
A Process Framework for Designing Software Reference
Architectures for providing Tools as a Service

Muhammad Aufeef Chauhan±1,3, Muhammad Ali Babar±1,2, Christian W. Probst3

±CREST-Centre for Research on Engineering Software Technologies1,2
1Software and Systems Section, IT University of Copenhagen, Denmark

2The University of Adelaide, Australia
3Formal Methods Section, Department of Applied Mathematics and Computer Science,

Technical University of Denmark, Denmark

muac@itu.dk, ali.babar@adelaide.edu.au, cwpr@dtu.dk

Abstract. Software Reference Architecture (SRA), which is a generic architec-
ture solution for a specific type of software systems, provides foundation for the
design of concrete architectures in terms of architecture design guidelines and
architecture elements. The complexity and size of certain types of software sys-
tems need customized and systematic SRA design and evaluation methods. In
this paper, we present a software Reference Architecture Design process
Framework (RADeF) that can be used for analysis, design and evaluation of the
SRA for provisioning of Tools as a Service as part of a cloud-enabled work-
SPACE (TSPACE). The framework is based on the state of the art results from
literature and our experiences with designing software architectures for cloud-
based systems. We have applied RADeF SRA design two types of TSPACE:
software architecting TSPACE and software implementation TSPACE. The
presented framework emphasizes on keeping the conceptual meta-model of the
domain under investigation at the core of SRA design strategy and use it as a
guiding tool for design, evaluation, implementation and evolution of the SRA.
The framework also emphasizes to consider the nature of the tools to be provi-
sioned and underlying cloud platforms to be used while designing SRA. The
framework recommends adoption of the multi-faceted approach for evaluation
of SRA and quantifiable measurement scheme to evaluate quality of the SRA.
We foresee that RADeF can facilitate software architects and researchers during
design, application and evaluation of a SRA and its instantiations into concrete
software systems.

Keywords. Cloud Computing, Software Reference Architecture (SRA), Tools
as a Service (TaaS), Architecture Design, Architecture evaluation.

1 Introduction

A Software Reference Architecture (SRA) provides an abstraction for designing and
reasoning about a concrete software architecture of a specific system domain [1][2].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/81666638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Whilst a concrete architecture is designed for a specific project according to well-
defined business goals and requirements, a SRA usually aims to address generic busi-
ness goals and domain requirements. A SRA consists of not only details on architec-
ture components and its view, but also encompasses best practices for describing the
architecture and the process guidelines for analysis, design and development of the
architecture [3]. Though describing stakeholders concerns in terms of architecture
view points and presenting the details of a SRA using multiple views [4] is important,
it is equally important to describe the design-time and run-time quality characteristics
of a SRA and the use of appropriate architecture styles and patterns [5]. A SRA is
primarily designed for two main reasons: (i) to standardize existing available concrete
architectures or (ii) to propose a preliminary SRA that can facilitate concrete architec-
ture design for a specific domain. Whilst a SRA standardization effort focuses on
extracting reusable architecture elements from a number of concrete architectures, a
SRA preliminary proposition focuses on recommendations for SRA documentation,
guidelines for SRA design and evaluation as well as SRA adoption and evolution.

In this paper, we present a software Reference Architecture Design process
Framework (RADeF) for designing cloud-based systems in general and cloud-based
Tools as a service workSPACE (TSPACE) in particular. RADeF reports a set of key
specifications and SRA design guidelines. Whilst cloud-based systems provision on-
demand computing as Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) [6], a TSPACE is characterized by as an activity or
a task specific selection and on-demand provisioning of Tools as a Service (TaaS) as
part of an integrated cloud-enabled workspace [6]. We assert that designing and eval-
uating a TSPACE SRA is more challenging than SRAs of general cloud-based sys-
tems because of the involvement of diversified tools and tenants with varying func-
tional requirements and quality concerns. For example, performance and scalability
can be more important for tenants and users of software development and testing
TSPACE, whereas integration can be more important for tenant and users of architec-
ture analysis and design TSPACE. Furthermore, instantiation of a TSPACE SRA for
different domains can require customization (e.g. addition of new components or only
selecting a subset of a SRA), which requires a mechanism that can be used to analyze
quality and completeness of the instantiated architectures. Although there have been
attempts to provide a systematic approaches for reference architecture design, docu-
mentation and evaluation [2, 3, 7], to the best of our knowledge, there has been a little
work done on providing a process framework for SRA design given the specific needs
of SRA design and evaluation of the TSPACE. Our work reported in this paper aims
to address the following research objectives:
• Provide a systematic approach that can lead to a SRA’s design elements identifi-

cation, requirements analysis and detailed design.
• Provide insight to the specific needs of TSPACE SRA evaluation and instantia-

tion into concrete architectures.
• Demonstrate application of RADeF on SRAs of software architecture design and

implementation TSPACEs.
The organization of the paper is as follows. Section 2 provides the details of

RADeF. Section 3 describes the results of the case studies of applying RADeF for

describing and implementing TSPACE. Section 4 provides an overview of the related
work and Section 5 concludes the paper by sharing lessons learned and experiences.

