
Trustworthy Variant Derivation with Translation
Validation for Safety Critical Product LinesI

Alexandru F. Iosif-Lazăr1, Andrzej Wąsowski1

IT University of Copenhagen

Abstract

Software product line (SPL) engineering facilitates development of entire
families of software products with systematic reuse. Model driven SPLs use
models in the design and development process. In the safety critical domain,
validation of models and testing of code increases the quality of the products
altogether. However, to maintain this trustworthiness it is necessary to know
that the SPL tools, which manipulate models and code to derive concrete product
variants, do not introduce errors in the process.

We propose a general technique of checking correctness of product derivation
tools through translation validation. We demonstrate it using Featherweight
VML–a core language for separate variability modeling relying on a single kind
of variation point to define transformations of artifacts seen as object models.
We use Featherweight VML with its semantics as a correctness specification for
validating outputs of a variant derivation tool. We embed this specification in the
theorem proving system Coq and develop an automatic generator of correctness
proofs for translation results within Coq. We show that the correctness checking
procedure is decidable, which allows the trustworthy proof checker of Coq to
automatically verify runs of a variant derivation tool for correctness.

We demonstrate how such a simple validation system can be constructed, by
using this to validate variant derivation of a simple variability model implementa-
tion based on the Eclipse Modeling Framework. We hope that this presentation
will encourage other researchers to use translation validation to validate more
complex correctness properties in handling variability, as well as demonstrate to
commercial tool vendors that formal verification can be introduced into their
tools in a very lightweight manner.

IThis article is a full version of the extended abstract presented at the 25th Nordic Workshop
on Programming Theory, NWPT 2013, in Tallinn.

Email addresses: afla@itu.dk (Alexandru F. Iosif-Lazăr), wasowski@itu.dk (Andrzej
Wąsowski)

1Supported by ARTEMIS JU under grant agreement n◦ 295397 and by Danish Agency for
Science, Technology and Innovation

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingJuly 11, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/81666273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Variability modeling in software product lines. Model-driven development [1] of
software products employ models to represent the product architecture. When
several products share a common set of core assets they can be developed as a
software product line [2]. Modeling the product line architecture as a single base
model facilitates the derivation of new product variants by reusing artifacts from
existing ones. Variability models describe how the artifacts can be selected and
recombined into new products.

Separate variability models are independent of the language in which the base
model is developed so they can be reused to some extent to handle a system’s
variability at multiple development phases. The range of distinguishing charac-
teristics which vary among the products of a product line is specified with feature
models [3] (or alternatives such as decision models [4]) Each individual product
is described by selecting a set of features thus creating a particular configuration.
Constraints and dependencies between features are often specified to determine
which configurations are valid. Features are realized by implementation artifacts
(e.g. formal specifications, object models, source code) contained in a base model.
Thus, we need both a mapping from the feature model to the base model and
a process called variant derivation through which the artifacts can be selected
and recombined into new product variants.

The Orthogonal Variability Model (OVM) [5], Delta Modeling [6] and the
Common Variability Language (CVL) [7] are examples of separate variability
modeling languages.

Trustworthy variant derivation tools. There is a great variety of tools that imple-
ment variability modeling languages and facilitate variant derivation. Trustwor-
thy variant derivation is essential to the development of safety critical embedded
systems in domains such as automotive or industrial automation [8, 9]. Industrial
standards such as IEC 61508 [10] mandate the use of state of the art tools and
quality assurance techniques. So far, the industry certifies individual products, or
even avoids introducing any variability into safety critical parts of the systems1.

Trustworthy variant derivation has two requirements. The first is verifying
the product line base model, the variability model and the configuration model
trying to identify and report errors introduced by the model designers. The
second requirement is verifying the product variant derivation tool to ensure
that the derivation process is implemented and executed correctly. While there
is a need for good verification methods for both input models and tools, most
of the research is focused on the former. The tools that implement variability
modeling and variant derivation are usually assumed to be correct. This is partly
because the tools employ complex algorithms and depend on external libraries
which makes it impossible to formally verify them. Nevertheless, qualification
is required for code manipulation tools (such as variant derivation) used in

1Personal communication with partners in ARTEMIS projects.

2

producing code influencing functional safety functions. Our goal is to provide
a non-intrusive way of verifying that the output of these tools is produced as
prescribed by the input models and to enable usable qualification strategies. We
achieve this through translation validation [11].

Translation validation recognizes that it might be too challenging to verify a
translator (originally a compiler; in our case a variant derivation tool). After
all, verifying a translator to be correct once for all, means verifying that it will
behave correctly on all possible inputs, which is usually an infinite set with
complex properties. In practice, a translator will never be run on the entire set,
but on a finite subset. Consequently, it seems wasteful to verify its correctness
once for all inputs. With translation validation we do not validate the translator
itself, but the output of each execution.

The approach is entirely automatic. Usually the translator is extended to
generate a formal proof of correctness of the output with respect to the input.
This proof is then checked automatically using an independent proof checker. In
the usual scenario, where no bug of translation is uncovered, both tools succeed
automatically. In the unlikely case of the translator failing to generate the proof
(due to a possible bug) or the proof checker reporting that the proof is incorrect,
the user can be warned about the error. This is less convenient than eliminating
errors altogether, but prevents the use of erroneous output in a critical system,
so the harm is avoided.

The main benefit of this validation method is that developing a translation
validator is much simpler than verifying the entire translator. Even a simple
variant derivation tool, as discussed in this paper, relies on a number of complex
frameworks and libraries (Eclipse Modeling Framework, XML libraries, standard
libraries of the programming language, the programming language itself, etc).
Building a formal model of all these elements is unbelievably laborious, whereas
translation validation only requires providing a semantic based argument that
the output structure is correct with respect to the input structure, independently
of how complex the frameworks used in the process are. Thus we believe that
translation validation is a viable way of increasing trustworthiness of commercial
software tools. In the paper we demonstrate how translation validation can be
implemented for variant derivation as an add-on, with minimal changes to the
implementation of the tool performing variant derivation.

The translation validation approach is independent of the actual implemen-
tation. What it does require is: (i) a common semantic framework for both the
input and the output; (ii) a formalization of the notion of correct execution (iii)
a proof method which, based on the input, allows to automatically verify that
the output is correct.

Contributions. In this paper we realize the translation validation approach for
an abstract variability modeling language, that is able to capture abstractions of
executions of many of the above mentioned modeling notations, in particular of
those that subscribe to a separate variability perspective (although the translation
validation method in itself does not require separate specification of variability,
this is how we scope our demonstration). Our contributions are:

3

• A core language for separate variability modeling, Featherweight VML,
along with an abstract semantics, which is as expressive and versatile as
other existing variability modeling languages. We will use it to represent
abstractions of concrete variability models.

• A formal specification of semantics of Featherweight VML, a prerequisite
for building a translation validation tool. This captures semantics of
relations between features with cardinalities [12] and the base model by
copying and flattening the variability model. We also provide a copying
semantics for the variant derivation process. We define two simple rules for
determining which model elements are part of the desired product variant.
Compared to in-place model transformations, a copying semantics can
more easily be implemented in declarative rule-based model transformation
languages and it is easier to reason about using theorem provers. To the
best of our knowledge, variability models including both cardinality-based
feature modeling and a mapping to implementation artifacts have not been
formalized so far.

• A confluence result for our semantics: while other approaches to defining
semantics of separate variability modeling languages suggest an implementa-
tion by in-place transformations (which makes the order of transformations
critical) our rules always produce the same result, independently of the or-
der in which they are applied. Incidentally, this opens for new opportunities
to implement variant derivation tools using graph transformations.

• An embedding of the above definitions into the semantic framework of the
Coq theorem prover, including a formal mechanically checkable proof of
correctness of the embedding.

• A proof of concept translation validation tool for Featherweight VML using
the above embedding. Our translation validation strategy is black-box, so
it does not require modification of an existing variant derivation tool (in
our case a custom in-house tool based on the Eclipse Modeling Framework).

Due to use of the abstraction, our method does not require meticulous
formalizations of all the aspects of the variability modeling. The approach allows
incremental development. In our demonstration, we instantiate the idea only for
connectivity properties of the base model, which keeps the development cost low.
If more properties need to be tracked they can be added in subsequent iterations
by enriching Featherweight VML and the abstractions.

The paper proceeds as follows. Section 2 provides an analysis of different
variability modeling languages in order to determine the core requirements. It also
introduces an example of a software product line. Section 3 presents our approach
to translation validation. Section 4.1 introduces a minimal representation of base
models as graphs. Sections 4.2 and 4.3 describe the formal syntax and semantics
of Featherweight VML. Section 5 contains the implementation of Featherweight
VML in Coq and describes the validation of a black-box demo tool. We discuss

4

Figure 1: Example base model for a product line of devices

the advantages and limitations of translation validation and also the related
work in Sec. 6 and we conclude in Sec. 7.

2. Core Requirements for Variability Modeling

In order to develop a generic method for validating the correctness of variant
derivation tools, we require a versatile foundation for variability modeling. To
this end, we compare CVL, Delta Modeling and OVM, aiming to find similarities
in the way these languages represent and execute variability models over system
models. The results help us setting a foundation for defining the syntax and
semantics of Featherweight VML. Later we will use Featherweight VML to
represent abstractions of variability models during their executions.

2.1. A running example
In Fig. 1 we introduce an example of a product line architecture from which

several product variants can be derived. This example will help illustrate the
characteristics of OVM, Delta Modeling, CVL and Featherweight VML.

Our system represents a safety critical monitoring device. A minimal product
variant is composed of the deviceCpu, the sensor and one of the possible outputs.
The deviceCpu receives raw input from the sensor and relays the data as comma-
separated values (csv) to the dualOutput to which the sensor also sends the raw
data.

Alternatively, sensor may output raw data directly to a log as represented by
the gray link out. Yet another possibility is for the deviceCpu to send csv data to
a data output which serves as input for an actuatorCpu. As an extra check, the
actuatorCpu may compare the raw data with validated input from a validator.

Usually modeling tools require that all elements are contained in an object
representing the model root. To keep figures and explanations simple, we ignore
the root object in our examples.

2.2. Overview of Variability Modeling Languages
The Orthogonal Variability Model. OVM [5] is designed to handle variability
between products. It leaves aside the common parts. It uses variation points to
specify which characteristics can vary (e.g. color) and variants to specify how

5

they vary (e.g. red, blue etc.). Dependency relations between the variation points
and variants limit the set of valid configurations. All artifacts are contained in a
single model. Both variation points and variants are mapped directly to these
artifacts so the solution space does not involve complex transformations. When
a configuration is selected (the desired variants are selected for each variation
point) the variability model is executed by extracting only the artifacts that the
configuration refers to.

In our example, the deviceCpu and the sensor are part of all possible products,
thus they do not make the object of the OVM. Instead they are included in all
products by default. A variation point VP 1 is needed to specify that the output
of the system can vary. This variation point has three variants: V1 is realized
by the dualOutput, V2 is realized by the log and V3 is realized by the data and
actuatorCpu objects together. Since having both a dualOutput and a log or data
output is redundant, we can make the variant pair (V1, V2) as well as (V1, V3)
mutually exclusive.

Another variation point VP 2 specifies that the validator object can vary by
having a single optional variant. VP 2 would be dependent of the selection of the
variant V3 for VP 1 since the existence of the validator only makes sense if the
data and actuatorCPU are also included in the product. For brevity, we have
omitted to show how the variants are referring to the links in the base model
(i.e. out, rawinput, rawdata, validinput). Nonetheless, the OVM variants should
refer to all artifacts that must be included in the final products.

Delta Modeling. In Delta Modeling [6], a product line is represented by a core
module and a set of delta modules. The core module provides an implementation
of a valid product that can be developed with well-established single application
engineering techniques. Delta modules specify changes to be applied to the
core module to implement further products by adding, modifying and removing
artifacts. Delta Modeling can use any flavour of feature model. Each delta
module has an application condition which the configuration must respect in
order for the delta to be executed. Delta Modeling can be applied to textual
languages, such as the HATS Abstract Behavioral Specification Language [13],
or graphical modeling languages, such as Matlab/Simulink [14]. Recently [15],
a method has been proposed to systematically deriving a delta language from
the grammar of a given base language. Even though Delta Modeling syntax is
highly adaptable to the language of the base model, its main concepts remain
the same regardless of the implementation.

