability abstractions defined in [14] for reducing the
configuration space. Finally, we present the induced abstract variability-aware
(lifted) analysis [14], whose transfer functions are parametric in the choice of
abstraction.
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Lifting Single-program Analysis. Suppose that we have a monotone dataflow
analysis for IMP phrased in the abstract interpretation framework [9, 22]. Such
an analysis is specified by the following data. A complete lattice 〈P,vP〉 for
describing the properties of the analysis. A domain A = Var → P of abstract
stores, ranged over by a, which associates properties from P to the program
variables Var. The analysis domain is 〈A,v,t,u,⊥,>〉, which inherits the lattice
structure from P in a point-wise manner. There are also transfer functions for
expressions A′[[e]] : A→ P and for statements A[[s]] : A→ A, which describe the
effect of analyzing expressions and statements in an abstract store.

By using variational abstract interpretation [21], we can lift any single-program
analysis defined as above to the corresponding variability-aware (lifted) analysis
for IMP, which is specified as follows. Given a set of valid configurations K, the
lifted analysis domain is 〈AK, v̇, ṫ, u̇, ⊥̇, >̇〉, which inherits the lattice structure of
A in a configuration-wise manner. Here AK is shorthand for the |K|-fold product∏
k∈K A, and so in the lifted domain there is one separate copy of A for each

configuration of K. For a, a′ ∈ AK, the lifted ordering v̇ is defined as: a v̇ a′ iff
πk(a) v πk(a′) for all k ∈ K. The projection πk selects the kth component of
a tuple. Similarly, all other elements of the lattice A are lifted, thus obtaining
ṫ, u̇, ⊥̇, >̇. As an example, >̇ =

∏
k∈K> = (>, . . . ,>), where > ∈ A.

The lifted transfer function for statements A[[s]] (resp., for expressions A′[[e]])
is a function from AK to AK (resp., from AK to PK). However in practice, using
a tuple of |K| independent simple functions of type A → A (resp., A → P) is
sufficient, since lifting corresponds to running |K| independent analyses in parallel.
Therefore, the lifted transfer functions are given by the functions A[[s]] : (A→ A)K
and A′[[e]] : (A → P)K. The k-th component of the above functions defines the
analysis corresponding to the configuration k ∈ K.
Interval analysis. In the following, we will use the interval analysis to demon-
strate this method. The interval analysis is based on the property domain
〈Interval,vI〉: Interval= {⊥I} ∪ {[l, h] | l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}, l≤ h},
where ⊥I denotes the empty interval, and >I = [−∞,+∞]. The partial ordering
vI is: [l1, h1] vI [l2, h2] iff l2 ≤ l1 ∧ h1 ≤ h2. The partial ordering vI induces
the definitions for tI and uI . For each arithmetic operator ⊕, we have the
corresponding ⊕̂ defined on properties from Interval [9]:

[l1, h1]⊕̂[l2, h2] = [ min
x∈[l1,h1], y∈[l2,h2]

{x⊕ y}, max
x∈[l1,h1], y∈[l2,h2]

{x⊕ y}] (1)

Thus, we have: [l1, h1] +̂ [l2, h2] = [l1 + l2, h1 + h2] and [l1, h1] −̂ [l2, h2] = [l1 −
h2, h1 − l2]. For example, [2, 2] +̂ [1, 2] = [3, 4] and [2, 2] −̂ [1, 2] = [0, 1].

The single-program transfer function for constants is: A′[[n]] = λa.abstZ(n),
where a ∈ A = Var → Interval, and abstZ : Z → Interval is a function for
turning values to properties defined as: abstZ(n) = [n, n]. The corresponding
lifted transfer function becomes A′[[n]] = λa.

∏
k∈K abstZ(n), where a ∈ AK. The

complete list of definitions is given in Fig. 1, where for full variability-aware
analysis the parameter α is instantiated with the identity abstraction αid. Note
that for simplicity, here we overload the λ-abstraction notation, so creating a
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tuple of functions looks like a function on tuples: we write λa.
∏
k∈K fk(πk(a))

to mean
∏
k∈K λak.fk(ak). Similarly, if f : (A→ A)K and a ∈ AK, then we write

f(a) to mean
∏
k∈K πk(f)(πk(a)).