2 Reference Architecture Design process Framework (RADeF)

A SRA is expected to provide guidance for designing and evaluating a concrete archi-
tecture. A SRA description usually includes reusable solutions in terms of architectur-
al goals, architectural styles, design patterns, design principles and decision and
guidelines for initiating a SRA. That is why it is important that a SRA description
includes as much details as possible. It is also important to have a clearly described
process that can be used to design and evaluate a SRA [2]. In this section, we describe
RADeF, the process that can lead to TSPACE SRA development, evaluation and
implementation. We also discuss important factors that should be considered at each
stage of TSPACE SRA design. A pictorial representation of RADeF is presented in
Fig. 1. RADeF is an iterative process framework and information produced in preced-
ing stages is used as input for the proceeding stages of the process and as shown in
Fig. 1.

Fig. 1. A Process Framework for Designing a Software Reference Architecture

2.1 Identification of a Reference Architecture’s Concepts and Elements

First step in designing a SRA of a cloud-based TSPACE is to identify the concepts
and elements that constitute TSPACE. A SRA consists of not only SRA requirements

and SRA views, but it also provides guidelines for SRA evaluation. A generic view of
the SRA elements is depicted in Fig. 2(a). The required concepts an elements are
identified through a high-level analysis of a particular domain. TSPACE SRA ele-
ments can be classified into: Tenants, Tools, Provisioning Infrastructure, Artifacts,
Context and Integration Methods. Each of the elements is tailored and extended with
respect to the domain requirements for which the SRA is to be enacted.
Participants’ Roles: End users, Requirements Analysts and Software Architects.
Artifact(s) Consumed: Business Requirements.
Artifact(s) Produced: High-level relationship models for TSPACE concepts and
elements.

Fig. 2. Software Reference Architecture Elements

2.2 Refinement of Domain Element and Relationships Modeling

The activities identified for this stage are aimed at refining the identified elements in
previous stage, establishing the hierarchical structure of TSPACE elements and mod-
eling relations among the elements. Domain models are considered the main sources
of the information for this stage. The domain models can provide standardizations for
elements, their hierarchical structures and the relationships among the elements.
However the domain models need to be extended in order to cover all the dimensions
of TSPACE including the tools, the development processes which govern the provi-
sioning and usage of the tools, data integration and exchange formats among the tools,
and any additional functional aspects that are required by TSPACE in a specific do-
main. Fig. 2(b) shows TSPACE elements and relationships among the elements. The
artifacts that are produced at this stage, serve as a foundation for the detailed require-
ments analysis and architecture design of the components that are responsible for
tools bundling and integration in the TSPACE.
Participants’ Roles: Business Analyst and Software Architect.

Artifact(s) Consumed: Documentation approaches, documentation templates and
architecture design abstractions.
Artifact(s) Produced: TSPACE conceptual models that consists of concepts and ele-
ments that encompass TSPACE and relationship among the concepts and models.

2.3 Functional Demarcation between the Reference Architecture Elements
and the Tools to be Provisioned

This stage of the activities deals with demarcation of functional requirements to be
handled by a SRA and functional requirements for which TSPACE can rely on the
tools (that can be provisioned by TSPACE). The artifacts that are produced at this
stage provide a foundation for TSPACE functional requirements. The high-level ar-
chitecture design with specific focus on the identification of components responsible
for the TSPACE features.
Participants’ Roles: Requirements Analyst, Business Analyst and Software Architect.
Artifact(s) Consumed: Domain models.
Artifact(s) Produced: Documents describing functional demarcation of TSPACE and
encompassing tools.

2.4 Requirements Identification and Classification

The TSPACE SRA requirements can be classified into service model, integration and
quality requirements as discussed below.

Service Model Requirements: This task aims at identifying the requirements for
tools bundling, provisioning and enactment. For example, one of the primary objec-
tives for providing a software architecting TSPACE is to provide the bundled suite of
tools on demand as part of a TSPACE. It is critical to determine bundling and provi-
sioning constraints and parameters. The tools bundling mechanism should be flexible
enough to cater integration needs of different types of the tools to be used in a particu-
lar domain. In certain cases, there can also be some constraints with respect to the
underlying virtualized infrastructure (e.g., IaaS cloud virtual machines) that can host
the tools to enable their operations within acceptable runtime quality parameters (e.g.,
performance, scalability and reliability). The artifacts that are produced in this activity
provide guidelines to identify integration needs of the tools in a TSPACE and guide
the SRA analysis and design process.