Listing 1 shows how we can use Delta Modeling to handle the variability
in our example. It begins by specifying a list of features and a constraint for
valid configurations. The core and delta modules add and remove objects
and links. The core module adds the objects deviceCpu, sensor and dualOutput
identified by the object name. It also adds the rawinput link from deviceCpu
to sensor and the two out links from deviceCpu and sensor to dualOutput. It is
executed when the Dual feature is selected.

The rest of the delta modules add and remove objects and links to express the
alternative product variants. The delta DValidator is executed if both Actuator

6

and Validator features have been selected, but only after the execution of the
delta DActuator, as specified with the when and after clauses.

1 features Dual, Log, Actuator, Validator
2 configurations Dual ⊕(Log ∨ (Actuator ∨ (Actuator ∧ Validator)))
3
4 core Dual {
5 adds objects {deviceCpu, sensor , dualOutput}
6 adds links {deviceCpu.rawinput −> sensor, deviceCpu.out −> dualOutput,
7 sensor .out −> dualOutput}
8 }
9

10 delta DLog when Log {
11 removes objects {dualOutput}
12 removes links {deviceCpu.out −> dualOutput, sensor.out −> dualOutput}
13 adds objects {log}
14 adds links {sensor .out −> log}
15 }
16
17 delta DActuator when Actuator {
18 removes objects {dualOutput}
19 removes links {deviceCpu.out −> dualOutput, sensor.out −> dualOutput}
20 adds objects {data, actuatorCpu}
21 adds links {deviceCpu.out −> data, actuatorCpu.rawinput −> data}
22 }
23
24 delta DValidator when (Actuator ∧ Validator) after DActuator {
25 adds objects { validator }
26 adds links { validator .rawdata −> data, actuatorCpu.validinput −> validator}
27 }

Listing 1: Delta model of the device product line

The Common Variability Language. CVL [7] is an industrial attempt to create
a generic language that facilitates separate variability modeling for base models
specified in any MOF-based language [16]. It employs specialized features called
variability specifications which can be resolved in particular ways: choices require
a yes/no resolution; variables require a value for a specific artifact; classifiers
represent features that can be instantiated multiple times in a configuration
(similar to features with cardinalities [12]). CVL uses a constraint language to
specify constraints over the variability specification tree. Configurations are
represented as resolution models.

The variability specifications are realized by artifacts which can be manipu-
lated through a wide range of transformations called variation points2 Among
the most common variation points are object/link existence, object substitution

2CVL and OVM variation points are different concepts.

7

Figure 2: CVL model of the device product line

(with another object), link-end substitution (substitutes one endpoint with an-
other) or value assignment for object variables. However, most variation points
are syntactic sugar as they can be expressed using the fragment substitution.
This variation point can replace an entire fragment of the model with another
fragment (possibly defined in a separate library).

We illustrate this using our running example. We begin with a base model
shown in Fig. 2 where it is considered that the objects deviceCpu, sensor and
dualOutput and the links between them are included by default. Fragment
substitutions are used to specify additional transformations. A fragment sub-
stitution is similar to a delta module. It consists of a placement fragment
(surrounded by dashed lines) containing the elements that will be removed and
a replacement fragment (surrounded by solid lines) containing the elements that
will be inserted instead. CVL defines fragments by surrounding them with an
imaginary closed curve and placing boundary points whenever links cross the
curve. Boundary points are elements that fully define all references going in and
out of placement/replacement fragments.

Figure 3: A variability specification tree

To show that dualOutput must be re-
moved we require the boundary points pa
and pb pointing to the placement fragment.
The boundary point ra marks the entry to
the replacement fragment composed of the
log object. A binding between pa and ra
indicates that the link targeting dualOut-
put should target log. The actual elements
of a fragment are discovered by traversing
the model from the entry boundary points.
The fragments are fully discovered when
all connected elements have been reached (the direction of the links is ignored)
or when the traversal has been cut off by other boundary points. Traversing
the model from rb will retrieve the replacement fragment composed of data,
actuatorCpu and the link between them. The following fragment substitutions
specify the possible changes to the base model:

fs1{ placement{pa, pb} replacement{ra} binding{(pa, ra)} }

8

fs2{ placement{pa, pb} replacement{rb} binding{(pb, rb)} }

fs3{ placement{pc, pd} replacement{rc, rd} binding{(pc, rc), (pd, rd)} }

Finally, CVL organizes the features in a variability specification tree and
binds the fragment substitutions accordingly as shown in Fig. 3. In this example
the Actuator is a VClassifier meaning that fs2 can be executed multiple times to
obtain multiple actuators.

2.3. Comparative Analysis
Modeling the variations and the configurations is done for all three variability

modeling languages using some form of feature models or decision models.
OVM is closely related to decision modeling where each variation point is a
decision. CVL’s variability specification tree is an enhanced feature model with
cardinalities [12]. Delta modeling accepts any form of feature or decision model.

Featherweight VML employs feature trees and allows abstract features with
no implementation [17]. Also, by employing a constraint language we can define
any kind of dependencies between features.

The realization of features by artifacts is done in multiple ways. OVM
uses an annotative approach to mark which artifacts are implementing specific
decisions. Delta modeling uses a transformational approach to add, remove and
modify artifacts from the model. A delta module’s effects can span over the
implementation of multiple features so it is not restricted by the structure of
a feature tree. CVL variation points, especially the fragment substitution, can
define complex transformations. However, they are directly bound to variability
specifications so they are constrained by the tree structure. Featherweight VML
uses fragment substitutions exclusively. The other CVL variation points, delta
modules and of the OVM annotative technique can be reproduced by employing
fragment substitutions.

Product derivation requires a clear understanding of how to execute a vari-
ability model given a specific configuration. CVL defines how each kind of
variation point is executed. The variation points are partially ordered by the
resolution tree structure. However, execution is not confluent as two variation
points at the same level can have contradictory effects resulting in different
variants depending on the order. OVM uses a projection on the model artifacts
referenced by the selected variants. Delta Modeling executes each delta module
by adding, modifying and removing elements as specified by the modules. The
modules also specify a partial order using special clauses. The execution can
be made confluent by adding conflict resolving deltas for any pair of conflicting
deltas [18].

Orthogonality of variability modeling is the degree to which variability is
modeled as a separate concern [19]. CVL defines a clear distinction between
feature modeling (via a variability specification tree), and the model transforma-
tions over artifacts (via variation points). The variability model is completely
separate from the artifacts. OVM design is based on orthogonality. The arti-
facts can be anything from requirements to model elements or code fragments.

9

Delta Modeling can be applied to any language, textual and graphical alike.
Delta modules can use references to artifacts in a separate model to specify
what is added, removed and modified. Featherweight VML borrows the layered
architecture of CVL as it is general enough to be used with OVM and Delta
Modeling.

3. Verifying Execution Correctness through Translation Validation

3.1. Correctness Properties
Product variant derivation is a process which takes as input a feature model

over a base system model and a configuration of features. The output of the
derivation is also a system model which contains only some of the artifacts of
the input base model as specified by the configuration.

The correctness of a tool that implements variant derivation involves several
facets (similar to the correctness of a generic model transformation tool [20]):

• termination of the transformation algorithm;

• confluence of the transformation steps (e.g. rule applications, fragment
substitutions);

• obtaining the output model prescribed by the input.

The termination of the algorithm is essential to obtaining an output model.
However, from a functional safety perspective, non-termination of a variant
derivation tool is merely a nuisance for the developers of the product, but can’t
cause unsafe situations for the users of the product (since it is never created).
Thus, functional safety standards do not consider termination as a requirement
for tool qualification.

Non-confluent semantics introduces two problems. First, the product deriva-
tion process might be non-deterministic, leading to the possibility of obtaining
different outputs on separate executions with the same input. This lowers the
efficiency of testing in establishing functional safety. Second, the product deriva-
tion tool might be very sensitive to input such that, in spite of a deterministic
implementation, the non-confluence is resolved in ad hoc way, not clearly related
to input. This makes iterative quality improvement difficult, because small
changes to the input model may have unexpected effects on the output.

There are two ways of making a transformation language semantics confluent:
either by restricting the legal inputs so that there is no ambiguity (and providing
warnings for the users in the case of illegal inputs) or by weakening the semantics
in such a way that the non-confluence is hidden (for instance merging all possible
outputs). The latter approach can’t be used in product derivation, where a single
output is needed. Therefore, we follow the former method, ensuring confluence
by imposing constraints on the input model, thus eliminating all ambiguity of
the specifications and providing a deterministic way of producing a single output,
or an error message otherwise.

10

For product derivation, the confluence of the transformation algorithm can
be proven independently of any execution and it holds for all the inputs. It just
remains to be checked that the individual output models are consistent with the
abstract specification used in this proof.

Additionally to confluence, we also need to verify that the output is as
prescribed by the input,which is not a trivial task. This does not imply that the
output is correct with respect to any external metamodel. It simply requires that
all the specifications of the input model have been respected when producing
the output. The problem increases with the complexity of the algorithm, but
also with the size of the input. Instead of attempting to prove that the property
holds for all executions, we use translation validation to verify the property on
each individual resulting output.

Our goal is to verify these correctness properties which attest to the trustwor-
thiness of the derivation tool. They refer to the correctness of the tool itself as
opposed to the correctness of the output with respect to other external criteria.
To illustrate the difference, we will not verify:

• the conformance of the output model to a language syntax or metamodel;

• the correctness of the output by checking that satisfies any safety properties;

• the introduction of errors resulting from feature interactions.

All the latter properties have been extensively researched, while the correct-
ness of the tool has been largely assumed.

3.2. Translation Validation
Numerous tools exist for variability modeling with both commercial and

academic implementations (e.g. pure::variants3, BigLever’s Gears4, CVL5, Fea-
tureMapper6, Clafer7). These tools are often part of sophisticated integrated
development environments. The variant derivation process may use many com-
plex software components, making it very challenging to develop a formal proof
of the entire implementation. Even if such a proof could be developed, it would
have to be updated whenever the implementation is updated due to bug fixes or
addition of new features.

Translation validation [11] is a more pragmatic alternative to verifying trans-
lator tools (compilers, code generators). Instead of verifying that the tool always
produces correct results, we can verify that each result is correct and conforming
to the input only for the inputs on which the tool is actually run. The original
translation validation method [11] relies on several ingredients:

3http://www.pure-systems.com/pure_variants.49.0.html
4http://www.biglever.com/solution/product.html
5http://www.omgwiki.org/variability/doku.php
6http://featuremapper.org/
7http://www.clafer.org/

11

Figure 4: The translation validation process.

1. A common semantic framework for the representation of the source code
and the generated target code.

2. A formalization of the notion of correct implementation as a refinement
relation, based on the common semantic framework.

3. A proof method which allows to prove that one model of the semantic
framework, representing the produced target code, correctly implements
another model which represents the source.

4. Automation of the proof method, to be carried out by an analyzer which,
if successful, will also generate a proof script.

5. A rudimentary proof checker that examines the proof script produced by
the analyzer and provides the last confirmation for the correctness of the
translation.

We adapt the method to SPL variant derivation as illustrated in Fig. 4. The
variant derivation tool is considered a black box. It can be an implementation of
any variability modeling language. Its input is a variability model accompanied
by a particular configuration. Its output is the product variant model.

For the original translation validation method, a common semantic framework
for the representation of the input and output meant that a new semantic
framework would be needed for each different language specification. By using
Featherweight VML as the common semantic framework we can reuse the
same setup for validating any tool for any language that can be abstracted to
Featherweight VML. In Fig. 4 the abstraction is represented by the [lift]ing
arrows.

