
Bit-Vector Search Filtering with Application
to a Kanji Dictionary

Matthew Skala

IT University of Copenhagen, Copenhagen, Denmark
mskala@ansuz.sooke.bc.ca

Abstract. Database query problems can be categorized by the expres-
siveness of their query languages, and data structure bounds are better
for less expressive languages. Highly expressive languages, such as those
permitting Boolean operations, lead to difficult query problems with
poor bounds, and high dimensionality in geometric problems also causes
their query languages to become expressive and inefficient. The IDSgrep
kanji dictionary software approaches a highly expressive tree-matching
query problem with a filtering technique set in 128-bit Hamming space.
It can be a model for other highly expressive query languages. We suggest
improvements to bit vector filtering of general applicability, and evaluate
them in the context of IDSgrep.

1 Introduction

Many data structure problems of interest are specializations of the following
general database query problem.

Problem 1. Given a universe U , preprocess a database S ⊆ U into a data struc-
ture, to efficiently answer queries of the form “Find Q ∩ S for a given query Q.”
The database will be given by explicitly listing its n elements, but the query
Q will be specified in some much more concise query language, which will not
necessarily permit all arbitrarily-chosen subsets of U to be queries.

For example, in one kind of similarity search the query is described by a single
element q ∈ U ; the set Q to be intersected with S is then all elements “similar”
to q, for some definition of similarity. In the present work, we are interested in
database queries for which each element of S is or is not part of the query result
independently—excluding such things as nearest neighbour queries, where the
presence of one element in the database can affect whether some other element
should or should not be returned.

The range of different query sets Q, determined by the expressive power of
the query language, affects how this problem can be solved. A query language
with very little expressive power, for instance consisting only of intervals of
permitted values in a single numeric attribute, permits the use of tree-based data
structures with typical O(log n) query time. An even less expressive language,
such as one expressing only singleton sets (thus, membership queries) would

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/81666573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be naturally solved using hash tables for constant query time. But when Q is
specified using an advanced query language, loosely defined as one with great
expressive power, it becomes more difficult to apply data structure techniques,
and the data structures give less useful guarantees.

The naive solution to Problem 1 for an advanced query language would exam-
ine every element of S in Ω(n) time. Similarity queries of a linear-space data
structure based on distance in a metric space also quickly approach Ω(n) num-
ber of elements examined when the dimensionality is large [5]; and because some
problems arising from similarity search become NP-hard in arbitrary dimen-
sion [21,26], and others have disappointingly large polynomial lower bounds
associated with complexity-theoretic reductions from hard problems [28], there
appears to be a connection between expressiveness of query languages and the
dimensionality of the data. The language of high-dimensional near-neighbour
queries is expressive enough to ask hard questions.

We are interested in query languages that embed Boolean operators: where
the ability to specify query sets Q1 and Q2 implies also being able to specify
Q1 ∩ Q2 (AND), Q1 ∪ Q2 (OR), and U\Q1 (NOT). Including such operators
makes the language sufficiently expressive that it may be hard to beat the naive
solution; and performance suffers even further if a complicated query language
makes testing an element against the query an expensive operation in itself.

The present work describes and experimentally tests some techniques for
speeding up general database query with expressive query languages, when bit-
vector filtering is already in use. The hope is to reduce the constant in the Ω(n)
by not examining every element in the database individually; and to possibly get
better than Ω(n) performance on easy queries while still supporting hard queries
on the same data structure. Our approach builds upon a bit-vector filtering
method described previously [23] and implemented in a mature free-software
project. We have a specific application originating in computational linguistics,
but the techniques studied here are intended for general use.

1.1 About the Application

The Tsukurimashou Project [22] develops parametric fonts for Japanese-
language typesetting, and associated software tools. IDSgrep is one of these
tools: a search utility for Han character dictionaries [23].