Integration Requirements: Integration requirements focus on integration needs of
the tools that can be provisioned in TSPACE. With reference to software architecting
domain, the integration mechanism should be flexible enough to accommodate differ-
ent proprietary and standardized formats as well as support integration among hetero-
geneous types of tools (e.g. desktop-based, web-based and cloud-based tools). The
tools that are provisioned in a TSPACE instance can vary and the integration mecha-
nism should be flexible enough to adapt to the tools’ integration requirements of the
provisioned tools. The integration mechanism should also support workspace re-
quirements, such as awareness of the operations that are performed on the artifacts as

a result of the users’ activities [8]. The artifacts that are produced at this stage guide
the reference architecture design and analysis process of integration.

SRA Quality Requirements: The TSPACE is aimed at providing a bundled suite
of tools following a service model. As a result, the TSPACE SRA needs to incorpo-
rate architecture quality requirements of cloud-enables services based system such as
scalability [9], multi-tenancy [10] and dynamic provisioning [11]. The activities that
are performed at this stage aim to identify important quality characteristics with refer-
ence to the domain in which the TSPACE is to be used. For the software architecting
domain, scalability, multi-tenancy and dynamic provisioning are important. For an-
other domain such as software testing, elasticity [12] and reliability [13] can be im-
portant. The artifacts that are produced as a result of this activity provide a founda-
tion for runtime architecture quality requirements of TSPACE.
Participants’ Roles: Business Analyst and Software Architect.
Artifact(s) Consumed: Design time constrains and tools bundling constraints,
TSPACE functional boundaries, required activities and tasks, and tools enact-
ment/provisioning parameters and constraints, Collaboration and integration models.
Artifact(s) Produced: Integration and collaboration models. Design time constrains,
tools bundling constraints and tools’ provisioning/enactment parameters. TSPACE
runtime architecture quality requirements.

2.5 Impact of Potential Cloud Hosting Environments on the Domain

The suitability of the underlying IaaS or PaaS platform can impact the way a refer-
ence architecture is designed. E.g. PaaS environments can be a suitable choice for
testing domains in which autonomous scalability of the resources is more important.
Whilst IaaS environments can be suitable for hosting tools implemented using differ-
ent technologies as IaaS clouds provide customizable hosting environments.
Participants’ Roles: Software Architect.
Artifact(s) Consumed: List of potential cloud hosting environments.
Artifact(s) Produced: Selected cloud hosting environments.

2.6 Reference Architecture Documentation, Analysis and Design

This stage of the activities focus on analyzing architecture documentation approaches
and preliminary analysis of the maturity of the domain for which a SRA is designed.
The analysis of the documentation approaches determines the most appropriate strate-
gies for capturing the architecture of the domain for which TSPACE is designed. A
comprehensive analysis of the SRA documentation approaches is reported in [2, 3].
Angelov et al. have recommended that a reference architecture documentation include
information about the context, goals and design decisions. The context dimension
covers the purpose, the organization(s) that is (are) developing a reference architec-
ture and its maturity stage (e.g., preliminary or classic) [2]. The goal dimension en-
compasses business goals and quality attributes as well as the purpose of defining a
reference architecture (e.g., to standardize concrete architecture or to facilitate design
of concrete architecture). The design dimension elaborates whether a SRA is concrete

or abstract and whether the SRA has been described using formal, semiformal or in-
formal approaches. Avgeriou et al. [3] propose that a SRA description should have
three main elements: (i) description of the approach used to document a SRA, (ii)
guidelines on instantiation of a SRA and (iii) evaluation of a SRA corresponding to
desired functional requirements and quality attributes. The outcome of this activity
determines the approach used for describing a SRA, the level of abstractions to be
covered in the SRA documentation, the objectives and the selection of the approaches
for evaluation and instantiation of a SRA. Outcome of this activity has impact on all
the proceeding stages of the reference architecture design process. A summary of a
SRA design dimensions is shown in Fig. 2(a).

A SRA design should be based on reference models and architecture styles and
patterns [14, 15]. If a TSPACE SRA is to be used for mission-critical and safety-
critical tools, then it is also important to have metrics that can be used to measure
runtime quality parameters of an architecture. An empirical investigation of the SRAs
have revealed the absence of important views [4] in a SRA and the details of the sup-
porting algorithms and formalization to achieve the required functionality of the ref-
erence architecture [4] impact a SRA’s adoption and applicability. Hence, a SRA
should encompass all the important views according to some well-known approaches
such as 4+1 view model [4].
Participants’ Roles: Software Architect.
Artifact(s) Consumed: Architecture documentation templates and models.
Artifact(s) Produced: SRA documentation approaches used, filled templates, details
of the abstractions to be used, evaluation and initialization approaches and views.