We formalize the notion of correct implementation by providing formal
semantics for Featherweight VML. We simulate the variant derivation via a
formal execution of the abstract input model in Coq. The simulation result is
then compared to the abstraction of the actual derivation result. If the two
results are equivalent (isomorphic models) then we can say that the product
variant model conforms to the input configuration. All this can be done by
implementing a simpler tool than the actual derivation tool.

12

The advantages of simulating the derivation on an abstract model are multiple.
The simulation tool can be reused to validate various production tools; the same
simulation tool could work for translation validation of both Featherweight VML
and CVL. While the actual tools depend on external libraries, the simulation tool
can be implemented stand-alone, without dependencies to unverifiable compoents.
Since the simulation is performed on abstractions of the models, the simulation
tool can cave a smaller source code and is easier to verify. While most production
tools are written in imperative languages, the simulation tool can be written
using declarative or functional languages for which it is easier to write proofs of
correctness.

We have implemented a simulation tool as a proof of concept (Sec. 5). We
used Coq8, an interactive theorem proving system implemented on top of a
functional language. We implemented Featherweight VML as total functions
which are shown to terminate. Then we developed theorems and proved that the
simulation executes correctly and is confluent, i.e. the semantics of Featherweight
VML is deterministic. Finally we can verify that the result of executing the
abstract input model is equivalent to the abstraction of the output model. This
approach has the advantage that we do not need to produce proof objects every
time we perform the validation. The simulation is verified only once and can be
reused on any lifted model. In the following sections we present the different
elements of the setup in detail.

4. Featherweight VML

Featherweight VML is designed as a core variability modeling language. It
is intended to provide a common framework to which languages such as CVL,
Delta Modeling and OVM can be reduced. It is a formally defined language
meant to offer a simple, unambiguous view of variability models and variant
derivation. Our aim is to use Featherweight VML as a foundation for applying
translation validation to variant derivation tools for actual languages (e.g. CVL,
Delta Modeling, OVM).

In order to cover the entire variant derivation process, Featherweight VML
must provide a syntax for abstracting base system models, a syntax for repre-
senting the variability specification and a semantics for variant derivation. While
other formal specifications for graph-like model representation and transforma-
tion exist [21, 22, 23, 24, 25], using a specialized language for variant derivation
has advantages not only from usability point of view, but also from a formal point
of view: it is much easier to do verification (hereunder translation validation) for
a tool that implements a concise formal language than for a big transformation
language (e.g. ATL [24]).

8http://coq.inria.fr/

13

4.1. Abstract Model Representation
Featherweight VML is designed to specify variability in models defined using

MOF-based metamodels, consisting of objects and relationships between them.
We represent models as multi-graphs of attribute-less, untyped objects connected
by directed links. We write O (respectively L) to denote the infinite universe of
all objects (resp. links). Both objects and links are discrete identifiable entities.
The links are equipped with endpoint mappings indicating source and target
objects: src l and tgt l, both total functions of type L → O. We assume that
the universe of links is complete, in the sense that it contains infinitely many
links with unique identities between any two objects in O.

Definition 1. A model m is a pair of sets of finitely many objects and finitely
many links, m = (mObj,mLnk),mObj ⊆ O,mLnk ⊆ L. A model fragment is
a subset of objects and links of a model, so syntactically it is also a pair
f = (fObj, fLnk).

Figure 5: A fragment

While models and model fragments are syntacti-
cally identical, semantically they are different. We use
the term model to refer to complete systems (i.e. the
base model and the product variant). Model fragments
represent components or incomplete pieces of models.
We use model fragments as interchangeable units in
the definition of fragment substitutions.

We say that a model (or a fragment) m is closed
under links (or simply closed) if for each link l ∈ mLnk its endpoints are contained
in the model, so src l, tgt l ∈ mObj.

Figure 5 illustrates a closed model fragment r1 = ({o1, o2, o3}, {l1, l2, l3}).
For the remainder of the paper we lift set operators to fragment operators, e.g.
f1⊆̇f2 means f1Obj ⊆ f2Obj ∧ f1Lnk ⊆ f2Lnk.

4.2. The Fragment Substitution Variation Point

Figure 6: a) A fragment substitution.
b) Fragment interaction.
c) The execution result.

We introduce the formal definition of
Featherweight VML in two steps: first we ex-
plain the execution of fragment substitutions,
then we define the entire variability model
relating feature models and fragment substi-
tutions.

Syntax of the fragment substitution. Fragment
r1 introduced in Fig. 5 represents a compo-
nent that can be customized by replacing o2
with a new object, o4. In Fig. 6a we define a
placement fragment, p1 (enclosed by a dashed
line), containing the elements that must be
removed from r1. We also define a new re-
placement fragment, r2 (enclosed by a solid

14

line), containing the elements that must be added. Finally, we create a new
link, l4 (represented by a gray arrow), that binds r2 to the rest of the model.
The placement and replacement fragments, p1 and r2, together with the new
link, l4, constitute a fragment substitution. Figure 6b shows how the fragment
substitution interacts with r1. After execution we obtain the result shown in
Fig. 6c. The link l3 was removed even though it was not part of the placement
fragment, in order to avoid dangling links.

Definition 2. A fragment substitution fs is a triple (p, r, b) where p is a place-
ment fragment containing all the elements that must be removed, r is the
replacement fragment and b is a set of new links called a binding. The placement
and replacement fragments are disjoint, p∩̇r = (∅, ∅).

Most variability modeling languages mark a model fragment to be copied
by default and form the common base of any product variant (e.g. the core
module in Delta Modeling). In order to keep the number of concepts low, in
Featherweight VML we use fragment substitutions to represent both the common
base and the subsequent changes applied to it. The example in Fig. 7a,b,c,d
illustrates a set of fragment substitutions. We assume that we start from an
empty model and fs1 has only a replacement fragment which introduces the
common base. The remaining substitutions perform further customization: fs2
and fs3 are removing the elements of p1 and attach two other fragments, r2
and r3. The substitution fs4 attaches a new fragment so its binding links have
endpoints in r3. Figure 7e represents the interactions between all fragment
substitutions in a single base model. Figure 7f represents the substitutions with
the Featherweight VML abstract syntax and Fig. 7g shows the final result.

The placement and replacement fragments are interchangeable units that
can be defined independently of any fragment substitution. They can be seen as
templates that can be reused. In Fig. 7f the placement fragment p1 is referenced
in both fs2 and fs3. Similarly, a replacement fragment can be reused in multiple
fragment substitutions. Binding links, on the other hand, are dependent of
a particular fragment substitution. They allow the reuse of placement and
replacement fragments by changing only the way they connect. This is optimal
in the cases where the fragments are large in the number of objects and links,
but they connect through a small number of links defined as bindings. In the
case when a fragment substitution is required to link objects that have been
introduced by previous substitutions, the replacement fragment may be empty
and the operation can be performed through binding links exclusively.

We require that for any fragment substitution fs = (p, r, b), the binding links
are not incident with placement objects, ∀l ∈ b(src l ∪ tgt l) ∩ pObj = ∅. All
such links would be removed as dangling since their endpoints belonging to a
placement would be removed. Binding links can only be incident with objects
from the replacement fragment and boundary objects, defined as follows:

Definition 3. The boundary of a fragment substitution fs = (p, r, b) is the set
of all endpoints of binding links that are not part of the replacement fragment:
boundary fs = {o | o = src l ∨ o = tgt l, l ∈ b} \ rObj.

15

Figure 7: a,b,c,d) A set of fragment substitutions. e) Interactions between fragment substitu-
tions. f) Syntactic representation. g) The execution result.

In Fig. 7 we have boundary fs2 = {o1}, boundary fs3 = {o3} and boundary fs4 =
{o5, o6}. In Sec. 4.3 we will need to identify all artifacts that a fragment
substitution affects outside of its own replacement fragment. These are the
artifacts in the placement fragment and the boundary objects used by the
binding links.

Definition 4. Given a fragment substitution fs = (p, r, b), the closure of the
placement fragment p, written dpefs, is defined as all objects of p plus the
boundary of the fragment substitution; the set of links remains unchanged:
dpefs = (pObj ∪ boundary fs, pLnk).

In Fig. 7, dpefs2 = ({o1, o2}, {l2}), dpefs3 = ({o2, o3}, {l2}) and dpefs4 =
({o5, o6}, ∅). Substitutions fs2 and fs3 have different placement closures even if
they refer to the same placement fragment. This is because the binding links
differ.

Execution semantics of the fragment substitution. The example in Fig.7 gave the
intuition of the fragment substitution execution process. Instead of performing
in-place changes to the base model, we propose a copying semantics, meaning
that we decide for each object/link whether it should be part of the product
variant and we copy only those for which we decide positively.

Given a set of fragment substitutions, Fs, we will copy all replacement
fragments and all binding links. However, we know that what is contained by
placement fragments should be removed and replaced so we will not copy these
elements. We will not copy links that are incident with placement fragments
either. The result JFsK of executing a set of fragment substitutions Fs is called a
product variant model; it is a pair of sets of objects/links. The following rules
precisely describe which objects and links are copied in JFsK:

16

o ∈ (
⋃

(_,r,_)∈Fs rObj)

o /∈ (
⋃

(p,_,_)∈Fs pObj)

o ∈ JFsKObj
(obj-copy)

l ∈ (
⋃

(_,r,b)∈Fs rLnk ∪ b)

l /∈ (
⋃

(p,_,_)∈Fs pLnk)

src l, tgt l /∈
⋃

(p,_,_)∈Fs pObj

l ∈ JFsKLnk
(lnk-copy)

The obj-copy rule says that any object contained in a replacement fragment
of a fragment substitution in Fs will be copied as long as it is not contained in
any placement fragment. The lnk-copy rule says that any link that is contained
in a replacement fragment or in a binding set of a fragment substitution in
Fs will be copied as long as the link or its endpoints are not contained in any
placement fragment. The rules are applied exhaustively for all objects and links
in all fragments and bindings in the set of fragment substitutions. The complete
input model is illustrated in Fig. 7e. Even though individual fragments do not
have to be closed under links (see page 14), the complete input model may be
closed. Lemma 1 ensures that applying the rules to a closed input model results
in a product variant model without any dangling links.

Lemma 1. Given a set of fragment substitutions Fs such that the union of all
placement fragments, replacement fragments and bindings is a closed model, the
product variant model JFsK is also closed under links.

Proof. (Sketch) By assumption, the union of all objects and links is a closed
graph, so for every link that might be copied, the graph also contains its endpoints.
Then we notice that the premise of (lnk-copy) is that neither the source or the
target of the link being copied are contained in a placement fragment. Thus it
is guaranteed that for any link that is being copied, both link ends will also be
copied.

Lemma 2. Given a set of fragment substitutions, there exists a unique product
variant model created by the above rules.

The lemma holds by construction: objects and links are deterministically
selected from a finite set. It follows from the Lemma 2 that the execution of
fragment substitution sets is order independent (in other words the semantics is
confluent), which opens for various implementation strategies.

4.3. The Variability Model
We have shown how to execute a set of fragment substitutions, Fs , to obtain

a product variant model. In a normal scenario, we would like Fs to describe
multiple variants and to be able to select only those fragment substitutions
that describe a specific product variant before executing them. We would also
like to be able to execute a fragment substitution multiple times and to use a
configuration to specify how many copies of the replacement fragment to include
in the product variant.

17

Figure 8: a) A variability model. b) A configuration and a
flattened set of fragment substitutions.

Figure 8a illustrates a
variability model where
each fragment substitu-
tion, fs1..4, is mapped to
a feature, ft1..4, from a
feature tree. Each fea-
ture displays a cardinality
constraint for how many
instances are allowed for
that feature under a single
parent. In Fig. 8b the fea-
tures are instantiated in
a configuration tree. The
root feature has one root instance, feature ft2 is not instantiated and ft3 is
instantiated twice, meaning that its fragment substitutions should be executed
twice. Feature ft4 is only instantiated as a child of i2.

Section 4.2 does not handle multiple execution of fragment substitutions.
Instead we will show how to flatten the model and the chosen configuration in
a set of fragment substitutions that contains as many copies of each fragment
substitution as there are instances of its feature. Flattening the model in our
example would result in a set containing two copies of fs3, but no copies for fs2.