Variability Abstractions. We now introduce abstractions for reducing the
lifted analysis domain AK. The set Abs of abstractions is given by [14]:

α ::= αid | αjoin | αproj
φ | αfignore

A | α ◦ α | α ⊗ α

where φ ∈ FeatExp, and A ∈ F. For each abstraction α, we define the effect of
applying α on sets of configurations K, and on domain elements a ∈ AK. Note
that, the set of features is fixed, i.e. we have α(F) = F for any α.

The αid is an identity on K and a ∈ AK. So, αid(K) = K and the abstraction
and concretization functions: αid(a) = a, γid(a) = a, form a Galois connection 1.

The join abstraction, αjoin, gathers (joins) the information about all config-
urations k ∈ K into one (over-approximated) value of A. We have αjoin(K) =
{
∨
k∈K k}, i.e. after abstraction we obtain a single valid configuration denoted

by the compound formula
∨
k∈K k. The abstraction and concretization functions

between AK and A{
∨

k∈K
k} ≡ A1, which form a Galois connection [14], are:

αjoin(a) =
(⊔

k∈K πk(a)
)
, and γjoin(a) =

∏
k∈K a.

The projection abstraction, αproj
φ , preserves only the values corresponding

to configurations from K that satisfy φ ∈ FeatExp. The information about
configurations violating φ is disregarded. We have αproj

φ (K) = {k ∈ K | k |=
φ}, and the Galois connection [14] between AK and A{k∈K|k|=φ} is defined as:

αproj
φ (a) =

∏
k∈K,k|=φ πk(a), and γprojφ (a′) =

∏
k∈K

{
πk(a′) if k |= φ

> if k 6|= φ
.

The abstraction αfignore
A ignores a single feature A ∈ F that is not directly

relevant for the current analysis. It merges configurations that only differ with
regard to A, and are identical with regard to remaining features, F\{A}. Given
φ ∈ FeatExp, we write φ\A for a formula obtained by eliminating the feature
A from φ (see [14] for details). For each formula k′ ≡ k\A where k ∈ K, there
will be one configuration in αfignore

A (K) determined by the formula
∨
k∈K,k\A≡k′ k.

Therefore, we have αfignore
A (K) = {

∨
k∈K,k\A≡k′ k | k′ ∈ {k\A | k ∈ K}}. The

Galois connection [14] between AK and Aαfignore
A

(K) is defined as: αfignore
A (a) =∏

k′∈αfignore
A

(K)
⊔
k∈K,k|=k′ πk(a), and γfignoreA (a′)=

∏
k∈K πk′(a′) if k |=k′.

We also have two compositional operators: sequential composition α2 ◦ α1,
which will run two abstractions α1 and α2 in sequence; and product α1 ⊗ α2,
which will run both abstractions α1 and α2 in parallel (“side-by-side”). For
precise definitions of α2 ◦ α1 and α1 ⊗ α2, the reader is referred to [14]. In the
following, we will simply write (α, γ) ∈ Abs for any 〈AK, v̇〉 −−−→←−−−α

γ
〈Aα(K), v̇〉,

which is constructed using the operators presented in this section.
1 〈L,≤L〉 −−−→←−−−α

γ
〈M,≤M 〉 is a Galois connection between lattices L and M iff α and γ

are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all l ∈ L,m ∈M .
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Example 1. Consider the lifted interval analysis and a =
(
[x 7→ [2, 2]], [x 7→

[2, 2]], [x 7→ [0, 0]], [x 7→ [-2, -2]]
)
, where K = {A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B}.

We have αjoin(a) = (πA∧B(a) t πA∧¬B(a) t π¬A∧B(a) t π¬A∧¬B(a)) = ([x 7→
[-2, 2]]). Thus, the state is significantly decreased to only one component, but
the abstraction αjoin loses precision by saying that x can have any value between
-2 and 2. Then, we have αproj

A (a) = (πA∧B(a), πA∧¬B(a)) = ([x 7→ [2, 2]], [x 7→
[2, 2]]). Now the state is decreased to two components that satisfy A. Also,
αjoin ◦αproj