2.7 Evaluating a Reference Architecture

Evaluation of a SRA is an important step for analyzing its feasibility and applicabil-
ity. Different considerations for evaluating a reference architecture have been pro-
posed [3, 7, 16]. Avgeriou et al. [3] have proposed to evaluate a SRA using scenarios
and prototyping. Scenarios based approaches enable an implementation-independent
evaluation. The evaluation scenarios need to be focused on important design time and
runtime qualities of the architecture. The prototyping helps analyze the suitability of
the implementation decisions such as platform choices and programming languages
for the design decisions incorporated in a SRA. Angelov et al. [7, 16] have argued
that straightforward adoption of architecture evaluation methods such as Architecture
Tradeoff Analysis Methods (ATAM) [17] and Software Architecture Analysis Meth-
ods (SAAM) [18] is not feasible because: gathering all the stakeholders and generat-
ing scenarios for a SRA evaluation may not be possible, there can be a significantly
large diversity of stakeholders and the levels of abstractions in the designed compo-
nents can be quite high. Hence, it is important to identify the most relevant architec-
ture requirements by involving domain experts or domain models and then preparing
scenarios by involving a SRA’s potential users [7, 16].

Other than the above-mentioned challenges, a TSPACE SRA evaluation activity
has some additional complexities. For example, a TSPACE provision the tools for
performing the different activities; hence there is a need for tools integration and

workspace specific functions in a *aaS model. An evaluation activity focuses on the
parts of a SRA that are embodied by TSPACE boundaries rather than by the tools to
be provisioned. Some of the key quality characteristics are inherited from *aaS model
for evaluating a TSPACE SRA’s abilities of on-demand provisioning of tools in a
particular domain, whose quality attributes should drive the evaluation activities.
Hence, the evaluation activity should focus on identifying and analyzing the relevant
quality attributes for the given domain. Moreover, as the SRA’s elements (i.e. com-
ponents or services) and design decisions collectively constitute to SRA quality, tradi-
tional architecture analysis and evaluation methods such as utility tree [17] from
ATAM are not sufficient because these are unable to quantify architecture quality. We
advocate for leveraging an new approach inspired from attack-defense trees [19] to
enhance the utility tree for analysis of the completeness of a SRA. Fig. 3(a) shows the
structure of the enhances utility tree. Sub-nodes of the utility tree corresponding to
each quality can be assigned with three types of operators: logical OR operator which
identifies that opting any of the branch can achieve a quality attribute, logical AND
operator that indicates that opting all of the branches will be essential to meet a quali-
ty criteria, and a Seq-AND (sequential AND) operator indicates that the design deci-
sions corresponding to the branches need to be executed in a specific sequence in
order to achieve the corresponding quality characteristic. In some cases, it might be
required to analyze overall quality and completeness of the SRA. For this purpose, the
probability values for the effectiveness of the design decisions can be assigned to each
branch of the quality attribute nodes (such that maximum probability of all design
decisions corresponding to each quality attribute do not exceed one). When probabil-
ity values are used, OR operator takes minimum, AND takes sum and SeqAND takes
sum of the probability values of all the branches of a quality attribute sub-tree. Final-
ly, to evaluate the tools bundling and integration approaches, a prototype based evalu-
ation is considered more effective. That means a TSPACE SRA prototype can play a
critical role for the SRA evaluation and the tools that are selected for provisioning
using the prototype can help to cover the most critical evaluation scenarios. The out-
come of evaluation activity can trigger modification in the artifacts that were generat-
ed in previous stages as depicted in Fig. 1.
Participants’ Roles: User, Requirement Analyst, Business Analyst and Software Ar-
chitect.
Artifact(s) Consumed: TSPACE Software Reference Architecture.
Artifact(s) Produced: Evaluation results.

Fig. 3. SRA Utility Tree Template and Models

2.8 Reference Architecture Instantiation and Implementation

As a SRA provides a generic architecture solution for a specific domain, its instantia-
tions can require appropriate tailoring, sometimes significant. As a result, some of the
components can be excluded from the instantiated architecture and some additional
components can be incorporated. The enhanced utility tree (Fig. 3(a)) presented in
Section 2.7 can facilitate the analysis and quantification of the concrete architecture.
Participants’ Roles: Business Analyst, Software Architect and Developers.
Artifact(s) Consumed: Evaluated TSPACE Software Reference Architecture.
Artifact(s) Produced: Instantiated system.