The term Han script refers generically to a set of tens or hundreds of thou-
sands of characters used in varying forms to write text in East Asian languages.
Use of Han script is current in Chinese and Japanese. Korean is now written
primarily in an alphabetic script with limited use of Han characters. Vietnamese
is written in Latin script today, but it was historically written with Han char-
acters, and specifically Vietnamese forms for Han characters are standardized
in Unicode. The present work focuses on kanji, the Japanese form. One feature
of Han script is that characters can be analysed as hierarchical combinations
of elements that may be shared with other characters, or may be characters in
themselves, as shown in Fig. 1.

Fig. 1. A dictionary entry for the character meaning “language” [23].

Font developers, language learners, and computational linguists each have
reasons to query databases of these trees with Boolean criteria, as in “Find all
characters that contain on the left, and anywhere, but not .”

The details of the IDSgrep data model and query language are not new
here and not relevant to the algorithmic considerations of the present paper,
which treats the matching function as a black box. They are covered in earlier
work [22,23] in much greater detail than is possible in this space or appropriate to
the present work. But to summarize for interested readers: the structure of each
character is represented by an EIDS tree (“Extended Ideographic Description
Sequence,” an extension of Unicode’s IDS concept [27]), like the one illustrated
in Fig. 1. Each node of the tree is labelled with a functor describing the relation
among its children, such as for one above the other, and optionally a head
such as naming the character represented by that subtree. Not all subtrees
of characters are characters in themselves, so not all nodes have heads. Queries
are also trees in the same format, entered using a simple prefix syntax.

The basic matching rule is that if a query and a dictionary entry both have
heads, then they match if and only if the heads are identical; if they do not
both have heads, then they match if their functors and all their children match,
recursively. But there are also special matching operators invoked by special
functors in the query. For instance, ? is a match-everything wildcard, allowing
the query to match any dictionary entry for a character with a top and
bottom part in which the bottom matches . Special operators include match-
everything; Boolean AND, OR, and NOT; match any subtree; an associative
match which rearranges trees along the lines of the associative law in arithmetic;
and a few others intended for special purposes. Evaluating the full matching
function between one query and one dictionary entry is a relatively expensive
operation (worst-case cubic in the size of the tree and the query, excluding certain
matching operators that invoke third-party software with no time guarantees);
and a naive implementation of search would do this evaluation on all of the O(n)
trees in the database.

To support filtering search, IDSgrep calculates a bit vector for each EIDS
tree, as shown in Fig. 2. Bit vectors, like EIDS trees, are treated as opaque by
the search algorithm, but internally each one is the concatenation of four 32-bit

Fig. 2. Calculating a bit vector [23].

words which are Bloom filters of the tree’s node labels. The first word, denoted
v1 in the figure, encodes the root of the tree. The functor and arity (it is
a binary node) are hashed to select bits 11, 19, and 32; the head selects
bits 1, 15, and 28. Similarly, the left child of the root determines v2, the right
determines v3, and all other nodes select bits in v4. Conditions on trees expressed
in the query language, such as “must contain this label anywhere in the tree”
imply conditions on the bit vectors, such as “at least three bits in this subset of
the indices, must be set”; and the division into words allows computing the bit
vector for a tree given its root labels and the vectors of the root’s children.

1.2 Related Work

Bloom filtering [3] is well known. Guo et al. [9] describe the technique, also
well known, of combining Bloom filters with Boolean AND and OR to per-
form the same operations on the sets the filters approximate. Our tree-matching
problems are connected with unification in logic programming languages such
as Prolog [4], and Aı̈t-Kaci et al. [1] introduced bit vectors as a way to solve
unification problems.

Advanced query languages for trees often take the form of modifications
to the language of regular expressions. Polách describes such pattern matching
in general abstract terms [18], and there is much work on regular expression-
like tree matching specific to computational linguistics applications [7,14,15].
Some of our own work [24,25] applies bit vectors to unification in computational
linguistics. Kaneta et al. [11] use them for another tree-matching problem. These
references are described in more detail, with others related to kanji dictionaries
and the linguistics application of IDSgrep, in our earlier IDSgrep paper [23].