Syntax of the variability model
A feature model defines all characteristics that can be activated in a product

variant. Some characteristics may occur multiple times in a product variant
(e.g. the number of USB ports on a computer). For this reason, a feature in
Featherweight VML is similar to a type that can be instantiated multiple times
in the product variant so our features have cardinality [12].

Definition 5. A feature model is a rooted directed tree of features, Fm =
(Ft, ft0, parent), where Ft is a set of features, parent ⊆ Ft × Ft is a connected
acyclic parent relation with no sharing (a tree), and ft0∈Ft is the root of the
tree. We write parent ft2 = ft1, if feature ft1 is a parent node of ft2 in Fm.

Each feature ft has an associated cardinality constraint card ft = (min ft,max ft),
where min ft,max ft ∈ N∪{∗}, min ft ≤ max ft (the symbol ∗ is considered greater
than any natural).

A set of fragment substitutions and the feature model that controls which
combinations of fragment substitutions can be executed together constitute a
complete variability model.

Definition 6. A variability model is a triple, (Fs,Fm,mapping), where Fs is
a set of fragment substitutions, Fm = (Ft, ft0, parent) is a feature model and
mapping : Fs→ Fm maps each fragment substitution to a feature.

A configuration represents a combination of features that are active in a
product variant.

18

Definition 7. Given a feature model Fm = (Ft, ft0, parent), a configuration is
a rooted tree Cfg = (I, i0, parent , ty), where I is a finite set of instances, i0 ∈ I
is the root of the tree, parent ⊆ I × I is a connected acyclic parent relation with
no sharing (a tree). The typing mapping ty : I → Fm maps every instance to
its feature, in a manner preserving the parent relations:

i. The root instance is typed by the root feature: ty i0 = ft0,

ii. The children of an instance are typed by children of its type: for instances i,
j, if parent i = j then parent (ty i) = ty j.

iii. The feature cardinality constraints are satisfied, so for each instance j ∈ I
and feature ft ∈ Ft, if parent ft = ty j then

minft ≤ |{i ∈ I | parent i = j and ty i = ft }| ≤ maxft

Before moving on to the execution semantics we give a set of well-formedness
constraints that guarantee that the flattening of variability models produces
unique sets of fragment substitutions that can be executed with the rules intro-
duced in Sec. 4.2.

C 1. The mapping of fragment substitutions to features is injective. Any two
fragment substitutions, fsi = (pi, ri, bi) and fsj = (pj , rj , bj), that should be
mapped to the same feature can be merged into a single fragment substitution,
fsn = (pi∪̇pj , ri∪̇rj , bi ∪ bj).

Constraint 1 helps simplifying the following constraints and the semantics. It
does not limit the expressive power of Featherweight VML. If fsi and fsj should
anyway be mapped to the same feature then they should be executed together
for each instance of that feature. Thus, requiring that they should be combined
into one fragment substitution does not change their effect.

It is not required that every feature has a substitution mapped to it. The
inverse mapping−1 : Ft→ [Fs ∪ {⊥}] returns the fragment substitution mapped
to a feature or ⊥ if such a fragment substitution does not exist.

C 2. All replacement fragments are closed under links. This constraint enforces
that for any link cloned during flattening, its endpoints are also cloned and all
the clones will be consistent with the original fragment.

Figure 9: The replacement fragment problem.

Figure 9 illustrates the re-
placement fragment problem
fixed by constraint 2. Assume
we have two replacement frag-
ments r1 and r2 such that a
link form r2 has an endpoint
in r1. Each fragment is used
in a fragment substitution and
each substitution is mapped to a different feature. If we instantiate r1 three

19

times—resulting in fragments ri, rj and rk being inserted in the product variant—
and we instantiate r2 two times—resulting in fragments rm and rn—then there
is no clear intuition about which of the new objects should be used as endpoints
for the new links. In fact, we could even instantiate the links, but not their
endpoints.

When a fragment substitution fsi is instantiated, product line developers
intuitively assume that the artifacts of the placement fragment (provided that
the fragment is not empty) have already been introduced in the output by the
instantiation of another fragment substitution, fsj . The execution order of these
two fragment substitutions is influencing the confluence of the derivation process
because fsi removes and fsj adds the same artifacts. Featherweight VML is
addressing the confluence issue by enforcing constraints on the input variability
models.

We recall that the closure of the placement fragment dpefsi of a fragment
substitution fsi = (pi, ri, bi) is composed of (i) all the artifacts that will be
removed as being part of the placement fragment pi extended with (ii) all the
objects that are endpoints of binding links, but are not newly added by the
replacement fragment ri: dpefsi = (piObj ∪ boundary fsi, piLnk). More concisely,
the placement closure of a fragment substitution is composed of all the artifacts
that are removed or otherwise affected, but are now newly added by the fragment
substitution itself. If the placement closure dpefsi is not empty and there exists
one and only one other fragment substitution fsj = (pj , rj , bj) such that the
artifacts of dpefsi are added by fsj (formally dpefsi⊆̇rj) we say that fsi applies to
fsj and we write fsi @ fsj .

C 3. All artifacts that are removed or affected in any way by any fragment
substitution, must be added by a different fragment substitution. For any fragment
substitution fsi ∈ Fs for which the placement closure is not empty, dpefsi ˙6=(∅, ∅),
there must exist another fragment substitution fsj ∈ Fs such that fsi applies to
fsj, fsi @ fsj.

Constraint 3 does not in its own enforce the confluence of the semantics. We
also need to enforce that if fragment substitution fsi applies to fsj , then fsj is
executed first. This is to guarantee that the artifacts are added before removing
them or binding to them. Furthermore, in the case that multiple clones are
required for both fragment substitutions, the way in which the clones are created
must be consistent with the structure of the feature model.

C 4. The structure enforced by the application, @, of fragment substitutions is
consistent with the feature model: if fsi @ fsj then mapping fsj ∈ parent ∗(mapping fsi),
so if one fragment substitution applies to another, then it is mapped to a feature
in the subtree rooted by the feature of the other. Function parent ∗ is the reflexive
transitive closure of parent .

All constraints must be verified against the input variability model to ensure
that an output can be derived deterministically from the variability specification.
Once the variability model is flattened, the cloning and renaming of fragment

20

substitutions and artifacts eliminates the dependency on the structure of the
feature model. After flattening, the execution order of the fragment substitutions
does not affect the output product variant model.

Execution semantics of the variability model

Figure 10: Illustration of the flattening process: a) before, b) after

In Fig. 10 we
recall the frag-
ment substitutions
of Fig. 8. On the
left side we have
the detailed con-
tents of the initial
four fragment sub-
stitutions. On the
right side we have
the flattened set.
The configuration
does not contain
an instance for
ft2 so fs2 is not
copied. The substitution fs3 must be executed two times—once for the in-
stance i2 and once for i3. Since the semantics presented in Sec. 4.2 only execute
each substitution once, we flatten the model by computing how many times each
fragment substitution should be executed and cloning it the appropriate amount
of times (carefully updating references).

The semantics is presented as follows: first we introduce functions for copying
and renaming basic entities—objects and links. Second, we lift these functions
to sets of objects/links, to base model fragments and to fragment substitutions.
Third, we explain the flattening of variability models and configurations. We
conclude the semantics with a theorem of confluence.

The renaming of objects and links is needed because multiple clones of the
same artifact can occur in the same product variant. In the case of a variability
model where each feature can only be instantiated once, the renaming is not
necessary.

Preliminaries: Copying and renaming basic entities.
Given a variability model, (Fs,Fm,mapping), we use the sets O and L to

reference all artifacts contained in this model, O =
⋃

(p,r,b)∈Fs [pObj ∪ rObj] and
L =

⋃
(p,r,b)∈Fs [pLnk ∪ rLnk ∪ b].

Given a configuration Cfg = (I, i0, parent , ty) we use the set I of instances as
an index for renaming artifacts. Since the product variant model may end up
containing several copies of the same artifacts, we will need to create fresh objects
and links, and then be able to refer to them unambiguously. We model this
using two injective functions new-obj and new-lnk that create new objects/links

21

for any given feature instance.

new-obj : I ×O → O \O new-lnk : (I × I)× L→ L \ L

We write the first argument in all renaming functions as an index to make the
notation more lightweight. Intuitively, the first argument represents an ordinal
index of the copy, whereas the second argument is the entity being copied.

We require that the two functions map to an isomorphic graph structure, so
they are injective and for every pair of feature instances i, j (possibly but not
necessarily, i = j) and any link l we have that: src (new-lnki,j l) = new-obji(src l)
and tgt (new-lnki,j l) = new-objj(tgt l).

For every instance-object pair we get a different new object, which was not
in O. Similarly, for every instance pair (i, j) and a link we get a link, which was
not in L, connecting copies of the objects related with new-obji and new-objj .

We lift the two functions to rename (create) entire sets of objects and links:

new-Obj : I × 2O → 2O\O, where new-ObjiO
′ = {new-objio | o ∈ O′} and

new-Lnk : (I × I)× 2L → 2L\L, where new-Lnki,jL′ = {new-lnki,j l | l ∈ L′}.

Such renaming functions always exist due to our assumption that the universes
of objects and links are complete and infinite and we can always obtain a new
link between any two objects.

Copying fragments and bindings. We will now explain how to copy a fragment
substitution such that all its clones (each clone implementing a different instance)
are independent of each other. We lift the simple renaming functions shown
above to fragments:

new-frgi(O
′, L′) = (new-ObjiO

′, new-Lnki,iL′).

In our example we copy the fragment r3 for the instances i2 and i3:
new-frg2({o5, o6}, {l5}) = (new-Obj2{o5, o6}, new-Lnk2,2{l5}) = ({o14, o15}, {l14}),
new-frg3({o5, o6}, {l5}) = (new-Obj3{o5, o6}, new-Lnk3,3{l5}) = ({o16, o17}, {l16}).

Renaming bindings is more complex—the endpoints may be renamed dif-
ferently, according to which fragment they belong to. We formalize binding
renaming to take as parameter two disjoint sets of objects. We apply i-renaming
if an endpoint is in the first set, and j-renaming if the endpoint is in the other
set:

new-bdgi,j(O1, O2, L) = {new-lnkns(src l),ns(tgt l)l | l ∈ L},

where ns is a function mapping objects to name spaces (instances), depending
on which replacement they belong to; ns o returns i if o ∈ O1 and it returns j
if o ∈ O2. In our example we want to copy the binding links l7 and l8. The ns
function allows us to copy the source of l7 and target of l8 with the appropriate
instance i2: new-bdg4,2({o7}, {o5, o6}, {l7, l8}) = {new-lnk2,4l7, new-lnk4,2l8} =
{l18, l19}.

22

Finally, we lift the renaming functions to entire fragment substitutions:

new-fsi,j(p, r, b)Oj =
(
new-frgjp, new-frgir, new-bdgi,j (rObj, Oj , b)

)
.

Intuitively, if objects are in set Oj then they should be renamed using the
j-indexed renaming functions. It they are in the replacement of the fragment
substitution then the i-indexed renaming functions apply. The set Oj will be
provided in the semantics according to the context, and it should always be
disjoint from objects of the replacement rObj.

In our example copying fs3 for i2 is done by copying p1 for i1, r3 for i2 and
the binding link has its source copied for i1 and its target for i2:
new-fs2,1(p1, r3, {l6}) r1 =

(
new-frg1p1, new-frg2r3, new-bdg2,1 ({o5, o6}, r1, {l6})

)
.

Flattening variability models and configurations. By constraint 1 we know
that there can be only one fragment substitution mapped to any feature, but it is
not required that every feature has a substitution mapped to it. Each feature can
be instantiated multiple times in which case the fragment substitution mapped to
it (if it exists) is executed multiple times (once per instance). We compute how
many times each substitution should be executed and clone it the appropriate
amount of times (carefully updating references). This will produce a flat set of
fragment substitutions that can be executed using the rules of Sec. 4.2.

The flattening of a variability model M with respect to a configuration Cfg
is a set of fragment substitutions, denoted below as JM,CfgK. Flattening moves
all the necessary information from the feature model and from the fragment
substitutions to a new set of fragment substitutions. After this, the features and
their instances can be disregarded.