3 Two Cases of Applying RADeF

We have followed RADeF to support the design of a SRA for two types of TSPACE:
software architecting tools and software implementation tools. The two case studies
of applying RADeF for analysis, design, evaluation and implementation of the
TSPACE aimed at provisioning integrated suite of tools for software architecting and
implementation tools. The tools commonly used for software architecture design and
software implementation were selected for the case studies and TSPACE was de-
signed by following RADeF steps. In this section, we provide the insight gained from
our experiences from applying RADeF.

First and second stage of RADeF is to identify concepts and elements of a SRA
and establish relationships between the elements. The generic model presented in
Fig. 2(b) provides a foundation for TSPACE elements identification and relationship
modeling. Though the generic model needs to be extended to cater the needs of a
specific type of tools and the operations that can be performed using the tools. Fig.
3(b) shows the extensions to the generic model for software architecting and software
implementation domain. The tools used for software architecting have different types
of the artifacts, e.g., architecture knowledge artifacts, design decision artifacts and
architecture design diagrams. Since software architecture artifacts can be at different
levels of abstractions, and there is no need to exchange complete artifacts (although
selected information exchange is required) among architecting tools, which can be
integrated through semantic integration technologies. We have leveraged IEEE 1471-

2000 [20] and ISO/IEC/IEEE 42010:2011 [21] to build the semantic integration mod-
el for SRA of the architecting tools. Fig. 3(b) shows a high-level view of the elements
of the semantic model (the details can be found in [22]). The software implementation
need to exchange the artifacts for collaborative work. For example, in a scenario
where a UML modeling tool is used to design class diagrams, the code skeleton gen-
erated using the UML modeling tool (forward engineering) has to be used as input by
Integrated Development Environments (IDEs). For example, process-oriented tools
bundling requires process-centric integration. At this stage the SRA integration mod-
els are produced that provide foundations for the detailed architecture design.

Functional demarcation between the requirements to be incorporated by a SRA
and the requirements to be incorporated by the provisioned tools is an important step
for the requirements identification. As in the case studies, our focus was on provid-
ing software architecting and development tools, the SRAs focused on tools provi-
sioning, tools integration and awareness of the operations that are performed on the
artifacts using the tools. Whereas, individual tools were responsible for providing
support for specific activities such as architecture knowledge management, architec-
ture design decision management, architecture design and software implementation.
Table 1 shows details of the SRA and the tools’ requirements classification. The de-
tails of the requirements can be found in [22, 23]. Multi-tenancy and scalability are
domain specific quality requirements to support a large number of tenants [24]. Anal-
ysis and identification of cloud hosting environments for software architecting and
implementation domains requires using IaaS cloud because of heterogeneity of the
tools. A combination of desktop and web-based tools are used for software architect-
ing and implementation. The IaaS provides flexibility to host the existing tools by
configuring the virtual machine templates.

Table 1. Functional Demarcation and Requirements

Fu
nc

tio
na

l D
em

ar
ca

tio
n Tools

Requirements
Architecting Knowledge management, design deci-

sion management, architecture model-
ing.

Implementation Software development, unit testing.
SRA
Requirements

Functional Autonomous provisioning, semantic
integration, process centric integration,
awareness of the operations.

Quality Flexibility, interoperability, complete-
ness and adaptability.

Domain Quality Multi-tenancy, scalability

For the TSPACE SRAs detailed design, we have used a layered architecture [5]

and a view-based approach [4] to represent different parts of the SRA. A layered ar-
chitecture can facilitate easy modifiability of a TSPACE SRA, whose different di-
mensions can be represented using a view-based approach. The TSPACE meta-model
(Fig. 2(b)) and the detailed models (Fig. 3(b)) produced in the second stage of RADeF
are used as a foundation for the detailed design. Table 2 shows the key architecture

design decisions for software architecting and software implementation of a TSPACE
SRA design. We have reported the details on the architecture views and design deci-
sions in [6, 23].

Table 2. Decisions for software architecting (Arc.) and implementation (Impl.) case studies

Architecture Design Decisions Case Study
Arc. Impl.

Service Oriented and REST Architecture ü ü
Centralized Repository to have common semantic integration models ü û
Use of pipes and filter patterns to support multi-tenancy and easy
scalability