The difficulty of high-dimensional queries has become known as the curse
of dimensionality : exact query problems in high-dimensional spaces, across a

wide range of different kinds of problems, have a strong tendency toward costs
in time, space, or both that are exponential in the dimension. Approximation
techniques have become standard in efforts to achieve practical results for high
dimensions [10]. Theoretical work like that of Williams [28] links the difficulty of
similarity search to the Strong Exponential Time Hypothesis, essentially saying
that (for exact queries, in the worst case), we cannot do better than looking
at Ω(n) points without proving unexpected deep results in complexity the-
ory. Query languages that include Boolean logic have obvious direct applica-
tion to satisfiability-type NP-hard problems, and work like that of Frances and
Litman [8] and our own [21,26] links similarity-based queries to NP-hardness.
Since advanced query languages seem doomed to hardness when the dimension
is high enough, there is interest in at least measuring dimensionality of real data
to detect when that phenomenon occurs [17,20].

The Binary Decision Diagram (BDD) is an interesting data structure in its
own right, used here as a black box. Knuth describes its workings in detail [13].
IDSgrep’s implementation uses the BuDDy library, due to Lind-Nielsen [16].

1.3 Notation

Although the software manipulates bit vectors as constant-sized objects using
CPU bitwise instructions, we write them as if they were sets (implicitly, the sets
of indices containing 1 bits) as a notational convenience. Thus, for bit vectors
u and v, we write u ∩ v for the bitwise AND of u and v; u ∪ v for the bitwise
OR; and u ⊆ v for the statement that v contains a 1 bit at every index where
u contains a 1 bit. We also write |u| for the Hamming weight (or population
count) of u, which is the number of 1 bits.

2 Bit-Vector Search with Enhancements

IDSgrep [23] performs a general database query (Problem 1) on opaque objects
representing kanji dictionary entries and queries against them. Both happen
to be EIDS trees as mentioned earlier, but the data structure is deliberately
abstracted from the query algorithm. From the search algorithm’s point of view,
there is simply a database of arbitrary objects and a relatively expensive function
match(N,H) which returns a Boolean value true if and only if N (the needle,
an EIDS tree representing the query) is considered to match H (the haystack,
an object from the database). With only that abstract interface, nothing better
than linear search would possible.

However, the underlying query language also provides bit vectors for the
database objects, and filtering functions from the bit vectors to Boolean results,
guaranteed to return true for all vectors of objects that match the query. A more
efficient, but still linear, search can evaluate the filter functions first, and only
invoke match(N,H) when all filters return true. The bit vectors and filtering
functions remain opaque, abstracted from the search algorithm.

The first layer of filtering uses a lambda filter, which is a pair (m,λ) consisting
of a bit vector m and an integer λ, considered to match a dictionary entry’s
vector v if |m ∩ v| > λ. Note that setting λ = −1 would match everything,
giving a correct but unhelpful filter; the filter generator heuristically attempts
to maximize λ and minimize m, while maintaining correctness.

The second layer of filtering uses a binary decision diagram directly encoding
a monotonic function from bit vectors to Boolean truth values, again attempting
to heuristically make that function return true as rarely as possible while still
including all vectors of matching EIDS trees. This BDD filter is evaluated only
if the lambda filter matches; then only if the BDD filter also matches does
IDSgrep proceed to evaluating the exact EIDS matching function. As described
in previous work, use of these filtering layers results in a significant improvement
in query time on real-life data [23].

The new issue we address in the present work is that although the filtering
can avoid many invocations of match(N,H), the lambda filter at least is still
tested for every entry in the database; and so there is a Ω(n) lower bound on
all queries, though with an improved constant because of the filtering. How can
the search algorithm on these opaque objects avoid looking at every entry?