Given a variability model M = (Fs,Fm,mapping) and a configuration Cfg ,
mapping−1(ty i) returns the fragment substitution that has to be executed in
the context of an instance i or ⊥ if there is no such substitution.

There are three cases to consider when flattening the model. In the first
case, instances of features that have no substitutions mapped to them are
ignored by the semantics. In the second case, instances of features that have
substitutions with empty placement closures such that they do not apply to any
other substitution are copied with the following rule:

i ∈ Cfg mapping−1(ty i) = fsi dpefsi = (∅, ∅)
new-fsi,_ fsi ∅ ∈ JM,CfgK

(copy-indep)

Since the placement fragment is empty and the binding links endpoints
can only be objects of the replacement fragment itself, binding links can be
appropriately cloned by using just the instance i, by new-fs.

In the third case, instances of features that have substitutions which apply
to other substitutions are copied with the following rule:

i, j∈Cfg mapping−1(ty i) = fsi mapping−1(ty j) = fsj fsi @ fsj
fsi=(pi, ri, bi) fsj = (_, rj ,_) j∈parent ∗i

new-fsi,j fsi rj ∈ JM,CfgK
(copy)

23

The intended meaning of copy is that we copy the replacement fragment
using the instance i, the placement with the instance j and the binding links with
a combination of the two. We use rj , the replacement fragment of fsj to state that
a binding link endpoint can either be in the ri or rj . By constraint 1 we know
that for any pair of instances i and j, mapping−1(ty i) and mapping−1(ty j) are
uniquely determined (if they exist), thus the rule can be applied deterministically.

In our example we know that i2, i1 ∈ Cfg, mapping−1(ty i2) = fs3 and
mapping−1(ty i1) = fs1, fs3 @ fs1 and i1∈parent ∗i2, therefore we copy fs3 in the
flattened set: new-fs2,1(p1, r3, {l6}) r1 ∈ JM,CfgK.

Lemma 3. For a well-formed variability model M and a valid configuration
Cfg, the above rules define a unique well-formed set of fragment substitutions
JM,CfgK.

The well-formedness of the output follows from the isomorphism of all renam-
ing operations (all functions are injective and preserve links)—all non-overlapping
conditions of well-formedness are thus transferred from the input set of fragment
substitutions.

Theorem 1. Given a well-formed variability model M and a valid configuration
Cfg the result of executing the model is unique, and given by JM,CfgK, and
consequently the above formulation of the semantics is confluent.

The well-formedness constraints (C 1,2,3,4) ensure that the flattening input
set of fragment substitutions form a closed union of fragments. Lemma 3 ensures
that the output of the flattening is a unique set of substitutions forming a closed
union of fragments. Lemma 3 ensures that copying process results in a closed
product variant model and Lemma 2 ensures that the result is unique regardless
of the ordering of the input objects and links.

5. Translation validation for Featherweight VML

As proof of concept we implemented the translation validation mechanism
for the execution of a fragment substitution set9. This covers the syntax and
semantics presented in Sec. 4.2.

As we explained in Sec. 3, translation validation has several requirements.
We present the common semantic framework for the input and output as the
implementation of Featherweight VML in Coq in Sec. 5.1. A formalization of
the notion of correct implementation and the simulation of product derivation in
Sec. 5.2. An automatic proof generator and a proof checker are also required to
perform the validation. These are fundamental features of Coq and we explain
how we use them in Sec. 5.3. Then we describe Micro CVL, a variant derivation
tool developed using the Eclipse Modeling Framework (EMF)10 that works on

9https://github.com/afla/FeatherweightVML_Coq
10http://www.eclipse.org/modeling/emf/

24

Ecore models in Sec. 5.4. Finally we describe how to lift the input and output
of Micro CVL to Coq abstractions and validate the derivation in Sec. 5.5.

5.1. Fragment substitution syntax in Coq
Listing 2 shows the core syntax of abstract models and fragment substitutions.

In Featherweight VML objects and links are discrete identifiable entities. We use
the predefined set of natural numbers (nat) as identifiers. To define new types we
can either use the Definition keyword to rename existing types or the Inductive
keyword to specify how new types can be created by composing existing ones.
Line 1 defines objects to be simple identifiers without any additional properties.
Line 2 defines a type for sets of objects by reusing the predefined parametrized
type list. This definition does not enforce that ObjectSets are actually sets, as
lists are ordered and can contain the same element multiple times. We will later
define properties to enforce this. Line 4 defines the Link type. The constructor,
link, takes a nat identifier and two Objects, representing the source and the target
of a Link. Line 6 sets up a concise infix notation for links. Similarly a Graph is a
pair of sets of objects and links (line 8). For the Model and Fragment types we
simply reuse the abstract type Graph, reflecting the syntax defined in Sec. 4.1.
The FragSubst type of fragment substitutions combines two fragments and a set
of links (line 13), the placement, replacement and binding as in Def. 2.

1 Definition Object := nat.
2 Definition ObjectSet := list Object.
3
4 Inductive Link := link : nat −> Object −> Object −> Link.
5 Definition LinkSet := list Link.
6 Notation "id ¤ src −−> tgt" := (link id src tgt) (at level 66).
7
8 Inductive Graph := graph : ObjectSet −> LinkSet −> Graph.
9 Notation "gObj ∗∗ gLnk" := (graph gObj gLnk) (at level 64).

10 Definition Model := Graph.
11 Definition Fragment := Graph.
12
13 Inductive FragSubst :=
14 fragsubst : Fragment −> Fragment −> LinkSet −> FragSubst.
15 Notation "p ,. r ., b" := (fragsubst p r b) (at level 65).
16 Definition FragSubstSet := list FragSubst.

Listing 2: Abstract syntax of Featherweight VML in Coq.

Featherweight VML relies heavily on set theory. When we encoded Feath-
erweight VML in Coq we also implemented the basic properties, relations and
operations of set theory. All the properties and relations are decidable and
Coq can automatically compute whether they hold for any concrete sets or set
elements. For example, Listing 3 shows the SetContainsObject property which
tests whether a set contains a particular Object. In Coq, properties are a special
kind of inductive types. The constructor SetContainsObject_h specifies the base
case when the Object is accessible as the head of the list, while the constructor

25

SetContainsObject_t specifies the inductive case when the Object is contained in
the tail of the list.

In order to prove that an actual ObjectSet contains a specific Object, so that
property SetContainsObject holds for them, we would have to manually build
a proof object, establishing SetContainsObject, by repeatedly applying the two
constructors. Instead, we demonstrate that the property is decidable and provide
Coq with the means to automatically check the property for any input. Lines 6
and 7 define SetContainsObject_dec, a decidable type that holds both the fact
that an ObjectSet contains a specific Object or not and the proof object. The
notation on line 7 indicates a left constructor for the positive evaluation of the
property and a right constructor for the negative evaluation.

At this point we can use Coq as an automatic proof generator. Lines 9 to 16
define setContainsObject, a theorem refined as a fixpoint that calculates the proof
object. The fixpoint iterates through the ObjectSet and if it manages to build
a complete proof object it returns the left constructor of the decidable type
SetContainsObject_dec. Otherwise it calls the right constructor. Lines 17 to 21
represent the proof that the fixpoint is correct. Executing setContainsObject on
an actual ObjectSet and an actual Object allows Coq to generate the proof for
that particular case. This approach is much easier and scales very well compared
to generating proofs for large models from outside Coq. It is also more reliable
and can be performed automatically on any input. In a similar way we have
proven that all our other properties are decidable and computable by Coq.

1 Inductive SetContainsObject : ObjectSet −> Object −> Prop :=
2 | SetContainsObject_h : forall o t , SetContainsObject (o :: t) o
3 | SetContainsObject_t : forall o h t ,
4 SetContainsObject t o −> SetContainsObject (h::t) o.
5
6 Definition SetContainsObject_dec (s : ObjectSet) (o : Object) :=
7 { SetContainsObject s o } + { ∼SetContainsObject s o }.
8
9 Definition setContainsObject : forall s o, SetContainsObject_dec s o.

10 refine (fix setContainsObject s o: SetContainsObject_dec s o :=
11 match s with
12 | [] => right _
13 | h :: t => if eq_nat_dec h o
14 then left _
15 else if setContainsObject t o then left _ else right _
16 end).
17 Proof.
18 unfold not. intro . inversion H. rewrite _H. apply SetContainsObject_h.
19 apply SetContainsObject_t. apply _H0. unfold not. intro . inversion H.
20 apply _H. apply H0. unfold not in _H0. apply _H0. apply H3.
21 Defined.

Listing 3: A set membership property along with a function that computes the property for
any ObjectSet and Object.

The equality property differs for most types. In Featherweight VML two

26

objects are equal if their identifiers are equal. The same is true for links, so in
Coq we use the property LinkEqualId to test that 3¤6–>8 and 3¤1–>4 are equal
and cannot be contained in the same LinkSet. However, the same link identifier
can occur in multiple link sets, or model fragments, or fragment substitutions.
We must check that the source and target objects are the same in all occurrences
of the link. We call this property link consistency. We do this by defining a
series of link consistency properties which can be checked for any two structures
that contain links.

Sets of any type are equal if they contain the same elements. For graphs (i.e.
models and fragments) equality is verified pair-wise on the object and link sets.
Fragment substitutions are equal if the placement/replacement fragments and
bindings are equal respectively.

5.2. Fragment substitution semantics in Coq
Before we could encode the two copying rules, obj-copy and lnk-copy

(Sec. 4.2), we had to implement some helper functions that, given a set of fragment
substitutions, extract the following sets: all placement objects, all placement links,
all replacement objects/links, all binding links and all objects/links throughout
the entire fragment substitution set. For example, Lst. 4 shows a function
that computes the set of all placement objects from all placement fragments
of the fragment substitution set fss. We then verify that it executes correctly
by proving the theorem PlacementObjectsExecutes which states that for any
fragment substitution (pObj**pLnk,.r.,b) contained by fss, it is implied that
pObj will be a subset of the complete set of placement objects. Theorem
PlacementObjectsOfEqualFss states that any two fragment substitution sets that
are equal (i.e. contain the same elements but possibly in different orders) contain
the same placement objects. The theorems have a double role: first, they are
improving the quality of the translation validator by having extra checks of the
execution and second, they are used in proving larger theorems. We provide
similar theorems for all executable functions.

1 Fixpoint placementObjects (fss : FragSubstSet) : ObjectSet :=
2 match fss with
3 | [] => []
4 | (pObj∗∗pLnk,.r .,bdg):: t => objectSetUnion pObj (placementObjects t)
5 end.
6
7 Theorem PlacementObjectsExecutes : forall fss pObj pLnk r b,
8 SetContainsFragSubst fss (pObj∗∗pLnk,.r .,b)
9 −> ObjectSubset pObj (placementObjects fss).

10
11 Theorem PlacementObjectsOfEqualFss : forall fss1 fss2 ,
12 FragSubstSetEqual fss1 fss2 −>
13 ObjectSetEqual(placementObjects fss1)(placementObjects fss2) .

Listing 4: A function that computes all the placement objects from a set of fragment
substitutions along with two theorems stating the correctness of this computation

27

o ∈ (
⋃

(_,r,_)∈Fs rObj)

o /∈ (
⋃

(p,_,_)∈Fs pObj)

o ∈ JFsKObj
(obj-copy)

Finally we have implemented the
two copy rules. Listing 5 shows the
implementation of obj-copy. Given
a set of objects obj and a set of fragment substitutions fss, objCopy will check
if the head of obj is a replacement object in fss and in the same time is not a
placement object in fss. If the conditions are met, then the head object is copied
and the function is called recursively on the tail, otherwise the object is not
copied and the tail is processed. The implementation of lnkCopy is analogous to
objCopy.

1 Fixpoint objCopy (obj : ObjectSet) (fss : FragSubstSet) : ObjectSet :=
2 match obj with
3 | [] => []
4 | h :: t =>
5 if bSetContainsObject (replacementObjects fss) h
6 && !(bSetContainsObject (placementObjects fss) h)
7 then h ::(objCopy t fss)
8 else (objCopy t fss)
9 end.