ü ü

Tenant specific integration, information discovery and awareness
rules

ü ü

Process-centric integration ü ü
IaaS cloud for hosting tools ü ü

As discussed earlier, the inclusion of heterogeneous tools producing and consum-

ing artifacts at different levels of abstractions makes the evaluation of a TSPACE
SRA a challenging activity. We have adopted multi-faceted approach to evaluate the
TSPACE SRAs for the reported case studies. (i) We evaluated the TSPACE SRAs
and their respective implementations for functional completeness corresponding to the
functional and quality requirements. (ii) We implemented the prototype systems for
TSPACE SRAs using Amazon IaaS cloud1. Interface modules of TSPACE have been
implemented using Service Oriented Architecture (SOA) [25] and REST [26] archi-
tecture styles using JavaEE service technologies (JAX-RS2, JAX-WS3) for enabling
easy interoperability of different types of tools with the systems. The semantic inte-
gration has been implemented using Apache Jena Framework4. The process-centric
integration has been implemented using jBPM5 process workflow engine. (iii) We
used quantitative architecture evaluation approach that is presented in Section 2.7,
which is based upon utility tree of ATAM, but can quantifiably measures the
TSPACE SRA’s quality. The evaluation was carried out by six potential stakeholders,
who had experiences (of architecting and implementation) of software development
tools, process-based applications, cloud-based systems and collaborative software
development systems.

A subset of the enhanced utility tree (described in Section 2.7) constructed in the
evaluation session is presented in Fig. 4. The participants of the evaluation session
were asked to assign each of the design decisions with values 0, 0.25, 0.50, 0.75 or
1.00. Then the average of the value score was taken for each of the design decisions

1 http://aws.amazon.com/
2 http://jax-rs-spec.java.net/
3 https://jax-ws.java.net/
4 https://jena.apache.org/
5 http://www.jbpm.org/

to be assigned to a specific quality attribute on a utility tree branch. In case, if there
were more than one design decisions corresponding to a specific quality attribute, an
average was divided by the total number of design decisions to keep the maximum
probability value under 1 corresponding to each of the quality attributes. If some of
the design decisions are important than others, then weighted averages can be used.
Whilst we considered all of the design decisions of the equal importance, the en-
hanced utility tree branches corresponding to each of the quality attributes (and sub
attributes) had either AND, OR and SeqAND operators (as discussed in Section 2.7).
The evaluation participants found the proposed operators (that were assigned to the
enhanced utility tree) helpful to quantify the architectural quality of the TSPACE
SRA. Fig. 4 shows the evaluation results corresponding to four key quality attributes
of the TSPACE SRAs for software architecting and implementation TSPACE. An
average of the quality score (average of the score given by the six evaluators) is
shown in the figure corresponding to each of the design decisions of the quality at-
tributes. Sum and Min functions (as described in Section 2.7) are used to calculate the
aggregated quality score of the reference architectures.

Fig. 4. SRA Evaluation Utility Tree

4 Related Work

Given the increasing importance of SRAs for guiding the designing and evaluating of
concrete architectures in different domains, several researchers have attempted to

provide a set of standardized activities and frameworks for designing and document-
ing reference architectures. One of the most comprehensive and detailed guidelines
have been reported by Angelov et al. [1, 2, 7, 16]. Their work provides a classification
technique of the reference architectures based upon the domain-specific maturity and
how the reference architectures are designed. For the mature domains, the aim of a
reference architecture is to provide the standardization of the architectures, whereas,
for the emerging domains, the purpose is to facilitate the design of concrete architec-
tures in multiple organizations. Some of the problems associated with designing a
reference architecture are missing design methods, challenges in defining non-
functional requirements, problems with selecting appropriate views, lack of suitable
architecture documentation methods and relatively little support for evaluating the
reference architectures [1]. In our TSPACE SRA design process, we have explicitly
catered all of the above-mentioned challenges to support the process of designing the
reference architecture and have explicit stages for design and documentation methods,
define non-functional requirements, select appropriate views and choose appropriate
evaluation strategies.

Avgeriou [3] suggests representing a reference architecture using multiple view-
points of Rational Unified Process (RUP) including logical viewpoint, deployment
viewpoint, implementation viewpoint and data viewpoint. Avgeriou has emphasized
that the reference architecture should be evaluated using both scenario-based and
architecture prototype-based evaluation with respect to development-time and run-
time qualities [3]. Nakagawa et al. [27] have proposed the use of ontologies to identi-
fy different components of the reference architecture. Fernandez et al. [28] have de-
scribed the key documentation elements of a software reference architecture. The
documentation elements include technical design, architecture knowledge and experi-
ences and management documentation. For TSPACE SRA, we have described the
details about the technical design and architecture knowledge. However, the man-
agement of the documentation (during applications of the software reference architec-
ture in different setting) is out of the scope of this work.

5 Discussion and Conclusions

The cloud-enabled tools not only need to be compliant with specific quality require-
ments but also need to provide support for different activities, just like desktop-based
tools. Whilst tools in every domain have their specific challenges, there are some
generic characteristics that tools in every domain need to address. We share our expe-
rience from different activities of designing the TSPACE SRA.