2.1 Blocks with Bounds

Suppose the index file is divided into blocks and we record some information
about each block summarizing logical statements that apply to all vectors in the
block. If, based on that information, we can infer that no vector in a block could
possibly match the query, then we can skip over examining the entire block. If
the number of blocks is asymptotically smaller than the number of entries in the
database, and we end up accepting (not skipping) less than a constant fraction
of them, then the query time can break the Ω(n) barrier.

Bearing in mind the monotonic nature of the filtering layers, which implies
that only 0 bits in a vector are really useful for excluding entries, we would like
the summary to give maximal information about the 0 bits of the vectors in the
block. We choose to store containment and cardinality bounds: for each block,
a bit vector b and integer μ such that for every vector v in the block, v ⊆ b and
|v| ≤ μ. The optimal values are b equal to the OR of all vectors in the block
and μ equal to the greatest Hamming weight. Note the similarity in structure
between these bounds and the lambda filtering function.

Given bounds (b, μ) for a block and a lambda filter (m,λ), if min{|b ∩ m|, μ} ≤
λ then it is impossible for any vector in the block to match the filter, and we
can skip the entire block. Similarly, we can detect cases where an entire block
fails to match a BDD filter, by a traversal of the BDD.

We report experimental results for a range of block sizes up to putting the
entire database in a single block. Doing that is equivalent to not using blocks
at all, except in the rare case of a match-nothing query that can be proven to
match nothing from the whole-database containment and cardinality bounds.

2.2 Sorting

Since in our application the order of entries in the database is not significant,
we can use that order to enhance search. In particular, it would cost very little
to sort the index into lexicographically increasing order. If we are also splitting
the index into blocks, we can sort within each block.

Given a lambda or BDD filter, we can easily compute the lexicographic range
of vectors it could match, and then at query time, start with a binary search to
find the first vector in the index or block that is within the range. Unfortunately,
since both filters are monotonic, the all-ones vector will be matched by every
filter that matches anything, and so only the lower end of the range usefully
limits the search, and this improvement can only improve the constant in the
search time. Nonetheless, it seems an inexpensive way to remove a few more
filter checks from the search.

We compute the lexicographic bounds just once per query. In principle, a
more detailed calculation could find lexicographic bounds on the vectors that
match the query and that also obey the containment and cardinality bounds of
a block, and this way we could usefully generate a lexicographic upper as well
as a lower bound. But such a calculation would be more expensive in itself and
would have to be repeated for every block instead of being done once per query.
It seems unlikely to give much benefit in practice over the other ways we are
already applying the containment and cardinality bounds. We leave testing that
for future work.

Sorting the index data by bit vector implies that our eventual access to the
dictionary file will be in randomized order, and random seeking could signifi-
cantly increase the overall cost of the search when the dictionary file is stored
on disk. To avoid this issue, when sorting the index we also generate a sorted
dictionary with the entries arranged in the same order as the index; then accesses
to dictionary entries during search will at least be sequential, if not consecutive.

2.3 Clustering

It ought to be the case that vectors in the same block are similar to each other,
for some definition of similarity. Then queries are more likely to match either
none or many of the vectors in the block, maximizing the chance that we can
exclude the block on the basis of its summary information. If we must keep
vectors in their original database order then we are stuck with making blocks
be consecutive intervals of that order; but if we are sorting the index anyway, it
makes sense to do clustering first and make the blocks correspond to clusters.
Even the sorting itself, followed by making blocks out of consecutive entries,
might be expected to provide some clustering benefit because similar vectors
might tend to appear near each other in lexicographic order.

Noting the way the containment bound works as a bitwise OR of the vec-
tors in the block, it seems the worst situation is when we include a vector in a
large block that has a 1 at an index where all others in the block are 0. Then

just because of including that vector, we have an additional 1 in the contain-
ment bound and fewer chances to skip all the other vectors in the block. We
tested a variant of k-means clustering using a special similarity measurement
that captures the idea of avoiding such situations.

