
Convivial Decay:
Entangled Lifetimes in a Geriatric Infrastructure

Marisa Leavitt Cohn
IT University of Copenhagen

Rued Langgards Vej 7
2300 København S

 marisa@itu.dk

ABSTRACT
This paper discusses the empirical case of an aging and
obsolescent infrastructure supporting a space science
mission that is currently approaching a known end. Such a
case contributes to our understanding of the degrading path
at the end-of-life of an infrastructure. During this later stage
in the life of infrastructure we can observe common issues
associated with aging infrastructures – hardware’s material
decay, programming languages and software tools reaching
end of support, obsolete managerial methodologies, etc.
Such a case of infrastructural decay reveals how work of
infrastructure maintenance may reach the limits of repair
and shift from repair-as-sustaining into a mode of repair-
into-decay, actively working towards the end-of-life. What
this reveals is that, rather than infrastructural decay being a
natural by-product of time’s passing, there is active work
that goes into producing a convivial decay in which the
multiple temporalities of aging and decay are brought into
alignment through negotiation of what aging means, its
impacts on different forms of work, and even what counts
as old and new.

Author Keywords
materiality; temporalities; life cycles; lifetimes; repair;
sustainability; longevity; infrastructure studies; maintenance

ACM Classification Keywords
H5.m Information interfaces and presentation (HCI):
Miscellaneous.

General Terms
Human Factors, Management, Theory.

INTRODUCTION
Recent work in CSCW has turned attention to studies of
technology that go beyond early phases of technology
design and adoption to include “downstream” contexts of
technology repair and maintenance [11–13,17,21,24].

Along with work on departures and abandonment of
technologies [1,10], as well as calls within sustainable HCI
for design approaches that will take disposal into account
[3,19], these works aim to redress a stated bias in the
literature towards accounts of novel technologies in early
stages of adoption. They also align with calls within
infrastructure studies to examine the full “biography of
artifacts” by studying infrastructures longitudinally through
the various stages of their life cycle [15,21].

As Jackson et al point out, this is not an entirely new focus
for CSCW research, which has historically attended to
invisible forms of labor that go into creating and sustaining
technologies, from studies of articulation work [27], to
appropriation [6], to work-arounds [5], and break-downs
[20,29]. What all this work acknowledges is the multiplicity
of working relations to technology that emerge over the
lifetime of a technological object as it shifts from sites of
design and adoption, into repair, reuse, appropriation,
disposal, and abandonment. Given this multiplicity, there is
value in gaining an empirical understanding of cases of
technologies at a variety of stages in the technological life
cycle.

This paper focuses on the stage of life when a technological
infrastructure is nearing its end-of-life. While others have
examined abandoned databases [10] users abandoning
social media technologies [1], and the disposability of
technologies [3] there is yet to be a study of the empirical
case of the end-of-life of an infrastructure. Such a case, I
will argue, not only fleshes out the particular empirics of
this stage of life, but also troubles the assumed
temporalities of technological life cycles.

Based on an empirical study of a degrading space science
mission infrastructure, I find that infrastructural decay,
rather than being a natural by-product of innovation, is
actively negotiated alongside an emerging appreciation for
the relative agedness of different parts of the infrastructure.
This knowledge of agedness emerges through reflection on
sociotechnical change not as rupture, but as drift over the
duration of infrastructure’s multiple lifetimes. Agedness is
not only known, but is actively performed and advocated
for, throughout this negotiation. As infrastructural decay is
negotiated in terms of what should decay and how decay, as
a process, should unfold, a particular form of repair-into-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
CSCW ’16, February 27-March 02, 2016, San Francisco, CA, USA
Copyright is held by the owner/author. Publication rights licensed to ACM.
ACM 978-1-4503-3592-8/16/02 $15.00
DOI: http://dx.doi.org/10.1145.2818048.2819993

1511

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/81666465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

decay emerges which I call convivial decay1. Convivial
decay, I argue, forms a practice of alignment work [14],
translating across multiple lifetimes, while working actively
towards the end.

RELATED WORK
Much research on later stages in the life cycle of technology
focuses on the active work of repairing, maintaining, or
appropriating technology. This work often implicitly
restores to technological practices the privileged status of
design and innovation by revealing design-in-use or design-
in-appropriation [17]. Similarly, ethnographic work on
repair demonstrates the ingenuity and creativity [17] in our
“diverse… capacity for repair: the ability to make broken
and breaking systems work” [13].

This work on repair takes a fundamental epistemological
stance that it takes active work to make “any sociotechnical
arrangement… to work and persist through time” [13].
While I align with this perspective that repair involves
ongoing active work to sustain technology, I also note that
it places emphasis on repair as a form of renewal. As
Graham and Thrift state: “The world is involved in a
continuous dying that can only be fended off by constant
repair and maintenance” [8]. Change and flux are constant
and therefore repair and maintenance are often examined as
sites of ongoing renewal, keeping things going, to “sustain
them for at least a little while longer” [13].

Sims and Henke [25] have suggested a distinction between
repair-as-maintenance (keeping the status quo) and repair-
as-transformation (e.g. retrofitting) (cited in [26]). As Sims
points out, both degradation and obsolescence are forms of
“slippage” between what a system was designed to do and
what it is able to do, either through aging of components
that no longer perform as intended or because of changing
demands, standards, or perceptions of performance [26].
Infrastructural repair in the form of upgrades, updates,
work-arounds, etc. “are thoroughly sociotechnical
activities” in that they “involve restoring both technology
and social order” [26]. Determining both how a system “is”
and what it “ought” to be like are interpretive processes that
call on different kinds of technical and social organizational
expertise [26].

This relates to the notion of “repair” derived from
ethnomethodological studies of “conversational repair” [7]
which have been applied as well to understanding
technology repair-in-use [29]. In this notion of repair, it is
the relationship between what a technological system ought
to do (or is thought to do) and what it does that is repaired.

1 I appreciate one of the reviewers of this work for pointing me to
the work of Ivan Illich who has written about conviviality of
technological tools. While the concept has relevance to this work,
I have drawn primarily on the work of Donna Haraway and her
concept of livable worlds in conceptualizing conviviality.

This can be achieved both through changes to the
technology itself or through changes to expectations.

However, in a case where the end-of-life of a system is
known and impending, there is a shift in thinking about
repair. An infrastructure entering old age and approaching
death may have reached a time beyond repair, where, rather
than fending off death, repair is part of working towards its
end. Rather than a form of repair to fend off death or restore
the status quo, I observed, in the case that follows, a shift
towards repair-into-decay. This involves an acceptance of
decay, through an understanding that emerges that the
infrastructure is not what it used to be: a recognition of a
need to slow down, let go of expectations, and make cuts to
functionality. As in all cases of repair, this repair is still
oriented towards extending the life of the system so that it
does not end prematurely. But there is an increasing
acceptance that repairs are made in an effort to decay
“gracefully” rather than break catastrophically.

What such a case offers, then, is an example of what
Jackson et al has called a “recessionary informatics” –in
which we might imagine a “fundamentally contracting
technological world… [of] breakdown, withdrawal, and
decline” [13] or in which we might attend as much to the
importance of “disconnection and disassembly” as to
“connection and assembly” in our technological worlds [8].
A system approaching the end of its life allows us to
observe this downgrade path, examining repair’s ability to
keep things going, but also the limits of repair.