A (a) = (πA∧B(a) t πA∧¬B(a)) = ([x 7→ [2, 2]]). We have αfignore
A (K) =

{(A∧B)∨ (¬A∧B) ≡ B, (A∧¬B)∨ (¬A∧¬B) ≡ ¬B}, and so αfignore
A (a) =

(πA∧B(a) t π¬A∧B(a), πA∧¬B(a) t π¬A∧¬B(a)) = ([x 7→ [0, 2]], [x 7→ [-2, 2]]). ut

Induced Abstract Lifted Analysis. Recall that any analysis phrased in the
abstract interpretation framework can be lifted to the corresponding variability-
aware analysis [21], which is specified by the domain 〈AK, v̇〉, and lifted transfer
functions A[[s]] : (A → A)K and A′[[e]] : (A → P)K. Given a Galois connection
(α, γ) ∈ Abs, the abstract lifted analyses induced by (α, γ) has been derived
algorithmically in [14]. The derivation finds an over-approximation of α ◦A[[s]] ◦ γ
obtaining a new abstract statement transfer function Aα[[s]] : (A→ A)α(K). Also,
a new abstract expression transfer function A′α[[e]] : (A→ P)α(K) is derived, which
over-approximates α◦A′[[e]]◦γ. Note that full variability-aware analysis A′[[e]] and
A[[s]] are included as a special case, i.e. they coincide with A′αid [[e]] and Aαid [[s]].
The derivation of A′α[[e]] and Aα[[s]] is based on the calculational approach to
abstract interpretation [8], which advocates simple algebraic manipulation to
obtain a direct expression for the abstract transfer functions.

The definitions of Aα[[s]] and A′α[[e]] are given in Fig. 1. The function Aα[[s]]
(resp. A′α[[e]]) captures the effect of analysing the statement s (resp., expression
e) in a lifted store a ∈ Aα(K) by computing an output lifted store a′ ∈ Aα(K)

(resp, property p ∈ Pα(K)). For “x := e”, the value of x is updated in every
component of the input lifted store a by the value of the expression e evaluated
in the corresponding component of a. The most interesting case is the analysis
of “#if (θ) s”, which checks the relation between each abstract configuration
k′ ∈ α(K) and the presence condition θ. Since k′ can be any compound formula,
not only a valuation formula as in K, there are three possible cases: (1) if k′ |= θ,
the corresponding component of the input store is updated by the effect of
evaluating the statement s; (2) if k′ |= ¬θ, the corresponding component of the
store is not updated; (3) if (k′ ∧ θ) and (k′ ∧ ¬θ) are both satisfiable, then the
component is updated by the least upper bound of its initial value and the effect
of s. For example, when k′ = A, we obtain: the case (1) if θ = A, the case (2) if
θ = ¬A, and the case (3) if θ = B. Note that for αid, since all configurations k
in K are valuation formulas (i.e. either k |= θ or k |= ¬θ), only the first two cases
are possible. Note that, only definitions for constants n and binary operators ⊕
are analysis-dependent. So our approach is general and applicable to any static
dataflow analysis chosen as a client. The monotonicity and the soundness (i.e.,
α ◦ A′[[e]] ◦ γv̇A′α[[e]] and α ◦ A [[s]] ◦ γv̇A α[[s]]) of the abstract lifted analysis
follows by construction as shown in [14].
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Aα[[skip]] = λa. a, Aα[[x := e]] = λa.
∏

k′∈α(K)

πk′ (a)[x 7→ πk′ (A′
α[[e]]a)]

Aα[[s0 ; s1]] = Aα[[s1]] ◦ Aα[[s0]], Aα[[while e do s]] = lfpλΦ. λa. a ṫ Φ(Aα[[s]] a)

Aα[[if e then s0 else s1]] = λa.Aα[[s0]]a ṫAα[[s1]]a

Aα[[#if(θ)s]]=λa.
∏

k′∈α(K)


πk′ (Aα[[s]]a) if k′ |= θ

πk′ (a) if k′ |= ¬θ
πk′(a)tπk′(Aα[[s]]a) if sat(k′∧θ)∧sat(k′∧¬θ)

A′
α[[n]] = λa.

∏
k′∈α(K)

abstZ(n), A′
α[[x]] = λa.

∏
k′∈α(K)

πk′ (a)(x)

A′
α[[e0 ⊕ e1]] = λa.