Suppose, during clustering, we are considering moving a vector v into a cluster
Ci, which is a multiset of vectors. If v is already assigned to Ci, let C ′

i be the
cluster with (one instance of) v removed; otherwise C ′

i = Ci. Then we compute:

fit(v, C ′
i) =

1
|C ′

i| + 1

[
min
vj=1

|{w ∈ C ′
i|wj = 1}| +

{
1 if v was assigned to Ci,

0 otherwise.

]

This says that how well a vector fits in a cluster is basically the fraction of
other vectors in the cluster that share its least popular attribute; a vector will fit
well in a cluster where all its 1 bits are already included in the cluster’s bound as
a result of many other vectors. The special handling for the case of v “already”
assigned to Ci appears to be necessary for reliable termination; other variations
we tried would loop indefinitely on some inputs. For similar reasons, we limited
cluster size to at most twice the initial block size. Any cluster currently at the
maximum size limit will not be considered as a possible destination for moving
a vector during the optimization. That counteracted an observed tendency for
the algorithm to put most of the database in a single huge cluster.

The clustering algorithm starts by assigning consecutive blocks of vectors
from the index to be clusters (in input order if unsorted, or sorted order if we
are sorting) and then iteratively attempts to move every vector to the cluster
that maximizes its value of fit(v, C ′

i), until no more such moves are possible. If
using sorted indices, we sort within the clusters again after finding them.

3 Experimental Results

We extended the current version of IDSgrep to use the techniques described in
the previous section, creating a special version for these experiments designated
version 0.5.2, and we evaluated it using the same data, test queries, and hardware
and operating system configurations used in our earlier work [23]. The test data-
base contains 217,288 entries for decompositions of Han characters especially
concentrating on Japanese kanji, gathered from the CJKVI [12], CHISE-IDS [6],
KanjiVG [2], and Tsukurimashou [19] projects. There are 1,642 test queries, rep-
resenting a spectrum of complexity and result set size from single exact-match
character queries to more complicated Boolean operations. Speed testing was
performed on a MacBook Pro equipped with a 2.3 GHz Intel iCore i7 CPU and
8 G of RAM, running Mac OS X 10.9.5. A package of our code and data is avail-
able to assist in reproducing the results, and includes the experimental results
that were omitted here for space reasons.

The test query set from our earlier work [23] was designed to demonstrate
the dictionary application, and includes many queries for which lambda and
BDD filtering are ineffective. Those queries also tend to be relatively slow in

other parts of the software; as a result, they dominate the total real running
time for the test set taken as a whole when filtering is applied, and they make
time measurements specific to filtering difficult. To better measure the filtering-
specific techniques in the present paper, we separated out 512 “slow” queries,
which are those with associative-match or match-anywhere operators at the root,
or consisting solely of Boolean combinations of such queries. Such queries are
easily recognized by testing that definition, and their important feature is that
they generate filter functions which match nearly everything, so filtering search
has little effect. The remaining 1,130 queries, where filtering search is expected
to be of more use, are designated “fast.” We tested each power of two block size
from 4 to 262,144; that last, being larger than the database, effectively means
no blocking at all.

Running the 1,130 queries in the fast query test set on the database of 217,288
entries means doing, or avoiding, a total of 1,130× 217,288= 245,535,440 tests
of whether a query matches a database entry. Each test either results in the
entry being discarded at some level of processing, or in a final match which
returns a result. Figure 3 shows how frequently these outcomes occurred in our
experiments, for selected choices of parameters. The categories shown in each
stacked column represent increasingly expensive outcomes. A match may be
discarded by skipping a block; by binary search (only for sorted indices); by
the lambda filter; by the BDD filter; or it may be a BDD hit, which is true
of 894,341 tests (0.36 %) for all parameter settings. Of those BDD hits, 29,606
will match in the final tree test, but that is too small a proportion (0.012 %)
to usefully depict on the chart. Results shown in this figure are the same for
all trials of each parameter set because the query algorithm is deterministic. A
similar chart for the 512 slow queries is shown in Fig. 4. Here also, the final tree
matches (137,415, or 0.12 % of 512 × 217,288= 111,251,456 tests) form too small
a proportion to be visible on the chart.