Listing 5: Implementing the obj-copy inference rule as a function

The execution of a fragment substitution set, presented in Listing 6, is simply
composing a variant model by applying objCopy to all objects in fss and lnkCopy
to all links in fss.

1 Function executeFss (fss : FragSubstSet) : Model :=
2 (objCopy (allObjects fss) fss)∗∗(lnkCopy (allLinks fss) fss) .

Listing 6: Implementation of the execution function as the combined application of objCopy
and lnkCopy

5.3. Proof of correctness and confluence
Independently, we also wanted to ensure that the Coq implementation of

Featherweight VML is of good quality. Listing 7 shows theorem objCopyExecutes
which states that the function objCopy correctly implements the copying rule
obj-copy. An interesting aspect of this theorem is that it checks a bidirectional
implication in the sense that the resulting set contains all and only the required
elements. There is also an analogous theorem for links, lnkCopyExecutes.

1 Theorem objCopyExecutes : forall o fObj fss ,
2 SetContainsObject fObj o
3 /\ SetContainsObject (replacementObjects fss) o
4 /\ ∼SetContainsObject (placementObjects fss) o
5 <−> SetContainsObject (objCopy fObj fss) o.

Listing 7: Theorem stating the correctness of objCopy using bidirectional implication

To prove the confluence of the execution function we separately prove the
confluence of objCopy and lnkCopy. Listing 8 shows the confluence theorems

28

Figure 11: The metamodel of Micro CVL specified in the EMF Ecore language.

for objCopy. Theorem objCopyOnEqualFss states that the copying function is
confluent with respect to the set of fragment substitutions. Theorem objCopy-
OfEqualSetsstates that the function is confluent with respect to the sets of
object/links from which they copy the elements of the variant. Together, the
two theorems along with two similar others for lnkCopy verify that executing two
fragment substitution sets produces isomorphic variant models, thus execution
is confluent.

1 Theorem objCopyOnEqualFss : forall obj fss1 fss2 ,
2 FragSubstSetEqual fss1 fss2
3 −> ObjectSetEqual (objCopy obj fss1) (objCopy obj fss2) .
4
5 Theorem objCopyOfEqualSets : forall obj1 obj2 fss ,
6 ObjectSetEqual obj1 obj2
7 −> ObjectSetEqual (objCopy obj1 fss) (objCopy obj2 fss) .

Listing 8: Confluence theorems for objCopy

5.4. Micro CVL—a variant derivation tool
To demonstrate the verification of variant models through translation valida-

tion we implemented Micro CVL—a small variant derivation tool designed as
a subset of CVL. In this demonstration, Micro CVL will stand for any actual
variant derivation tool.

EMF facilitates the creation of Domain Specific Languages (DSL) by providing
a set of tools and a meta-language, Ecore. We implemented Micro CVL to
handle variability over any Ecore-based model. The metamodel of Micro CVL is
presented in Fig. 11. The language is a set of fragment substitutions (FragSubst).
Each fragment substitution contains one placement and one replacement fragment
and a set of binding link references. The ObjectRef and LinkRef are references
pointing to a base model that is an instance of an arbitrary Ecore-based domain-
specific language. We can also write Micro CVL models in textual form (see
Lst. 9).

A few notes on implementing fragment substitutions of Ecore models:

• EMF does not provide a way to uniquely identify objects. This is a problem
because we need to know if the objects of the variant model are the same
objects from the subject model. We require that all objects of the subject

29

Figure 12: CVL model.

model inherit from an abstract class with an integer id field that is unique
throughout the model. All classes in the Device metamodel inherit from
the Component abstract class.

• Similarly, links cannot be uniquely identified in Ecore models. In order to
reference links we identify them with a combination of the name of the
metamodel relation that the link implements and the ids of the source and
target objects. We also require that there are no multiple links between
the same source and target, implementing the same relation.

5.5. Lifting and validating Ecore models
Lifting Ecore models to Coq abstract models is considerably simpler than

the actual variant derivation process. After parsing the XML files and obtaining
the abstract syntax trees we traverse the trees in pre-order and encode them
in Coq models. It is important to notice that the Ecore models and their Coq
abstractions are isomorphic, thus it is easily verifiable that the lifting is correct.

In Figure 12 we recall the Device model example from Fig. 2. We assume
that the Device model has an Ecore metamodel which we do not show. We also
recall the fragment substitution fs2 of the CVL model:

fs2{ placement{pa, pb} replacement{rb} binding{(pb, rb)} }

We represent the fragment substitution fs2 in Micro CVL as shown in Lst. 9.

1 FragSubst
2 placement Fragment
3 obj [ObjectRef(dualOutput)]
4 lnk [LinkRef(sensor.out -> dualOutput)]
5 replacement Fragment
6 obj [ObjectRef(data), ObjectRef(actuatorCpu)]
7 lnk [LinkRef(actuatorCpu.rawinput -> data)]
8 binding [LinkRef(deviceCpu.out -> data)]

Listing 9: A Micro CVL representation of fs2

The lifting process is implemented as follows:

30

1. We traverse and lift the Micro CVL model to Coq.

• whenever we encounter an ObjectRef, we search the base model for
the integer id of the referred object;

• whenever we encounter a LinkRef composed of the relation name
and references to the source and target objects, we assign to it a
new unique integer id and store it in a HashMap; we use this newly
assigned id and the source and target ids from the subject model to
lift the link.

2. We traverse and lift the output product variant Ecore model to Coq.

• whenever we encounter an object we use the integer id as the abstrac-
tion;

• whenever we encounter a link, composed of the relation name and
source and target objects, we look up its assigned id in the HashMap
created in the previous step and the source and target object ids as
the abstraction.

Considering that the base model in Fig. 1 can be abstracted to the model
in Fig. 7a, that the Micro CVL model can be abstracted to the fragment
substitutions in Fig. 7b and that the derived variant model can be abstracted
to the model in Fig. 7c, the lifting of the Ecore models will produce the Coq
representation presented in Listing 10. Lines 1 to 1 show the complete original
base model. Lines 5 to 11 show the fragment substitutions, where line 7 represents
the default artifacts being copied and the other three represent the changes.
Line 9 in particular represents the FragSubst from Listing 9. Lines 13 to 15 show
the variant model obtained by lifting the output of the back box derivation tool.

1 Definition base : Model :=
2 [1; 2; 3; 4; 5; 6; 7]∗∗[1¤3−−>1; 2¤1−−>2; 3¤3−−>2; 4¤1−−>4;
3 5¤6−−>5; 6¤3−−>5; 7¤7−−>5; 8¤6−−>7].
4
5 Definition fss : FragSubstSet :=
6 [
7 (([]∗∗[]) ,. ([1; 2; 3]∗∗[1¤3−−>1; 2¤1−−>2; 3¤3−−>2]) ., []);
8 (([2]∗∗[2 ¤1−−>2]) ,. ([4]∗∗[]) ., [4¤1−−>4]);
9 (([2]∗∗[2 ¤1−−>2]) ,. ([5; 6]∗∗[5¤6−−>5]) ., [6¤3−−>5]);

10 (([]∗∗[]) ,. ([7]∗∗[]) ., [7¤7−−>5; 8¤6−−>7])
11].
12
13 Definition variant : Model :=
14 [1; 3; 4; 5; 6; 7]∗∗[1¤3−−>1; 4¤1−−>4; 5¤6−−>5; 6¤3−−>5; 7¤7−−>5;
15 8¤6−−>7].
16
17 Eval compute in bFragSubstSetIsConsistentWithModel fss base.
18
19 Eval compute in executeFss fss .

31

20 Eval compute in bModelEqual (EXE.executeFss fss) variant .
21
22 Eval compute in bModelConsistentWithModel variant base.

Listing 10: Coq representation of models

Finally, line 17 verifies that the set of fragment substitutions is consistent
with the original model. Line 19 computes the simulation result by executing
the Coq fragment substitution set. Line 20 evaluates whether the simulation
result and the variant model are equivalent and displays the result as a Boolean
value. An an extra check, line 22 checks that the variant model is consistent
with the base model meaning that all links have maintained their original source
and target.

6. Discussion and Related Work

Featherweight VML is closely related to CVL as it is able to express CVL
models with great accuracy. Most CVL variability specifications can be reduced
to features with cardinalities and the variation points are all specific cases of the
fragment substitution. Featherweight VML can be seen as a generalization of
OVM. We can use abstract features to group variation points together, giving
OVM a tree structure while retaining the same meaning. Delta modules are
almost identical to fragment substitutions. The only difference is that a delta
module is guarded by an application condition over a set of features while
Featherweight VML fragment substitutions are each mapped to a single feature.
In order to express a Delta model without adding extra concepts we would have
to change Featherweight VML’s mapping function to a more general expression.

Aside from OVM, CVL and Delta Modeling, there are numerous other
approaches to formalizing the elements of a variability model. Many of the
variability abstractions used for software product lines, such as feature models
[3] or decision models [4], are a subset of configuration modeling and knowledge-
based configuration ontologies and approaches [26, 27, 28, 29]. We chose to
use feature models in defining Featherweight VML simply because they are the
preferred option in the industry. The mapping from features to artifacts has been
specified by using feature modules [30] to wrap the artifacts pertinent to each
feature and applying module composition to derive new variants; alternatively
[31, 32], by annotating the artifacts with presence conditions thus specifying
when each artifact must be present in a product variant. Other approaches
[33] involve model transformations where each feature can both remove and
add artifacts to existing models. While some formalisms are richer than feature
models (e.g. Koala [34] employs a topology of components that is not a tree
and interfaces between components) , a lot of these formalisms provide a fixed
representation of base models (e.g. component models) and do not relate to
base models specified in customized domain-specific languages or to concrete
implementation artifacts such as source code [32, 35]. All these approaches bring
different advantages and challenges to the domain of variability modeling, usually

32

compromising between expressive power and simplicity and which influences the
possibility of validating actual derivation tools.

So far, most work on variability was dedicated to analyzing feature models
[36, 37]. Recent work has provided valuable insight such as formalizing feature
models represented in a textual language [38] or even providing full proofs in
the PVS proof assistant [39]. However, the formalization is limited to feature
models and do not touch on the subject of variant derivation. Czarnecki et al.
[40] show how to represent the three layers of variability modeling within the
single Clafer syntax. However no actual mapping to implementation artifacts
is considered, just a Boolean abstraction of dependency. Such a formalization
cannot directly be used as a specification of correctness for a variant derivation
tool. Other works consider analyzing variability models as a whole, including
checking for consistency (for instance [41, 42, 43, 44, 45]). All these methods
assume correctness of the variant derivation implementation. In this work we
make the first step to allow fulfilling this assumption by setting the foundation
of analyzing the implementation of variability realization tools.

A crucial feature of our semantics is that it is confluent. We achieve this
by identifying sufficient conditions for confluence, and adopting copying style
for definition of semantics, to minimize dependencies between executions of
individual variation points. Oldevik et al. [46] take a dual route and attempt to
detect lack of confluence. As such they belong well to the group of works that
are more interested in ensuring that models are correct than that the model
manipulation tools are correct.

Since its introduction [11] translation validation has been successfully ap-
plied to compilers [47, 48], finite state machine transformations [49] or system
abstractions [50]. Also, a translation validation for the LLVM compiler by ab-
stracting the input and output to value-graphs [51] and a Coq verified translation
validation by symbolic execution [52] have been proposed.

To the best of our knowledge, this is the first application of translation valida-
tion in the domain of software product lines. It is also the first implementation
that is completely independent from the modeling language in which the input
and output are specified. The only requirement is that the variability modeling
language can be lifted to Featherweight VML. However, the lifting is considerably
simpler and easier to verify than the actual variant derivation process and no
extra work is required for new models and metamodels.

Coq supports automatic generation of formally verified implementations of
systems (in Haskell and OCaml) out of type and function definitions. Since the
lifting is an abstraction, some information from the input and output may be
lost (such as attribute values of objects) which means that no concrete execution
can be created automatically from an abstract execution. We believe that this
use of abstraction is crucial to the success of the method. It allows implementing
and growing validators incrementally, without falling into a trap of diminishing
returns.