∏
k′∈α(K)

πk′ (A′
α[[e0]]a) ⊕̂ πk′ (A′

α[[e1]]a)

Fig. 1: Definitions of Aα[[s]] : (A→ A)α(K) and A′α[[e]] : (A→ P)α(K).

5 Pre-analysis for Finding α

Given a program family and a set of queries, we want to find a good abstraction
α for a variability-aware (main) analysis defined by: the domain 〈AK, v̇〉, where
A = V ar → P, and the transfer functions A′[[e]] : (A→ P)K, A[[s]] : (A→ A)K. In
this section, we first present how to design a pre-analysis, then we describe how
we can construct an appropriate abstraction α for the main analysis based on
the pre-analysis results.

Definition of Pre-Analysis. We replace the property domain 〈P,vP〉 from
the main analysis with a suitable abstract property domain 〈P#,vP#〉, from
which the pre-analysis is induced. The pre-analysis is fully variability-aware and
is specified by the following domains: 〈A# = V ar → P#,v〉, 〈A# K, v̇〉; and
transfer functions: A′#[[e]] : (A# → P#)K, A#[[s]] : (A# → A#)K. Any designed
pre-analysis should fulfill two conditions: soundness and computational efficiency.

Soundness. We design the pre-analysis which runs with full variability-
awareness but with a simpler abstract domain and simpler abstract transfer
functions than those of the main analysis.
First, there should be a pair of abstraction α̂# : P→ P# and concretization func-

tions γ̂# : P# → P forming a Galois connection 〈P,vP〉 −−−−→←−−−−
α̂#

γ̂#

〈P#,vP#〉. These

functions formalize the fact that an abstract property from P# in the pre-analysis
means a set of properties from P in the main analysis. By point-wise lifting we ob-
tain the Galois connection 〈A,v〉 −−−−→←−−−−

α#

γ#

〈A#,v〉 by taking: α#(a) = λx.α̂#(a(x))
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and γ#(a#) = λx.γ̂#(a#(x)). By configuration-wise lifting we obtain the Ga-
lois connection 〈AK, v̇〉 −−−−→←−−−−

α#

γ#

〈A# K, v̇〉 by: α#(a) =
∏
k∈K α

#(πk(a)) and

γ#(a#) =
∏
k∈K γ

#(πk(a#)). Similarly, by configuration-wise lifting we can

construct the Galois connection 〈PK, v̇〉 −−−−→←−−−−
α̂

#

γ̂
#

〈P# K, v̇〉.

Second, the transfer functions A′#[[e]] and A#[[s]] of the pre-analysis should be
sound with respect to those of the variability-aware main analysis: α̂# ◦ A′[[e]] ◦
γ#v̇A′#[[e]], and α# ◦ A[[s]] ◦ γ#v̇A#[[s]], for any e ∈ Exp, s ∈ Stm. In this way,
we ensure that pre-analysis over-approximates variability-aware main analysis.

Computational efficiency. We define a query, q, to be of the form: (s, P, x) ∈
Stm×P(P)× V ar, which represents an assertion that after the statement s the
variable x should always have a property value from the set P ⊆ P. We want to
design a pre-analysis, which although estimates computationally expensive main
analysis, still remains computable. We achieve computational efficiency of the
pre-analysis by choosing very simple property domain P#. Let P# = {F,>P#}
be a complete lattice with F @ >P# . Given the query q = (s, P, x), the functions
α̂# : P→ P# and γ̂# : P# → P are defined as:

α̂#(p)=
{
F if p ∈ P
>P# otherwise

γ̂#(F)=
⊔
P, γ̂#(>P#)=>P

The only non-trivial case is F denoting at least the properties from the set P ⊆ P
that the given query q wants to establish after analyzing some program code.
From now on, we omit to write subscripts P and P# in lattice operators whenever
they are clear from the context.