It is not surprising that there is little research on dying
infrastructures, since we might assume that something that
is coming to an end has little insight to offer about current
or future practice. Yet this assumption is premised on a
progressive account in which dying systems are those that
have ceased to be relevant. It is also an assumption
premised upon a future that moves towards expansion and
greater capability, as has been challenged in [30], where
working with more limited capabilities would have little
value.

This may arise from an implicit orientation within CSCW
towards understanding sociotechnical change as an
evolutionary process. From this perspective, technologies
that decline and go away are those that did not succeed
because they were unsustainable or unfit. This is a view in
which the past is irrelevant, except as a form of historical
narrative to understand how we came to be where we are.
From a computational perspective, we simply outlive and
move beyond forms of computational work that are no
longer relevant (e.g. who wants to read/write in hex
code?!). Obsolescence, degradation, and decay, according
to this view, would be merely a natural by-product of
innovation and time’s passing and would not require
explanation on their own terms.

As this paper will argue, this is far from the case.
Infrastructural decay, as any form of decay, is not simply a

1512

SESSION: MUSEUMS AND PUBLIC SPACES

backdrop against which progress takes place. A dying
system is not simply a forked evolutionary path that has
reached a dead end. The dying of an infrastructure is an
active pursuit and indeed what lives or dies in infrastructure
is always open to negotiation. If there is something we
might deem infrastructural decay it is composed of multiple
lifetimes of different parts of the system – hardware,
software, code, organizational processes, programming
languages, institutions, careers – all of which are entangled
and are aging or obsolescing at different rates.
Infrastructural decay is not a natural or essential process of
falling away, but rather an outcome or achievement made
through active moves and cuts within these entangled
lifetimes. In the case that I describe, what emerges is an
understanding of “convivial” decay in which the relations
across these multiple lifetimes are negotiated so that the
infrastructure can age gracefully.

METHODS
This paper presents findings from nine months’
ethnographic fieldwork examining the work of engineers to
maintain and operate a large-scale, multi-decade
technological infrastructure, built to support a space science
mission (hereafter referred to as the Mission) at a major
laboratory in southern California (hereafter referred to as
the Lab). This infrastructure supports the science and
engineering teams at the Mission in their work to
meaningfully operate and command a spacecraft that is
currently in orbit around Saturn for the purpose of scientific
data collection.

Designed and built in the 1980s and 90s, and launched in
1997, the spacecraft reached Saturn in 2004 and has
conducted scientific data collection across twelve different
scientific instruments. In addition to the spacecraft itself,
which has “on board” software for flight and instrument
operations, the infrastructure includes the “ground system”
comprising software tools for designing and coordinating
science observations and for sending commands to the
spacecraft.

The Mission organization includes scientific teams
distributed across the US and Europe who participate in
selecting, designing, and implementing scientific
observations. The team at the Lab comprises both
disciplinary scientists conducting Saturn science as well as
the engineers who operate and command the spacecraft as a
whole, as well as several of its instruments.

My initial questions that motivated the fieldwork were
focused on how software tools mediate distributed
collaborative work and translation across disciplinary
boundaries. This motivation informed my methods, which
included interviews with engineers working in different
disciplines from navigation, spacecraft operations, science
and mission planning, and software development;
shadowing of work practices; attending formal and ad hoc
meetings; and walk-throughs of software tools.

Data collection included semi-structured interviews with 30
key informants from across different teams at the Mission
(navigation, engineering, science planning, e.g.) as well as
participant observation across these different teams. These
observations included dedicated time (3-4 weeks) with each
team as well as observations that followed a particular work
product (a sequence of science observations) through the
Mission workflow process. I was present for 3-4 days a
week at the organization and sat in on approximately 200
formal and informal meetings.

As I realized the salience of the long-livedness and
agedness of the infrastructure, I began to incorporate
interview methods drawn from oral histories methods to
discover more about how the infrastructure and the
mission’s work had evolved over the years, particularly for
engineers who had spent many years on the mission. I
returned for follow up interviews with key informants,
asking them about their work at the Mission within the
context of their career and how the Mission and its
infrastructure had evolved over the duration of their work
there.

A GERIATRIC INFRASTRUCTURE
At the time of my fieldwork, the Mission was one of the
only outer planet missions in operations at the Lab,
considered a “flagship” mission both in terms of the size of
its distributed scientific community and in terms of budget
and personnel at the Lab. It was also immediately apparent
upon arriving for my fieldwork that the Mission is one of
the oldest on the Lab that is still in operations. It was often
referred to as a “dinosaur” or a “well-oiled machine” –
terms that denoted both frustration and pride about the fact
that the mission has its own way of doing things. The
software team was continually fending off pressure to
upgrade to newer centrally developed Lab-wide systems or
failing in their attempts to do so. Some engineers who have
spent a decade or more on the Mission are accustomed to
computing work that would be difficult to find still
practiced elsewhere, such as manually reading hex code, or
coding in tcl.tk.

The Mission is in fact comprised of several phases each of
which comprised its own mission plan and bid for funding
to NASA. It entered its third phase in 2010 after being
granted a final extension of the mission. It was during the
transition from the middle to final phase of the mission in
2009-2010 that I conducted my fieldwork. The final phase
lasting from 2010-2017, while seven years long, was
approved for a reduced budget and so this transition
involved cuts to funding and personnel (most of whom
moved to other missions at the Lab). This transition to the
final phase came with a decline in resources and personnel,
as NASA expects such a “well-oiled” machine to require
less funding to do what it already does well.

The start of the final phase also meant that the engineers
were beginning to plan for the end. Multiple proposals for

1513

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA

the final phase of the mission were put forth, depending on
the funding received, but all included a “spiral of death” in
the final year of the mission, when the spacecraft would fly
in tighter and tighter orbits, eking out its last drops of its
finite “consumables” such as fuel, to reach a spectacular
finish, flying between the planet and its rings before
plummeting into the planet to burn up in its atmosphere.
This death spiral allows the team to continue science up
until its last moments until either fuel runs out or
communication is lost, imparting little boosts to maintain
the spacecraft’s orbit as long as possible. The final
“naturally decaying” orbit also ensures the proper
“disposal” of the spacecraft - if communication is lost, the
spacecraft will not escape the gravitational pull of Saturn,
but will “go ballistic” and plummet to its death.

During this time, the spacecraft also began to show various
signs of decay. One of its “reaction wheels” was showing
signs of drag; one of its instruments was occasionally
shorting out. And on the software side, there were
programming languages reaching end of support, or
becoming too costly or risky to maintain.

The transition into the final phase thus came with an
increased recognition of the aging of the mission
infrastructure and an emergent appreciation for decline,
loss, and finitude of infrastructural lifetimes. I have adopted
the term “geriatric” to refer to this phase in the life of the
infrastructure because it encapsulates both this recognition
of aging and decline, and the ethic of care that became
increasingly dominant during my fieldwork. Engineers
increasingly worked to manage and negotiate the effects of
aging and decay or what engineers called “lifetime issues” -
bugs or anomalies that arise simply because over such a
long life the unlikely becomes likely or the idiosyncrasies
of long-term use crop up unexpected frictions. Indeed,
engineers spoke of the spacecraft quite often in terms you
might use for an elderly loved one, and at times felt a
sympathetic connection to its aging.