The running times for the fast and slow query test sets are shown in Figs. 5
and 6 respectively. Note these figures use logarithmic scales. The quantities plot-
ted are sample means of user CPU seconds per loop as measured by IDSgrep’s
built-in statistics feature, with error bars representing intervals of ±2 sample
standard deviations, on 20 trials of each combination of parameter settings.

4 Discussion and Conclusions

The outcome counts of Fig. 3 show that the new approach of excluding blocks
based on their containment and cardinality bounds allows the query to exclude
a significant fraction of more expensive filter checks, for the queries in the “fast”
set where filtering is effective. Without sorting or clustering, this effect is only
significant at the smallest block sizes, but with sorting, clustering, or both, we
can exclude many blocks even at block sizes up to thousands of vectors. For
sorted indices, the lexicographic lower bound allows excluding a few more vec-
tors, up to about 10 % on the largest block sizes.

However, these techniques have very little effect on the “slow” queries shown
in Fig. 4. We are only excluding blocks at all at the smallest block sizes, we

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

no sorting or clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting

block skip
binary search
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting and clustering

block skip
binary search
lambda misses
BDD misses
BDD hits

Fig. 3. Outcomes of testing dictionary entries against fast queries. Vertical axis: pro-
portion in percent; horizontal: entries per block, 1K = 1,024.

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

no sorting or clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting

block skip
binary search
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting and clustering

block skip
binary search
lambda misses
BDD misses
BDD hits

Fig. 4. Outcomes of testing dictionary entries against slow queries. Vertical axis: pro-
portion in percent; horizontal: entries per block, 1K = 1,024.

 7

 8

 9
 10

 12

 15

 20

4K 16K 64K 256K 4 16 64 256 1024

qu
er

y
tim

e
(s

ec
on

ds
 p

er
 lo

op
 o

f 1
13

0)

block size (entries)

no sorting or clustering
clustering

sorting
sorting and clustering

Fig. 5. Running times for fast queries.

 95

 100

 105

 110

 115

 120

 125

4K 16K 64K 256K 4 16 64 256 1024

qu
er

y
tim

e
(s

ec
on

ds
 p

er
 lo

op
 o

f 5
12

)

block size (entries)

no sorting or clustering
clustering

sorting
sorting and clustering

Fig. 6. Running times for slow queries.

are excluding very few blocks, and somewhat oddly, the clusters found without
sorting first perform noticeably better than any other choice of options. These
effects highlight the different nature of the “slow” queries: they are queries for
which almost all vectors are lambda filter hits, and about a quarter of vectors
are also BDD filter hits. Trimming the time consumption of filter misses makes
very little difference to the bottom line performance.

To some extent we can say that IDSgrep is a victim of its own success. The
plain Ω(n) search algorithm with lambda and BDD filtering is already so good,
and in particular has such small constants for the filtering step, that it already
shifts much of the running time away from filtering and into the final tree tests
and ancillary tasks like parsing the file formats. For that reason, we should
not expect to see the trends shown in Figs. 3 and 4 to be reflected strongly in
the overall times of Figs. 5 and 6. The outcome counts measure only filtering,
whereas the overall times also include parsing and tree matches, which do not
vary between the experimental treatments.

The results suggest two directions for future work. First, more advanced vari-
ations of bit vector query are best targeted to larger data sets, and applications
beyond kanji dictionaries; future work on bit vector queries in general might
better use other applications for testing. Skipping blocks, even if it saves little
time for IDSgrep, can reasonably be expected to help more when failing to skip
blocks is more expensive, as in a very large database or one with an even more
expensive query language than ours. It would be interesting to apply these tech-
niques to advanced query languages on other, much larger, data collections—for
instance, document databases with bits encoding keyword presence and Boolean
queries over those, or image local-descriptor databases with very expensive sim-
ilarity measurements. The smaller the result set in comparison to the overall
database, the more we can realistically expect bit vector filtering to help.