The variability-aware pre-analysis with simple property domain (e.g. P# =
{F,>}) can be computed by an efficient algorithm based on sharing repre-
sentation [3], where sets of configurations with equivalent analysis informa-
tion are compactly represented as bit vectors or formulae. For example, the
pre-analysis with sharing for the variational program P of Section 2 runs as:(
[[true]] 7→ [x 7→>, y 7→>]

)
. . .

stm 37−→
(
[[true]] 7→ [x 7→F, y 7→>]

) stm 47−→
(
[[A]] 7→ [x 7→F, y 7→

>], [[¬A]] 7→ [x 7→>, y 7→>]
)
, where [[true]] = {A ∧ B,A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B},

[[A]] = {A∧B,A∧¬B}, and [[¬A]] = {¬A∧B,¬A∧¬B}. Since the abstract do-
main P# of our pre-analysis is very small (has only 2 values), the possibilities for
sharing (i.e. configurations with equivalent analysis results) are very promising.
Interval pre-analysis. We now design a pre-analysis for the interval anal-
ysis example with respect to queries that require non-negative intervals for
variables. The pre-analysis aims at predicting which variables get assigned non-
negative values when the program family is analyzed by the variability-aware
interval analysis. Suppose that Interval# = {F,>}, where F v >. We define
γ̂#(F) = [0,+∞], and γ̂#(>) = [−∞,+∞]. That is, F denotes all non-negative
intervals. Then, we have A# : V ar → Interval#, and A# K =

∏
k∈K A#. We

can calculate the transfer functions for expressions by following the sound-
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ness condition: A′#[[e]] ẇ α̂
# ◦ A′[[e]] ◦ γ#. The resulting functions can be com-

puted effectively (in constant time) for constants and all binary operators as
follows: A′#[[n]] = λa#.(if n ≥ 0 then F else >), A′#[[e1 − e2]] = λa#.>,
and A′#[[e1 + e2]] = λa#.

∏
k∈K πk(A′#[[e1]]a#) t πk(A′#[[e2]]a#), where F =

(F, . . . ,F),> = (>, . . . ,>) ∈ Interval# K. The analysis approximately tracks
integer constants n, i.e. non-negative values get abstracted to F, whereas nega-
tive values to >. Note that the addition “+” operator (similarly “*” and “/”)
is interpreted as the least upper bound t, so that for a configuration k ∈ K,
e1 + e2 evaluates to F only when both e1 and e2 are F. For the subtraction “-”
operator, the analysis always produces >, thus losing precision. Also note that
since the pre-analysis works on a lattice with finite height (Interval#) there is no
need of defining widening operators to compute the fixed point of while loops.
In contrast, the (main) interval analysis works on a lattice with infinite ascending
chains (Interval) so it needs widening operators for handling loops.

Constructing Abstractions. We can use the results obtained during the pre-
analysis to: (1) find queries that are likely to benefit from increased variability-
awareness of the main analysis; (2) find configurations and features that are
worth being distinguished during the main analysis. The found configurations
and features are used to construct an abstraction α, which instructs how much
variability-awareness the main analysis should use.

First, we find whether a query can benefit from increased variability-awareness.
For simplicity, we assume that there is only one query q = (s, P, x) ∈ Stm ×
P(P) × V ar. The analysis should prove the query q = (s, P, x) by computing
a lifted store a after analyzing the statement s, and checking for which k ∈ K
it holds: πk(a)(x) vP tP . To find whether the given query will benefit from
increased variability-awareness, we run the variability-aware pre-analysis. Let
A#[[s]]a#

0 be the result of the pre-analysis, where a#
0 denotes the initial abstract

lifted store with all variables set to >P# . Using this result, we check if there is
some k ∈ K such that: πk(A#[[s]]a#

0 (x)) = F. Let Kpromise ⊆ K be the set of all
promising configurations k that satisfy the above equation for a selected query.

We now compute the set Fgood ⊆ F of necessary features for a given query
via dependency analysis, which is simultaneously done with the pre-analysis
as follows. Let P′# = P# × P(F). The idea is to over-approximate the set of
features involved in analyzing each variable in the second component of P′#. The
abstract domain is A# = V ar → P′#. For lifted abstract store a# ∈ A# K, we
define πk(a#(x))|1 ∈ P# as the property associated with the variable x in the
component of a# corresponding to k ∈ K; and πk(a#(x))|2 ∈ P(F) as the set
of features involved in producing the analysis result for x in the component of
a# corresponding to k ∈ K. The abstract semantics A′#[[e]]F and A#[[s]]F are
the same as before except that they also maintain the set of involved features
F ⊆ F. The parameter F ⊆ F is propagated for all sub-statements of statements.