The recognition of the infrastructure’s agedness did not
come all at once, but through a series of such moments of
decay, which brought about a sense that the “machine is not
what it once was” and so demands greater care. Yet at the
same time, the transition was quite marked. Before the start
of the final phase of the mission there had been a hopeful
account of how the excitement of flying “closer than ever
before” to the planet might lead renewal and rejuvenation -
receiving a ramp up in funding, attracting a fresh crop of
young engineers, and even adopting newer more agile
development processes to match the iterations of their
science planning to the faster rhythm of its orbits. After the
start of the final phase of the mission, however, this
excitement had faded and was replaced gradually by a sense
of the need to slow down in the final phase in order to make
it successfully to the end in 2017. The funding for a ramp
up did not look likely, and besides, the engineers pointed
out, the spacecraft was just not built for agility.

A geriatric infrastructure is thus one that is not merely old
but is in the process of becoming old, with an emergent
recognition of aging as a process and an increased
appreciation for decline, loss, and finitude of lifetimes of
the different parts of the overall system as well as the ways
in which these multiple lifetimes are entangled. Decay and
aging are a form of infrastructural change that can disrupt
practice, but as I found, how such changes are managed and
negotiated also involves a shift towards what I call
convivial decay. This is a recognition of the negotiated
nature of decay and the need to work actively with decline
rather than against it, by attending to the mutual livability
of its constituent parts and attendant practices of care.

The following sections offer vignettes from observations in
the field that reveal the emergent recognition of agedness
and acceptance of loss and decay. They also illustrate the
negotiated nature of decay. While not exhaustive of the
types of decay I observed in the field, they aim to provide
representative illustrations of the work that engineers
perform to bring their own work into alignment with a
decaying infrastructure. These vignettes illustrate how
engineers working to maintain and sustain this
infrastructure came into an appreciation of its decline,
coming to know/perform the agedness of the infrastructure,
and actively work towards its end. I selected these
particular vignettes with an aim to show the work of
managing the aging and decay of both hardware and
software, each of which had its own (in)visibilities within
the mission organization.

From Kills to Quiet Time
During December 2010 while I was out of the field for the
holidays, the Mission experienced an “anomalous event”.
The spacecraft received an incoming file and responded by
going into “safing”. The spacecraft could not interpret the
file it received and so, instead of conducting science, it
pointed towards earth, sent out a distress signal, and
awaited further instruction. This of course led to some
amount of concern on the ground.

The safing had come after sending a non-routine file to the
craft that included a software update to the spacecraft’s
“flight software” – something that has only been done with
great caution a few times over the life of the mission. This
type of error would be difficult to repair since it could
impact the ability of the engineers to communicate
effectively with the craft to troubleshoot and locate the
cause of error.

Fortunately it turned out that the error in the file was the
result of a “bit flip” caused by the rare occurrence when the
radio waves transmitting a file to the spacecraft are
bombarded by a cosmic ray, turning a zero into a one and
making the file unreadable to the spacecraft. This was
fortunate because it meant that no human error had caused
the safing, and that the problem could be repaired by simply
resending the file. Of course, this still resulted in the loss of

1514

SESSION: MUSEUMS AND PUBLIC SPACES

science, not only the sequence of science that should have
been received alongside the software update, but also the
time lost as the engineering team worked to analyze and
resolve what had occurred.

Gwen, the lead engineer for the spacecraft office told me
afterwards that the anomaly had been a kind of wake up
call, a moment of recognizing the limitations of the
spacecraft as well as her own. Gwen had a kind of
sympathetic relation to the craft. Around the time that the
spacecraft wheels had started to deteriorate she had some
health issues resulting in surgery on her leg, affecting her
mobility. With the safing, she had experienced the threat of
an error introduced into the spacecraft hardware as a
moment of realizing that her memory might not be what it
once was and that she might need to rely more on the next
generation of engineers rather than her own “gut instincts.”

The safing was felt by Gwen as a reminder of her own
aging and the aging of the craft together, a wake up call to
put some procedures into writing for the sake of the final
years of the mission. She recognized in this moment, a need
to write down more, to capture her expertise in order to
transition some leadership to a younger engineer protégé.
But it was also framed, in retrospect, as a kind of gift of
time — more time to figure out what is going on with the
spacecraft. I stopped by to talk to one of Gwen’s engineers,
Jared, who told me about the event. He seemed actively
excited about the safing and how it had opened up a chance
for “spacecraft activity” and “to learn new things” including
testing out which of the reaction wheels on the craft was in
worse shape.

This kind of time dedicated purely to engineering purposes
is very rare. It coincided with some tension that had
emerged around the degradation of the reaction wheels. The
additional stress on the engineering team to implement
science that did not cause harm to the wheels had lead to
the loss of science. As I will discuss in a later section, this
had caused a frustration among the science teams that
science was being “deleted” or “killed” by the software
used to protect the wheels or by the engineering team
themselves.

Gwen explained this attitude of science being seen as
“killed” as arising from an attitude that does not attend to
the craft as a limited resource. “The science planning folks
only think about how much science to fit in, doing more
science.” Sometimes there are segments of the spacecraft’s
orbit which are of less interest to scientists and Gwen’s
team will have a “quiet segment” when the spacecraft is
essentially just flying, relying on its own automated
software. Gwen sees value in quiescence, “but,” she says,
“the scientists don’t understand that, they don’t understand
the idea of less science.”

Now the safing event had caused a lot less science. When I
stopped by the Science Planning area to catch up with
Cassie, she also brought up the safing and I expected her to

be frustrated, but she seemed to concur with what I heard
from those on the spacecraft engineering team. She said:

“The safing was interesting because they learned about
some communication mechanisms they can have in place to
make things go better now that the organization is
somewhat different. Gwen pushed really hard to have a
longer time after the safing to recover, [in order] to
manage people’s expectations that they will not be always
recovering from safing as quickly as they used to. Not that
safing happens that often, like it does on [some other
mission] where they happen all the time, but we’ve had a
record of very quick recovery from safing and as we go into
[the final mission phase] we may not recover as quickly.”

This was a marked shift in the way that loss of science data
had been spoken about before the safing and the transition
into the final mission phase. The anomaly created a moment
of pause, which was seen as a gift to the spacecraft
engineering team to reassess their processes, but it also
became a resource in managing expectations from the
science team, and shifting them from an attitude of kills to
one in which quiescence, pause, and slower responses may
be necessary to give time to react. In turn Cassie was using
this shift to help condition the scientists under her
management to the idea that loss of science was not an
opening for renegotiation of which science discipline would
win in battles over future orbital segments.

This process of negotiation became a kind of tide change.
Not a win for engineering per se, but a shift towards
appreciation of loss as a necessity in this final phase of the
mission and a refiguring of the relationship between loss
and benefit. The anomaly was a moment of “pause” not
only for Gwen but for the entire organization to reorient a
kind of “infrastructural inversion”[4] when the needs of the
spacecraft as an aging system became clear.

Making them say “Ow”
In the case of the spacecraft, a change such as hardware
deterioration or software malfunction is powerfully visible
within the organization. In the transition into the final phase
of the mission there were other similar events such as an
on-board instrument “shorting out”. In each of these events,
a very conservative response was taken that prioritized
safety of the craft over the needs of science. This was often
achieved by positioning the spacecraft as aged and in need
of care.

However, when it comes to the mission ground system
infrastructure, it proved much harder to assess, know, or
make visible the agedness of the various software tools. If
software decays it does so in ways that are largely invisible
to the organization. One of the most glaring reminders of
this was the fact that I heard many conflicting stories about
what the transition to the final mission phase would mean
for software systems at the mission.