Second, it may be appropriate to change the underlying bit vector and fil-
ter definitions in the specific application of kanji dictionaries. We are getting
good filtering on some queries, but not on others, with 128-bit vectors; and the
specific design and parameters of how EIDS trees generate bit vectors have not
been changed or studied systematically since IDSgrep first introduced bit vector
filtering. It would not cost much more time or space to switch to 256-bit vec-
tors; could that bring more of the “slow” queries into the “fast” group? Can the
definition of “slow” queries inform future bit vector designs that could exclude
more entries and benefit more from the present work?

The difficulty appears to come from the associative and match-anywhere
operators, which notably are not Boolean operators of the kind most likely to
give hardness reductions. Maybe a redesigned bit vector definition specifically
targeting those operators could move more queries into the “fast” class. In par-
ticular, the associative match operator currently generates a match-everything
filter, but might be enhanced to generate a more restrictive filter. The match-
anywhere operator in a query reduces to a Boolean OR of several other queries,
naturally hitting many vectors, and an improved vector design might add some
bits specifically to serve this operator better.

Requiring bit vector filters to be monotonic was an important technical aspect
of the IDSgrep design. It made the difference between the feasibility and infeasi-
bility of using BDDs. However, it limits the benefit of our new sorting technique,
because monotonicity means we can only compute a useful lexicographic lower
bound. The upper bound is always the all-ones vector. If we could make non-
monotonic filters work with the rest of the system, it might help toward the
goal of better than linear query time for easy queries. In particular, if a query
matching only one entry could also match only one vector then we could expect
the binary search to find that one vector after only O(log n) steps.

It is natural to extend the single-level blocking done here to a recursive tree-
like structure, with a constant number (rather than constant size) of blocks each
divided into smaller blocks, through as many levels as needed. A recursive data
structure would lend itself to proving sublinear bounds for queries where that
may be possible, while still degrading gracefully to linear time on harder queries
where the lower bounds forbid anything better.

To conclude, we have proposed new techniques for filtering bit vector search,
and tested them in the specific application of a kanji dictionary. The new tech-
niques are experimentally shown to allow skipping a significant fraction of more
expensive vector tests on some kinds of queries, but they cost enough to be
of limited use for small databases or for queries where bit vectors are already
failing. We have described technical issues relevant to our implementation. We
have discussed these results and their implications both for bit vector query in
general and the kanji dictionary application in particular.

References

1. Aı̈t-Kaci, H., Boyer, R.S., Lincoln, P., Nasr, R.: Efficient implementation of lattice
operations. ACM Trans. Program. Lang. Syst. 11(1), 115–146 (1989)

2. Apel, U.: KanjiVG. http://kanjivg.tagaini.net/
3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13(7), 422–426 (1970)
4. Bramer, M.: Logic Programming with Prolog, 2nd edn. Springer, London (2013)
5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric

spaces. ACM Comput. Surv. 33(3), 273–321 (2001)
6. CHISE project. http://www.chise.org/
7. Choi, Y.S.: Tree pattern expression for extracting information from syntactically

parsed text corpora. Data Min. Knowl. Disc. 22(1–2), 211–231 (2011)
8. Frances, M., Litman, A.: On covering problems of codes. Theor. Comput. Syst.