For example: A#[[#if (θ) s]]F=λa#.
∏
k∈K

{
πk(A#[[s]]F∪FV (θ)a#) if k |=θ

πk(a#) if k 6|=θ
, where
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FV (θ) denotes the set of features occurring in θ. For the #if statement, we
also propagate the set of features in θ for each configuration k that satisfies
θ, since the analysis result for those configurations will depend on features in
θ. For “x := e”, we record in the analysis which features have contributed for
calculating the given property of x. We compute Fgood as the union of all S, such
that for some k ∈ Kpromise we obtain: πk(A#[[s]]∅a#(x)) = (F, S). Then, we set
Fignore = F\Fgood. The final constructed abstraction is: αfignore

Fignore
◦αproj
∨k∈Kpromise

k.

Example 2. If we calculate A#[[P ]]∅a#
0 , where P is our example from Section

2 and a#
0 =

∏
k∈K(λx.(>, ∅)) is the initial store, we obtain the final store:

([x7→(F,{A}),y7→(>,{B})],[x7→(F,{A}),y7→(>,{B})],[x7→(>,{A}),y7→(>,{B})],[x7→(>,{A}),y7→(>,{B})]).
Therefore, we select the first query that asks for non-negative values of x as

promising with Kpromise = {A ∧B,A ∧ ¬B} (which contains all configurations
where x is mapped to F), Fgood = {A}, and Fignore = {B}. The abstraction
regarding the first query is: αfignore

B ◦αproj
(A∧B)∨(A∧¬B). But the second query that

asks for non-negative values of y is rejected, since y is always mapped to >. ut

Finally, by using the soundness of pre-analysis, and suitability of the pre-
analysis for the given query (definitions of Kpromise and Fignore), we can show:

Theorem 1 (Promising Preservation). Let Fignore and Kpromise be the sets
of ignored features and promising configurations for a query (s, P, x) defined by
the result of our pre-analysis A#[[s]]∅a#

0 . Let α = αfignore
Fignore

◦ αproj
∨k∈Kpromise

k and

γ = γproj∨k∈Kpromise
k ◦ γ

fignore
Fignore

. Then: γ
(
Aα[[s]]a0(x)

)
v̇ γ#(A#[[s]]a#

0 (x)
)
, where

a0 ∈ Aα(K) and a#
0 ∈ A# K are the initial (uninitialized) lifted stores.

6 Evaluation

We now evaluate our pre-analysis guided approach for finding suitable variability
abstractions for lifted analysis. For our experiments, we use SOOT’s intra-
procedural dataflow analysis framework [27] for analyzing Java programs and an
existing SOOT extension for lifted dataflow analyses of Java program families [3].
The lifted dataflow analysis framework uses CIDE (Colored IDE) [17], which
is an Eclipse plug-in, to annotate statements using background colors rather
than #ifdef directives. Every feature in a program family is thus associated
with a unique color. We consider optimized lifted intra-procedural analyses with
improved representation via sharing of analysis equivalent configurations using
a high-performance bit vector library [15]. Note that our pre-analysis guided
approach for lifted analysis is orthogonal to the particular analysis chosen as a
client, since it depends only on variability-specific constructs of the language.

First, we have implemented interval pre-analysis and interval analysis in the
SOOT framework. For interval analysis, the delayed widening is implemented
using the flowThrough method of ForwardF lowAnalysis class by counting the
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times a node was visited and applying a widening operator once a threshold has
been reached. Then, on top of a lifted dataflow analyzer [3], we have implemented
variability-aware versions of interval pre-analysis and interval analysis described
in Section 5 and Section 4, respectively. The pre-analysis reports a set of promising
configurations and a set of features that should be ignored. This information is
used to construct an abstraction, which is passed as parameter to the subsequent
variability-aware interval analysis. The implemented analysis tracks the range of
possible values for all integer (int and long) variables.

For our experiment, we use three Java benchmarks from the CIDE project [17].
Graph PL (GPL) is a small desktop application with intensive feature usage. It
contains about 1,35 kLOC, 18 features, and 19 methods with integer variables.
Prevayler is a slightly larger product line with low feature usage, which contains
8 kLOC, 5 features, and 174 methods with integer variables. BerkeleyDB is a
larger database library with moderate feature usage, containing about 84 kLOC,
42 features, and 2654 methods with integer variables.