Adoption of Appropriate Methodology to Formalize relations among TSPACE
Elements: To establish relationship among the artifacts that are maintained by cloud-
based tools with other tools is a critical characteristic and can play a significant role in
cloud-based tools adoption. Hence, it is important to identify the integration needs for
the tools to be provisioned from a cloud-enabled workspace. Our experience has
shown that an ontology driven semantic model can provide support for tools selection,
relating different artifacts with each other even though the artifacts are maintained by

using different proprietary data structures, and awareness needs in a cloud based
workspace. As different tools have different requirements for integration, there is a
need to have appropriate semantic integration models corresponding to the artifacts’
formats used by the tools.

Incorporating Workflows with Tools Provisioning: In some cases, the tools that
are provisioned as part of a tools suite need to exchange information according to
project specific development processes (e.g., to manage collaboration in distributed
architecture evaluation processes [29]). In such cases, the integration support for the
tools needs to be complemented by a workflow based process on the cloud so that
artifacts among the tools can be exchanged according to the specific software devel-
opment processes.

Quality of Individual Tools in TSPACE: In our proposed TSPACE SRAs, we
have considered each of the provisioned tools as a black box and have not considered
the management of quality characteristics of each individually provisioned tool during
the lifecycle of a TSPACE instance. However, for certain tools that produce executable
artifacts, e.g. model driven tools used to generate code, may require extra computing,
memory or other resources during their life cycle depending on the tasks to be execut-
ed. In such cases, a TSPACE for the tools needs to incorporate the metrics and corre-
sponding prediction models so that additional resource needs can be predicted and
resources can be acquired according to the needs of a specific task.

Impact of software reference models: Availability of standardization models for
respective domain impact the reference architecture design process. Whist designing
TSPACE software reference architecture for software architecting domain, we have
leveraged IEEE 1471-2000 [20] and ISO/IEC/IEEE 42010:2011 [21] architecture doc-
umentation models as a baseline for the identification of the TSPACE architecture
elements and the TSPACE ontology meta-model design. The meta-model has been
further enhanced by analyzing architecting TSPACE requirements. The incorporation
of standardized domain model in the reference architecture design ensures the applica-
bility of reference architecture for broader range of tools. Unavailability of the stand-
ardization models for the respective domain or not using them during the reference
architecture design can negatively impact the applicability of a reference architecture.

Selection of Appropriate underlying IaaS Clouds and Cloud Deployment Models:
As tools in a TSPACE SRA are considered as black box, the tenant specific constrains
on artifacts’ storage location are applied onto the tools that are provisioned on the loca-
tion that is compliant with the constraints (in our prototype implementation, we have
used Amazon EC2 location specific provisioning features). However, for more com-
plex use cases, where location constraints on the artifacts can change during their
lifecycle, Virtual Machines (VMs) hosting the tools might need to be migrated from
one location to another. In such cases, the capability of underlying IaaS to support
VMs migration would play a critical role. Hence, IaaS cloud selection and selection of
cloud deployment model (e.g., public, private or hybrid) should be carefully made. A
cloud environment that supports the desired features should be selected.

Multi-facet approach for TSPACE SRA Evaluation: Considering a generic nature
of TSPACE SRA and a broad range of potential stakeholders, multiple architecture
evaluation techniques need to be adopted for evaluating a reference architecture from
different perspectives. We have evaluated the TSPACE software reference architecture
using scenario-based evaluation approaches [18], architecture tradeoff analysis method
[17] and a prototype implementation of the reference architecture. Scenario-based
evaluation approaches can help evaluate completeness of a SRA with respect to refer-

ence architecture objectives and requirements. Architecture tradeoff analysis method
enables the identification of strong and week points of a SRA. A prototype is a viable
way to demonstrate the feasibility of a SRA. The proposed TSPACE SRA evaluation
methodology facilitates the quality score of not only the SRAs but also their concrete
representations. For example, if a concrete implementation of the SRA corresponding
to evaluation tree presented in Fig. 4 adopts different parts of the design decisions and
corresponding components for different tenants, the quality of the instantiated architec-
ture and corresponding system can be computed on the fly, especially for SaaS based
systems.

In future, we intend to apply RADeF on software reference architecture design and
analysis of other types of cloud-based systems. We also intend to carry out empirical
evaluations on our proposed quantification mechanism for SRA evaluation utility tree
to analyze its impact on long-term management of the software reference architec-
tures.

References

1. Angelov, S., J. Trienekens, and R. Kusters, Software reference architectures-exploring their usage and

design in practice, in Software Architecture. 2013, Springer. p. 17-24.
2. Angelov, S., P. Grefen, and D. Greefhorst, A framework for analysis and design of software reference

architectures. Information and Software Technology, 2012. 54(4): p. 417-431.
3. Avgeriou, P., Describing, instantiating and evaluating a reference architecture: A case study.