30(2), 113–119 (1997)
9. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic bloom filters. IEEE

Trans. Knowl. Data Eng. 22(1), 120–133 (2010)
10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing. pp. 604–613. ACM, New York (1998)

11. Kaneta, Y., Arimura, H., Raman, R.: Faster bit-parallel algorithms for unordered
pseudo-tree matching and tree homeomorphism. J. Discrete Algorithms 14, 119–
135 (2012)

http://kanjivg.tagaini.net/
http://www.chise.org/

12. Kawabata, T.: IDS data for CJK unified Ideographs. https://github.com/cjkvi/
cjkvi-ids

13. Knuth, D.E.: The Art of Computer Programming, Pre-fascicle 1B, vol. 4. Addison-
Wesley, Reading (2009)

14. Lai, C., Bird, S.: Querying linguistic trees. J. Logic Lang. Inf. 19(1), 53–73 (2010)
15. Levy, R., Andrew, G.: Tregex and Tsurgeon: tools for querying and manipulating

tree data structures. In: Calzolari, N., Choukri, K., Gangemi, A., Maegaard, B.,
Mariani, J., Odijk, J., Tapias, D. (eds.) 5th International Conference on Language
Resources and Evaluation (LREC 2006), Genoa, Italy, 22–28 May 2006

16. Lind-Nielsen, J.: BuDDy: a BDD package. http://buddy.sourceforge.net/manual/
main.html

17. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press,
Cambridge (2002)

18. Polách, R.: Tree pattern matching and tree expressions. Master’s thesis, Czech
Technical University in Prague (2011)

19. Skala, M.: Tsukurimashou font family and IDSgrep. http://tsukurimashou.osdn.
jp/

20. Skala, M.: Measuring the difficulty of distance-based indexing. In: Consens, M.,
Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 103–114. Springer, Heidelberg
(2005). doi:10.1007/11575832 12

21. Skala, M.: On the complexity of reverse similarity search. In: Chávez, E., Navarro,
G. (eds.) First International Workshop on Similarity Search and Applications
(SISAP 2008), Cancun, Mexico, 11–12 April 2008, pp. 149–156. IEEE (2008)

22. Skala, M.: Tsukurimashou: a Japanese-language font meta-family. TUGboat 34(3),
269–278. In: Proceedings of the 34th Annual Meeting of the TEX Users Group
(TUG 2013), Tokyo, Japan, 23–26 October 2013 (2014)

23. Skala, M.: A structural query system for Han characters. Int. J. Asian Lang.
Process. 23(2), 127–159 (2015)

24. Skala, M., Krakovna, V., Kramár, J., Penn, G.: A generalized-zero-preserving
method for compact encoding of concept lattices. In: 48th Annual Meeting of
the Association for Computational Linguistics (ACL 2010), Uppsala, Sweden, 11–
16 July 2010, pp. 1512–1521. Association for Computational Linguistics (2010).
http://www.aclweb.org/anthology/P10-1153

25. Skala, M., Penn, G.: Approximate bit vectors for fast unification. In: Kanazawa,
M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 2011. LNCS (LNAI), vol. 6878,
pp. 158–173. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23211-4 10

26. Skala, M.A.: Aspects of metric spaces in computation. Ph.D. thesis, University of
Waterloo (2008)

27. Unicode Consortium: Ideographic description characters. In: The Unicode Stan-
dard, Version 6.0.0, Section 12.2. The Unicode Consortium, Mountain View, USA
(2011). http://www.unicode.org/versions/Unicode6.0.0/ch12.pdf

28. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348(2–3), 357–365 (2005)

https://github.com/cjkvi/cjkvi-ids
https://github.com/cjkvi/cjkvi-ids
http://buddy.sourceforge.net/manual/main.html
http://buddy.sourceforge.net/manual/main.html
http://tsukurimashou.osdn.jp/
http://tsukurimashou.osdn.jp/
http://dx.doi.org/10.1007/11575832_12
http://www.aclweb.org/anthology/P10-1153
http://dx.doi.org/10.1007/978-3-642-23211-4_10
http://www.unicode.org/versions/Unicode6.0.0/ch12.pdf

	Bit-Vector Search Filtering with Application to a Kanji Dictionary
	1 Introduction
	1.1 About the Application
	1.2 Related Work
	1.3 Notation

	2 Bit-Vector Search with Enhancements
	2.1 Blocks with Bounds
	2.2 Sorting
	2.3 Clustering

	3 Experimental Results
	4 Discussion and Conclusions
	References