Both before and after the start of the final phase I heard that

1515

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA

this phase would mean less science, due to cuts in staff and
resources. However, there were much less consistent
remarks about whether the transition would mean more or
less software. I heard both stories from people all over the
organization. Some said that the final phase would mean
fewer personnel, a more fragile craft, and increased reliance
on software to pick up the pieces and automate the work
done by people leaving the mission. Others said that there
would be less software in the final years, since as you lose
people, you lose knowledge about how software works, and
when a piece of software breaks and the person who wrote
it is no longer around, you will have to go back to doing it
manually.

Rather than a marked transition into acceptance of data loss
and quiet time for the spacecraft, Sarah, the lead engineer in
charge of the ground system had a difficult time relaying to
management an appreciation of how software systems
obsolesce and age.

“They don’t really have much experience of what happens
after launch… Once the system is perceived as mature,
which in many people’s minds is at launch, the perception
is that it shouldn’t need much attention. Which we know is
not true, but [it] remains a widely held belief.”

In an effort to demonstrate and communicate the needs for
software maintenance, Sarah had been cataloging the extent
of undocumented software on the mission and asking the
various engineering and science planning teams to do
similar “house-keeping” to generate lists of their most
important scripts and utilities.2

We sat and talked in her office about the state of the ground
system and the role of software in the mission operations,
while she worked on preparing an inventory of all the
“Category D” software used on the mission. Category D is
not even a real category, but a catchall term for all the
software tools that usually go undocumented.3 While
Category D is, by definition, meant to be software that
engineers can “live without,” in reality these are scripts and
small programs that have accrued in the hundreds over the
many years of the mission.

“Have you ever heard the term glueware?” Sarah asked me,

2 Software scripts are snippets of code that can be used to
automate a small part of a workflow, e.g. watching a repository for
particular incoming file updates and sending an email. Utilities
were the colloquial name for small software programs that are
perceived only to affect quality or ease of work, such as a tool that
color codes spacecraft data to ease routine monitoring of
subsystem status.
3 Ordinarily the organization only keeps an inventory of the
software tools that are considered “mission critical” according to
standards provided by NASA so that changes to these systems
receive proper oversight. Category A software, e.g., are those tools
where an erroneous change to the code could result in mission
failure ⁠.

“Well you start with this system design from 15 years ago,
and as you go along you have to tweak it, but it’s too hard
to go into the compiled stuff, so you start adding on the
inside and the outside.” While Category D is not officially
delivered software, in the many years of the mission these
scripts have proliferated and become part of the fabric and
“glue” that keeps the infrastructure going.

I brought up with Sarah this inconsistency about whether
there would be more or less software in the final mission
phase. “Which is it?” I asked. She responded with
exasperation, as paraphrased in my field notes quoted here:

At this Sarah sighed and went somewhat silent and reticent
and was clearly expressing a LOT with that silence. There
was some emotion in it, perhaps some sense of awe for the
problem itself and giving of silence for the people whose
lives are impacted by this problem. It may also have been
anger, letting some anger come up and settle down before
speaking and composing a way to speak honestly and
directly but also diplomatically. She said, well, she has
been in that argument for a while now and it seems like the
decision is that we are going to have more software than we
can afford to maintain.

She went on to explain further that when they originally
planned out the resources for the ground system… in terms
of IT people, programmers, etc. to complete the work and
maintain the software, [for the final phase of the mission] it
was based on assumptions that have turned out to be
false… but that the decision is just to proceed according to
plan anyways.

She was especially silent at this point saying, well, what is
going to happen I think is... that things will have to slow
down. She said this slowly. Slow. Down. When something
breaks, when you have a change request, it will take much
longer than it does now and longer than you want it to.

Like Gwen, Sarah was working to prepare both her group
and the Mission as a whole to the idea of loss, particularly
in the few months remaining before she retired and there
would no longer be anyone in her position. The transition to
the final mission phase entailed a lot of software changes at
once as efforts to reduce costs by migrating from versions
of software that the Lab’s centralized software team no
longer supported or to reduce overhead costs associated
with maintaining software.

One such change involved migrating from an old file
sharing system to another. In preparation for a meeting
where the various teams would report back to her on their
“homework” of cataloging their own scripts and Category
D software, she also moved a single file test from the old to
the new file sharing system. At the meeting Sarah presented
the results of her survey of Category D software. She then
asked for a raise of hands from everyone whose workflow
was affected by the one moved file. When everyone’s hands
went up there was a gasp in the room followed by uneasy
laughter. There was an uncanny feeling that arose in the

1516

SESSION: MUSEUMS AND PUBLIC SPACES

realization that the software that each team uses is not really
all that distinct but is bound together, often through
“glueware” that links them all together. “I can’t believe it
touched all of us” one engineer said. Sarah called this
technique, making them “say ow” – giving them a single
pinch so that she could save them from more dramatic pains
later on. Without the aide of phenomenal events like an
anomaly or degrading wheel, Sarah had to manufacture
something to trigger recognition of the ground system’s
“maturity”.

Degrading Science vs. Degrading Hardware
As mentioned earlier, the safing event on the spacecraft had
given the engineers time to test out one of the reaction
wheels that had started to shown signs of decay.4 These
wheels help to orient the spacecraft in space as it orbits
Saturn. The movements of the spacecraft must be finely
“choreographed” since the fields of view of its scientific
instruments are quite small and the spacecraft itself is
hurdling by these targets at many kilometers per second.
Science planners use a piece of software called the Pointing
Design Tool (PDT) which spits out a command file for
pointing the spacecraft in space, but are largely unaware of
how these designs might affect the spacecraft as a whole.

The engineers in charge of the articulation control system
are continuously monitoring the wheels, comparing
incoming telemetry data to their expected behavior. These
engineers must carefully examine and tweak these
command files to protect the safety of the craft – making
sure that e.g. instruments do not overheat from pointing
towards the sun, or that the spacecraft is not sent conflicting
commands to be in two places at once. They can sometimes
protect the intent of the pointing by maintaining the
orientation of the spacecraft along one axis while offsetting
it along another. They can also manage the wheel spin rates
(keeping them from reaching upper bounds) by inserting
“biases” where excess wheel speed is dissipated by using
thrusters (and precious fuel) to stabilize the craft.

These engineers place biases by using a piece of software
called the Reaction Wheel Bias Optimizer Tool (RWBOT).
This software models the spin rates needed to achieve the
required pointing and optimizes for fuel use, suggesting
some solutions for where to place biases into the sequence.
The engineers try to place these between scientific
observations but occasionally have to cut some science to
make sure the wheels are safely commanded.

But now these engineers noticed that the wheels were
experiencing some unexpected drag suggesting that

4 The spacecraft has three “reaction wheels” which are spun in
order to rotate the spacecraft in space along three (x, y, and z)
axes. Because the spacecraft is floating in the vacuum of space, it
is a change in the rate of spin of the wheels that results in a
rotation of the spacecraft.

something was wrong.5 To research the cause of this drag,
the Mission organization called in wheel rotation dynamic
specialists, and consulted the wheel manufacturers. The
wheels were specified by their manufacturer to have a
guaranteed number of turns in their lifetime as long as they
were kept within upper bounds. However, the Mission
organization soon discovered that the wheels likely cause of
decay arose due to dwelling in very low speeds close to
zero and shifting subtly back and forth around zero. They
theorized that this might cause the lubricant around the
wheels’ ball bearings to clump such that the wheels might
eventually seize up.