Parts of this work have been presented before. The syntax and semantics of
fragment substitutions have been introduced as an extended abstract presented
at the Nordic Workshop on Programming Theory, NWPT 2013, in Tallinn. The

33

specification of Featherweight VML (sections 4.1–4.3) was described in [53].
This paper is a long version of the above mentioned works. It adds the entire
translation validation framework around the formal semantics of Featherweight
VML, including formalizations in Coq, the mechanized proofs in Coq, and
implementation of translation validation on top of a home grown variability
modeling tool for the Eclipse Modeling Framework.

While Micro CVL, the variability language we developed, only has demon-
strative value, we also provided a proof of concept within the VARIES11 research
project. For this, we have looked at the Base Variability Resolution (BVR)
language [54]. BVR is a derivative of CVL and, for the most part, it follows the
same architecture and employs the same concepts. There is also a prototype im-
plementation of a BVR tool as an Eclipse plug-in12. The implementation project
has over one thousand Java classes where the product derivation code is mixed
with Eclipse plug-in code and tests. By comparison, we implemented the lifting
operation with just six Java classes with a time cost of roughly 150 man-hours
of research and development. Even though this is a rough estimate based on our
own experience, it indicates that the cost of implementing translation validation
for an actual tool is very small in comparison with the cost of producing the tool
itself.

Once the lifting operation is implemented for a variability language, the vali-
dation technique can be applied to all projects in which the variability language
is used. The nature of the product line or even of the architectural language does
not influence the validation technique, meaning that the abstraction to Feather-
weight VML is a one-time cost. Maintenance of the abstraction is required only
in case the variability language itself changes which, in our experience, does not
happen very often. In case the changes to the variability language do not influ-
ence the derivation algorithm (e.g. it expands to work with a new architectural
language) there are, again, no costs to the abstraction. If the changes affect the
derivation process (e.g. a new feature is added) then the maintenance implies
abstracting the new constructs, which can be defined as syntactic sugar in terms
of fragment substitutions. In such cases it is difficult to give clear estimates of
the cost, but we believe it is safe to assume that the changes to the abstraction
are directly proportional to the changes of the variability language.

The translation validation technique is especially useful when creating trust-
worthy tools for developing safety critical systems. However, it can be applied
with no extra costs to any kind of project, as long as the same variability
modeling language is used. One issue that requires further investigation is the
performance of the validation. Since non safety-critical projects tend to have
larger and less optimized code-bases, we expect a time increase for the verified
formal execution and for the equivalence check between the simulation result
and the actual output model.

11http://www.varies.eu/
12GitHub repository (requires authentication): https://github.com/SINTEF-9012/bvr

34

7. Conclusion

We propose a translation validation of product derivation in software product
lines. This technique can be applied to any variant derivation tool, but it is
especially useful when creating trustworthy tools for developing safety critical
systems. We formally define Featherweight VML, a compact variability modeling
language, which retains the expressiveness of CVL on which it is based, but at the
same time it has much simpler syntax and semantics. To our best knowledge this
is the first attempt to fully formalize an entire variability model. Featherweight
VML can be used as an abstraction of CVL, OVM, Delta Modeling and any
other variability modeling language that satisfies the same core requirements.
Our semantics processes the model in an order-agnostic manner. It is the first
confluent formalization of a CVL-like language. We implemented Featherweight
VML in Coq and provided proofs of the correctness and confluence of the
semantics. We also demonstrated the translation validation of a black box tool,
including the lifting of the input and output to Coq representations.

Acknowledgements. This work was supported by ARTEMIS JU under grant
agreement n◦ 295397 and by Danish Agency for Science, Technology and Innova-
tion. We thank Ina Schaefer for help with defining the semantics of Featherweight
VML.

References

[1] T. Stahl, M. Völter, J. Bettin, A. Haase, S. Helsen, Model-Driven Software
Development: Technology, Engineering, Management, John Wiley & Sons,
2006.

[2] P. Clements, L. M. Northrop, Software Product Lines: Practices and Pat-
terns, Addison-Wesley, 2002.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Tech. rep., CMU SEI
(1990).

[4] K. Schmid, R. Rabiser, P. Grünbacher, A comparison of decision modeling
approaches in product lines, in: Fifth International Workshop on Variability
Modelling of Software-Intensive Systems, Namur, Belgium, January 27-29,
2011. Proc., ACM International Conference Proc. Series, ACM, 2011, pp.
119–126. doi:10.1145/1944892.1944907.

[5] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering -
Foundations, Principles, and Techniques, Springer, 2005. doi:10.1007/
3-540-28901-1.

[6] I. Schaefer, L. Bettini, V. Bono, F. Damiani, N. Tanzarella, Delta-oriented
programming of software product lines, in: J. Bosch, J. Lee (Eds.), Software
Product Lines: Going Beyond - 14th International Conference, SPLC

35

http://dx.doi.org/10.1145/1944892.1944907
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1

2010, Jeju Island, South Korea, September 13-17, 2010. Proc., Vol. 6287
of Lecture Notes in Computer Science, Springer, 2010, pp. 77–91. doi:
10.1007/978-3-642-15579-6_6.

[7] CVL Joint Submission Team, Common Variability Language (CVL). OMG
Revised Submission, OMG document: ad/2012-08-05 (2012).

[8] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
A. Wasowski, A survey of variability modeling in industrial practice, in:
The Seventh International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’13, Pisa , Italy, January 23 - 25, 2013, ACM,
2013, p. 7. doi:10.1145/2430502.2430513.

[9] J. Hutchinson, M. Rouncefield, J. Whittle, Model-driven engineering prac-
tices in industry, in: 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, Proc., ACM,
2011, pp. 633–642. doi:10.1145/1985793.1985882.

[10] H. Gall, Functional safety IEC 61508 / IEC 61511 the impact to certification
and the user, in: The 6th ACS/IEEE International Conference on Computer
Systems and Applications, AICCSA 2008, Doha, Qatar, March 31 - April
4, 2008, IEEE Computer Society, 2008, pp. 1027–1031. doi:10.1109/
AICCSA.2008.4493673.

[11] A. Pnueli, M. Siegel, E. Singerman, Translation validation, in: B. Steffen
(Ed.), Tools and Algorithms for Construction and Analysis of Systems, 4th
International Conference, TACAS ’98, Lisbon, Portugal, March 28 - April
4, 1998, Proc., Vol. 1384 of Lecture Notes in Computer Science, Springer,
1998, pp. 151–166. doi:10.1007/BFb0054170.

[12] K. Czarnecki, S. Helsen, U. W. Eisenecker, Formalizing cardinality-based
feature models and their specialization, Software Process: Improvement and
Practice 10 (1) (2005) 7–29. doi:10.1002/spip.213.

[13] D. Clarke, N. Diakov, R. Hähnle, E. B. Johnsen, I. Schaefer, J. Schäfer,
R. Schlatte, P. Y. H. Wong, Modeling spatial and temporal variability
with the HATS abstract behavioral modeling language, in: M. Bernardo,
V. Issarny (Eds.), Formal Methods for Eternal Networked Software Systems
- 11th International School on Formal Methods for the Design of Computer,
Communication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-
18, 2011. Advanced Lectures, Vol. 6659 of Lecture Notes in Computer Science,
Springer, 2011, pp. 417–457. doi:10.1007/978-3-642-21455-4_13.

[14] A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari, B. Rumpe, I. Schae-
fer, First-class variability modeling in Matlab/Simulink, in: The Seventh
International Workshop on Variability Modelling of Software-intensive Sys-
tems, VaMoS ’13, Pisa , Italy, January 23 - 25, 2013, ACM, 2013, p. 4.
doi:10.1145/2430502.2430508.

36

http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1145/2430502.2430513
http://dx.doi.org/10.1145/1985793.1985882
http://dx.doi.org/10.1109/AICCSA.2008.4493673
http://dx.doi.org/10.1109/AICCSA.2008.4493673
http://dx.doi.org/10.1007/BFb0054170
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1007/978-3-642-21455-4_13
http://dx.doi.org/10.1145/2430502.2430508

[15] A. Haber, K. Hölldobler, C. Kolassa, M. Look, B. Rumpe, K. Müller,
I. Schaefer, Engineering delta modeling languages, in: 17th International
Software Product Line Conference, SPLC 2013, Tokyo, Japan - August 26 -
30, 2013, ACM, 2013, pp. 22–31. doi:10.1145/2491627.2491632.

[16] Object Management Group, Meta Object Facility (MOF) Core Specification
Version 2.0, OMG document: formal/06-01-01 (2006).

[17] T. Thüm, C. Kästner, S. Erdweg, N. Siegmund, Abstract features in feature
modeling, in: Software Product Lines - 15th International Conference,
SPLC 2011, Munich, Germany, August 22-26, 2011, IEEE, 2011, pp. 191–
200. doi:10.1109/SPLC.2011.53.

[18] D. Clarke, M. Helvensteijn, I. Schaefer, Abstract delta modeling, in: Gener-
ative Programming And Component Engineering, Proceedings of the Ninth
International Conference on Generative Programming and Component En-
gineering, GPCE 2010, Eindhoven, The Netherlands, October 10-13, 2010,
ACM, 2010, pp. 13–22. doi:10.1145/1868294.1868298.

[19] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, A. Wasowski, Cool
features and tough decisions: a comparison of variability modeling ap-
proaches, in: Sixth International Workshop on Variability Modelling of
Software-Intensive Systems, Leipzig, Germany, January 25-27, 2012. Proc.,
ACM, 2012, pp. 173–182. doi:10.1145/2110147.2110167.

[20] A. Narayanan, G. Karsai, Specifying the correctness properties of model
transformations, in: Proceedings of the Third International Workshop on
Graph and Model Transformations, GRaMoT ’08, ACM, 2008, pp. 45–52.
doi:10.1145/1402947.1402957.

[21] T. Mens, On the use of graph transformations for model refactoring, in:
R. Lämmel, J. Saraiva, J. Visser (Eds.), Generative and Transformational
Techniques in Software Engineering, International Summer School, GTTSE
2005, Braga, Portugal, July 4-8, 2005. Revised Papers, Vol. 4143 of Lecture
Notes in Computer Science, Springer, 2005, pp. 219–257. doi:10.1007/
11877028_7.

[22] T. Mens, G. Taentzer, O. Runge, Analysing refactoring dependencies using
graph transformation, Software and System Modeling 6 (3) (2007) 269–285.
doi:10.1007/s10270-006-0044-6.

[23] G. Taentzer, AGG: A tool environment for algebraic graph transforma-
tion, in: M. Nagl, A. Schürr, M. Münch (Eds.), Applications of Graph
Transformations with Industrial Relevance, International Workshop, AG-
TIVE’99, Kerkrade, The Netherlands, September 1-3, 1999, Proceedings,
Vol. 1779 of Lecture Notes in Computer Science, Springer, 1999, pp. 481–488.
doi:10.1007/3-540-45104-8_41.

37

http://dx.doi.org/10.1145/2491627.2491632
http://dx.doi.org/10.1109/SPLC.2011.53
http://dx.doi.org/10.1145/1868294.1868298
http://dx.doi.org/10.1145/2110147.2110167
http://dx.doi.org/10.1145/1402947.1402957
http://dx.doi.org/10.1007/11877028_7
http://dx.doi.org/10.1007/11877028_7
http://dx.doi.org/10.1007/s10270-006-0044-6
http://dx.doi.org/10.1007/3-540-45104-8_41

[24] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation
tool, Sci. Comput. Program. 72 (1-2) (2008) 31–39. doi:10.1016/j.
scico.2007.08.002.

[25] A. Schürr, Specification of graph translators with triple graph grammars, in:
E. W. Mayr, G. Schmidt, G. Tinhofer (Eds.), Graph-Theoretic Concepts
in Computer Science, 20th International Workshop, WG ’94, Herrsching,
Germany, June 16-18, 1994, Proc., Vol. 903 of Lecture Notes in Computer
Science, Springer, 1994, pp. 151–163. doi:10.1007/3-540-59071-4_
45.