Enterprise Architect Journal, 2003: p. 24.
4. Kruchten, P.B., The 4+1 View Model of architecture. Software, IEEE, 1995. 12(6): p. 42-50.
5. Buschmann, F., et al., Pattern-oriented software architecture: a system of patterns. 1996: John Wiley

& Sons, Inc. 457.
6. Chauhan, M.A., M. Ali Babar, and Q.Z. Sheng, A Reference Architecture for a Cloud-Based Tools as a

Service Workspace, in 2015 IEEE Conference on Service Computing (SCC). 2015, IEEE: New York,
USA.

7. Angelov, S., J.J. Trienekens, and P. Grefen, Towards a method for the evaluation of reference
architectures: Experiences from a case, in Software Architecture. 2008, Springer. p. 225-240.

8. Dourish, P. and V. Bellotti, Awareness and coordination in shared workspaces, in Proceedings of the
1992 ACM conference on Computer-supported cooperative work. 1992, ACM: Toronto, Ontario,
Canada. p. 107-114.

9. Sodhi, B. and T.V. Prabhakar, Application architecture considerations for cloud platforms, in 2011
Third International Conference on Communication Systems and Networks (COMSNETS). 2011, IEEE.
p. 1-4.

10. Domingo, E.J., et al., CLOUDIO: A Cloud Computing-Oriented Multi-tenant Architecture for Business
Information Systems, in 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD).
2010, IEEE. p. 532-533.

11. Calheiros, R.N., et al., The Aneka platform and QoS-driven resource provisioning for elastic
applications on hybrid Clouds. Future Generation Computer Systems, 2012. 28(6): p. 861-870.

12. Han, R., et al., Enabling cost-aware and adaptive elasticity of multi-tier cloud applications. Future
Generation Computer Systems, 2014. 32: p. 82-98.

13. Brandic, I., D. Music, and S. Dustdar, Service mediation and negotiation bootstrapping as first
achievements towards self-adaptable grid and cloud services, in Proceedings of the 6th international

conference industry session on Grids meets autonomic computing. 2009, ACM: Barcelona, Spain. p.
1‚Äì8.

14. Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice. 2012: Addison-Wesley
Professional. 640.

15. Avgeriou, P. and U. Zdun, Architectural patterns revisited–a pattern. 2005.
16. Angelov, S. and P. Grefen, An e-contracting reference architecture. Journal of Systems and Software,

2008. 81(11): p. 1816-1844.
17. Kazman, R., et al. The architecture tradeoff analysis method. in Engineering of Complex Computer

Systems, 1998. ICECCS '98. Proceedings. Fourth IEEE International Conference on. 1998.
18. Kazman, R., et al. SAAM: a method for analyzing the properties of software architectures. in Software

Engineering, 1994. Proceedings. ICSE-16., 16th International Conference on. 1994.
19. Kordy, B., et al., Attack–defense trees. Journal of Logic and Computation, 2012: p. exs029.
20. IEEE Recommended Practice for Architectural Description of Software-Intensive Systems. IEEE Std

1471-2000, 2000: p. i-23.
21. ISO/IEC/IEEE Systems and software engineering -- Architecture description. ISO/IEC/IEEE

42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), 2011: p. 1-46.
22. Chauhan, M.A., Foundations for Tools as a Service Workspace: A Reference Architecture. PhD

Dissertation, IT University of Copenhagen, Denmark, 2016(ITU-DS; No. 118).
23. Chauhan, M.A. and M.A. Babar, PTaaS: Platform for Providing Software Developing Applications

and Tools as a Service. Technical Report TR-2014-176, 2014, URI:
https://pure.itu.dk/ws/files/74130379/TR_2014_176.pdf.

24. Azeez, A., et al., Multi-tenant SOA Middleware for Cloud Computing, in 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD). 2010, IEEE. p. 458-465.

25. Huhns, M.N. and M.P. Singh, Service-oriented computing: Key concepts and principles. Internet
Computing, IEEE, 2005. 9(1): p. 75-81.

26. Fielding, R.T., Architectural styles and the design of network-based software architectures. 2000,
University of California, Irvine. p. 162.

27. Nakagawa, E.Y., E.F. Barbosa, and J.C. Maldonado. Exploring ontologies to support the establishment
of reference architectures: An example on software testing. in Software Architecture, 2009 &
European Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference on. 2009. IEEE.

28. Martínez-Fernández, S., et al. Artifacts of software reference architectures: a case study. in
Proceedings of the 18th International Conference on Evaluation and Assessment in Software
Engineering. 2014. ACM.

29. Ali Babar, M., A framework for groupware-supported software architecture evaluation process in
global software development. Journal of Software: Evolution and Process, 2012. 24(2): p. 207-229.