This research was then integrated into RWBOT, which was
given new parameters to avoid lower bounds and to balance
fuel use with demands on the wheels, which were now also
considered a “consumable” like fuel. The results of this
change were dramatic. The engineers in the spacecraft
office were no longer able to easily arrive at solutions that
would protect the wheels. The software itself was taking
much longer runtime to arrive at proposed solutions.
Engineers would set it to run overnight while they were off
work and return in the morning to analyze the results but
there was just insufficient time in the schedule to run and
re-run the software if the proposed solutions negatively
impacted science. Meetings where the spacecraft engineers
presented RWBOT’s solutions to the science team became
heated and tense. Spacecraft engineers were accused of
“killing science” and science planners questioned the
prioritizing of the wheels asking whether their degradation
should be staved off by “degrading science”.

This was not the first time that RWBOT had been a source
of tension between the two teams and old debates were
trudged up about the ways that RWBOT mediated
communication between the two teams or how the
spacecraft engineers handled the translation of science
pointing to protect the wheels6. In the past, the tensions had
been resolved through the creation of new rules. If very
long observations tracking a slowly moving object like a
moon had been bad for the wheels, a new rule was
instituted that restricted the length of observations.

But with the decay and its resulting change to the RWBOT
software, the engineers struggled to derive any predictable
problems from their experience using software in its new

5 There are legitimate reasons why the wheels might experience
drag, such as when flying close enough to a moon to experience
drag from its atmosphere. The spacecraft is given “torque
authority” to autonomously override incoming commands in order
to achieve the commanded wheel spin rate and overcome such
drag. But when the drag on wheel 3 was spiking unusually high,
the spacecraft office realized that they needed to re-assess the
health of the wheels.
6 For more discussion of how software tools mediate collaborative
work in this case, please see [18].

1517

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA

version. For one thing, they had not had time to develop a
sensibility for the kinds of solutions that RWBOT was now
choosing. Eventually they created some “guidelines” being
careful not to create rules that might suggest that the
behavior of RWBOT was somehow predictable. They titled
these guidelines as how to be “RWBOT-friendly.”

Eventually an RWBOT meeting went smoothly with no
deleted science. There was no clear singular cause for this
adjustment but engineers spoke to me about their theories.
One was that the difficulties with RWBOT coincided with a
change in the inclination of their orbit, which changed the
geometries of scientific observations and put more strain on
the system. Another was that there was a shift towards a
more “friendly” attitude among the scientists towards the
new guidelines. In the past, rules instituted for protecting
the safety of the craft had defined keep-out zones which had
been hard coded into the PDT software such that scientists
tended to work around them, doing their best to “game the
system” (e.g. if an observation must be shorter than a
particular duration, creating a long observation by dividing
it up into sequential shorter ones).

While this worked for most kinds of rules developed by
engineers so far (e.g. in the form of keep-out zones where
instruments cannot point), the guidelines to protect the
wheels were there mostly to help the engineers make their
work rhythms sustainable. The new RWBOT-friendly
guidelines were written to enforce a more holistic
perspective, which required scientists to view RWBOT less
as an unpredictable “troll under the bridge” that kills
science, and more as one tool used by their engineering
colleagues.

As a moment of celebration at the end of the first smooth
RWBOT process, Gwen wheeled in a giant birthday cake to
deliver as a gift to the science planning team, as a form of
recompense for lost science. She jokingly explained the gift
saying “now you can’t say we never give you anything”
responding to the sense that engineering only takes away
science rather than supporting it. The cake decoration
spelled out “5000th day since launch”, marking a birthday of
sorts of the spacecraft. This highlighted the age of the
spacecraft, but also made visible the everyday temporal
rhythms of engineers in the spacecraft office where “days
since launch” are counted. While the science planning team
was on their 50th science sequence, the spacecraft team who
works on a daily basis to command and operate the craft
count out time differently.

Letting Software Break
While these changes to expectations of the spacecraft
hardware arise due to material decay, there is no real
catalyst for making people see the pain that might come
from relying upon unmaintainable software. Due to the
decrease in staffing, the software team was by far the most
reduced in size, and in fact had already been cut
significantly before the middle phase of the mission. Sarah

was concerned in light of her retirement that it would be an
issue related to software rather than hardware that might
bring the mission abruptly to a premature end.

In preparation for the final phase, the team was letting go of
permission structures that provide a layer of protection from
errant changes to the software. The software team was
removing its separation of designated operations and
development servers – switching to a reliance on the
developers themselves to keep their development work
from interfering with software in active use. They also were
making reductions to their “configuration management”
such that everyone would have access to all servers and
would have to rely upon trust and communication to not
disrupt each other’s work.

Learning to live without these divides and partitions was a
difficult transition. Downgrading and letting go of software
systems feels counter-intuitive since software that works
and runs well becomes invisible. At a meeting that Sarah
held to go over these changes, she went through the new set
up, going through an excel list of machines and who was
responsible for each. At first the meeting proceeded in a
typical fashion, with Sarah and other managers overseeing
the decision-making of how these servers would be
configured. Suddenly, the discussion shifted as individuals
committing to particular set ups realized that this was going
to be the last managerial discussion of its kind. They began
to recognize that this configuration was a different sort of
task than they had done before. With the new system,
people might be able to get into a server space that they
could not before. This would not result in changes in
permission structure but would have to be handled in an ad
hoc manner.

Sarah actively shifted the conversation, moving from
possible scenarios posed in terms of “suppose that
something breaks” to an assumption that breakages will
happen, by asking “how would it break?” When her
colleagues scrambled to figure out a way to set up the
permissions so that they would not break, Sarah reiterated
that “it should break” and repeated this throughout the
conversation until others began to concur, saying we should
“go ahead and set it up knowing it is going to break.”

The discussion started to shift and people began to joke
about how they should “speak now or forever hold their
peace.” When it was decided that it would simply be the
user’s responsibility to know the purpose of each machine
and to not make changes without talking to the person
responsible for the server (literally with the server at their
knees), one developer in the room captured the unsettled
feeling in the room calling out “It’s the wild west!” and
someone else chimed in “Enter at your own risk” to which
everyone starts laughing, breaking the tension.

This new Wild West mode in which you enter at your own
risk is one where they give up tight bureaucratic control in
favor of “a common machine”, trusting in the collective

1518

SESSION: MUSEUMS AND PUBLIC SPACES

behavior of the group to work itself out and trusting breaks
to guide misdirected attempts to the proper machine. It
denoted a shift towards a mode of thinking about breaks as
productive. Software should break, and stay broken, as a
way to ease users off of unmaintainable systems or
protocols. This reframing is similar to the role played by
the spacecraft anomaly, in which people are conditioned to
accept loss, adjusting to more and more breaks in systems
associated with the reduced resources of the final phase and
coping with these changes.

But more than merely acclimating to loss as a new state of
affairs, this effort required an active working towards loss,
working to let go of system-entanglements, working
towards breakages as a productive process of letting go. In
letting go of particular partitions, separations both material
and metaphorical, the relationship between letting go and
moving forward is exposed. Breaking things is needed in
order to extend the possibility of keeping them going. In a
way breakage is for software what quiescence is for
hardware — a respite.