[26] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, M. Zanker, Trans-
forming UML domain descriptions into configuration knowledge bases, in:
Knowledge Transformation for the Semantic Web, IOS Press, 2003, pp.
154–168.

[27] A. Hubaux, D. Jannach, C. Drescher, L. Murta, T. Männistö, K. Czarnecki,
P. Heymans, T. Nguyen, M. Zanker, Unifying software, product configura-
tion: A research roadmap, in: W. Mayer, P. Albert (Eds.), Proceedings of
the Workshop on Configuration at ECAI 2012, Montpellier, France, August
27, 2012, Vol. 958 of CEUR Workshop Proceedings, CEUR-WS.org, 2012,
pp. 31–35.
URL http://ceur-ws.org/Vol-958/paper6.pdf

[28] D. Benavides, A. Felfernig, J. A. Galindo, F. Reinfrank, Automated analysis
in feature modelling and product configuration, in: J. M. Favaro, M. Morisio
(Eds.), Safe and Secure Software Reuse - 13th International Conference
on Software Reuse, ICSR 2013, Pisa, Italy, June 18-20. Proceedings, Vol.
7925 of Lecture Notes in Computer Science, Springer, 2013, pp. 160–175.
doi:10.1007/978-3-642-38977-1_11.

[29] K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, T. Männistö, Unifying
product and software configuration (Dagstuhl Seminar 14172), Dagstuhl
Reports 4 (4) (2014) 20–35. doi:10.4230/DagRep.4.4.20.

[30] C. Prehofer, Feature-oriented programming: A new way of object composi-
tion, Concurrency and Computation: Practice and Experience 13 (6) (2001)
465–501. doi:10.1002/cpe.583.

[31] K. Czarnecki, M. Antkiewicz, Mapping features to models: A template
approach based on superimposed variants, in: R. Glück, M. R. Lowry (Eds.),
Generative Programming and Component Engineering, 4th International
Conference, GPCE 2005, Tallinn, Estonia, September 29 - October 1, 2005,
Proc., Vol. 3676 of Lecture Notes in Computer Science, Springer, 2005, pp.
422–437. doi:10.1007/11561347_28.

[32] M. Janota, G. Botterweck, Formal approach to integrating feature and
architecture models, in: J. L. Fiadeiro, P. Inverardi (Eds.), Fundamental
Approaches to Software Engineering, 11th International Conference, FASE

38

http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/3-540-59071-4_45
http://ceur-ws.org/Vol-958/paper6.pdf
http://ceur-ws.org/Vol-958/paper6.pdf
http://ceur-ws.org/Vol-958/paper6.pdf
http://dx.doi.org/10.1007/978-3-642-38977-1_11
http://dx.doi.org/10.4230/DagRep.4.4.20
http://dx.doi.org/10.1002/cpe.583
http://dx.doi.org/10.1007/11561347_28

2008, Budapest, Hungary, March 29-April 6, 2008. Proc., Vol. 4961 of
Lecture Notes in Computer Science, Springer, 2008, pp. 31–45. doi:
10.1007/978-3-540-78743-3_3.

[33] K. Czarnecki, S. Helsen, Feature-based survey of model transformation
approaches, IBM Systems Journal 45 (3) (2006) 621–646. doi:10.1147/
sj.453.0621.

[34] T. Asikainen, T. Soininen, T. Männistö, A Koala-based ontology for
configurable software product families, in: IJCAI 2003 Configuration
workshop, 2003, pp. 45–52.
URL http://www.soberit.hut.fi/pdmg/papers/ASIK03KOA.
pdf

[35] M. Acher, P. Collet, P. Lahire, S. Moisan, J. Rigault, Modeling variability
from requirements to runtime, in: 16th IEEE International Conference
on Engineering of Complex Computer Systems, ICECCS 2011, Las Vegas,
Nevada, USA, 27-29 April 2011, IEEE Computer Society, 2011, pp. 77–86.
doi:10.1109/ICECCS.2011.15.

[36] D. Benavides, A. R. Cortés, P. Trinidad, S. Segura, A survey on the
automated analyses of feature models, in: J. C. R. Santos, P. Botella (Eds.),
XI Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2006),
Octubre 3-6, 2006, Sitges, Spain, 2006, pp. 367–376.

[37] P. Schobbens, P. Heymans, J. Trigaux, Y. Bontemps, Generic semantics
of feature diagrams, Computer Networks 51 (2) (2007) 456–479. doi:
10.1016/j.comnet.2006.08.008.

[38] A. Classen, Q. Boucher, P. Heymans, A text-based approach to feature
modelling: Syntax and semantics of TVL, Sci. Comput. Program. 76 (12)
(2011) 1130–1143. doi:10.1016/j.scico.2010.10.005.

[39] M. Janota, J. Kiniry, Reasoning about feature models in higher-order logic,
in: Software Product Lines, 11th International Conference, SPLC 2007,
Kyoto, Japan, September 10-14, 2007, Proc., IEEE Computer Society, 2007,
pp. 13–22. doi:10.1109/SPLINE.2007.36.

[40] K. Bak, K. Czarnecki, A. Wasowski, Feature and meta-models in Clafer:
Mixed, specialized, and coupled, in: B. A. Malloy, S. Staab, M. van den
Brand (Eds.), Software Language Engineering - Third International Confer-
ence, SLE 2010, Eindhoven, The Netherlands, October 12-13, 2010, Revised
Selected Papers, Vol. 6563 of Lecture Notes in Computer Science, Springer,
2010, pp. 102–122. doi:10.1007/978-3-642-19440-5_7.

[41] T. Berger, S. She, R. Lotufo, K. Czarnecki, A. Wasowski, Feature-to-
Code mapping in two large product lines, in: J. Bosch, J. Lee (Eds.),
Software Product Lines: Going Beyond - 14th International Conference,
SPLC 2010, Jeju Island, South Korea, September 13-17, 2010. Proc., Vol.

39

http://dx.doi.org/10.1007/978-3-540-78743-3_3
http://dx.doi.org/10.1007/978-3-540-78743-3_3
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1147/sj.453.0621
http://www.soberit.hut.fi/pdmg/papers/ASIK03KOA.pdf
http://www.soberit.hut.fi/pdmg/papers/ASIK03KOA.pdf
http://www.soberit.hut.fi/pdmg/papers/ASIK03KOA.pdf
http://www.soberit.hut.fi/pdmg/papers/ASIK03KOA.pdf
http://dx.doi.org/10.1109/ICECCS.2011.15
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://dx.doi.org/10.1016/j.scico.2010.10.005
http://dx.doi.org/10.1109/SPLINE.2007.36
http://dx.doi.org/10.1007/978-3-642-19440-5_7

6287 of Lecture Notes in Computer Science, Springer, 2010, pp. 498–499.
doi:10.1007/978-3-642-15579-6_48.

[42] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, M. Mezini,
Spllift: statically analyzing software product lines in minutes instead of
years, in: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, ACM,
2013, pp. 355–364. doi:10.1145/2491956.2491976.

[43] K. Czarnecki, K. Pietroszek, Verifying feature-based model templates
against well-formedness OCL constraints, in: Generative Programming
and Component Engineering, 5th International Conference, GPCE 2006,
Portland, Oregon, USA, October 22-26, 2006, Proc., ACM, 2006, pp. 211–
220. doi:10.1145/1173706.1173738.

[44] Ø. Haugen, CVL: common variability language or chaos, vanity and limita-
tions?, in: The Seventh International Workshop on Variability Modelling of
Software-intensive Systems, VaMoS ’13, Pisa , Italy, January 23 - 25, 2013,
ACM, 2013, p. 1. doi:10.1145/2430502.2430504.

[45] F. Heidenreich, J. Kopcsek, C. Wende, FeatureMapper: mapping features to
models, in: 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, Companion Volume, ACM, 2008,
pp. 943–944. doi:10.1145/1370175.1370199.

[46] J. Oldevik, Ø. Haugen, B. Møller-Pedersen, Confluence in domain-
independent product line transformations, in: M. Chechik, M. Wirsing
(Eds.), Fundamental Approaches to Software Engineering, 12th Interna-
tional Conference, FASE 2009, York, UK, March 22-29, 2009. Proc., Vol.
5503 of Lecture Notes in Computer Science, Springer, 2009, pp. 34–48.
doi:10.1007/978-3-642-00593-0_3.

[47] G. C. Necula, Translation validation for an optimizing compiler, in: Proc.
of the 2000 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Vancouver, BC, Canada, June 18-21, 2000,
ACM, 2000, pp. 83–94. doi:10.1145/349299.349314.

[48] T. A. L. Sewell, M. O. Myreen, G. Klein, Translation validation for a verified
OS kernel, in: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,
ACM, 2013, pp. 471–482. doi:10.1145/2462156.2462183.

[49] T. Li, Y. Guo, W. Liu, M. Tang, Translation validation of scheduling
in high level synthesis, in: Great Lakes Symposium on VLSI 2013 (part
of ECRC), GLSVLSI’13, Paris, France, May 2-4, 2013, ACM, 2013, pp.
101–106. doi:10.1145/2483028.2483070.

[50] J. O. Blech, I. Schaefer, A. Poetzsch-Heffter, Translation validation of system
abstractions, in: O. Sokolsky, S. Tasiran (Eds.), Runtime Verification, 7th

40

http://dx.doi.org/10.1007/978-3-642-15579-6_48
http://dx.doi.org/10.1145/2491956.2491976
http://dx.doi.org/10.1145/1173706.1173738
http://dx.doi.org/10.1145/2430502.2430504
http://dx.doi.org/10.1145/1370175.1370199
http://dx.doi.org/10.1007/978-3-642-00593-0_3
http://dx.doi.org/10.1145/349299.349314
http://dx.doi.org/10.1145/2462156.2462183
http://dx.doi.org/10.1145/2483028.2483070

International Workshop, RV 2007, Vancouver, Canada, March 13, 2007,
Revised Selected Papers, Vol. 4839 of Lecture Notes in Computer Science,
Springer, 2007, pp. 139–150. doi:10.1007/978-3-540-77395-5_12.

[51] J. Tristan, P. Govereau, G. Morrisett, Evaluating value-graph translation
validation for LLVM, in: Proc. of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, ACM, 2011, pp. 295–305. doi:10.1145/
1993498.1993533.

[52] J. Tristan, X. Leroy, Formal verification of translation validators: a case
study on instruction scheduling optimizations, in: Proc. of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, ACM,
2008, pp. 17–27. doi:10.1145/1328438.1328444.

[53] A. F. Iosif-Lazar, I. Schaefer, A. Wasowski, A core language for sepa-
rate variability modeling, in: T. Margaria, B. Steffen (Eds.), Leverag-
ing Applications of Formal Methods, Verification and Validation. Tech-
nologies for Mastering Change - 6th International Symposium, ISoLA
2014, Imperial, Corfu, Greece, October 8-11, 2014, Proc., Part I, Vol.
8802 of Lecture Notes in Computer Science, Springer, 2014, pp. 257–272.
doi:10.1007/978-3-662-45234-9_19.

[54] Ø. Haugen, O. Øgård, BVR - better variability results, in: D. Amyot, P. F.
i Casas, G. Mussbacher (Eds.), System Analysis and Modeling: Models
and Reusability - 8th International Conference, SAM 2014, Valencia, Spain,
September 29-30, 2014. Proc., Vol. 8769 of Lecture Notes in Computer
Science, Springer, 2014, pp. 1–15. doi:10.1007/978-3-319-11743-0_
1.

41

http://dx.doi.org/10.1007/978-3-540-77395-5_12
http://dx.doi.org/10.1145/1993498.1993533
http://dx.doi.org/10.1145/1993498.1993533
http://dx.doi.org/10.1145/1328438.1328444
http://dx.doi.org/10.1007/978-3-662-45234-9_19
http://dx.doi.org/10.1007/978-3-319-11743-0_1
http://dx.doi.org/10.1007/978-3-319-11743-0_1