All experiments are executed on a 64-bit IntelrCoreTM i5 CPU with 8 GB
memory. All times are reported as averages over ten runs with the highest
and lowest number removed. We report only the times needed for actual intra-
procedural analyses to be performed. In experiments, to illustrate our approach
we consider queries which ask for the exact non-negative possible values of local
integer variables at the end (final nodes) of their methods.

Table 1 compares the performance of our approach based on pre-analysis
followed by the corresponding abstract variability-aware interval analysis (table
below) with full variability-aware interval analysis which is used as a baseline
(table above). We measured the analysis precision by the number of integer
variables for which our approach accurately calculates their analysis information
(see full precision column, table below), which can be a non-negative interval
(var [ ]) or the > value (var >), such that the same analysis results are obtained
with the full variability-aware interval analysis (analysis results column, table
above). We report the number of configurations (con [ ] and con >) in which
those precisely tracked variables occur. We also measured the number of variables
and corresponding configurations where there is a precision loss (see precision
loss column, table below), i.e. our approach produces the > value but the full
variability-aware interval analysis can establish that their intervals are non-
negative. For each of the benchmarks, we only analyze the methods that contain
integer variables. We report the sum of analysis times for all such methods in
a benchmark. We can see that for GPL and Prevayler there is no precision
loss with our approach, but we obtain speed-ups in running times. For GPL we
observe 2.2 times speed-up, whereas for Prevayler we have 1.3 times speed-up (pre-
analysis+abstract vs. unabstract variability-aware analysis). For BerkeleyDB,
we have precision loss for 3 variables found in 43 valid configurations (out
of 7386 configurations where integer variables occur) which represents 0.58%
precision loss in total, but we still keep precision for all the other 7386-43=7343
cases (configurations). Yet, we achieve 1.5 times speed-up with our approach for
BerkeleyDB.
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Unabstract variability-aware analysis

Benchmark analysis results Timevar [ ] con [ ] var > con >
GPL 33 216 18 26 73.1

Prevayler 56 58 166 168 83.2
BerkeleyDB 1144 3197 2139 4189 2908

Pre-analysis guided approach

Benchmark full precision prec. loss Timevar [ ] con [ ] var > con > var> con>
GPL 33 216 18 26 0 0 33.4

Prevayler 56 58 166 168 0 0 62.3
BerkeleyDB 1141 3154 2137 4232 3 43 1933

Table 1: Performance results for unabstract variability-aware analysis which is
used as a baseline (table above) vs. our pre-analysis guided approach which
consists of running a pre-analysis followed by a subsequent abstract variability-
aware analysis (table below). All times are in ms (milliseconds).

7 Related Work and Conclusion

Using pre-analysis to adjust the main analysis precision was first introduced in
[23, 24]. They design pre-analysis for finding various precision parameters, such as:
context sensitivity, flow sensitivity, and relational constraints between variables.
In this work, we adapt this idea to the setting of variability-aware analysis for
program families. In [20], machine learning is used to find a minimal abstraction
that is sufficient to prove all queries provable by the most precise abstraction.
The technique presented in [28] finds the optimum abstraction that proves a
given query, but it is applicable only to disjunctive analysis.

The work in [3] lifts a dataflow analysis from the monotone framework,
resulting in a variability-aware dataflow analysis that works on the level of families.
Another efficient implementation of the lifted dataflow analysis formulated within
the IFDS framework [25] was proposed in SPLLIFT [2]. However, this technique
is limited to work only for analyses phrased within the IFDS framework [25], and
many dataflow analyses, including interval, cannot be encoded in IFDS. Other
approaches for lifting existing analysis techniques to work on the level of families
are: lifted syntax checking [19], lifted type checking [4, 18], lifted model checking
in the settings of transition systems [1, 6, 5, 12, 13] and game semantics [10, 11],
lifted testing [16]. All these lifted techniques could benefit from using variability
abstractions and from the present approach on finding a good abstraction.

To conclude, in this work we presented a technique for automatically finding
abstractions that enable effective abstract variability-aware analysis. The suitable
abstraction parameters are calculated by a pre-analysis. We demonstrate the
effectiveness of our approach with experiments.
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