DISCUSSION
The case of a geriatric infrastructure offers a novel
empirical example of infrastructure repair where there is a
known end-of-life towards which engineers are working. In
such work, there is ongoing work to extend the life of the
infrastructure to ensure it reaches 2017, and of course the
work of engineers is filled with novelty and inventiveness
even at this late stage in the infrastructure’s life. In this case
we can see familiar forms of work including repair-as-
sustaining and repair-as-transformation [25] as well as
repair-as-appropriation [16] or repair-as-sustaining [11].

However, the case also identifies a related empirical form
of work that is repair-into-decay. Repair work can at times
work not to renew but to let go. Rather than fending off
death [8], repair can embrace endings, finitude, and loss,
working with and into decline rather than against it. The
case contributes empirical understanding of the careful and
cautious work that is involved in disconnection and
disassembly [8]. It also reveals the collaborative work
through which such decline is performed, managed, and
negotiated.

In the vignettes shared above, we see that repair-into-decay
involves an increased appreciation for loss, decline, pause,
and finitude. This appreciation appears to emerge on the
one hand in response to ruptures in the form of anomalous
events that trigger new understandings of the infrastructure
as aged and in decline and requiring of adjusted
expectations. Yet on the other hand, we can see how the
relative agedness of various parts of the infrastructure is
actively performed as part of the negotiation of what and
how this decline should unfold.

In the following sections I discuss how we might make
sense of this seeming contradiction. Agedness is both
recognized and performed and even the ruptures which

trigger an awareness of agedness reveal a doubleness in
which infrastructure is old and new at once. Repair-into-
decay invokes a negotiation of what counts as old, what
should survive, what should persist, and what should be let
go. This negotiation is one that attends to the mutual
livability of work practices in a form of alignment work I
call convivial decay.

Recognizing and Performing Agedness
In the vignettes I have shared, we can see an ongoing
negotiation of what will degrade and how as the space
science infrastructure is increasingly recognized as aging
and in need of care. In some cases particular changes due to
decay, such as the wheel degradation, are events that
disrupt current practice and surface tensions across the
work practices of different teams, which need to be brought
back into a sustainable alignment. While disruptions to
current practice are not necessarily new to this stage of the
mission, what is notable is that these events trigger, or are
taken up as resources for an emergent recognition of the
“stage of life” or “maturity” of the infrastructure and
appreciation for loss, decline, and finitude.

There is a marked shift from a culture in which science and
engineering are at odds with each other, with a language of
killing and deleting of science in favor of hardware, to one
in which loss, pause, and quiescence are perceived as
beneficial and necessary. In some cases moments of
changes in the performance of the spacecraft hardware
make the aging and decay of the infrastructure imminently
apparent. In other cases, it takes the active insertion of a
disruption such as the movement of a file or the removal of
a permissions structure, to trigger this recognition that the
maintenance of the infrastructure requires some adjustment.

The recognition of the agedness of the infrastructure is not a
process that isolates aging to a particular device.
Infrastructural decay is a process that emerges through the
ways that different parts of the system, aging at different
rates are entangled with each other. What decays or ages
are the relations across multiple parts of the infrastructure
and among people, the organization, and its technologies.

For example, we saw how the sympathies between Gwen’s
own aging and the aging of the craft became a resource for
her to ensure the ongoing life of the infrastructure by
facilitating intergenerational hand-off and not assuming a
fast and agile recovery from such anomalous events. As
another example, we can see how the degradation of the
wheel cannot be isolated to hardware or software or
practice alone. The wheel degradation is in fact unknowable
without the mediation of software used to analyze its
behavior. It is not the degradation of the wheel itself that
initiates the re-negotiation of work between engineering
and science planning teams. Rather, the RWBOT software
reveals how the management of wheel degradation and the
interface between the two teams are simultaneously and co-
constitutively negotiated.

1519

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA

Engineers who have worked for much of their careers on
this particular infrastructure have developed sympathy akin
to what Vertesi observed with the Mars Rover engineers in
[32]. In this case, it is a sympathy with the aging of the
system, experienced as an alignment of coming to know
one’s own aging, as well as the aging of the organization,
through the aging of the infrastructure. The desire to
rejuvenate what is perceived to be a “dinosaur”
infrastructure past its prime through the adoption of
organizational methods that are more contemporary with
other missions, exemplifies how agedness is not simply
known through physical decay but also through the ecology
of different systems aging in relation to each other.

In this way aging is clearly a sociotechnical process where
aging cannot be isolated to hardware or software, material
decay or changes in practice. Furthermore, agedness not
only arises across collectivities of people and machines, but
is also performed through negotiations of what counts as
old or the relative agedness of different parts of the system.
In one moment what is figured as old in order to demand
care, is figured as new in order to demand prestige.

Lifetime Issues
The recognition of agedness that emerged during my
fieldwork was often catalyzed by events that disrupted
practice as usual. As one engineer put it, this is the stage of
life of an infrastructure where “lifetime issues” start to crop
up. This can be in the form of a bug that emerges in
software that has been used and maintained for decades,
simply because of the idiosyncrasies of a particular orbit or
of a new inexperienced engineer arriving to the mission and
being “thrown into the deep-end of Unix” which is no
longer taught in schools.

An event such as an anomaly on the spacecraft, a bug in
code, provokes reflection on changes in the infrastructure
that have arisen due to aging and decay. Lifetime issues are
a type of sociotechnical change that occurs simultaneously
as a rupture and a drift. They arise in a particular event but
in the form of a post hoc reflection on something that is
already latent in the system. Lifetime issues hold a
doubleness of potentiality and things running their course.

This is seen quite evocatively in the case of the wheels,
which clearly have been decaying gradually from the
moment they entered space. The degrading wheels here are
indeed a form of slippage [26] between understandings of
the wheel’s performance from manufacturing specifications
and their actual performance, but the slippage itself is not
something which can be located at a particular moment in
time. The lifetime of a wheel is specified by manufacturers
through simulations during testing – e.g. spinning the wheel
fast until it over heats, spinning it for a long time until it
shows break down. But the actual lifetime of a wheel-in-use
imparts a different notion of that duration.

Even the anomaly, which is clearly experienced by the
organization as a rupture, is, in retrospect, also understood

through the lens of duration or lifetimes. The anomaly
created a moment of pause in which the agedness and decay
of the infrastructure were negotiated in terms of
infrastructural, biographical, and institutional rhythms [14]
including inter-generational hand-off. But the anomaly was
also narrated to me as a “lifetime issue” in the sense that
cosmic rays are of such a rare occurrence in the vacuum of
space that the chance of bombardment of the Mission’s
radio wave communication to the spacecraft goes up the
longer it is in space. “In fact,” Gwen exclaimed, the
infrastructure, as a whole, had become “a quite fine-tuned
instrument for detecting the prevalence of cosmic rays in
the galaxy.”

These changes can be seen as a form of infrastructural
torque [4,33]. Bowker and Star describe torque as a
“twisting of time lines that pull at each other” as
“trajectories” of institutions, categories, biographies, etc.
“pull or torque each other over time [as] they move in
different directions or different rates” [3]. As they point out,
this twisting arises over the duration of lives. While there is
perhaps a singular moment in which the engineering team
at the Mission realized that the wheels might be decaying,
this decay arises though only gradually. The twisting is also
“multiple” in a similar way as referred to by [30] because
infrastructures are comprised of multiple temporalities and
trajectories of careers, hardware and software systems,
managerial methodologies, etc.

“Lifetime issues” are precisely those issues that are
happening in the background but only surface over the
lifetime of a system. There is a coincidence within the case
described here between the perception of increased
occurrence of such lifetime issues, and the recognition of
the need to slow down and learn how to appreciate
agedness, loss, and decay so that these can be responded to
appropriately. It is not clear which comes first – the need to
slow down precipitating a recognition of lifetime issues or
vice versa. I strongly suspect that there is no particular time
in the life of the Mission or of any infrastructure project
where there are significantly more or less ruptures that
break the flow of routine work. Yet, these particular
ruptures in the form of “lifetime issues” allow us to see how
the performance of agedness participates in the process of
negotiating how the organization responds to decay.

Declaring the infrastructure an instrument for detecting
cosmic rays, for example, places it on the frontier of
engineering and scientific knowledge, even in a moment of
decay and breakdown. This performance of presenting what
is old as new arose many times throughout my fieldwork. In
a poignant moment, sitting with Gwen in her office, she
related how the scientists want them to take science that
was designed years ago “off the shelf and dust it off and
then fly it on a new machine”. In this, Gwen positions the
aging spacecraft as new, and the science that exists in a
design document, as old, inverting the traditional
maintenance-design relationship. As the vignettes shared

1520

SESSION: MUSEUMS AND PUBLIC SPACES

above reveal, Gwen is successful in her efforts to gain more
resources and time for her engineers who maintain the
spacecraft in part because she is able to claim that the
machine is new, it is not what it once was.

Convivial Decay as Alignment Work
The negotiation of decay is a form of alignment work to
deal with the slippages [26] that arise between what a
system once was and what it has become. However, what
this case reveals is that decay occasions different forms of
alignment work than have been previously discussed in the
CSCW literature [e.g.2,14,28].

In the vignettes above, we can see forms of negotiation
which are familiar to CSCW research, working through
negotiations across scales [23], rhythms [14,22,28], and
through the use of boundary-negotiating objects [16] such
as the RWBOT software itself. Yet the negotiation also
takes place through positioning the relative agedness of
various parts of the infrastructure.

Tensions indeed arise across scales and rhythms - indicative
of the different lifeworlds that are brought into conflict. For
example, in the fraught RWBOT debates over what should
degrade, it is the ways that RWBOT represents temporal
scales and rhythms of work that has historically led to so
much miscommunication between teams who have different
ways of working. However, in the resolution of the present
RWBOT issues, these differences were not the most salient
tensions that needed to be resolved so much as the mutual
livability of these lifeworlds side by side.7 The different
temporalities did not need to be brought into sync with one
another but rather simply needed to be ground into a
companionable relationship.

This may help to elucidate why a satisfactory explanation
for the resolution of the RWBOT case remained elusive or
why a cake can matter as a form of sociotechnical repair.
They reveal that what is negotiated in the face of decay is a
mutual livability of systems and practices that are running
out different lifetimes, aging at different rates, and yet
mutually entangled and interdependent.

Decay has a temporal quality that disrupts the assumed
progressive temporality of technological change. It asks:
were prior alignments as livable as we thought? Livability
thus deals in rhythms but also in durations. It requires a
consideration of which rhythms of work are sustainable or
livable, and an awareness that the lifetimes of systems are
themselves finite. The negotiation of decay is a negotiation
of multiple lifetimes that are entwined – how to carefully
cut these away from each other, or allow them to be
companionable. It is this process of alignment that I call
convivial decay.

Convivial decay is a form of alignment work that deals with

7 This notion of livable worlds is drawn from [9].

the lifetimes and mutual livability of the relationships that
inhabit infrastructure. It is a working with rather than
against loss and finitude and an active letting go to enable
livable sociotechnical worlds that are companionable with
each other. It is an active pursuit to let go with care and
maintain livability of different forms of work and different
parts of the system.

Convivial decay is not something that just happens
whenever a system ages. Clearly it takes work. In some
ways the evocative decay and breakdown of hardware (the
wheel’s drag, the safing event) make it easier for the aging
of hardware to demand attention. Software’s aging is,
however, less obviously visible and more counter-intuitive
to management. The idea that a bug can surface through the
idiosyncrasies of practice after decades of use is taken as
quite shocking. It shows the same doubleness of how the
software can be both old and new at the same time just as a
decaying wheel can tell us something new about long-
standing practices. Software developers seem to know this.
It is inherent in the idea that the entire mission is a run time
test of the software. Each iteration of science is unique and
so each iteration holds the potential to break some long-
held assumption embedded in the software. Discrepancies
between the manufacturing specifications of the wheel and
its actual operations are in many ways equivalent to the
discrepancies between the design specifications of software
and the practices of its use. Yet these software
discrepancies are harder to know in a culture that treats
software’s histories as irrelevant or its life as stagnant after
launch.

While the vignettes related to hardware above are in some
ways more evocative, it is the relationship between
software and conviviality that I wish to pursue in future
work. Software is central to convivial decay in that it both
contains its own processes of aging and mediates
breakdowns of hardware and how these are made
accountable and available to repair [29]. In the end the
conflict over the spacecraft’s wheel decay became a conflict
over the way that a software tool, RWBOT, played a
decisive role in what science lived or died. Software too has
its forms of living and dying and its ways of mediating
what forms of work are made sustainable and livable and
which others are not.

In a way, it is software where conviviality gets complicated.
This requires a lot more research - to understand how
software ages, and how its multiple entangled lifetimes and
their aging can be negotiated with conviviality. Particularly,
when we consider that no infrastructural systems emerge
whole-cloth without reliance on older legacy code, we can
see how conviviality might be worth understanding, even in
early stages of the life of systems, to help bring the caution
and care that attending to the mutually entangled lifetimes
of all systems warrant.

1521

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA

CONCLUSION
In conclusion, what this case of a geriatric infrastructures
shows is that infrastructural decay is known and negotiated
through an emerging appreciation for the multiple and
entangled lifetimes of infrastructure. Infrastructural decay is
thus not a passive backdrop, or a “natural” process of time’s
passing. The temporality of decay is not a singular
trajectory that unfolds along an evolutionary timeline, but
rather is heterotemporal and relational. This is in part due to
the relativistic time of lifetimes and aging as noted by
Traweek in [31]. We only know what is old by virtue of
what is young. While it may only be a problem for
coordination that one part of a technology moves at a faster
rate than another, this difference will produce a kind of
torque over time, one each of these parts ages. It is only
once a particular rhythm or piece of technology is lived
with for a long time that we can recognize what has become
old. We live in the aftermath of decisions about standards,
rules, etc. that then apply torque as they age.

This implies that in order to understand the lifetimes of
infrastructure it may not be enough to study them
longitudinally. Such an approach implies a singular
temporality of the biography of an infrastructure as it is
born, lives, and dies. But what this case reveals is the
heterotemporality of infrastructural lifetimes, something
which becomes very apparent in the cropping up of lifetime
issues and decay, but which is no less present in moments
of design “upstream”. Change which can only be
understood and appreciated through the lens of duration, are
not the exclusive purview of old and aging infrastructure –
though this seems to invoke particular insights for those
working with them that can be ignored in earlier phases.
This is a methodological gift because durations are always
available to us at any moment in the life of an infrastructure
since no infrastructure is born completely anew without
embedded legacies and histories.

Finally, what I wish to draw attention to here is that the
nature of negotiation across the tensions of lifetimes is such
that what is negotiated is not only alignment for the sake of
coordination but for the sake of conviviality. What does it
mean for the material, infrastructural, biographical, and
institutional rhythms not only be aligned but to be livable
and sustainable for the foreseeable future? These
negotiations do not just take place in time but across time –
for example negotiating across generational gaps and
paradigmatic gaps. This too is a form of invisible labor, of
working to time various forms of labor to each other, such
that they might break gracefully together.

ACKNOWLEDGMENTS
Many thanks to the anonymous reviewers whose responses
improved this work greatly. This work also benefited from
insightful comments in early stages of analysis and writing
from Lilly Irani, Steve Jackson, Max Liboiron and Naja
Holten Møller. This work could not have been completed
without the open dialogue and mentorship into which I was

welcomed by my interlocutors at the Mission and by the
collaborative engagements of the Spaceteams Research
Group led by Janet Vertesi and including Paul Dourish,
Melissa Mazmanian, Matthew Bietz, and David Reinecke.
This work was supported by NSF Socio-Computational
Systems Grant #0968616.

REFERENCES
1. Eric P.S. Baumer, Phil Adams, Vera D.

Khovanskaya, et al. 2013. Limiting, leaving, and
(re)lapsing. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems - CHI
‘13, ACM Press, 3257–3266.

2. Matthew J. Bietz, Toni Ferro, and Charlotte P. Lee.
2012. Sustaining the development of
cyberinfrastructure: an organization adapting to
change. Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work, ACM,
901–910.

3. Eli Blevis. 2007. Sustainable interaction design:
invention & disposal, renewal & reuse. Proceedings
of the SIGCHI conference on Human factors in
computing systems - CHI ‘07, 503.

4. Geoffrey C. Bowker and Susan Leigh Star. 2000.
Sorting Things Out: Classification and Its
Consequences. MIT Press.

5. Graham Button and Wes Sharrock. 1994.
Occasioned practices in the work of software
engineers. Requirements engineering, 217.

6. Paul Dourish. 2003. The Appropriation of
Interactive Technologies: Some Lessons from
Placeless Documents. Computer Supported
Cooperative Work (CSCW) 12, 4, 465–490.

7. Harold Garfinkel and Harvey Sacks. 1970. On
formal structures of practical actions. Appleton-
Century-Crofts, Educational Division.

8. Stephen Graham and Nigel Thrift. 2007. Out of
Order: Understanding Repair and Maintenance.
Theory, Culture & Society 24, 3, 1–25.

9. Donna J. Haraway. 2003. The companion species
manifesto: Dogs, people, and significant otherness.
Prickly Paradigm Press, Chicago.

10. Sampsa Hyysalo and Janne Lehenkari. 2002.
Contextualizing Power in a Collaborative Design
Project. Participatory Design Conference.

11. Steven J Jackson. 2014. Rethinking repair:
breakdown, maintenance and repair in media and
technology studies today. In Media technologies:
Essays on communication, materiality, and society.
MIT Press.

1522

SESSION: MUSEUMS AND PUBLIC SPACES

12. Steven J. Jackson and Lee Kang. 2014. Breakdown,
obsolescence and reuse: HCI and the art of repair.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 449–458.

13. Steven J. Jackson, Alex Pompe, and Gabriel
Krieshok. 2012. Repair Worlds: Maintenance,
Repair, and ICT for Development in Rural
Namibia. Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work, ACM,
107–116.

14. Steven J. Jackson, David Ribes, Ayse Buyuktur,
and Geoffrey C. Bowker. 2011. Collaborative
rhythm: temporal dissonance and alignment in
collaborative scientific work. Proceedings of the
ACM 2011 conference on Computer supported
cooperative work’, ACM Press, 245–254.

15. Helena Karasti and Karen S. Baker. 2004.
Infrastructuring for the long-term: ecological
information management. Proceedings of the 37th
Annual Hawaii International Conference on System
Sciences, 1–10.

16. Charlotte P. Lee. 2005. Between Chaos and
Routine: Boundary Negotiating Artifacts in
Collaboration. ECSCW 2005, 1–21.

17. Leah Maestri and Ron Wakkary. 2011.
Understanding repair as a creative process of
everyday design. Proceedings of the 8th ACM
conference on Creativity and cognition, ACM, 81–
90.

18. Melissa Mazmanian, Marisa Leavitt Cohn, and Paul
Dourish. 2014. Dynamic reconfiguration in
planetary exploration: a sociomaterial
ethnography." MIS Quarterly 38, 3, 831–848.

19. William Odom, James Pierce, Erik Stolterman, and
Eli Blevis. 2009. Understanding why we preserve
some things and discard others in the context of
interaction design. Proceedings of the 27th
international conference on Human factors in
computing systems - CHI 09, 1053.

20. Julian E. Orr. 1998. Images of Work. Science,
Technology, & Human Values 23, 4, 439–455.

21. Neil Pollock and Robin Williams. 2010. e-
Infrastructures: How Do We Know and Understand
Them? Strategic Ethnography and the Biography of
Artefacts. Computer Supported Cooperative Work
(CSCW) 19, 6: 521–556

22. Madhu Reddy and Paul Dourish. 2011. A Finger on
the Pulse  : Temporal Rhythms and Information
Seeking in Medical Work. Proceedings of the ACM

2011 conference on Computer supported
cooperative work, ACM, 344–353.

23. David Ribes and Thomas A. Finholt. 2007.
Tensions across the scales: planning infrastructure
for the long-term. Proceedings of the 2007
international ACM conference on Supporting group
work, ACM, 229–238.

24. Daniela K. Rosner, Steven J. Jackson, and Garnet
Hertz. 2013. Reclaiming repair: maintenance and
mending as methods for design. CHI’13 Extended
Abstracts on Human Factors in Computing
Systems, ACM, 3311–3314.

25. Benjamin Sims and Christopher R. Henke. 2012.
Repairing credibility: Repositioning nuclear
weapons knowledge after the Cold War. Social
Studies of Science 42, 3, 324–347.

26. Benjamin Sims. 2009. A Sociotechnical Framework
for Understanding Infrastructure Breakdown and
Repair. Presented at the Annual Meeting of the
Society of Social Studies of Science.
http://public.lanl.gov/bsims/

27. Susan Leigh Star and Anselm L. Strauss. 1999.
Layers of Silence, Arenas of Voice: The Ecology of
Visible and Invisible Work. Computer-Supported
Cooperative Work: The Journal of Collaborative
Computing 8, 1–2, 9-30.

28. Stephanie B Steinhardt and Steven J. Jackson.
2014. Reconciling Rhythms  : Plans and Temporal
Alignment in Collaborative Scientific Work.
Proceedings of the 17th ACM conference on
Computer supported cooperative work & social
computing, ACM, 134–145.

29. Lucy A. Suchman. 1987. Plans and Situated
Actions: The Problem of Human-Machine
Communication. Cambridge University Press.

30. Bill Tomlinson, Michael Silberman, and Don
Patterson. 2012. Collapse informatics: Augmenting
the sustainability & ICT4D discourse in HCI. CHI
‘12 Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 655–664.

31. Sharon Traweek. 1992. Beamtimes and Lifetimes.
Harvard University Press.

32. Janet Vertesi. 2008. Seeing like a rover: embodied
experience on the mars exploration rover mission.
CHI’08 Extended Abstracts on Human Factors in
Computing Systems, ACM, 2523–2532.

33. Janet Vertesi. 2014. Seamful Spaces:
Heterogeneous Infrastructures in Interaction.
Science, Technology & Human Values.

1523

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA

