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ABSTRACT 

 Stroke is a leading cause of adult disability with no pharmacological treatments to 

restore lost function.  Our laboratory has shown that treatment with neutralizing antibodies 

against the neurite growth-inhibitory protein Nogo-A improves sensorimotor and 

cognitive recovery after stroke in adult and aged rats.  This recovery is paralleled by 

increased dendritic and axonal plasticity in anti-Nogo-A-treated rats.  Neurogenesis, an 

alternate form of plasticity involving the de novo production of new neurons, may 

contribute to post-stroke neural repair.  While previous studies have found roles for Nogo-

A in adult neurogenesis, neurogenesis has not been investigated after stroke and anti-

Nogo-A treatment.   

The goal of these studies was to examine whether anti-Nogo-A antibody treatment 

potentiated post-stroke neurogenesis in the brain’s two main neurogenic niches, the 

subventricular zone (SVZ) and dentate gyrus (DG).  We first identified that immature 

neurons, but not stem cells, in the SVZ expressed Nogo-A.  However, Nogo-A was not 

found at the surface of SVZ-derived neuroblasts and accordingly, the motility of SVZ-

derived neuroblasts was not altered by anti-Nogo-A antibody treatment in vitro.  However, 

these cells were still susceptible to Nogo-A signaling, as treatment with recombinant Δ20 

peptide, one of the inhibitory domains of Nogo-A, led to a modest reduction in neuroblast



 

 xii 

maximum velocity.  After stroke, anti-Nogo-A treatment had no effect on the number of 

proliferating cells in the SVZ, or on the density of doublecortin-positive neuroblasts, 

suggesting that anti-Nogo-A treatment does not stimulate neurogenesis in the SVZ after 

stroke.  In the DG, Nogo-A was again found to be expressed by immature neurons, but 

not neural stem cells.  However, as in the SVZ, anti-Nogo-A treatment did not affect the 

number of proliferating neural precursors or the number of new neurons produced after 

stroke. 

These results suggest that neurogenesis contributes little to the sensorimotor and 

cognitive recovery observed after stroke and anti-Nogo-A treatment.  Due to its stage-

specific expression in immature neurons, Nogo-A is likely to play a role in adult 

neurogenesis in both the SVZ and DG, but is not targeted by anti-Nogo-A antibody 

treatment.   
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CHAPTER ONE 

GENERAL OVERVIEW AND HYPOTHESIS 

  

Stroke is a leading cause of adult disability worldwide.  While thrombolytic or 

mechanical endovascular therapy can improve outcomes, the majority of stroke patients 

presenting to emergency rooms are ineligible for these treatments.  Furthermore, there are 

currently millions of people living with permanent stroke-related disabilities. Despite the 

personal and public health burdens imposed by stroke-related disability, there are no drugs 

on the market that can improve recovery of function after stroke.  Clearly, there is a 

desperate need for effective therapies to relieve this burden.   

Injuries to the adult brain, such as stroke, are particularly devastating because the 

adult central nervous system has only a limited capacity for repair.  This limited capacity is 

due to failure or inadequacy of several adaptive processes, including the regeneration of 

damaged axons, compensatory plasticity from intact circuits, and cell replacement.  

However, the identification of barriers to neural repair has led to the development 

of targeted pharmaceuticals with promising preclinical results.  Our laboratory has 

pioneered the use of neutralizing antibodies against the neurite outgrowth inhibitor Nogo-

A as a way to improve recovery after stroke in adult and aged rats (reviewed in Kumar and 
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Moon, 2013).  This recovery is paralleled by increases in dendritic complexity and 

compensatory axonal sprouting from the contralesional, intact hemisphere.  While most of 

the work done in the Kartje laboratory has focused on improving sensorimotor recovery 

after stroke, other studies in the laboratory have also shown that anti-Nogo-A treatment is 

effective in promoting cognitive recovery after brain lesions (including stroke) (Brenneman 

et al., 2008; Gillani et al., 2010).  These results show that targeting Nogo-A is a promising 

approach for improving recovery from a variety of clinically relevant stroke deficits. 

Intriguingly, recent studies have suggested a role for Nogo-A and its signaling 

mediators in adult neurogenesis, the process by which new neurons are created (Rolando et 

al., 2012; Tong et al., 2013; Turnley et al., 2014; Vadodaria and Jessberger, 2013).  

Endogenous neurogenesis has been implicated in neuroprotection and recovery after stroke 

(Marlier et al., 2015).  However, whether anti-Nogo-A antibody treatment affects the 

neurogenic response to stroke has not been investigated.  Research into this area is necessary 

to fully understand the mechanisms of recovery after stroke and anti-Nogo-A treatment.  

Furthermore, as anti-Nogo-A antibodies have been used in clinical trials for spinal cord 

injury and a trial for stroke is in the planning stages, it is critical to be aware of the full 

scope and limitations of anti-Nogo-A’s effects on the brain.  The goal of this study was to 

determine whether anti-Nogo-A treatment influenced neurogenesis after stroke in the 

adult brain’s two major neurogenic niches, the subventricular zone and dentate gyrus. 
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HYPOTHESIS:  Anti-Nogo-A immunotherapy potentiates the neurogenic response to 

stroke in the adult brain’s two main neurogenic niches, the subventricular zone (SVZ) and 

the dentate gyrus (DG). 

Aim 1:  Identify potential direct cellular treatment targets within the SVZ and DG by 

characterizing the expression pattern of Nogo-A within these two areas. 

Aim 2:  Determine whether the motility of SVZ-derived neuroblasts is influenced by the 

Δ20 domain of Nogo-A. 

Aim 3:  Determine whether anti-Nogo-A immunotherapy affects post-stroke 

neurogenesis by quantifying, after stroke and anti-Nogo-A treatment: 

• Cellular proliferation in the SVZ, 

• The density of immature neurons in the SVZ, 

• Cellular proliferation in the SGZ/DG, and 

• Neuronal differentiation and survival in the SGZ/DG  
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CHAPTER TWO 

LITERATURE REVIEW 

ISCHEMIC STROKE: A MAJOR CAUSE OF ADULT DISABILITY 

Stroke results when brain tissue becomes critically deprived of blood flow, leading 

to cell death and associated neurological deficits.  While stroke can be fatal, most stroke 

patients survive, making stroke one of the leading causes of adult disability (Feigin et al., 

2014; Mozaffarian et al., 2016).  Most strokes are ischemic (Mozaffarian et al., 2016), in 

which the occlusion of a blood vessel robs that vessel’s territory of oxygen and nutrients.  

Within minutes, neuronal ATP levels in the ischemic territory fall to levels no longer able 

to sustain the ion pumps that maintain membrane potential.  Neuronal depolarization 

triggers the massive release of glutamate, which binds glutamate receptors and induces 

calcium influx.  This large increase in intracellular calcium leads to indiscriminant 

activation of enzymes such as proteases, phospholipases, and enzymes that contribute to 

oxidant production, which degrade vital cellular molecules (Lo et al., 2003).  Glutamate 

receptor activation also increases rampant sodium influx into neurons, leading to cell 

swelling (Moskowitz et al., 2010).  Thus, excitotoxicity is a major mechanism contributing 

to cell death after ischemia.  While neuroprotective treatments designed to stave off acute 
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stroke damage have been successful in animal models, the complexity of cell death 

mechanisms after stroke may contribute to the failure of the more than 100 clinical trials 

that have investigated neuroprotective therapy in humans (Gladstone et al., 2002).  

 While cell death in the infarct core is rapid, the tissue surrounding the core may be 

hypoperfused but viable, sustained by collateral arteries.  The penumbra may be salvaged if 

blood flow is restored in a timely manner, but will otherwise become infarcted in time.   

Salvaging the penumbra is the goal of treatment with tissue plasminogen activator (tPA), 

the only approved pharmacological treatment for acute ischemic stroke.  Intravenous tPA 

works by converting plasminogen to plasmin, which degrades cross-linked fibrin clots, 

thereby restoring blood flow distal to the occlusion (Yaghi et al., 2014).  While tPA can 

improve stroke outcomes, current research supports a therapeutic window for treatment of 

within only 4.5 hours of stroke onset, after which time tPA is no more effective than 

control treatment and the risk of intracranial hemorrhage increases (Emberson et al., 2014; 

Mazya et al., 2012).  With other exclusion criteria factored in, it is estimated that less than 

10% of ischemic stroke patients actually receive tPA treatment (Moskowitz et al., 2010).   

Recent trials of endovascular thrombectomy as a standalone intervention or as an adjunct 

therapy to tPA have shown promising results (Mokin et al., 2016).  The therapeutic 

window for thrombectomy may be larger than that for tPA, but relatively little data exist 

from patients treated beyond 6 hours (Mokin et al., 2016).  Therefore, we may still 

anticipate a substantial number of patients with new stroke-related disabilities even with 

advances in acute stroke care.   
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Stroke patients often recover some degree of function in the weeks to months 

after stroke (Cramer, 2008).  However, many patients are still left with long-lasting 

disabilities, including hemiparesis, cognitive deficits, aphasia, and visual and other sensory 

deficits (Kelly-Hayes et al., 2003), in large part because of the limited ability of the brain 

to repair itself after injury, as discussed in the next sections.     

NOGO-A: A BARRIER TO GROWTH AND PLASTICITY IN THE ADULT 

CENTRAL NERVOUS SYSTEM 

The growth-inhibitory environment of the adult central nervous system 

 The failure of regeneration in the damaged central nervous system (CNS) has been 

long recognized.  Landmark studies from Albert Aguayo’s laboratory in the early 1980’s 

provided the first evidence that CNS axons could regenerate into PNS nerve grafts (David 

and Aguayo, 1981; Richardson et al., 1980), showing that adult CNS neurons were 

intrinsically capable of growth given a favorable or permissive environment.  These results 

helped provide direction for research into growth-promoting therapies.  Using dorsal root 

ganglion neurons cultured in an optimal growth media containing nerve growth factor, 

Martin Schwab and Hans Thoenen showed that the substrate itself, and not differential 

trophic support in the two environments, was responsible for the differences in growth 

potential (Schwab and Thoenen, 1985).  Furthermore, even dead optic nerve sections (ie., a 

CNS-derived tissue) were inhibitory, suggesting that a tissue-bound, non-soluble factor 

mediated this inhibitory activity.  
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 Three studies published by Martin Schwab’s laboratory in 1988 rapidly moved the 

regeneration field forward.  First, oligodendrocytes, along with their product, myelin, were 

identified as the cells and substance responsible for the growth-inhibitory environment of 

the adult CNS (Schwab and Caroni, 1988).  Protease treatment of CNS myelin abolished 

its inhibitory activity, suggesting that this inhibitory activity was protein-mediated. This 

inhibitory factor was found specifically in two distinct protein fractions that resolved to 250 

and 35 kDa on SDS-PAGE gels, and were necessary and sufficient for the inhibition of 

neurite outgrowth and fibroblast adhesion and spreading (Caroni and Schwab, 1988b). 

Lastly, an antibody (termed “IN-1”) raised against these inhibitory fractions was able to 

promote axon growth on CNS myelin (Caroni and Schwab, 1988a).  In vitro time lapse 

microscopy later demonstrated that the growth cones of growing axons collapsed upon 

contact with oligodendrocytes (Bandtlow et al., 1990). 

Function blocking antibodies against myelin proteins promote  

growth and recovery after injury 

 These proof-of-principle experiments laid the groundwork for the first study 

showing in vivo efficacy of IN-1 application after a CNS injury (Schnell and Schwab, 

1990).  Here, rats implanted with IN-1-secreting hybridoma cells prior to transection of 

the corticospinal tract at the level of the mid-thoracic spinal cord exhibited longer axon 

regrowth compared to controls.  A follow-up study showed that not only did post-

transection IN-1 treatment improve the regrowth of corticospinal, raphespinal 

(serotonergic), and coeruleospinal (noradrenergic) axons, but also improved behavioral 
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recovery (Bregman et al., 1995). Subsequent studies likewise reported IN-1-mediated 

enhancement of growth and plasticity of cholinergic fibers after fimbria/fornix lesions 

(Cadelli and Schwab, 1991), and optic nerve after freeze-crush injury (Weibel et al., 1994). 

 Though long suspected, the inhibitory nature of myelin in the human CNS was 

experimentally confirmed in 1997 (Spillmann et al., 1997).  As was the case for CNS 

myelin derived from other mammals (including rats, mice, opposums, and cattle), the 

inhibitory nature of human CNS myelin toward PC12 neurite outgrowth and 3T3 

fibroblast spreading could be neutralized with IN-1 antibody, providing further evidence 

for phylogenetic conservation of the (as yet unidentified) inhibitory IN-1 antigen among 

higher mammals.   

 Until the late 1990’s, much of the research surrounding post-injury treatment with 

IN-1 had focused on its ability to disinhibit regeneration, the bona fide regrowth of severed 

axons.  However, other forms of neuroplasticity besides regeneration can promote 

functional recovery after CNS injury.  For example, brain injury in neonatal mammals 

stimulates compensatory plasticity, whereby intact brain areas make new connections to re-

innervate areas of the brain deafferented by the injury (Castro, 1975).  The potential for 

plasticity in the early postnatal CNS is greatest before myelination ensues.  In adult rats, 

application of IN-1 after unilateral pyramidotomy to disrupt the corticospinal tract 

promoted not only CST regeneration (Raineteau et al., 1999), but also compensatory axon 

sprouting from intact corticofugal pathways, crossing the midline to project into the 

deafferented spinal cord, red nucleus, and basilar pontine nuclei (Thallmair et al., 1998; 
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Z'Graggen et al., 1998).  Importantly, treatment also promoted functional recovery in 

sensorimotor behavioral tasks.  After cortical aspiration lesions, IN-1 treatment promoted 

topographically accurate axonal sprouting from the spared hemisphere into the 

deafferented striatum (Kartje et al., 1999) and pons (Wenk et al., 1999).  These studies 

showed that IN-1 treatment could promote compensatory plasticity from uninjured 

pathways in addition to the regeneration of damaged axons, which is especially important 

for injuries involving significant loss of neuronal cell bodies, precluding axon regeneration. 

 In subsequent years, anti-Nogo-A antibody treatment was shown to promote 

corticofugal fiber plasticity, dendritic remodeling, and sensorimotor recovery after cortical 

stroke (eg., (Markus et al., 2005; Papadopoulos et al., 2002; 2006; Tsai et al., 2007; Wahl 

et al., 2014; Wiessner et al., 2003), and reviewed in (Kumar and Moon, 2013)).  The 

importance of these newly sprouted fibers for recovery was confirmed by silencing crossing 

corticospinal fibers, which resulted in the loss of regained sensorimotor function (Wahl et 

al., 2014).  In stroke, therefore, anti-Nogo-A treatment appears to work by disinhibiting 

plasticity from intact, spared projections.   

While much of the work on Nogo-A blockade has focused on sensorimotor 

recovery, studies have shown that anti-Nogo-A treatment is also effective in promoting 

cognitive recovery in several injury models.  For example, anti-Nogo-A treatment after 

traumatic brain injury improved spatial learning in the Morris water maze (Lenzlinger et 

al., 2005), and anti-Nogo-A treatment after medial agranular cortex aspiration lesion 

promoted recovery from hemispatial neglect, one of the most common cognitive 
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impairments after ischemic stroke (Brenneman et al., 2008; Gottesman and Hillis, 

2010).  After stroke in aged rats, anti-Nogo-A treatment significantly improved the rate 

of acquisition of the hidden platform location in the Morris water maze, however this did 

not correlate with dendritic plasticity in the hippocampus, suggesting a different 

mechanism of efficacy (Gillani et al., 2010). 

Cloning of the nogo gene and biochemical features of Nogo-A 

 Until 2000, the identity of the protein antigen for IN-1 was unknown.  However, a 

milestone study published that year reported the cloning of the gene designated ‘nogo’ 

(Chen et al., 2000).  The nogo gene was shown to give rise to three protein products—

Nogo-A, -B, and –C—based on differential promoter usage (Nogo-C) and alternative 

splicing (Nogo-A and –B).   The largest of the three, Nogo-A (1,163 amino acids), 

contained all of the sequence fragments derived from the bovine equivalent of the 250 kDa 

inhibitory fraction (“bNI-220”) first identified in rat CNS myelin.  Therefore, it was 

believed that specifically the ‘A’ isoform of Nogo contained the growth inhibitory activity.  

All three isoforms share a region of homology at the C-terminus, the so-called reticulon 

homology domain (see below).  Recombinant Nogo-A expressed and purified from CHO 

cells was inhibitory toward fibroblast spreading and neurite outgrowth, and antibodies 

generated against recombinant Nogo-A recapitulated the growth promotion into CNS 

myelin seen with IN-1 treatment. 

 In the same issue of Nature, two additional studies confirmed the identity of the 

inhibitory protein.  Stephen Strittmatter’s laboratory reported that Nogo is a member of 
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the reticulon protein family and proposed both the first membrane topology model and 

the first inhibitory domain for this protein (GrandPré et al., 2000).  In COS-7 cells 

overexpressing full length Nogo-A cDNA, a 66-amino acid loop found between the two 

hydrophobic regions (“Nogo-66”) was found to be exposed at the cell surface, whereas N- 

or C-terminal Myc epitope tags were not labeled under nonpermeabilizing conditions.  

Oligodendrocytes derived from spinal cord explants also showed Nogo-66 surface staining.   

Recombinant Nogo-66 was able to collapse E12 chick DRG growth cones with an EC50 

in the low nanomolar range, identifying Nogo-66 as an inhibitory domain within the 

Nogo-A protein (GrandPré et al., 2000).  Lastly, Prinjha and colleagues identified human 

Nogo-A and confirmed that the human protein could indeed potently inhibit neurite 

growth (Prinjha et al., 2000). 

 Extensive screening of peptide sequences derived from full-length Nogo-A led to 

the identification of additional domains inhibitory toward fibroblast spreading and neurite 

outgrowth, and/or capable of collapsing neuronal growth cones (Oertle et al., 2003).  

Peptides comprising amino acids 59-172 (“NiR-Δ2”) and 544-725 (“NiG-Δ20”), when 

pre-adsorbed to tissue culture plates, were both sufficient to inhibit 3T3 fibroblast 

spreading at low concentrations, and adhesion at high concentrations.  (The designation 

“NiG” refers to the region of Nogo-A that is not shared by either Nogo-B or Nogo-C, ie. 

amino acids 174-979.)  However, of the two domains, only Δ20 was found to inhibit 

neurite outgrowth.  Monomeric Nogo-66 was capable of inducing growth cone collapse, 

though this activity was potentiated by peptide dimerization.  Dimeric but not monomeric 
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Δ20 was likewise capable of growth cone collapse.  The results of this study are 

summarized in table 2.1.  

 Effect (by cell type) 

Nogo-A 
domain 3T3 cells PC12 cells 

E7-9 chicken 
RGCs 

P7 rat cerebellar 
granule cells 

E13-E15 
chicken DRG 
neurons 

P6 rat DRG 
neurons 

NiR-Δ2 Spreading ↓ 

Adhesion ↓ (at 
high conc.)  

Minor effect 
on neurite 
outgrowth 

Marginal 
effects on axon 
growth in stripe 
assay 

NT NT NT 

NiG-Δ20 Spreading ↓ 

Adhesion ↓ (at 
high conc.) 

Neurite 
outgrowth ↓ 

Nonpermissive 
to axon growth 
in stripe assay 

NT Growth cone 
collapse when 
dimeric 

No growth cone 
collapse when 
monomeric 

Growth cone 
collapse when 
dimeric 

Nogo-66 No effect on 
spreading 

No effect on 
neurite 
outgrowth 

NT Neurite outgrowth ↓ 
(Niederöst et al., 
2002) 

Growth cone 
collapse (more 
potent when 
dimeric) 

Growth cone 
collapse when 
dimeric 

NiG NT NT NT Neurite outgrowth ↓ 
(& confirmed in 
(Niederöst et al., 
2002)) 

No growth cone 
collapse when 
monomeric 

NT 

Table 2.1 ▲  Summary of  (Oertle et al., 2003) and supplemented with additional studies where 
indicated.  RGC: retinal ganglion cells; DRG: dorsal root ganglion. NT not tested. 
 

Subcellular trafficking and localization of Nogo-A 

The exact membrane topology of Nogo-A has been intensely scrutinized, because 

presumably, the inhibitory domains must be exposed at the cell surface of oligodendrocytes 

to exert an effect on neighboring cells.  The presence of two 35 and 36 aa hydrophobic 

stretches suggests sites of membrane insertion.  These sequences are longer than typical 

single-pass membrane insertion domains, suggesting the formation of a hairpin whereby 

the protein dips into the membrane and exits again on the same side (Kempf and Schwab, 
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2013).  The membrane topology or surface fraction may be cell type-specific: primary 

oligodendrocytes express both Nogo-66 and N-terminal Nogo-A domains at the cell 

surface, whereas in CHO cells transfected with Nogo-A, the 11C7 epitope (and possibly, 

all of Nogo-A) is exclusively intracellular (Oertle et al., 2003). Antibodies against N-

terminal, Nogo-A-specific epitopes also revealed surface localization in 3T3 fibroblasts, 

neonatal rat DRG neurons, and C2C12 myoblast cells (Dodd et al., 2005).  Regardless, 

the intracellular fraction of Nogo-A predominates in oligodendrocytes and most cell types, 

estimated to comprise approximately 99% of the total cellular Nogo-A content (Oertle et 

al., 2003).  Intracellularly, Nogo-A has been found to colocalize with markers of the 

endoplasmic reticulum and Golgi in oligodendrocytes (Oertle et al., 2003).  The function 

of ER-associated Nogo-A is largely unknown, but may be involved in maintaining ER 

membrane curvature (Voeltz et al., 2006).  However, this function is likely subserved by 

other proteins outside of the CNS, where Nogo-A expression is minimal.  

Nogo-A contains a di-lysine ER retention motif, but lacks a conventional N-

terminal ER signal sequence (Schwab, 2010).  Why Nogo-A, which contains an ER 

retention sequence, is transported to the cell surface is unclear, but not unprecedented.  For 

example, other myelin proteins, AMPA and NMDA glutamate receptors, GABA-B 

receptors, and even the ER markers calnexin and calreticulin contain ER retention 

sequences but can be found to varying degrees at the cell surface (Dodd et al., 2005).  It has 

been hypothesized that Nogo-A may be transported to the cell surface independently of 
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the Golgi apparatus through either direct ER-plasma membrane fusion or ER vesicle 

budding (Kempf and Schwab, 2013).  

Nogo-A receptors and intracellular mediators 

In 2001, the first neuronal receptor for Nogo-A was reported (Fournier et al., 

2001).  The receptor, named NgR1, could bind with high affinity to soluble Nogo-66 and 

cause growth cone collapse.  Because NgR1 is anchored to the plasma membrane by a 

glycophosphatidylinositol (GPI) linkage, rather than possessing an intracellular domain, it 

was hypothesized that NgR1 signals through complexing with other proteins.  The first co-

receptor for NgR1 was identified as the low affinity neurotrophin receptor p75 (Wang et 

al., 2002).  However, due to the limited expression of p75—including a lack of expression 

in some Nogo-A-responsive neurons—other components of the NgR signaling complex 

were theorized.   This led to the identification of TROY (aka TAJ) as an NgR co-receptor, 

which is more abundantly expressed in the adult brain than p75 (Shao et al., 2005).  A third 

major component of the signaling complex, LINGO-1, was identified after the 

observation that NgR1 and p75 co-transfection was not sufficient to activate downstream 

signaling in COS7 (non-neuronal) cells (Mi et al., 2004).  Notably, NgR1 can also be 

activated by other neurite growth inhibitors, such as myelin-associated glycoprotein 

(MAG), oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate 

proteoglycans (Schwab and Strittmatter, 2014).   More recently, paired immunoglobulin 

receptor B (PirB) was identified as an additional receptor for Nogo-66, MAG, and OMgp 

(Atwal et al., 2008). 
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The identity of the receptor for the Δ20 domain of Nogo-A, located within 

amino-Nogo, proved to be more elusive.  One study found that amino-Nogo antagonized 

the activity of certain integrins (Hu and Strittmatter, 2008), thereby inhibiting adhesion to 

extracellular matrix components.  The orphan GPCR GPR50 was found to bind Nogo-A 

partially through an interaction site within amino-Nogo and influence neurite outgrowth, 

though it appears no follow-up studies have been performed regarding the role of GPR50 

in Nogo-A signaling (Grünewald et al., 2009).  A comprehensive study published in 2014 

provided the most compelling evidence for an amino-Nogo receptor responsible for its 

multiple effects on restricting anatomical and synaptic plasticity, the previously 

characterized sphingosine-1-phosphate (S1P) receptor sphingosine-1-phosphate receptor 2 

(S1PR2) (Kempf et al., 2014).  S1PR2 is expressed by several neuron populations in the 

adult brain, as well as by Δ20-responsive 3T3 and cerebellar granule cells in vitro.  S1P and 

Nogo-A-Δ20 bind to different parts of the receptor, and Δ20 binding affinity is not 

affected by the presence of S1P.  However, the presence of S1P can potentiate the cell 

spreading inhibition induced by Δ20, suggesting modulation by S1P (Kempf et al., 2014).   

Both Nogo-66 and amino-Nogo-A are believed to exert their inhibitory effects by 

activating the small GTPase RhoA (Niederöst et al., 2002) (Fig. 2.1). Therefore, signaling 

from both S1PR2 and NgR1 converges on the activation of RhoA.  RhoA then activates 

the Rho-associated protein kinase ROCK, whose downstream phosphorylation targets 

include LIM kinase, myosin light chain 2 (MLC2), and collapsin response mediator 

protein 2 (CRMP2) (Schmandke et al., 2014).  Interestingly, while RhoA or ROCK 
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inhibition completely restored neurite outgrowth on a myelin-associated glycoprotein 

(MAG) substrate, RhoA or ROCK inhibition could restore only around 60 and 70% of 

neurite outgrowth on Nogo-66 and amino-Nogo substrates, respectively, suggesting an 

alternate, Rho/ROCK independent mechanism of Nogo-A signaling (Niederöst et al., 

2002).  In this same study, treatment of cerebellar granule cells with Nogo-66 or Nogo-A-

Δ20 peptides in vitro also led to a decrease in the activation of Rac1, another Rho family 

GTPase.   

To transduce Δ20 signals, S1PR2 couples to the G protein G13, which activates the 

Rho guanine nucleotide exchange factor LARG and subsequently RhoA (Kempf et al., 

2014).  Once bound to Δ20, S1PR2 dimerizes with tetraspanin 3 follwed by internalization 

of this complex (Thiede-Stan et al., 2015).  Internalization of Δ20 in ligand-receptor 

complex “signalosomes” is required for the inhibitory activity of this domain (Joset et al., 

2010).  This suggests the existence of a protease that can cleave the extracellular domain for 

Nogo-A to free it for endocytosis.  Alternatively, after brain injury, fragments of myelin 

debris containing Nogo-A could potentially be endocytosed since they are no longer 

associated with an intact plasma membrane.  Soluble Δ20 has also been found to reduce 

CREB phosphorylation in cultured DRG cells (Joset et al., 2010).  Much of the work on 

Δ20 intracellular signaling mediators was performed before S1PR2 was identified as a Δ20 

receptor.  Therefore, it is likely that these signaling mediators are downstream of S1PR2, 

but in most cases this has not been shown experimentally. 
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Figure 2.1 ▲  Nogo-A signal transduction pathway.   Nogo-A-Δ20 interacts with two 
receptors, S1PR2 and integrins, while Nogo-66 activates NgR1 and PirB.  S1PR2 and NgR1 
signaling both converge on activation of the small GTPase RhoA, which modulates 
cytoskeletal contractility.  HP1, HP2: hydrophobic segments; LOTUS: Cartilage Acidic 
Protein 1B; CSPG: chondroitin sulfate proteoglycans.  (Schwab and Strittmatter, 2014). 
 

Not just a neurite outgrowth inhibitor:  Roles of Nogo-A in the normal brain 

The role of Nogo-A in embryonic neural development 

Expression patterns 

 Nogo-A has been detected in the embryonic brains of several species, including 

chickens, rodents, and humans (Caltharp et al., 2007; Haybaeck et al., 2012; Huber et al., 

2002; Josephson et al., 2001; Mathis et al., 2010; Mingorance-Le Meur et al., 2007).  In 

mice, Nogo-A expression is present from as early as embryonic day 12.5 (E12.5) in the 
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olfactory bulb, cerebellum, cortex, thalamus, and hippocampus (Mingorance-Le Meur 

et al., 2007). Radial glia, the neural stem cells of the embryonic brain, also express Nogo-A 

(Mathis et al., 2010; Mingorance-Le Meur et al., 2007).  At E15.5 and E17.5, Nogo-A 

expression is evident throughout the cortical anlage, including the marginal zone, cortical 

plate, subplate, intermediate zone, and subventricular zone in both radially- and 

tangentially-migrating neural precursors (Mathis et al., 2010).  While Nogo-A expression 

is most appreciable in the cell bodies of radially migrating neurons, tangentially migrating 

neurons strongly express Nogo-A in both the cell body and especially in the leading process 

(Mathis et al., 2010; Mingorance-Le Meur et al., 2007).  Post-migratory neurons in the 

cortical plate were also noted to express Nogo-A (Mathis et al., 2010).  At 15.5, Nogo-A 

expression localizes to the growing axons of developing corticofugal projections.  Nogo-A 

expression precedes NgR1 expression (Mingorance et al., 2004), suggesting an NgR1-

independent function in the earliest stages of neural development.  Nogo-A expression in 

oligodendrocytes is concomitant with myelination, occurring during early postnatal 

development (~P5-P9) (Huber et al., 2002). 

 Transcripts for the Nogo receptor components NgR1, Lingo-1, TROY, and p75 

were found in E15.5 mouse brain-derived neurospheres.  Migrating cells expressing nestin 

or βIII-tubulin were positive for NgR1, Lingo-1, and p75 by immunocytochemistry, while 

TROY expression was found only in nestin-positive cells, showing that these neural 

precursors expressed the components of the Nogo-66 receptor complex  (Mathis et al., 

2010).  Importantly, Nogo-A was found to be expressed at the surface of embryonic 
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neurosphere-derived cells by immunocytochemistry (Mathis et al., 2010).  In vivo, 

Nogo-66 receptors NgR1 and PirB were found to be expressed in nestin-positive neural 

stem cells in E14.5 mouse brain (Ramasamy et al., 2014). 

Roles in proliferation, migration, and maturation/morphogenesis 

 Many studies involving Nogo-A in embryonic neural development have focused on 

its roles in migration and morphogenesis.  Mathis et al. reported no effect of Nogo-A 

knockout on the number of BrdU+ cells in the cortex of E17.5 mice, consistent with a lack 

of an effect on cellular proliferation (Mathis et al., 2010).   However, Nogo-66 peptide 

treatment of embryonic forebrain cortex-derived neural stem/progenitor cells was found to 

stimulate survival and proliferation in an NgR1- and PirB-dependent manner (Ramasamy 

et al., 2014).  Therefore, a compensatory mechanism may counteract the effect of Nogo 

KO to maintain normal progenitor cell numbers in vivo. 

A study in Nogo-A/B/C knockout mice revealed no changes in the radial migraton 

of neural precursor cells and normal development of cortical tracts (Mingorance-Le Meur 

et al., 2007), while a subsequent study did note subtle disturbances in radial migration in 

Nogo-A-specific KO mice (Mathis et al., 2010).   Nogo-A-specific knockout did not 

affect the development or morphology of radial glia (Mathis et al., 2010). The migration 

of early cortical interneurons (labeled at E12.5) is delayed in Nogo knockout mice, while 

interneurons born at E15.5 are unaffected, suggesting differential roles of Nogo-A in these 

two populations (Mingorance-Le Meur et al., 2007).  In both Mingorance-Le Meur’s and 

Mathis’s studies, these migration deficits in Nogo-A KO mice were not permanent, as 
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cortical neuron quantity was normal when examined in adulthood.  This lack of gross 

defects is consistent with the viable and behaviorally mild phenotype observed in Nogo-A 

KO mice.        

 In vitro, the motility of E15.5 mouse brain-derived neural precursors was affected 

by various manipulations of Nogo-A signaling.  The distance traveled by both neural 

precursors from Nogo-A KO mice and neural precursors treated with anti-Nogo-A 

antibody 11C7 was increased versus controls, due in part to fewer pauses made during their 

migratory cycles.  The maximum speed attained by Nogo-A knockout cells did not 

significantly differ from wildtype controls, though anti-Nogo-A antibody treatment led to 

an increase in maximum speed.  Interestingly, these results (distance covered, maximum 

speed, and number of pauses) could be recapitulated by neutralizing antibodies to NgR1 or 

LINGO-1, even though 11C7 targets Δ20, the Nogo-A domain that is not believed to 

bind to NgR1 (Mathis et al., 2010).  The authors speculated that the antibody may 

interfere with NgR1 directly by steric hindrance, or indirectly by inducing internalization of 

surface Nogo-A (Mathis et al., 2010; Weinmann et al., 2006).  The adhesion and 

spreading of neural precursors from both WT and Nogo-A KO mouse brains was 

inhibited by Δ20 peptide, and to a similar degree in both genotypes, suggesting that 

adhesion/spreading inhibition is mediated in a non-cell autonomous manner.  However, the 

effect of exogenous Δ20 peptide—either presented as a substrate or applied to the media—

on the migration of embryonic neural precursors was not investigated in this study (Mathis 

et al., 2010). 
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Neurons cultured from E15.5 Nogo-A/B/C knockout mice become polarized 

(ie., extend a single, major neurite) more quickly than wildtype neurons and display 

increased neurite branching  (Mingorance-Le Meur et al., 2007).  Consistent with this 

result, cerebellar purkinje cells in Nogo-A KO mice display larger, more complex dendritic 

trees in vivo(Petrinovic et al., 2013b).  However, ventral mesencephalic dopaminergic 

neurons from E13.5 Nogo-A knockout mice exhibited lower average neurite length and 

branching, an effect that is likely cell autonomous given the lack of an effect of Nogo-A 

neutralizing antibody (Kurowska et al., 2014).  These results suggest that Nogo-A is 

involved in the morphogenesis of populations of neurons in the embryonic brain, but its 

role may differ depending on the specific cell type.   

Neurospheres—aggregates of neural progenitors that develop when neural stem 

cells are grown in suspension culture—from E15.5 Nogo-A knockout mouse brain, or 

wildtype neurospheres differentiated in the presence of anti-Nogo-A antibody 11C7, did 

not differ in the proportions of neurons, astrocytes, or oligodendrocytes generated upon 

differentiation, suggesting that Nogo-A does not regulate lineage commitment of 

multipotent progenitors in the embryonic brain (Mathis et al., 2010).  However, a separate 

study found that treatment of neonatal rat telencephalic neural stem/progenitor cells in 

vitro with recombinant Nogo-66 peptide skewed the differentiation of these cells toward 

an astroglial fate at the expense of neuronal differentiation (Wang et al., 2008).  As this 

effect was dependent on NgR1, the availability of other NgR1 ligands (eg., MAG) may 

explain the lack of an effect of Nogo-A KO on lineage commitment in vivo. 



 

 

22 

 

The role of Nogo-A in the migration of non-neuronal cells 

 Several studies have implicated Nogo-A in the migration of non-neuronal CNS 

cells.  Nogo-A has been found to inhibit the migration of microglia, malignant glioma 

cells, brain vascular endothelial cells, and olfactory ensheathing cells as measured in 

transwell Boyden chamber assays (summarized in table 2.2).  While migration of these cell 

types is inhibited by Nogo-A signaling, the influence of Nogo-A on cell adhesion appears 

to depend on cell type, as microglia, glioma, and endothelial cells adhere poorly to substrate 

bound Nogo-66, while olfactory ensheathing cells adhere more avidly.       

Reference Cell type Manipulation Effect 

(Yan et al., 2012) Microglia Nogo-66 
peptide 
substrate 
coating 

↓ microglia adhesion to recombinant Nogo-66 spotted on 
tissue culture plates.  ↓ microglia migration on substrate-
bound recombinant Nogo-66. 

(Liao et al., 2004) Glioma cells Nogo-66 
peptide 
substrate 
coating 

↓ adhesion and migration of U87MG human glioma cells on 
substrate-bound recombinant Nogo-66 

(Nocentini et al., 
2012; Reginensi et 
al., 2015; Su et al., 
2007) 

Olfactory 
ensheathing 
cells (OECs) 

Nogo-66 
peptide 
substrate 
coating 

↑ adhesion and ↓ migration of OECs 

(Wälchli et al., 
2013) 

Vascular 
endothelial cells 

Δ20 peptide 
substrate 
coating 

↓ adhesion and migration of primary mouse brain-derived 
microvascular endothelial cells 

Table 2.2 ▲  Summary of the effects of Nogo-A on the motility of various cell types found in the 
CNS. 
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The roles of Nogo-A in the hippocampus 

Due to the high hippocampal expression of Nogo-A, especially in neurons, the 

function of Nogo-A in hippocampal function and synaptic plasticity has been attracted 

particular attention.  In the hippocampus, both Nogo-A and NgR1 are localized pre- and 

post-synaptically, though NgR1 is more enriched post-synaptically (Lee et al., 2008).  The 

induction of long-term depression (LTD) at CA3-CA1 synapses is impaired in NgR1-

knockout mice, while these mice display enhanced CA3-CA1 LTP in the presence of 

fibroblast growth factor (Lee et al., 2008).  In accordance, Nogo-66 peptide application 

significantly suppressed the induction of LTP at CA3-CA1 synapses. (Raiker et al., 2010).  

Δ20-S1PR2 signaling appears to play a similar role in restricting synaptic plasticity as 

Nogo-66-NgR1.  LTP at CA3-CA1 synapses is enhanced in transgenic Nogo-A 

knockdown rats and after acute application of anti-Nogo-A antibody 11C7 or the S1PR2 

antagonist JTE-013 (Delekate et al., 2011; Kempf et al., 2014; Tews et al., 2013).  

Therefore, Nogo-A plays a role in restricting synaptic plasticity. 

Despite these effects of Nogo-A on synaptic plasticity, cognitive manifestations of 

Nogo-A knockout are typically mild.  The performance of transgenic Nogo-A knockdown 

rats in Carousel maze place avoidance, but not Morris water maze delayed-matching-to-

place, is impaired (Petrasek et al., 2014a).  Both are tests of spatial memory, but the 

Carousel maze requires dissociating reference cues within the testing room from those of 

the maze itself, which can be rotated during testing.  These findings suggest that the proper 
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balance of Nogo-A signaling, including during the development of behaviorally relevant 

circuits, is necessary for optimal learning and memory.   

ADULT NEUROGENESIS 

History of adult neurogenesis 

 It is now widely accepted that new neurons continue to be added to the adult brain, 

including in humans. The presence of proliferative zones in the adult rodent brain has been 

noted for over 100 years, including in the walls of the lateral ventricles (Allen, 1912).  

Beginning in the 1960’s, several studies by Joseph Altman renewed the study of postnatal 

mammalian neurogenesis, using tritiated thymidine autoradiography (which required a film 

exposure time of 2-4 months) to demonstrate cellular proliferation in the walls of the 

lateral ventricles and the production of dentate granule neurons in the hippocampus of the 

adult rat (Altman, 1962; 1963; Altman and Das, 1965).  In the 1980’s, Fernando 

Nottebohm’s laboratory demonstrated substantial addition of new neurons to songbird 

vocal centers (eg., (Goldman and Nottebohm, 1983)).  Beginning the next decade, much 

of the work on postnatal neurogenesis continued focusing on two areas: the walls of the 

lateral ventricles, termed the subventricular zone (SVZ), and the dentate gyrus (DG) of the 

hippocampus. 

The SVZ and DG: Two major neurogenic niches in the adult brain 

 While cellular proliferation in the SVZ and the appearance of new neurons in the 

olfactory bulb (OB) had been appreciated for decades, as late as the early 1990’s, the 

connection between the two was unclear.  One prominent study concluded that the adult 
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rodent SVZ was essentially vestigial and generated only cells destined for cell death, 

based on the lack of retention of newly generated cells in the SVZ or surrounding tissue 

(Morshead and van der Kooy, 1992).  However, a seminal study in 1994 by Arturo 

Alvarez-Buylla’s laboratory showed that, while labeled cells typically are not retained in the 

SVZ, rather than dying they instead migrate long distances into the OB and mature into 

neurons (Lois and Alvarez-Buylla, 1994).    

 Subsequent work continued to generate a coherent picture of SVZ-OB 

neurogenesis (Fig. 2.2).  Quiescent, astrocyte-like neural stem cells (aka type B cells) can 

become activated and divide asymmetrically to generate another stem cell and a transit-

amplifying progenitor (type C cell).  Type C cells then divide rapidly and give rise to 

neuroblasts (type A cells), which are neuronally-committed.  Neuroblasts migrate 

tangentially from the SVZ to the OB through the rostral migratory stream (RMS) in a 

distinctive migratory mode called “chain migration,” in which chains of neuroblasts in close 

contact slide past one another on their way to the OB.  Once these chains of neuroblasts 

reach the olfactory bulb core, they separate and migrate radially as single cells into the 

olfactory bulb parenchyma.  They then complete their maturation and integrate into local 

circuitry as GABAergic granule (about 95% of newborn cells) and periglomerular (less 

than 3%) interneurons, or glutamatergic juxtaglomerular cells (an even smaller percentage) 

(Lazarini and Lledo, 2011; Lim and Alvarez-Buylla, 2016).   

 SVZ neural stem cells can also generate oligodendrocytes that migrate dorsally into 

the corpus callosum (Menn et al., 2006) and astrocytes that can migrate toward sites of 
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injury (Benner et al., 2013).  Intriguingly, a recent study showed that SVZ neural stem 

cells, normally thought to be sessile, can migrate toward a cortical infarction and generate 

reactive astrocytes, which can give rise to neurospheres in vitro, suggesting the potential for 

local neuronal replacement under the right circumstances (Faiz et al., 2015) 

 

Figure 2.2 ▲  Overview of  SVZ-OB neurogenesis.  From (Lim and Alvarez-Buylla, 2016).  
(A) Sagittal view demonstrating the anatomical relationships between the lateral ventricle 
(LV), rostral migratory stream (RMS), olfactory bulb (OB), and olfactory epithelium (OE). 
CC: corpus callosum; CX: cortex; LV: lateral ventricle; CB: cerebellum. (B) Enlargement of 
boxed area in ‘A.’  Olfactory receptor neurons (ORNs) project axons into the glomerular layer 
(GL), where they synapse with mitral and tufted cells.  New neurons detach from the RMS 
and migrate radially, maturing mainly into granule cells (GCL: granule cell layer), or 
periglomerular cells. MCL: mitral cell layer.  (C) Depiction of chain migrating neuroblasts 
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(type A cells). (D) Mature neuron types generated in SVZ/OB neurogenesis.  PGC: 
periglomerular cell; GC: granule cell; NT: neurotransmitter. 
 

In the hippocampus, neural stem cells reside in the subgranular zone (SGZ) of the 

dentate gyrus, located at the interface of the hilus and granule cell layer. The naming 

convention is different in the DG than in the SVZ:  stem cells (type 1 cells) give rise to 

progenitors (type 2a and 2b cells), which generate neuroblasts that develop into 

glutamatergic dentate granule cells (Fig. 2.3).  Most newborn cells in the DG die by 

apoptosis within the first few days of birth (at the early progenitor stage), or 1-3 weeks 

after birth (at the immature neuron stage).  A fundamental property of newborn DG 

neurons is their hyperexcitability.  During a critical period between 3-6 weeks after birth, 

young neurons, like their mature counterparts, receive excitatory, glutamatergic input from 

the entorhinal cortex.  However, unlike mature granule cells, young neurons lack strong 

inhibitory GABAergic input, contributing to a lower threshold for the induction of long-

term potentiation (LTP).  Importantly, functional input from the entorhinal cortex means 

that the activity of newborn neurons can be regulated by behavioral experience (Christian et 

al., 2014). 
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Figure 2.3 ▲  Overview of adult neurogenesis in the dentate gyrus.  (A) Representation of a 
sagittal rodent brain section (left), with the hippocampus enlarged (right) to show details.  
Right: the classical hippocampal trisynaptic circuit. Inputs from the entorhinal cortex synapse 
on the dendrites of dentate granule cells (the cell type generated in adult hippocampal 
neurogenesis) via the perforant path.  Granule cell axons (mossy fibers) then synapse onto 
CA3 pyramidal cells, which in turn project Schaffer collaterals to CA1.  (B) Overview of 
lineage progression from radial glia-like (RGL) neural stem cells, to intermediate progenitor 
cells (IPCs), to neuroblasts, immature, and finally mature granule cells. From (Christian et 
al., 2014) 
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The functions of adult SVZ-OB and DG neurogenesis 

The functions of adult neurogenesis in the normal brain are continuing to be 

elucidated.  Adult neurogenesis is not necessary for survival, and typically, phenotypes after 

ablating neurogenesis are evident only under strict experimental circumstances.   

The role of SVZ-OB neurogenesis is still poorly understood, but as in the DG, new 

OB neurons integrate into and influence the activity of existing circuits.  The olfactory 

system processes chemosensory signals from the outside world.  Odorant molecules enter 

the nose and partition into the olfactory mucosa where they bind to olfactory receptors 

expressed by olfactory sensory neurons (OSNs).  These OSNs in turn project axons 

through the cribriform plate into the OB, where they synapse on the main projection 

neurons of the olfactory bulb, mitral and tufted cells.  Notably, each OSN expresses just a 

single olfactory receptor gene, and axon terminals of OSNs expressing the same gene 

converge on only a few OB glomeruli, discrete bundles of synaptic contacts between OSNs 

and mitral and tufted cells (Munger et al., 2009).  The cell types generated in SVZ-OB 

neurogenesis—periglomerular and granule cells—are inhibitory neurons that refine the 

sensory input relayed by OSNs to the OB.  Periglomerular cells can modulate incoming 

information by interacting with OSN axon terminals and mitral and tufted cell dendrites.  

Granule cells, which lack traditional axons and are located in deeper layers of the OB, 

release GABA onto mitral cell dendrites at dendro-dendritic synapses (Lazarini and Lledo, 

2011).  After processing, odor information is then relayed to higher-order brain centers.  

New neurons are not required for olfactory detection or discrimination, but appear to be 
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involved in cognitive processing of odorant context.  For example, new neurons are 

critical in learning to discriminate two similar odors (ie., olfactory perceptual learning) 

(Moreno et al., 2009).    Irradiation of the SVZ, which reduces cellular proliferation, had 

no effect on odorant detection or discrimination, but impaired olfactory fear conditioning 

and the long-term memory of particular odorants that were associated with a reward 

(Lazarini et al., 2009; Valley et al., 2009). 

New neurons in the hippocampus are most commonly implicated in pattern 

separation, the means by which similar inputs are processed as distinct (Clelland et al., 

2009).  Therefore, ablation or stimulation of adult hippocampal neurogenesis manifests as 

deficits or improvements, respectively, in discriminating subtle differerences in spatial 

patterns (Lacar et al., 2014; Sahay et al., 2011).  Younger neurons receive the same 

entorhinal cortical input as their mature counterparts, but are transiently more excitable, 

segregating immature and mature dentate granule cells into electrophysiologically distinct 

groups.  Certain studies have found that ablating hippocampal neurogenesis manifests as 

deficits in spatial memory tasks in the Morris water maze, in which animals must use visual 

cues from the environment to find the location of a hidden platform in a pool of water 

(reviewed in (Garthe and Kempermann, 2013)). Most consistently, neurogenesis is 

important for acquisition of the platform location, probe trial performance (in which the 

platform is removed and the amount of time spent in the goal quadrant is measured), and 

reversal (where the platform is moved to a new location and the animal must re-learn a 

navigation strategy) (Garthe and Kempermann, 2013).    
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Adult neurogenesis in humans 

The human SVZ and DG are both capable of generating new neurons into 

adulthood.  Neurospheres can be cultured from the adult human SVZ and differentiate 

into both neurons and astrocytes (Sanai et al., 2004), and cells expressing doublecortin and 

PSA-NCAM, markers of immature neurons, can be found in the walls of the lateral 

ventricle (Bergmann et al., 2015).  The existence of the human RMS was once a matter of 

debate, which played out in the editorial pages of Science (Curtis et al., 2007a; 2007b; Sanai 

et al., 2007), but now consensus seems to support the dissolution of the RMS shortly after 

birth (Bergmann et al., 2015; Sanai et al., 2011).  Another difference between the rodent 

and human SVZ is the cytoarchitecture of this area—the human SVZ lacks chain 

migrating neuroblasts, but contains a unique “astrocyte ribbon” at the lateral SVZ 

(Quiñones-Hinojosa et al., 2006; Sanai et al., 2004).  The number of neurons produced in 

the human olfactory bulb is thought to be extremely small (if it happens at all), which is 

not entirely surprising given the relative small size of the olfactory bulbs, and relative lack 

of evolutionary importance of olfaction in humans compared to other mammals 

(Bergmann et al., 2015; Lim and Alvarez-Buylla, 2016).  A recent study found evidence of 

new striatal neurons in humans and suggested that these may derive from the SVZ (Ernst 

et al., 2014), though these results were not subsequently replicated using either human or 

rhesus macaque samples (Wang et al., 2014). 
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 The literature regarding neurogenesis in the human DG is somewhat less 

contentious.  A seminal study by Fred Gage’s laboratory was the first to report 

hippocampal neurogenesis in humans, using samples from patients that had received BrdU 

for diagnostic purposes (Eriksson et al., 1998).  As in the human SVZ, DCX-positive cells 

can be found in the human DG throughout adulthood, though the number of cells declines 

with age (Knoth et al., 2010).  It has been estimated that roughly 700 new neurons are 

added to the human hippocampus each day (Spalding et al., 2013).  Beyond its role in 

cognition, hippocampal neurogenesis, or disturbances thereof, has been implicated in the 

pathophysiology of a diverse array of conditions, including epilepsy, depression, and age-

related cognitive decline.  However, many of these relationships are purely correlative as 

neurogenesis cannot be easily experimentally manipulated in humans and confirmed with 

histological studies (Bowers and Jessberger, 2016).   

Neurogenesis after stroke 

A comprehensive review of all post-stroke neurogenesis studies is daunting (as of 

May, 2016, more than 1,700 publications were returned when searching PubMed for the 

key words stroke/ischemia and neurogenesis/subventricular).  Many different strategies 

have been developed to model ischemic stroke in animals.  Combined with species and even 

strain differences in the effects of these models on the brain (Carmichael, 2005), it is 

difficult to make a unifying statement about the degree to which ectopic neurogenesis 

occurs after stroke.  Variables that may contribute to differences in measurements in 

neurogenesis after injury are found in table 2.3. 
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Species and strains Ischemia models 

Infarct sizes (% 
of intact 
hemisphere) 

Areas of 
ischemia 

Post-surgical 
methodology 

Rat 
Sprague-Dawley 
Wistar 
Fischer 344 
Long-Evans 

Mouse 
C57BL/6 
BALBc 
Sv129 
CD-1 

Gerbil 

Global 
Focal 

Transient MCAO 
Permanent MCAO 
Photothrombotic 
Endothelin-1 
Pial vessel disruption 
Cardio-embolic 

 
 

6-50+% Cortex 
Striatum 
Thalamus 
Hypothalamus  
Hippocampus 

Definition of 
neurogenesis 
(BrdU, 
BrdU/DCX, 
BrdU/NeuN) 
BrdU injection 
schedule 
Sampling rigor 
(# of tissue 
sections, # of 
cells examined, 
confocal vs 
widefield 
microscopy) 

Table 2.3 ▲ Selected variables in preclinical rodent models that can influence how 
neurogenesis is induced and measured after stroke. 
 

The majority of studies investigating post-stroke neurogenesis employ the transient 

middle cerebral artery occlusion (tMCAO) model, in which a suture is threaded into the 

internal carotid artery to the origin of the middle cerebral artery and transiently (30-120 

min) left in place before withdrawal (Carmichael, 2005).  This produces an infarction core 

in the ipsilateral striatum, while the overlying cortex is hypoperfused and vulnerable (ie., the 

ischemic penumbra).  However, other regions, including the thalamus, hypothalamus, and 

substantia nigra may be damaged with prolonged vessel occlusion.  A critical factor that 

may complicate the extrapolation of post-tMCAO neurogenesis studies to post-stroke 

neurogenesis in general is the proximity of the infarcted area to the SVZ.  Occasionally, the 

infarcted region can even abut the SVZ (eg., (Jin et al., 2010; Thored et al., 2007)).  
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Effects of focal ischemia on the SVZ could possibly be distance-dependent.  

Additionally, counting proliferating cells in the SVZ after injury involving the medial 

striatum could lead to an overestimate of the number of bona fide proliferating neural 

precursor cells due to inadvertent counting of microglia or macrophages, which proliferate 

robustly after injury (see Fig. 2.4 for a comparison of infarct territory in tMCAO versus 

smaller cortical stroke).  

 

 

Figure 2.4 ▲ Representative lesion (red) locations for distal versus severe transient MCAO and 
proximity to the SVZ (green).  In tMCAO, involvement of the medial striatum, as depicted 
here, is more prominent with prolonged occlusion. 
 

There have been numerous reports of subventricular zone-derived neurogenesis 

after tMCAO.  The first study to investigate this phenomenon found that a 90 minute 

tMCAO in rats increased cellular proliferation in the ipsilesional and contralesional SVZ, 

peaking at 2 weeks post-ischemia before decreasing back to baseline (Jin et al., 2001).  The 

following year, two prominent studies—one published while the other was in press—

provided evidence for the production of new mature striatal neurons after stroke (Arvidsson 
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et al., 2002; Parent et al., 2002).  Arvidsson and colleagues reported that stroke 

stimulated proliferation within the SVZ—however these results need to be interpreted 

cautiously because their BrdU injection schedule (twice daily injections for 14 days after 

stroke) was not specific for cellular proliferation.  Over the course of 14 days, newly 

proliferated, BrdU+ cells would be expected to migrate out of the SVZ toward the 

olfactory bulbs, a process that may be disrupted by the presence of injury (Ohab et al., 

2006).  The survival of newborn cells could also be affected.  In this study, DCX+ 

neuroblasts were seen apparently migrating from the SVZ toward the damaged striatum, 

but were not found in the vicinity of the infarcted parietal cortex.  The DCX+ cells in the 

striatum expressed Meis2, a transcription factor associated with medium spiny neurons, the 

predominant type of mature neuron in the striatum.  At 6 weeks after stroke, following 

twice daily BrdU injections at days 1-14 post-stroke, an average of 750 BrdU+/NeuN+ 

new neurons per mm3 were found in the ipsilesional striatum, whereas only 78 new neurons 

per mm3 were found at 2 weeks post-stroke (Arvidsson et al., 2002).  Importantly, the 

increase in BrdU+/NeuN+ cells over a time frame consistent with the maturation of new 

neurons argues against significant BrdU incorporation by mature neurons undergoing 

DNA repair or abortive cell cycle re-entry, which are always caveats when using thymidine 

analogs as markers of proliferation (Taupin, 2007).  The SVZ origin of these newborn 

striatal neurons was confirmed by pre-labeling SVZ cells and finding that these labeled 

cells, but not pre-labeled striatal cells, had matured into striatal neurons after stroke 

(Yamashita et al., 2006). 
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 Post-ischemic neurogenesis in the cortex is not as well established.  The early 

studies of post-stroke striatal neurogenesis found no evidence of new cortical neurons 

(Lindvall and Kokaia, 2015).  Two studies from the same lab reported new cortical neurons 

in adult rats subject to either cortical photothrombotic stroke or tMCAO (Gu et al., 2000; 

Jiang et al., 2001).  Later studies by different laboratories found cortical neurogenesis 

induced by distal MCAO in spontaneously hypertensive rats and by photothrombotic 

stroke in mice (Leker et al., 2007; Ohab et al., 2006).  The number of new neurons 

produced in the cortex after ischemia is likely very low, and determining the factors that 

limit cortical neurogenesis could help design interventions to promote cortical repair.   

  Generally, current dogma holds that brain injury increases the number of 

proliferating cells in the SVZ.  However, reports of decreased proliferation are not 

unprecedented.  For example, the SVZ responds to cortical aspiration lesion in mice in a 

biphasic manner, with an early transient decrease in proliferation (between 6 hours and 3 

days after injury), followed by a return to baseline, and then a longer-term decrease once 

again (after day 25 post-injury) (Goings et al., 2002).  After distal MCAO in 

spontaneously hypertensive rats, the number of SVZ cells positive for the proliferation 

marker Ki67 was reduced at 5 weeks post-stroke versus control (a longer term time point 

than most post-stroke proliferation studies) (Komitova et al., 2005). 

 Ectopic, post-stroke neurogenesis in humans is not well established.  Some studies 

have reported stroke-induced increases in proliferating cells and immature neurons in the 

SVZ and ischemic cortex (Jin et al., 2006; Macas et al., 2006; Martí-Fàbregas et al., 2010).  
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However, a subsequent study found no evidence that any mature neurons in the ischemic 

cortex were adult-born, and suggested that upregulation of doublecortin by mature neurons 

had been misinterpreted as a neurogenic response (Huttner et al., 2014).  

 The relevance of post-stroke neurogenesis in neuroprotection or longer-term 

behavioral recovery is not fully understood. Ablation of doublecortin-expressing cells prior 

to tMCAO exacerbates behavioral deficits and increases lesion size at 24 hours post-stroke 

in young and middle aged mice, suggesting a role of neurogenesis in mitigating the severity 

of ischemic injury (Jin et al., 2010; Sun et al., 2012).  This group later performed 

behavioral testing out to 8 weeks after ablation of all neural stem cells and distal MCAO, 

and found minor but sustained sensorimotor deficits in mice with ablated versus intact 

neurogenesis (Wang et al., 2012).  However, in this study the reduction in neurogenesis 

was only transient, with neurogenesis substantially restored by 8 weeks post-stroke.  The 

effect of an absolute ablation of neurogenesis on long-term sensorimotor recovery is 

therefore unknown.  Furthermore, none of these studies provide evidence that newborn 

mature neurons play any role in recovery.  Rather, they suggest that the presence of neural 

stem cells and neuroblasts is beneficial after injury, whether by maturing into neurons or by 

other mechanisms.  Future studies measuring the behavioral effects of selectively and 

reversibly silencing newborn neurons (eg., pharmacogenetically or optogenetically) would 

provide strong evidence for or against the importance of new neurons in behavioral recovery 

after stroke.  
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 In general, neurogenesis in the DG is also upregulated by ischemia.  Early studies 

using a transient global ischemia model in gerbils showed increased cellular proliferation in 

the SGZ peaking at 11 days post-ischemia and a total increase in new neurons in the 

dentate granule cell layer at longer time points (Liu et al., 1998).  Transient MCAO, distal 

permanent MCAO, and photothrombotic cortical strokes, which produce focal rather than 

global ischemia, likewise induce increased cellular proliferation and new neuron production 

in the SGZ/GCL (Jin et al., 2001; Kluska et al., 2005; Matsumori et al., 2006).  Increased 

neurogenesis per se is not sufficient to stave off the cognitive deficits that follow stroke, but 

cranial irradiation to ablate neurogenesis exacerbates post-stroke spatial memory deficits 

(Raber et al., 2004). Conversely, interventions that increase hippocampal neurogenesis 

correlate with improved spatial memory performance after stroke (Wurm et al., 2007).  

The role of Nogo-A in adult neurogenesis 

There is very little published work on the role of Nogo-A in adult neurogenesis.   

NgR1 decoy protein treatment decreased the astrocytic differentiation of transplanted 

adult rat SVZ-derived neural stem/progenitor cells (NSPCs) after spinal cord transection, 

suggesting a role for NgR1 in NSPC differentiation (Guo et al., 2012).  However, 

whether this was a direct effect on NSPCs, or occurred through modulation of the tissue 

microenvironment is unknown. 

A study from Annalisa Buffo’s laboratory, published in 2012, established much of 

what is known about the role of Nogo-A in the adult SVZ (Rolando et al., 2012).  First, 

the expression pattern of Nogo-A and NgR1 was described.  The expression of these two 
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proteins was found to be mutually exclusive: among neural precursor cells in the SVZ 

(ie., stem cells, progenitors, and neuroblasts), Nogo-A was expressed only by DCX+ 

neuroblasts and NgR1 was expressed only by neural stem cells.  NgR1 antagonism led to 

increases in neural stem cell proliferation both in vitro and in vivo, while antibody-

mediated neutralization of Nogo-A-Δ20 inhibited the migration of SVZ neuroblasts, 

possibly by causing neuroblasts to be too strongly adhesive to their substrate.  The authors 

proposed a model whereby neuroblasts, expressing Nogo-A at their surface, could activate 

NgR1 on neural stem cells to inhibit their proliferation.  This would serve as a negative 

feedback loop to maintain appropriate numbers of neural precursors in the SVZ.  

Additionally, the Δ20 domain of Nogo-A, acting through its receptor, would signal to 

neighboring neuroblasts to promote migration to the olfactory bulbs (Rolando et al., 

2012).  However, several issues were not addressed in this study.  First, surface localization 

of Nogo-A was not experimentally demonstrated, but rather assumed given the effects of 

anti-Nogo-A antibody on migration.  Second, demonstration of the anti-adhesive effects 

of Δ20 on SVZ-derived neuroblasts was performed by comparing adhesion on polylysine-

coated coverslips to coverslips coated with polylysine plus Δ20.  The predicted isoelectric 

point of Δ20 is approximately 4 (web.expasy.org), meaning that Δ20 would be mainly 

negatively charged at typical cell culture media pH and potentially neutralize the adhesion-

promoting charge of the polylysine.  Without using a control peptide with similar 

properties, it is difficult to determine whether Δ20 inhibits adhesion through receptor 

activation, or simply neutralizes the charge of the polylysine and makes the substrate less 
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favorable for attachment.  Third, explants for in vitro migration analysis were taken 

from P5 mice, a stage that precedes most myelin development (and therefore, before 

myelin-associated Nogo-A is abundant) (Foran and Peterson, 1992; Huber et al., 2002).  

Therefore it is possible that the effects of Nogo-A signaling in P5 cells cannot be 

extrapolated to adult neuroblasts.  Lastly, it was not known at the time of publication that 

S1PR2 was a receptor for Δ20.  Therefore, the expression of this receptor by SVZ 

neuroblasts was hypothesized by the authors, but not experimentally shown. 

 No published studies have investigated a role of Nogo-A in normal hippocampal 

neurogenesis.  After traumatic brain injury, however, NgR1-/- mice exhibited increased 

proliferation in the dentate gyrus SGZ and increased numbers of new neurons compared to 

wild-type controls, suggesting involvement of this receptor in new neuron production 

(Tong et al., 2013). 

Nogo-A signaling mediators in adult neurogenesis 

Effects of intracellular Nogo-A signaling mediators (eg., RhoA, ROCK, CREB) 

on adult neurogenesis have been more extensively studied, as these molecules are also 

targets of other non-Nogo-based signaling pathways.   

In the hippocampus, RhoA/ROCK activation generally exerts a suppressive 

influence on adult neurogenesis in the form of decreased neuronal differentiation and 

survival (Christie et al., 2013; Keung et al., 2011). CREB activation (phosphorylation), 

which can be inhibited by Nogo-A-Δ20 signaling in dorsal root ganglion neurons (Joset et 

al., 2010), is particularly important for adult-born dentate granule cell development.  Most 



 

 

41 

DCX+ immature neurons, but not mature granule cells, are positive for phospho-

CREB, and CREB activation maintains proper neuronal polarity and stimulates 

dendritogenesis and neuronal survival (Jagasia et al., 2009).  After tMCAO, phospho-

CREB levels in the ipsilateral DG increased and peaked at 4 days post-stroke before 

returning back to baseline at day 15, and CREB phosphorylation was found to be 

important for the survival of neural prescursors (Zhu et al., 2004).   

Inhibition of RhoA/ROCK in neonatal SVZ-derived neural stem/progenitor cells 

increases neurite outgrowth in vitro, including on a myelin substrate (Gu et al., 2013).  The 

migration distance of cells from the adult mouse SVZ was increased by ROCK inhibition, 

but decreased by Rac1 inhibition (Leong et al., 2011).  Furthermore, ROCK inhibition 

dissociated neuroblast chains, suggesting that ROCK is important for chain formation. In 

vivo, ROCK inhibition decreased the number of newborn neurons in the olfactory bulb, 

likely due to ectopic migration away from the rostral migratory stream (Leong et al., 

2011).    

The function of S1PR2 in SVZ neurogenesis has been investigated in the context of 

sphingosine-1-phosphate (S1P) biology.  S1P, acting through S1PR1, is a potent 

chemoattractant for embryonic neural stem/progenitor cells (NSPCs) in vitro, and S1P 

upregulation after spinal cord contusion contributes to the recruitment of transplanted 

NSPCs (Kimura et al., 2007).  After photothrombotic cortical stroke in adult mice, 

intracerebroventricular infusion of an S1PR2 small molecule antagonist enhanced 

neuroblast migration toward the infarct (Kimura et al., 2008).  Interestingly, based on their 
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representative images, the dorsolateral striatum is also infarcted, and it appears that the 

vast majority of neuroblast migration occurs ventral to the corpus callosum toward the 

infarcted striatum.  Furthermore, while Kimura and colleagues showed S1PR2 mRNA in 

cultured embryonic NSPCs, expression of S1PR2 at either the transcript or protein level 

has never been shown in the adult SVZ.  Notably, chemotaxis toward S1P is reduced in 

Chinese hamster ovary cells transfected with S1PR2, and S1PR2 antagonism enhances the 

migration of human umbilical vein endothelial cells and coronary artery smooth muscle 

cells, suggesting a common feature of S1PR2 signaling in the inhibition of cell migration 

(Okamoto et al., 2000; Osada et al., 2002). 

 Lastly, CREB activation plays a number of roles in SVZ-OB neurogenesis.  

Similar to the DG, interfering with CREB activation impairs the normal morphogenesis 

and survival of new OB neurons (Giachino et al., 2005; Herold et al., 2011).  Therefore, 

the general trend gleaned from these studies is that the molecular mediators of Nogo-A 

signaling (ie., its receptors NgR1 and S1PR2, and intracellular signaling molecules RhoA, 

ROCK, and CREB inhibition) negatively regulate neurogenesis—though in these contexts, 

Nogo-A was not investigated as the initiating ligand.   

 



 

 43 

CHAPTER THREE 

METHODOLOGY AND EXPERIMENTAL DESIGN 

In this section, general experimental design, methodology, and rationale pertaining 

to studies of both SVZ and DG neurogenesis after stroke and anti-Nogo-A 

immunotherapy are discussed. 

DISTAL PERMANENT MIDDLE CEREBRAL ARTERY OCCLUSION 

(dMCAO) MODEL OF ISCHEMIC STROKE 

Our stroke model is adapted from a study by Chen and colleagues (Chen et al., 

1986).   This procedure occludes the middle cerebral artery (MCA), the most commonly 

occluded artery in human ischemic stroke (Ng et al., 2007), and produces a highly 

replicable, low mortality infarct involving the ipsilateral frontal and parietal cortices.  After 

induction in 5% isoflurane inhalant anesthesia in oxygen, rats were maintained at 2% 

isoflurane in oxygen during surgery.  The middle cerebral artery (MCA) was accessed 

through a craniotomy in the lateral skull after dissection through the temporalis muscle, 

occluded with 10-0 suture, and transected.  The occlusion is distal to the lenticulostriate 

branches of the MCA, and therefore avoids direct ischemia of the striatum (Bacigaluppi et 

al., 2010).   However, MCA occlusion is not sufficient to generate an infarct due to 
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extensive collateral blood supply in the rat brain.  Therefore, the ipsilateral common 

carotid artery (CCA) was permanently occluded, and the contralateral CCA was 

transiently occluded for 60 minutes, as described by Chen et al. (Chen et al., 1986).  

Temperature was maintained at approximately 37° C with a heating pad connected to a 

circulating water heater.   

Sham surgeries were conducted by anesthetizing animals for an equivalent duration 

of time and making neck and scalp incisions.  Craniotomy and manipulation of the MCA 

during sham surgery was noted by Chen et al. to produce a small lesion, and therefore we 

did not proceed beyond scalp incision in our sham procedure (Chen et al., 1986).   

INTRACEREBROVENTRICULAR ANTIBODY TREATMENT 

Previous studies performed in the Kartje laboratory have shown that anti-Nogo-A 

antibody treatment given 1 week after stroke promotes neuroplasticity and sensorimotor 

and cognitive recovery (Gillani et al., 2010; Markus et al., 2005; Seymour et al., 2005; Tsai 

et al., 2007).  Therefore, antibody treatment began one week after stroke in all studies 

described in this dissertation. 

Antibody 11C7, a monoclonal mouse IgG1 targeting amino acids 623-640 within 

the Nogo-A-specific Δ20 domain (Oertle et al., 2003), was produced from a hybridoma 

cell line provided by Prof. Martin Schwab (Brain Research Institute, University of Zurich).  

Purification was performed by Protein-G column chromatography, and Coomassie-stained 

denaturing SDS-PAGE gels routinely revealed only two bands corresponding to heavy and 

light chains of the antibody.  An isotype and subclass-matched antibody against the fungal 
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product cyclosporine A was obtained from Novartis Pharmaceuticals and used to control 

for potential nonspecific effects of IgG infusion (Craveiro et al., 2013; Zhao et al., 2013). 

At one week post-stroke, rats were anesthetized with isoflurane and implanted 

subcutaneously with osmotic minipumps (Alzet 2ML2, Durect Corporation) containing 

either mAb 11C7 or anti-cyclosporine (2.5 mg/mL in phosphate-buffered saline).  A 

cannula was inserted into the ipsilesional lateral ventricle through a burr hole in the skull, 

fixed to the skull via a spacer and cyanoacrylate glue, and connected to the pump.  

Antibodies were delivered at 5 µL/hour (12.5 µg/hr) for 14 days, followed by pump 

removal under isoflurane anesthesia.   

BROMODEOXYURIDINE (BrdU) INJECTION 

Bromodeoxyuridine (BrdU) is an analog of the nucleoside thymidine that can be 

incorporated into DNA during DNA synthesis.  As extensive DNA synthesis occurs in 

genome replication prior to cell division, incorporation of BrdU is used as a stable marker 

of proliferation (Taupin, 2007).  Commonly, BrdU is administered through intraperitoneal 

(i.p.) injection, and it is estimated that BrdU is available for labeling proliferating cells in 

the brain for approximately 2 hours after administration (Taupin, 2007).  BrdU can be 

detected histologically using monoclonal antibodies and combined with labeling various cell 

phenotype markers, allowing birthdating and phenotype determination of newborn cells. 

There is a dose-dependent effect of BrdU administration on the number of labeled 

cells in proliferative brain regions, with saturation occurring at approximately 200 mg/kg.  

This dose has been found to maximally label proliferating cells in the dentate gyrus even 
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after stimulating proliferation through exercise (Cameron and McKay, 2001; Eadie et 

al., 2005).  Therefore, a single injection of 200 mg/kg BrdU followed by rapid (1-3 hour) 

post-injection sacrifice is sufficient for quantifying the number of proliferating cells 

(Taupin, 2007).  However, cells that proliferate several times may dilute out incorporated 

BrdU below the limit of detection.  For long-term assessment of newborn cell phenotypes, 

therefore, it is beneficial to administer multiple doses of BrdU spaced further apart to 

mitigate the effects of BrdU dilution over successive cell divisions. 

In the studies described in this dissertation, two separate BrdU injection strategies 

were used (Fig 3.1).  In each case, BrdU was prepared at 20 mg/mL in sterile saline plus 

0.007 N NaOH.  The solution was warmed in a water bath and repeatedly vortex-mixed 

until dissolved and then sterile-filtered through a 0.22 µm syringe filter.  To measure 

cellular proliferation, a single injection of BrdU at 200 mg/kg body weight i.p. was injected 

followed by sacrifice 2 hours thereafter.  For long-term determination of newborn cell 

phenotypes, BrdU was injected at 50 mg/kg i.p. beginning on day 7 post-stroke, twice per 

day (6 hours apart), for 5 consecutive days.   
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Fig ure 3.1 ▲ BrdU injection schedules.  (A) For measuring proliferation, a single BrdU 
injection (200 mg/kg) is given 2 hours prior to sacrifice. (B) For long term phenotype analysis 
of newborn cells, BrdU (50 mg/kg) is injected multiple times, followed by sacrifice 
approximately 6 weeks later.   

 

PERFUSION, TISSUE PROCESSING, AND HISTOLOGY 

 At various time points, rats were overdosed with Euthasol 

(phenytoin/pentobarbital; 390 mg/kg i.p.) and transcardially perfused with cold heparinized 

saline followed by 4% paraformaldehyde (PFA).  Brains were extracted and post-fixed 

overnight at 4° C in 4% PFA, then cryoprotected in 30% sucrose in phosphate buffer pH 

7.4 until sinking.  40 µm sections were cut on a cryostat and stored in ethylene glycol-based 

antifreeze cryoprotectant at -20° C until use. 

 BrdU requires an antigen retrieval procedure to be identified 

immunohistochemically.  Our method was adapted from (Tang et al., 2007), where tissue 

sections are subjected to high heat (99-100° C) sodium citrate solution for 10-15 min.  

This method was preferable to hydrochloric acid-based procedures since this severely 

weakens subsequent DNA staining, such as with DAPI or Hoechst, which were to be used 
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in subsequent steps for identifying regions for cell counting.  However, incubation of 

free-floating sections in boiling sodium citrate leads to excessive wrinkling of the tissue that 

impairs downstream processing steps.  Therefore, we adapted a staining method where the 

tissue sections were extensively washed in phosphate buffer pH 7.4, mounted on plus-

charged slides, and then allowed to dry overnight at room temperature.  The following day, 

the slides were incubated in 99-100° 10 mM sodium citrate pH 6, which had been placed 

in a container in a boiling vegetable steamer water basin, for 10 minutes.  The slides were 

then removed and immediately immersed in room temperature phosphate buffer pH 7.4  

From there, the tissue sections were carefully removed from the slides using a razor blade 

and rinsed in phosphate buffer.  We found that using this strategy, tissue wrinkling was 

nearly eliminated, while still allowing us to perform free-floating tissue staining (which 

allows for better antibody penetration) on thick tissue sections (which are required for the 

optical fractionator stereology probe).   

 This procedure led to bright BrdU staining that was compatible with general DNA 

labeling using DAPI, as described by Tang and colleagues (Tang et al., 2007).  However, 

we experienced very high white matter nonspecific fluorescence, as if the white matter had 

become extremely “sticky” to antibodies.  This was traced to the use of high concentrations 

of the detergent Triton X100 in the incubation buffers.  Switching to Tween-20 greatly 

reduced the background fluorescence and was therefore used in all steps after high heat 

antigen retrieval. 
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 Immunostaining was performed by diluting primary antibodies in phosphate-

buffered saline (PBS) pH 7.4 plus 0.2% Tween-20 (when high heat antigen retrieval was 

used) or 0.3% Triton-X100 (when no antigen retrieval was used).  Tissue sections were then 

incubated in primary antibody solution overnight at 4° C with gentle agitation.  The 

following day, the tissue sections were extensively washed in PBS/0.2% Tween 20 (for high 

heat antigen retrieval) or phosphate buffer pH 7.4 (when antigen retrieval was not 

performed).  The sections were then incubated in fluorophore- or biotin-conjugated 

secondary antibodies in the same dilution buffers listed above for 2 hours at room 

temperature with shaking, and then washed.  For fluorescent imaging, nuclei were 

counterstained with DAPI, then mounted on gelatin-subbed slides and coverslipped with 

Fluoromount G anti-fade mounting media.  For signal detection with the chromogenic 

substrate diaminobenzidine (DAB), tissue sections were incubated in avidin-biotin-

peroxidase complex (Vector Laboratories, 1 drop component A plus 1 drop component B 

per 5 mL dilution buffer, as above) for 1 hour at room temperature.  Lastly, sections were 

reacted in nickel-enhanced DAB in the presence of hydrogen peroxide to visualize the 

target antigens. 

 A list of antigens, antibodies, and dilutions used in this disseration appears in table 

3.1.  
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Marker/ 
antigen Abbreviation Class or function Associated cell type 

Antibody source; 
host; concentration 

Glial fibrillary 
acidic protein  

GFAP Intermediate filament Astrocytes; neural stem 
cells in SVZ and DG 

DAKO Z0334;  
Rabbit; 1:1,000 

Sex determining 
region-box 2 

Sox2 Transcription factor Astrocytes; neural stem 
and progenitor cells in 
SVZ and DG 

Abcam Ab97959;  
Rabbit; 1:1,000 

Doublecortin DCX Microtubule-associated 
protein 

Immature neurons in 
SVZ and DG; mature 
neurons in piriform cortex 

CellSignaling; Rabbit;  
1:500 (IF), 1:5000 
(IHC) 

βIII-tubulin 
(Tuj1) 

Tuj1 Microtubule monomer Immature and mature 
neurons 

Covance MMS-
435P; 
Mouse IgG2a; 
1:1,000 

Ionized binding 
adapter molecule 
1 

Iba1  
(aka AIF1) 

EF-hand containing 
calcium binding protein 

Microglia, macrophages Wako 019-19741; 
Rabbit; 1:5,000 

5-bromo-2’-
deoxyuridine 

BrdU Thymidine analog Incorporated into cells 
during DNA synthesis, a 
marker of proliferation 

Thermo MA3-071; 
IgG2a; 1:500 (IF); 
1:5,000 (IHC)  

Myelin basic 
protein 

MBP Structural component of 
myelin 

Myelinating 
oligodendrocytes 

Abcam Ab7349; 
Rat; 1:1,000 

Neuronal nuclei NeuN  
(aka Fox3) 

RNA splicing factor Mature neurons Millipore 
MAB377(Ms IgG1); 
ABN78 (rabbit);  
1:1,000 

Nogo-A  Reticulon protein Oligodendrocytes, certain 
immature and mature 
neurons 

mAb 11C7; mouse 
IgG1; 1:10,000 

Ki67  Ribosomal RNA synthesis Proliferating cells 
(expressed in all cell cycle 
phases except G0) 

Abcam Ab16667; 
Rb; 1:5,000 

2',3'-cyclic 
nucleotide 3'-
phosphodiesterase  

CNPase Enzyme Oligodendrocytes Sigma C5922; 
Ms IgG1; 1:1,000 

     
Table 3.1 ▲ Summary of cell-type markers and antibodies used in this dissertation.  IF: 
immunofluorescence; IHC: immunohistochemistry (with avidin-peroxidase complex and DAB 
detection). 
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UNBIASED STEREOLOGY 

Unbiased stereology is a method of estimating properties (number, length, volume, 

etc.) of three-dimensional structures from tissue sections without making assumptions 

about the size, shape, or orientation of the objects of interest (Peterson, 1999; West, 

2013).  Various stereology “probes” can be applied to tissue sections to estimate these 

quantities.  One of these probes, the optical fractionator, is designed to quantify the 

number of features (for example, cells) within a region of interest.  The software-based 

optical fractionator probe superimposes a grid with counting boxes at systematically-spaced 

intervals, and features within the box are counted with specific counting rules after 

excluding “guard zones” at the tissue surfaces.  An estimate of the total number of features 

within the brain structure of interest is calculated by: 

 

 

 

where ‘N’ is an estimate of the total number of features, ΣQ- is the the sum of the counted 

features, ssf is the section sampling fraction (for example, 1/6 if 1 of every 6 sections is 

examined), asf is the area sampling fraction (the proportion of the initially defined area that 

is sampled), and tsf is the thickness sampling fraction (the fraction of the tissue section 

thickness that is sampled). 
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 Use of the optical fractionator is warranted in studying cellular proliferation in 

the subventricular zone, as the number of proliferating cells is high and generally evenly 

distributed, especially in the dorsolateral SVZ.  However, the optical fractionator is less 

useful for studies of neural precursor proliferation in the dentate gyrus, where proliferating 

cells are often found in discrete clusters with large spaces in between (Noori and Fornal, 

2011).   For this reason, and because of the the lower level of cellular proliferation in the 

DG versus the SVZ, absolute counting has been advised (Noori and Fornal, 2011).  

LESION ANALYSIS 

A 1 in 24 tissue section series throughout each brain (excluding olfactory bulbs and 

cerebellum) was mounted on gelatin-subbed slides and stained with toluidine blue.  Slides 

were then scanned at high resolution using a flatbed scanner and imported into Adobe 

Photoshop CS3, where the number of pixels in the intact and lesioned hemispheres was 

measured.  To compute a lesion size as a percentage of the intact hemisphere, the total 

number of pixels in the lesioned hemisphere was subtracted from the total number of pixels 

in the intact hemisphere, and divided by the total intact hemisphere pixel number. 
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CHAPTER FOUR 

EXPRESSION PATTERN OF NOGO-A IN THE ADULT 

SUBVENTRICULAR ZONE & THE ROLE OF NOGO-A IN THE 

MIGRATION OF  SVZ-DERIVED NEUROBLASTS 

ABSTRACT 

The mechanisms that regulate the motility of subventricular zone-derived 

neuroblasts are not fully understood.  In this study, we investigated the expression pattern 

of Nogo-A in SVZ neural precursor cells, and used an in vitro migration assay to quantify 

effects of Nogo-A signaling on SVZ-derived cell motility.  We found that Nogo-A was 

expressed by SVZ neuroblasts, but not neural stem cells, in vivo and in vitro.  The Nogo-A 

Δ20 receptor S1PR2 was also found in SVZ neuroblasts, but no clear evidence of NgR1 

expression was found in the SVZ.  Nogo-A colocalized with an endoplasmic reticulum 

marker in SVZ neuroblasts in vitro, but was not found at the cell surface.  However, we 

characterized a potential source of Nogo-A in the form of a myelin-rich zone just adjacent 

to the lateral edge of the SVZ, which could play a role in the regulation of the SVZ niche.  

Lastly, we found that Δ20 peptide treatment reduced the maximum speed of SVZ-derived 

neuroblasts in vitro.  These results suggest that due to the lack of cell surface expression, 
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neuroblast-expressed Nogo-A likely does not signal to other cells in trans, but the 

motility of SVZ neuroblasts can still be modulated by exogenous Nogo-A.   

INTRODUCTION 

In the adult brain, neuroblasts from the subventricular zone (SVZ) migrate long 

distances via the rostral migratory stream (RMS) to the olfactory bulb, where they mature 

into neurons. Migration in the subventricular zone is regulated by both diffusible and 

contact-dependent factors, ensuring the regulation of the complex dynamics of new neuron 

production and long distance migration (Capilla-Gonzalez et al., 2015).  Netrins and sonic 

hedgehog mediate chemoattraction toward the OB by activating receptors on neuroblasts 

(Capilla-Gonzalez et al., 2015).  Meanwhile, chemorepulsive Slit ligands released from the 

septum and choroid plexus activate Robo receptors on neuroblasts to direct migration 

rostrally (Nguyen-Ba-Charvet et al., 2004).  Structural features of the SVZ/OB system 

important for homeostasis include extracellular matrix molecules such as laminin-rich 

“fractones” that concentrate growth factors and stimulate proliferation (Kerever et al., 

2007; Mercier et al., 2002), and tenascin-C, which supports the development of the SVZ 

(Garcion et al., 2004).  Beyond normal physiological migration into the olfactory bulb, 

brain injuries such as stroke can recruit SVZ neuroblasts to ectopic sites under the guidance 

of soluble factors such as SDF1α, MCP1, and VEGF (Capilla-Gonzalez et al., 2015). 

Cellular features such as astrocytic process tubes (Peretto et al., 1997) and radially-

oriented vasculature guide tangential and radial migration into the olfactory bulb 

parenchyma, respectively (Bovetti et al., 2007).  In humans, a myelin layer in the 
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transitional zone between the SVZ and striatum has been described (Quiñones-Hinojosa 

and Chaichana, 2007); (Quiñones-Hinojosa et al., 2006) but has not been characterized in 

the rodent brain.  While the presence of myelin contacts in the subventricular zone has 

been noted previously (Doetsch et al., 1997), the existence of a distinct myelin band in the 

rodent SVZ has been disputed (Quiñones-Hinojosa and Chaichana, 2007). Myelin-

associated proteins, including Nogo-A (Rolando et al., 2012), oligodendrocyte myelin 

glycoprotein (OMGP) (Martin et al., 2009), and myelin associated glycoprotein (Li et al., 

2009), may play distinct roles in regulating neurogenesis (reviewed recently in (Xu et al., 

2015)), so it is important to consider the expression of these molecules not only in the SVZ 

itself but also in boundary areas that may impact the organization and function of the 

niche.  Given the critical importance of rodent models of neurological disorders, it is 

necessary to fully understand the unique cytoarchitecture of the SVZ in these models to 

better interpret preclinical studies and reveal new avenues for treatment.   

In this study, we undertook two main objectives: 1) define the expression pattern of 

Nogo-A within and around the SVZ, and 2) examine the impact of Nogo-A on the 

motility of SVZ-derived neuroblasts.  We found that Nogo-A is expressed by immature 

neurons throughout the SVZ-RMS-OB axis.  Nogo-A colocalizes with an endoplasmic 

reticulum marker intracellularly, whereas no evidence was found for Nogo-A expression at 

the surface of immature neurons.  Expression of the Nogo-A-Δ20 receptor S1PR2 was 

also found in immature neurons in the SVZ, whereas clear evidence for Nogo-66 receptor 

NgR1 expression in the SVZ was not found.  We characterized a myelin-rich zone just 
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lateral to the SVZ that appears well-positioned to play a role in SVZ function.  Lastly, 

using an in vitro migration assay, we found that chronic treatment with Nogo-A-Δ20 

peptide reduced the maximum speed of SVZ-derived neuroblasts, but found no effect of 

anti-Nogo-A antibody on various properties of neuroblast motility.  These results suggest 

that Nogo-A likely plays a cell-autonomous role in SVZ neuroblasts, due to its lack of cell 

surface expression, and that neuroblast-expressed Nogo-A likely does not signal to other 

cells in trans.  However, neuroblast motility can still be influenced by exogenous sources of 

Nogo-A.   

EXPERIMENTAL DESIGN 

SVZ explant collection and culture 

 The method for SVZ explant culture is adapted from (Wichterle et al., 1997). 3-4 

month old male Long-Evans black hooded rats were deeply anesthetized with inhalant 

isoflurane and decapitated.  The brains were then rapidly extracted and placed in cold 

phosphate-buffered saline on ice.  300 µm coronal sections were then cut on a vibratome 

and stored in sterile HEPES-buffered artificial CSF with glucose on ice.  Under a 

dissecting microscope, 500 µm diameter tissue punches were taken from the SVZ and 

transferred onto tissue culture dishes that had been pre-coated with a 3:1 mixture of 

growth factor-reduced Matrigel:Neurobasal medium.  Explants were isolated as matched 

pairs, so that a treated explant was paired with a control explant from the same position 

within the SVZ on the contralateral side (see Fig. 4.1).  Once all explants were collected, 

the plates were placed in a 37° C incubator for 5-10 minutes to allow the Matrigel to 
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congeal.  Afterwards, the explants were overlaid with media composed of Neurobasal-A, 

2% B27 without vitamin A, Glutamax, and penicillin-streptomycin, plus either anti-

Nogo-A or anti-cyclosporine-A control antibodies (50 µg/mL) or Δ20 or scrambled Δ20 

recombinant peptides (500 nM).  Plates were stored in a 37° C cell culture incubator 

supplemented with 5% CO2.  Half media changes were performed on day 4 with re-

supplementation of antibodies or peptides. 

Quantification of total cell dispersion from explants 

 Low magnification (2.5x) phase contrast images of explants were acquired daily for 

7 days after plating.  These images were imported into ImageJ and the distance from the 

edge of the explant to the farthest rim of migrating cells was measured at approximately 

the same position of each explant per day.    

Live cell imaging 

 Between 3-5 days in vitro, time lapse videos of migrating cells were acquired.  To 

facilitate tracking, cells were labeled with Hoechst 33342 DNA dye (25 nM) the night 

before imaging.  The following day, images were acquired every 5 minutes for 6 hours 

using a Zeiss Axiovert microscope with 10x objective in a humidified chamber maintained 

at 37° C with 5% CO2.  To mitigate phototoxicity, the cells were imaged using the lowest 

lamp power possible.  In our hands, this combination of Hoechst concentration, lamp 

power, and imaging frequency resulted in minimal toxicity as measured by qualitative 

assessment of the long-term health of the cultures and low level of apoptosis observed 
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during live cell imaging.  Cells undergoing apoptosis were easily visualized due to nuclear 

condensation and/or fragmentation and were excluded from analysis.   

 Cell videos were imported into ImageJ and manually tracked by an investigator 

blinded to treatment group using the TrackMate or mTrackJ plugins.  In TrackMate, cell 

tracking can be semi-automated based on automatic detection of cell nuclei in successive 

video frames.  In all cases, cells were tracked one at a time to ensure accuracy.  Neuroblast 

nuclei (small, bright, round to oblong in shape) were visually distinct from the nuclei of 

astrocytes that had migrated out of the explant (larger, less bright).  Due to the difficulty 

of distinguishing cells in chains, especially closer to the explant, only singly-migrating cells 

were tracked.  These cells were typically located on the periphery of the halo of migrating 

cells and displayed the typical unipolar to bipolar morphology of migrating neuroblasts.  As 

phase contrast images were also acquired at each time point, nuclei could be referenced 

against cell morphology if the identity of the cell (neuroblast vs. astrocyte) was not clear.  

Maximum and average migration speeds for each cell were computed by the software based 

on the change of cell position over time. Since neuroblasts migrate in a saltatory manner, 

information about pause and movement phases and directional persistence (straightness of 

migration path) were also computed using a custom script written in the statistical software 

R.  To define a pause, the nuclei of 16 cells that were visibly stationary were first 

automatically tracked.  The computed average velocity of these cells, representing the 

small, random-appearing motions of the nucleus, was then multiplied by the frame interval 

(300 seconds) to obtain the minimum distance traveled beween frames that could be 
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considered actual cell migration.  Any change in position less than or equal to this value 

was therefore considered a pause.  For calculations regarding pauses, the first and last 

phases of an individual cell’s movement were excluded because these phases are cut off by 

the beginning and end of the time lapse video, and are therefore inaccurate.  Therefore, 

cells consisting of just 1 or 2 distinct movement phases over the course of the time lapse 

video were excluded from analysis, leading to the reporting of lower total cell numbers for 

pause properties (Fig 4.2). 

 

 

 

Figure 4.1 ▲ Diagram of explant collection as matched pairs.  
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Figure 4.2 ▲ Exclusion of first and last movement or pause phases for pause analysis.  For Cell 
A, 4 distinct phases (2 pause phases, 2 movement phases) will still remain for analysis.  In 
contrast, Cell B only had two phases to begin with, and therefore cannot be analyzed. 
 

Immunocytochemistry and imaging 

 Explants in Matrigel were fixed with 2% paraformaldehyde in PBS for 15 min at 

room temperature, and then washed in PBS.  The explants were then incubated in primary 

antibodies diluted in PBS plus 0.2% Tween 20 overnight at 4° C.  The following day, 

explants were washed in PBS and incubated in secondary antibodies in PBS/0.2% Tween 

20 for 2 hours at room temperature.  After washing in PBS, explants were coverslipped in 

Fluoromount G. 

 For surface staining, explants were plated on laminin-coated coverlsips.  Once cells 

began migrating out, the coverslips were rinsed once with room temperature PBS, then 

once with cold PBS and placed on ice.  Primary antibodies (anti-Nogo-A antibodies 11C7 

or 7B12) were applied at a concentration of 25 µg/mL in PBS plus 5% fetal bovine serum 
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on ice for 30 min.  The coverslips were then washed 3 times in cold PBS and fixed in 4% 

paraformaldehyde on ice for 30 min.   Cells were then incubated in rabbit anti-

doublecortin antibody under membrane-permeabilizing conditions (1:500 in PBS plus 5% 

normal goat serum and 0.1% Triton-X100) overnight at 4° C.  The following day, the 

converslips were washed, incubated in fluorescent secondary antibodies against rabbit 

(doublecortin) and mouse (11C7 or 7B12) IgG, washed again, and mounted on slides in 

Fluoromount G. 

Images were acquired on a Leica SPE confocal microscope.  For demonstration of 

colocalization, cells were imaged using a 63x/1.3 NA oil objective with pinhole size 1 Airy 

unit.  After acquisition, images were imported into Adobe Photoshop CS6 for preparation 

of figures.  All levels adjustments were applied equally to the entire image within each 

channel. Gamma adjustment was not performed.  Occasionally, levels adjustments required 

to show fine details resulted in signal saturation of brighter parts of the image. 

RESULTS 

Expression pattern of Nogo-A in the adult rat subventricular zone 

 To determine potential direct targets of anti-Nogo-A antibody treatment, we 

performed double immunofluorescent staining for Nogo-A or its receptors, NgR1 and 

S1PR2, and markers of neural stem cells and neuroblasts.  In agreement with a previous 

report in adult mice (Rolando et al., 2012), DCX+ neuroblasts, but not GFAP+ astrocytes 

and stem cells, were positive for Nogo-A (Figs. 4.3, 4.4).  After stroke, Nogo-A 

continued to be expressed by neuroblasts, including those presumably migrating toward the 
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lesion.  In these singly-migrating neuroblasts, Nogo-A expression was especially evident 

in the leading process. 

We found evidence for S1PR2 expression in DCX+ neuroblasts, though this 

required high antibody concentration and enzymatic signal amplification, so expression is 

likely low in this cell type.  In contrast, no clear evidence of specific NgR1 expression was 

found in the SVZ, even with signal amplification.  NgR1-positive cells were seen in the 

adjacent striatum and cortex, confirming the adequacy of the staining procedure. 

In examining Nogo-A expression in SVZ neural precursors, we noted the presence 

of a prominent myelin-rich (MBP-positive, CNPase-positive) zone at the lateral edge of 

the SVZ (Fig. 4.6).  The myelin band appears to also extend dorsolaterally in association 

with the DCX-rich dorsolateral extension of the SVZ.  This band is most prominent at the 

levels of the rostral-most appearance of the lateral ventricles and where, in coronal section, 

the SVZ (as visualized by DCX staining) extends prominently in the dorso-ventral axis.  

The myelin band is no longer apparent at the level of the caudal emergence of the 

hippocampus.   

  Conspicuous CNPase/Nogo-A+ cells can be found ~50 µm from the lateral 

ventricle wall, extending processes toward the SVZ and terminating in processes oriented 

dorso-ventrally.  In the dorsal and dorsolateral part of the SVZ, where most DCX staining 

is found, the myelin fibers appear to course dorso-ventrally, whereas this organization is not 

as apparent in more ventral parts of the SVZ.  However, myelin is still observed in these 

regions in close contact with the SVZ.  The band is not continuous—it does not extend 
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without interruption from the dorsal-most to ventral-most parts of the lateral ventricle.  

Especially ventrally, there are often individual, discontinuous bands of myelin that also 

contact the SVZ. 

  This myelin band appears to “contain” the SVZ, as if preventing the lateral spread 

of neuroblasts into the adjacent striatum.  However, this is just correlative and myelin could 

just be a marker or proxy of another structural feature that constrains the lateral border of 

the SVZ.  The great majority of DCX+ neuroblasts lie medial to the myelin band, in the 

“SVZ proper” where there is a high density of DAPI+ cell nuclei.  However, on occasion, 

some neuroblasts (either in chains or individually) appear to be located within individual 

myelin bundles.  As seen in sagittal section, myelin fibers are oriented parallel to the 

migrating neuroblasts at the origin of the RMS.  In the rostral RMS, as seen in coronal 

section, there is a dense cluster of DCX+ neuroblasts found in a region devoid of MBP 

staining.  However, lateral to this dense neuroblast cluster, neuroblasts in smaller clusters 

are found in smaller MBP-negative spaces.  The significance of this organization is 

unknown; potentially it could represent the segregation of multiple subpopulations of 

neuroblasts.  Both populations of neuroblasts are DCX+/Tuj1+, suggesting that they are all 

immature neurons.  Within the olfactory bulb, neuroblasts do not appear to interact with 

myelin (MBP+) fibers.  However, they do appear to make extensive contacts with Nogo-

A+ fibers (cell type unknown). 
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Figure 4.3 ▲ Overview of lineage progression and key marker expression in SVZ-OB 
neurogenesis.   
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Figure 4.4 ▲ Evidence for expression of Nogo-A and S1PR2, but not NgR1, in the adult rat 
SVZ. (A) Nogo-A (green) is expressed by DCX-positive neuroblasts in the SVZ.  CC:  corpus 
callosum; Str: striatum; LV: lateral ventricle.  Top panel:  SVZ from a sham surgery rat.  
Scale bars: 25 µm (left); 10 µm (right). Bottom panel:  The ipsilesional tip of the SVZ and 
striatum of a rat at 8 weeks post-stroke, with Nogo-A visible in the processes of DCX+ 
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neuroblasts. (B) NgR1 immunostaining in the SVZ appears nonspecific, with indistinct 
staining along the ependymal cell layer. Scale bar: 50 µm. (C) Nogo-A is not expressed by 
GFAP+ astrocytes and neural stem cells within the SVZ. Scale bar: 50 µm. (D) Expression of 
S1PR2 in DCX+ neuroblasts.  Scale bar: 20 µm. 
 

 

Figure 4.5▲ Nogo-A is expressed by neuroblasts throughout the SVZ-RMS-OB axis.  
Depicted are representative sagittal sections of Nogo-A (green)/doublecortin (red) staining. 
(A) Proximal rostral migratory stream. Scale bar: 50 µm. (B) Rostral migratory stream 
transitioning into the olfactory bulb.  Scale bar: 100 µm. (C) Olfactory bulb. Nogo-A 
expression appears to be expressed in both tangentially and radially migrating neuroblasts.  
Radially migrating neuroblasts also occasionally appear to associate with Nogo-A positive 
fibers in the olfactory bulb. Scale bar: 50 µm. 
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Fig ure 4.6 ▲ Myelin anatomy at the boundaries of the SVZ/RMS. (A) Low magnification 
image of myelin basic protein (MBP; green) and doublecortin (DCX; red) immunostaining 
along the lateral ventricle wall. Scale bar: 200 µm. (B) Coronal section through the rostral 
migratory stream showing the relationship between myelin (MBP+), neuroblasts (DCX+), 
and astrocyte “glial tubes” (GFAP+).  Scale bar: 25 µm. 
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Subcellular localization of Nogo-A in SVZ-derived neuroblasts 

Nogo-A contains two long hydrophobic stretches that serve as sites of membrane 

insertion.  As a reticulon protein, Nogo-A is primarily localized to the endoplasmic 

reticulum in various cell types, but can also be found at the surface, embedded in the 

plasma membrane.  Since a protein’s subcellular localization can provide clues as to 

potential functions, we investigated the subcellular localization of Nogo-A in SVZ-derived 

neuroblasts in vitro. We observed colocalization between Nogo-A and βIII tubulin 

throughout the leading processes, with the exception of the very distal tips of the growth 

cone and finer processes emanating from the main leading process, where βIII tubulin, but 

not Nogo-A, was expressed (Fig. 4.7).  This result suggests co-occurrence of Nogo-A and 

microtubules in the same subcellular compartments.  Triple labeling for βIII-tubulin, 

Nogo-A, and calnexin, an endoplasmic reticulum (ER) marker, showed extensive 

colocalization throughout the leading process, suggesting that the ER extends far toward 

the distal tip of this structure and contains Nogo-A (Fig 4.8).  

To investigate whether Nogo-A is expressed at the surface of SVZ neuroblasts, 

SVZ explants were plated on laminin-coated coverslips.  After cells migrated out from the 

explants, they were then stained live on ice with one of two different anti-Nogo-A 

antibodies directed against epitopes in the Nogo-A-specific N-terminal domain (mAbs 

11C7 and 7B12).  Numerous DCX-negative cells demonstrated positive, mostly punctate 

surface staining.  In contrast, no obvious Nogo-A surface staining was seen in DCX-

positive cells (Fig. 4.9). 
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Figure 4.7 ▲ Colocalization of Nogo-A with βIII-tubulin in SVZ-derived neuroblasts.  Nogo-
A is found throughout the leading process.  However, it appears to be excluded from the very 
distal tips of the growth cone and the fine, filamentous processes emanating from the leading 
process, which are βIII tubulin positive. The black neuroblast silhouette at the top is for 
schematic purposes only and was not traced from an actual cell.  Scale bars: 5 µm.   
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Figure 4.8 ▲ Colocalization of Nogo-A and calnexin in throughout the leading process of SVZ 
explant-derived neuroblasts after 2 days in vitro.  Nogo-A (red) and calnexin (green) labeling 
are not seen in the most distal tips of the βIII tubulin-positive (blue) growth cone. Scale bars: 
10 µm. 
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Figure 4.9 ▲ Lack of evidence for surface localization of Nogo-A in SVZ-derived neuroblasts. 
(A) Live-cell surface staining with anti-Nogo-A antibody 11C7.  Note DCX-negative, 11C7-
positive cell at the top of the frame, while DCX-positive cells are devoid of surface staining. 
Scale bar: 10 µm. (B) Positive 11C7 Nogo-A staining in neuroblasts fixed and permeabilized 
before antibody addition, showing expressing of all Nogo-A regardless of subcellular 
localization.  Scale bar:  20 µm. (C), (D) Live-cell surface staining with anti-Nogo-A antibody 
7B12 corroborates the lack of surface staining seen with 11C7.  Scale bar in C: 25 µm. (D)  
DCX-negative cells from the same conditions demonstrating punctate surface staining for 
7B12 that is especially appreciable in orthogonal views.  Scale bars: 20 µm.  Outlines of 
DCX+ cells have been superimposed on Nogo-A staining (middle panels) in (A) and (C) to 
demonstrate lack of appreciable Nogo-A surface staining in these cells.   
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Effects of Nogo-A signaling perturbation on SVZ-derived neuroblast motility 

SVZ explants were treated with recombinant Nogo-A-Δ20 peptide (500 nM) or 

mAb 11C7 (50 ug/mL), and singly-migrating cells were tracked in time lapse videos to 

quantify changes in motility.  Additionally, explants were imaged daily and the cell dispersal 

distance was measured over time. 

Treatment with Δ20 peptide did not significantly alter the cell dispersal distance.  

11C7 treatment led to a small but statistically significant reduction in cell dispersal distance 

only on the final day that explants were imaged (day 7 in vitro) (Fig. 4.10).   

 

Figure 4.10 ▲ Neither anti-Nogo-A antibody 11C7 nor Δ20 peptide significantly alter total 
dispersal distance over a 7-day time course.  (A) Representative images of cell dispersal from a 
single explant over the course of 7 days. (B) Total cell dispersal distance in mAb 11C7- versus 
control antibody-treated explants. (C) Total cell dispersal distance in recombinant Δ20 
peptide- versus control (scrambled Δ20)-treated explants.   
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Individual cells were tracked in time lapse videos to analyze their motion in the 

presence of anti-Nogo-A antibodies or exogenous Δ20 peptide (Fig. 4.11).  The addition 

of Δ20 peptide to the media did not lead to any acute changes in the maximum speed of 

SVZ-derived neuroblasts (Fig. 4.12).  In constrast, chronic treatment with Δ20 peptide led 

to a modest but statistically significant reduction in the maximum speed attained by these 

cells, and a non-significant trend toward a reduction in average speed (Fig. 4.13).  

Treatment with anti-Nogo-A antibody did not significantly alter either the average or 

maximum speeds of SVZ neuroblasts (Fig. 4.14). 

 

 

Figure 4.11 ▲ Example of neuroblast locomotion in time-lapse videography.  A cell with the 
typical morphology of a migrating neuroblast (red arrowhead), with phase-bright cell body 
and phase-dark leading process, can be seen migrating and resting over the course of 275 
minutes.    
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Figure 4.12 ▲ Acute Δ20 peptide addition does not immediately alter neuroblast maximum 
speed.  
 

 

Figure 4.13 ▲ Chronic treatment with Δ20 peptide modestly reduces neuroblast maximum 
speed. (A), (A’) Average neuroblast speed. (B), (B’) Maximum speed. (A), (B) All tracked 
cells, combined across explants. (A’), (B’) Means ± SEM with each explant treated as an 
independent sample.  * p < 0.05 (two-tailed paired t test).   
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Figure 4.14 ▲ Chronic treatment with anti-Nogo-A antibody 11C7 does not significantly alter 
average or maximum speed. (A), (A’) Average speed. (B), (B’) Maximum speed. (A), (B) All 
tracked cells, combined across explants. (A’), (B’) Means ± SEM with each explant treated as 
an independent sample.  
 

Neuroblasts migrate in a saltatory manner, alternating between movement and 

pause phases (James et al., 2011; Marín et al., 2010).  Therefore, we also investigated 

whether these distinct phases were individually altered by anti-Nogo-A antibody or 

exogenous Δ20 peptide.  However, we found no evidence that that either pause frequency 

or pause duration were altered by antibody or peptide treatment (Figs 4.15 and 4.16).   
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Figure 4.15 ▲ Anti-Nogo-A antibody 11C7 does not alter pause frequency or duration in SVZ 
neuroblasts. (A), (A’) Frequency of pauses (pauses per hour). (B), (B’) Pause duration. (A), 
(B) All tracked cells, combined across explants. (A’), (B’) Means ± SEM with each explant 
treated as an independent sample.   
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Figure 4.16 ▲ Chronic treatment with Δ20 peptide does not alter pause frequency or duration 
in SVZ neuroblasts. (A), (A’) Frequency of pauses (pauses per hour). (B), (B’) Pause duration. 
(A), (B) All tracked cells, combined across explants. (A’), (B’) Means ± SEM with each 
explant treated as an independent sample. 

 

Δ20 peptide or anti-Nogo-A antibody treatment did not alter directional 

persistence, a measure of the straightness of a cell’s path, calculated as the displacement 

(distance between the starting and ending points) divided by the total distance traveled 

(Gertz and Kriegstein, 2015) (Fig. 4.17). 
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Figure 4.17 ▲ Neither anti-Nogo-A antibody 11C7 nor Δ20 peptide significantly alter 
directional persistence.  (A), (A’) Anti-Nogo-A antibody 11C7 versus control antibody. 
(B),(B’) Δ20 peptide versus control peptide. (A), (B) All tracked cells, combined across 
explants. (A’), (B’) Means ± SEM with each explant treated as an independent sample. 
 

Lastly, chronic Δ20 peptide treatment did not significantly alter the average leading 

process lengths of migrating neuroblasts (Fig. 4.18). 
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Figure 4.18 ▲ Chronic Δ20 treatment does not significantly alter neuroblast leading process 
length.  Leading process lengths were averaged within each explant, with each explant treated 
as an independent sample. 
 

DISCUSSION 

The results of this study show that Nogo-A is expressed by neuroblasts in the adult 

rat SVZ, and colocalizes with the endoplasmic reticulum marker calnexin in vitro.  No 

evidence for surface expression of Nogo-A was found, suggesting that Nogo-A plays at 

least a partially cell-autonomous role in these cells.  However, we showed that a rich source 

of myelin resides just lateral to the SVZ that may be available to affect SVZ physiology.  

Lastly, we found that the chronic administration of exogenous Nogo-A-Δ20 peptide 

restricted the migration speed of SVZ neuroblasts.  

Nogo-A has been detected on the surface of many cell types in vitro using live-cell 

(non-permeabilizing) staining, including oligodendrocytes, primary dorsal root ganglion 

neurons, and cells from embryonic forebrain-derived neurospheres (Caroni and Schwab, 

1988a; Dodd et al., 2005; Mathis et al., 2010).  However, while we have shown that 
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Nogo-A is strongly expressed by SVZ-derived neuroblasts in vivo and in vitro, its 

surface expression is not detectable by indirect immunofluorescence.  In contrast, other, 

DCX-negative cell types derived from SVZ explants did in fact show the expected punctate 

pattern of surface staining.  This suggests that this technique is valid for detecting surface 

expression of Nogo-A.  Other methods are available to confirm surface expression, such as 

biotinylation of surface molecules followed by pulldown and immunoblotting.  However 

this is not amenable to our culture system since 1) SVZ explant cultures contain a mixed 

population of cells (some of which we now know are surface Nogo-A positive), and 2) 

relatively few neuroblasts migrate out of the explants and onto the laminin-coated 

coverslips—likely too few to detect a small amount of surface protein by immunoblotting.  

If SVZ neuroblasts lack surface expression of Nogo-A, this argues against the model 

proposed by Rolando and colleagues regarding the role of neuroblast Nogo-A expression in 

suppressing neural stem cell proliferation and promoting neuroblast migration (Rolando et 

al., 2012).  However, this does not suggest that neuroblasts are not susceptible to Nogo-A 

signals delivered by other cell types, such as oligodendrocytes. 

When we investigated the subcellular localization of Nogo-A, we found extensive 

colocalization of Nogo-A, βIII tubulin and calnexin throughout the length of the leading 

process.  The most parsimonious interpretation is that Nogo-A, a known ER-associated 

protein, is distributed throughout the ER, which extends far into the leading process.  The 

functional role of intracellular Nogo-A in SVZ neuroblasts is unknown.  However, 

previous studies have suggested that Nogo-A can act cell-autonomously to regulate neurite 
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branching and extension and growth cone motility in vitro (Kurowska et al., 2014; 

Montani et al., 2009; Petrinovic et al., 2010).  Given the parallels between embryonic and 

adult SVZ neurogenesis, and the stage-specific expression pattern of Nogo-A in immature 

neurons, it is possible that intracellular Nogo-A plays a role in the morphogenesis of 

newborn neurons.  Future studies using Nogo-A knockdown siRNA or conditional 

knockout mice could help to clarify the role of intracellular Nogo-A in SVZ neuroblasts. 

The recently characterized receptor for the Nogo-A-Δ20 domain, S1PR2, was also 

seen in DCX+ neuroblasts, although staining required signal amplification, possibly 

reflecting a low abundance protein.  Specific cellular NgR1 expression, in contrast, was not 

appreciable in the SVZ, while other cells in the cortex and striatum displayed clear NgR1 

immunoreactivity, demonstrating the validity of the staining protocol.  This result is at 

odds with Rolando et al.’s report of NgR1 expression in SVZ neural stem cells in mice, as 

our immunostaining did not resemble their representative images (Rolando et al., 2012).  

Beyond a species difference, the reason for this discrepancy is unclear.   

In vivo, we showed that the lateral aspect of the SVZ is in contact with or in close 

proximity to a myelin-rich zone that may be an exogenous source of Nogo-A or other 

myelin constituents.  This band of myelin, which extends rostrally and coalesces into a tube 

containing a large population of DCX+ neuroblasts in its center, seems well-positioned to 

be able to signal to migrating neuroblasts.  While the consequences of neuroblast-myelin 

contact are unknown, myelin is not an inert insulator, but rather contains molecules that 

can signal to other cells.  Potentially, this myelin adjacent to the SVZ could be a source of 
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Nogo-A mediating the effects observed by Rolando et al. (Rolando et al., 2012).  

Likewise, two other prominent myelin proteins, myelin-associated glycoprotein (MAG) 

and oligodendrocyte myelin glycoprotein (OMGp) may also play distinct roles in 

regulating neurogenesis (Li et al., 2009; Martin et al., 2009) (and reviewed in (Xu et al., 

2015)).  The presence of myelin may act to channel or constrain neuroblast migration, as it 

has been found to do with developing axons (Schwab and Schnell, 1991).  Indeed, axon 

outgrowth/guidance and neuronal migration share many of the same regulators and 

behaviors, including guidance cues (for example, slits, netrins, and semaphorins), Rho 

family GTPases, and actin and microtubule cytoskeletal rearrangements (Govek et al., 

2011; Marín et al., 2010).  Furthermore, the existence of chemorepellents in the 

developing brain help prevent the ectopic spread of migrating neurons (Marín et al., 2010).   

For example, the semaphorins Sema3A and 3F are expressed in the developing striatum 

and prevent the spread of cortex-bound interneurons into this structure (Marin et al., 

2001), and it is possible that a similar mechanism acts to properly channel neuronal 

migration in the adult SVZ.  The sources of the Slit chemorepellents that direct rostral 

migration in the adult SVZ—the septum and choroid plexus—are both medial to the SVZ, 

suggesting the need for a second chemorepellent source to prevent the ectopic lateral 

spread of SVZ neuroblasts into the striatum (Nguyen-Ba-Charvet et al., 2004).  Once 

understood, the mechanisms that restrict ectopic migration of adult neuroblasts could 

possibly be targeted to promote SVZ-based cortical repair.  
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 Rolando and colleagues reported a marked reduction in neuroblast migration 

when SVZ explants were treated with anti-Nogo-A antibody 11C7, evident just 1 day after 

plating (Rolando et al., 2012).  In contrast, we saw only a slight reduction in migration 

distance evident only at 7 days after plating.  Several differences may account for this 

discrepancy.  First, Rolando et al.’s study used explants from postnatal day 5 (P5) mice, 

whereas ours were from young adult rats.  Beyond the species difference, P5 precedes most 

myelination in the brain, meaning that explants from P5 mice have not been exposed to 

myelin, the major source of Nogo-A (Foran and Peterson, 1992).  Furthermore, P5 

explants much more robustly generate migrating neurons than adult explants, possibly due 

to an age-related decline in neurogenesis (Wichterle et al., 1997).  Indeed, the study by 

Rolando and colleagues demonstrates much more robust migration from explants 1 day 

after plating than we ever observed in our culture system (see Fig 4.9). 

We found that chronic stimulation with Δ20 peptide led to a modest but 

statistically significant reduction in the maximum velocity of SVZ neuroblasts.  Since Δ20 

clustering potentiates its effects on neurite growth inhibition, it is possible that our results 

underestimate the impact of Nogo-A signaling on SVZ neuroblast motility in vivo.  In 

contrast, acute Δ20 peptide treatment did not significantly alter maximum velocity of 

previously untreated cells in the hours immediately following treatment.  These results 

suggest that the effects of Δ20 on migration may require a longer time course, possibly 

through effects on gene expression.  Alternatively, we cannot rule out that chronic Δ20 

stimulation led to long-term receptor desensitization, and that this in turn affected cell 
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motility.  As we applied only a uniform concentration of Δ20, additional unexplored 

avenues include the influence of Δ20 gradients on neuroblast migration, and assays that 

incorporate aspects of directed migration (eg., culturing in the presence of physiologically 

relevant chemoattractant or chemorepellent gradients) to more closely mimic in vivo 

migration.  Regardless, these results are in line with a study showing that inhibition of 

ROCK, a key intracellular mediator of Nogo-A signaling, enhanced migration from adult 

SVZ-derived neurospheres in vitro (Leong et al., 2011).  In contrast, pharmacological 

inhibition of Rac1, a Rho family GTPase also inhibited by Nogo-A signaling, reduced the 

migraton of SVZ-derived cells (Leong et al., 2011; Niederöst et al., 2002).  Within the 

olfactory bulb, chain migrating neuroblasts dissociate and migrate radially as single cells.  

Therefore, the singly migrating cells in our explant culture systems, which we tracked 

exclusively, may be more analogous to radial migration than tangential.  This would 

reconcile our results with Rolando et al.’s finding that Δ20 neutralization with anti-Nogo-

A antibodies had no effect on migration specifically from olfactory bulb explants (where 

migration is mostly radial) (Rolando et al., 2012).   

The significance of Nogo-A regulation of neuroblast motility is unclear.  If the 

migration of new neurons is stalled, they could be receptive to niche-derived signals for a 

longer time, which may influence their fate.   For example, in embryonic development, 

duration of immature neuron exposure to notochord-and floor plate-derived sonic 

hedgehog contributes to the spatial patterning of the spinal cord (Ribes and Briscoe, 2009). 

Additionally, the olfactory bulb contains abundant Nogo-A, and neuroblasts can be seen 
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migrating along Nogo-A positive fibers, which may serve to slow down the locomotion 

of these cells as they are completing their migration and integrating into the local circuitry.   

Future studies examining the localization of new OB neurons or their rate of appearance in 

the OB in Nogo-A knockout mice could shed light on the in vivo role of Nogo-A in 

normal SVZ-OB migration. 
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CHAPTER FIVE 

EFFECTS OF STROKE AND ANTI-NOGO-A TREATMENT 

ON CELLULAR PROLIFERATION AND NEUROBLAST RESPONSE IN 

THE SUBVENTRICULAR ZONE 

ABSTRACT 

 Ischemic stroke is a leading cause of adult disability, but there are currently no 

pharmacological treatments to improve recovery once the acute phase of stroke has passed.  

Our laboratory has shown that an experimental treatment, neutralizing antibodies against 

the neurite growth-inhibitory protein Nogo-A, promotes axonal and dendritic remodeling 

and functional recovery after stroke in adult and aged rats.  However, a recent study 

described a role for Nogo-A in the maintenance of the subventricular zone (SVZ), one of 

the adult brain’s main neurogenic niches, raising the question of whether neurogenesis may 

be affected by anti-Nogo-A treatment after stroke and play a role in recovery (Rolando et 

al., 2012).  Here, we investigated the consequences of Nogo-A neutralization on cellular 

proliferation in the SVZ after cortical stroke.  After stroke, despite abundant diffusion of 

treatment antibody into the ipsilateral SVZ, we found no effect of either cortical stroke or 

treatment on the number of proliferating cells in the SVZ across several time points. 
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Stroke stimulated neuroblast recruitment from the SVZ, but two weeks of treatment 

did not alter the density of DCX immunostaining in the SVZ and adjacent striatum. 

Furthermore, we found no evidence of new neurons generated in the perilesional cortex 

after stroke, although we did find many newborn cells closely juxtaposed to neuronal cell 

bodies that without close examination could be mistaken for newborn neurons.  These 

results suggest that cortical neurogenesis does not contribute to functional recovery after 

stroke and anti-Nogo-A treatment.   

INTRODUCTION 

Ischemic stroke is a leading cause of adult disability with no pharmacological 

treatments to restore lost function.  Injuries to the adult central nervous system (CNS) are 

particularly harmful because of the low potential for beneficial reorganization 

(neuroplasticity) or cell replacement.  Neuroplasticity in the adult CNS is potently 

inhibited by Nogo-A, a transmembrane protein expressed predominantly by 

oligodendrocytes and their product myelin (Schwab and Strittmatter, 2014).  Our 

laboratory has shown that treatment with neutralizing antibodies against Nogo-A improves 

functional recovery after stroke in adult and aged rats.  This recovery has been associated 

with axonal and dendritic plasticity from existing neurons in the spared cerebral hemisphere 

(Kumar and Moon, 2013).  

Intriguingly, a recent study reported a role for Nogo-A in the regulation of the 

subventricular zone (SVZ), one of the adult brain’s main neurogenic niches (Rolando et al., 

2012).  In this study, activation of the Nogo-66 receptor NgR1 was found to inhibit the 
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proliferation of neural stem cells, while Nogo-A-Δ20 promoted neuroblast migration to 

the olfactory bulbs (Rolando et al., 2012).  As these studies were performed in healthy 

adult mice, the significance of SVZ regulation by Nogo-A in the context of stroke and 

anti-Nogo-A antibody treatment is unknown.  However, it suggests that the SVZ may be 

a target of anti-Nogo-A antibody treatment that may stimulate the early steps of cell 

replacement after injury. 

In this study, we investigated the impact of anti-Nogo-A antibody treatment on 

the neurogenic response to stroke in the SVZ.  Using a treatment protocol previously 

shown to promote functional recovery, we found no evidence that anti-Nogo-A antibody 

treatment potentiated either cellular proliferation in the SVZ or the density of immature 

neurons in the SVZ and adjacent striatum after stroke.  Unexpectedly, we also saw no 

effect of stroke itself on cellular proliferation in the SVZ using two different quantification 

strategies—unbiased stereological cell counts of BrdU+ cells in the SVZ, and quantification 

of the area of Ki67+ SVZ immunoreactivity.  However, we did find evidence of minor 

neuroblast emigration from the SVZ toward the lesioned cortex.  These results suggest that 

SVZ neurogenesis contributes little to functional recovery after stroke and anti-Nogo-A 

therapy.  

EXPERIMENTAL DESIGN 

Quantification of proliferating cells in the SVZ after stroke 

 BrdU-positive cells were quantified stereologically by using the optical fractionator 

probe in MBF StereoInvestigator software.  Every 6th section between the genu of the 
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corpus callosum and the crossing of the anterior commissure (8 sections total) was 

included for analysis.  For counting, the SVZ was defined as the dense band of DAPI-

stained nuclei in the lateral wall of the lateral ventricles, extending from the dorsal-most 

point of the lateral ventricle, including the dorsolateral extension of the SVZ, and 

extending ventrally to the ventral-most point of the lateral ventricle (see Fig. 5.1).  

Stereological parameters are summarized in table 5.1. 

Area of 
each 

counting 
frame 

Approximate # 
of counting 

sites per section 
Disector 

height 

Guard 
zone 

thickness 

Sampling 
grid 

(X x Y, 
µm) 

Section 
cut 

thickness 

Section 
evaluation 

interval 
900  µm2 22 25 µm 1.2 µm 57 x 162 40 µm 6 

Table 5.1. ▲ Summary of optical fractionator parameters used to quantify BrdU+ cells in the 
SVZ. 
 

 

Figure 5.1 ▲ Implementation of the optical fractionator.  Left:  Low magnification view of 
DAPI-stained nuclei.  A contour (thin green line) was drawn around the SVZ to define the 
region of interest for cell counting.  Right:  Higher magnification imge of a BrdU+ nucleus 
(green) within the counting frame.  Magenta x’s represent other nuclei outside of the plane of 
focus that were also located within the counting frame and marked. The left and right images 
are for demonstration purposes only and were not taken from the same tissue section. 
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Primary neural stem/progenitor cell culture and quantification 

 A 4 month old male Long-Evans rat was deeply anesthetized with isoflurane 

anesthesia and decapitated.  The brain was extracted and placed in cold phosphate buffered 

saline, and then cut into 2 mm coronal sections using a brain matrix.  Under a dissecting 

microscope, the lateral walls of the lateral ventricles were dissected out, minced, and added 

to a solution of papain (2 mg/mL) in NS-A medium.  The tissue was incubated at 34°C 

with for 30 min, followed by gentle trituration with a fire-polished glass pipet to disperse 

the cells.  After centrifugation, the cell pellet was resuspended in complete medium 

consisting of NS-A media plus proliferation supplement, 1x antibiotic/antimycotic, 

heparin (2 ug/mL), EGF (20 ng/mL), and FGF2 (10 ng/mL) and maintained in a 37° C 

incubator supplemented with 5% CO2 and 100% humidification.  Half media changes 

were performed every 3-4 days, with passaging after dissociation in Accutase approximately 

every 7-10 days.   

 For investigation of cellular proliferation, equal numbers of P6 NSPCs were grown 

in proliferation media on acid-washed German glass coverslips coated with poly-D-lysine 

and laminin (10 ug/mL) for 4 days in the presence of 1) anti-BrdU 30 ug/mL, 2) anti-

BrdU 27 ug/mL + 11C7 3 ug/mL), or 3) 11C7 30 ug/mL.  Cells were then gently rinsed 

in PBS and fixed for 48 hours in 4% PFA at 4 deg C.  Antigen retrieval was performed in 

85 deg sodium citrate + 0.05% tween 20 pH 6 for 20 min, followed by 5 min 

permeabilization in 0.3% Triton X100.  Cells were blocked in 10% NGS in PBS for 1 

hour at room temperature and incubated with primary antibody (rabbit anti-Ki67, Abcam 
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Ab16667) at 1:1000 in block overnight at 4 deg.  Cells were washed and incubated in 

secondary antibody (goat anti-rabbit 488, Invitrogen A11070) 1:500 in block for 2 hours at 

room temperature.  Nuclei were visualized with DAPI. 

Cells were counted by an investigator blind to treatment group, using the 

fractionator probe in StereoInvestigator (50x50 um counting frame; ~30 sites per contour).  

Ki67+ cells and total DAPI+ cells were counted in each counting frame.  Data were 

analyzed by comparing the percentages of Ki67+ cells among treatment groups by one-way 

ANOVA. 
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RESULTS 

Lesion size is not affected by anti-Nogo-A treatment 

 As we have previously reported, the total lesion size was not affected by anti-Nogo-

A treatment (Fig. 5.2). 

 

Figure 5.2 ▲ Lesion size is not significantly altered by anti-Nogo-A antibody treatment at any 
time point assessed. (A) Representative images of stroke lesions (arrows). (B) Lesion sizes, as a 
percentage of the intact hemisphere, at each time point after stroke (x axis). 
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 Days post-stroke 

Group 5 10 14 21 56 

Stroke-only 17.38±1.16 (4) 17.40±0.97 (3) 18.57±1.76 (4) 18.25±2.36 (6) 23.20±2.60 (8) 

Stroke/ 
Control Ab N/A 17.90±0.89 (4) 14.07±6.96 (3) 20.45±1.19 (6) 24.96±2.09 (5) 

Stroke/ 
Anti-Nogo-A N/A 20.93±3.74 (4) 16.60±3.24 (4) 16.34±2.42 (7) 23.34±2.83 (8) 

 
Table 5.2 ▲ Lesion sizes (percentages).  Values are presented as mean (as a percentage of the 
area of the intact hemisphere) ± SEM, with sample size in parentheses. 
 

Neither stroke nor anti-Nogo-A treatment alter the number of proliferating cells  

in the SVZ 

 Cellular proliferation in the SVZ was quantified stereologically at the end of anti-

Nogo-A treament (ie., 21 days post-stroke).  At this time point, no significant differences 

were found in the number of BrdU+ cells in the SVZ among sham surgery, stroke-only, 

stroke plus control antibody or stroke plus anti-Nogo-A antibody groups (Fig 5.3a).  To 

investigate whether there were earlier changes in proliferation, additional time points were 

added, including 5, 10, and 14 days post-stroke (10- and 14-day post-stroke groups 

included rats that were treated for only 3 and 7 days, respectively).  Again, no evidence was 

found at any time point for an influence of stroke or treatment on the number of 

proliferating cells in the SVZ. 

 Since brain injury is generally associated with an increase in cellular proliferation in 

the SVZ (Kernie and Parent, 2010), we performed alternative experiments in which we 

quantified the expression of the endogenous proliferation marker Ki67.  In accordance with 
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our BrdU data, the area of Ki67 immunoreactivity was not significantly different from 

sham in either the ipsilesional or contralesional SVZ at 10, 14, or 21 days post-stroke (Fig 

5.3b).   

 

Figure 5.3 ▲ Neither stroke nor anti-Nogo-A treatment significantly alter cellular 
proliferation in the SVZ at any time point assessed. (A) Unbiased stereological cell counts from 
the contralesional (contra) and ipsilesional (ipsi) SVZs from sham, 5, 10, 14, and 21 days 
post-stroke. (B) Representative images of Ki67 immunostaining in the SVZ (arrowhead) from 
sham and 10, 14, and 21 days post-stroke subjects. LV: lateral ventricle; Str: striatum. (C) 
Quantification of Ki67-positive pixel area in the SVZ normalized to the area of the intact 
hemisphere.  
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 Days post-stroke 

Group 5 10 14 21 

Sham surgery N/A N/A N/A 18371±741 (4)* 

Stroke-only 18453±1696 (3) 18926±576 (3) 15703±830 (2) 19086±1181 (6) 

Stroke/Control  N/A 25477±3094 (3) 18729±4158 (3) 19187±2801 (6) 

Stroke/ 
Anti-Nogo-A N/A 19182±2577 (4) 17800±456 (4) 16996±1080 (7) 

 
Table 5.3a ▲ BrdU cell counts in the ipsilesional SVZ after stroke and anti-Nogo-A treatment.  
Values are presented as mean ± SEM, with sample size in parentheses. *BrdU+ cells in sham 
brains were counted on only one side. 
 

 Days post-stroke 

Group 5 10 14 21 

Sham surgery N/A N/A N/A 18371±741 (4)* 

Stroke-only 16560±1035 (3) 17637±947 (3) 18476±1980 (2) 14361±1724 (6) 

Stroke/Control  N/A 18444±1747 (3) 17591±2500 (3) 14484±2979 (6) 

Stroke/ 
Anti-Nogo-A N/A 17768±944 (4) 17912±818 (4) 13582±2134 (7) 

 
Table 5.3b ▲ BrdU cell counts in the contralesional SVZ after stroke and anti-Nogo-A 
treatment.  Values are presented as mean ± SEM, with sample size in parentheses. *BrdU+ 
cells in sham brains were counted on only one side. 
 

 Days post-stroke 

Side Sham surgery 10 14 21 

Contralesional SVZ 0.09531±0.00621 
(3) 

0.08024±0.00901 
(4) 

0.08686±0.01662 
(3) 

Ipsilesional SVZ 

0.09970±0.00227 
(4)* 

0.09326±0.01008 
(3) 

0.08458±0.00689 
(4) 

0.08518±0.01170 
(3) 

 
Table 5.4 ▲ Area covered by Ki67+ pixels in the contralesional and ipsilesional SVZ after 
stroke.  Values are presented as mean (as a percentage of the area of the intact hemisphere) ± 
SEM, with sample size in parentheses. *Ki67+ pixel area in the sham surgery group was 
established by averaging the values from the SVZs bilaterally. 
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 In agreement with this finding, we also did not find an effect of 11C7 treatment 

on the number of proliferating primary SVZ neural stem/progenitor cells in vitro (Fig. 

5.4). 

 After stroke, immunostaining for the immature neuron marker doublecortin 

(DCX) revealed numerous cells in the SVZ, as expected, and sparse but distinct DCX+ 

cells with elongated, migratory morphology located primarily within the white matter 

tracts of the corpus callosum and external capsule on the ipsilesional side.  These cells were 

typically singly-migrating, rather than in chains, and aligned parallel with the white matter 

fibers coursing through these regions.  Qualitatively, the number of DCX+ that had moved 

into the corpus callosum seemed to correlate directly with lesion size.  The area of DCX+ 

immunoreactivity in the SVZ and adjacent striatum was quantified after 14 days of anti-

Nogo-A treatment (21 days post-stroke).  While we observed a trend toward increased 

DCX+ area in the post-stroke ipsilesional SVZ versus sham, DCX+ pixel area was not 

significantly altered by anti-Nogo-A treatment (Fig. 5.5).  
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Fig ure 5.4 ▲ In vitro anti-Nogo-A antibody treatment does not significantly alter the number 
of primary SVZ neural stem/progenitor cells positive for the endogenous proliferation marker 
Ki67. 
 

The neuroblast response—ie, neuroblasts that had left the SVZ and started 

migrating ectopically toward the lesion—could be observed even at 8 weeks post-stroke. 

Notably, one stroke lesion was particularly severe and damaged the dorsolateral striatum, 

and a robust accumulation of neuroblasts was evident in the dorsal and dorsolateral 

striatum.  While only correlative, these observations suggest differences in the neuroblast 

response to mixed cortical/striatal stroke versus purely cortical stroke (Fig. 5.6).   
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Figure 5.5 ▲ DCX-positive staining density in the SVZ and adjacent striatum is not increased 
by anti-Nogo-A antibody treatment.  Left: Contralesional SVZ/striatum.  Staining density 
was significantly reduced in both control antibody- and anti-Nogo-A antibody-treated groups 
relative to the untreated/stroke only group. * p < 0.05; one way ANOVA and Bonferroni post-
hoc tests.  Right:  Ipsilesional SVZ/striatum.  Stroke alone led to a significant increase in 
DCX staining density which was not potentiated by anti-Nogo-A antibody treatment. * p < 
0.05 versus sham; unpaired t test. 
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Group Contralesional SVZ/striatum Ipsilesional SVZ/striatum 

Sham surgery (4) 0.07114±0.00456 

Stroke-only (6) 0.09205±0.01517 0.10112±0.00809 

Stroke/Control (6) 0.05137±0.00519 0.10520±0.02589 

Stroke/ 
Anti-Nogo-A (6) 0.04703±0.00547 0.08332±0.00776 

 
Table 5.5 ▲ Doublecortin positive pixel density at 21 days post-stroke. Values are presented 
as mean (as a percentage of the area of the intact hemisphere) ± SEM, with sample size in 
parentheses. 
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Figure 5.6 ▲ Striatal damage leads to robust neuroblast recruitment.  DCX staining, which 
appears black, is shown from a subject without extensive striatal involvement (A) and with 
striatal damage (B).  (A’) and (B’) are enlargements of the red boxed areas in (A) and (B), 
respectively.  In (B), DCX+ neuroblasts are seen presumably migrating from the SVZ 
underneath the corpus callosum and accumulating in the damaged striatum.  In contrast, very 
few DCX+ cells are found in peri-infarct cortex.  Blue arrows:  SVZ; Red arrows: dorsolateral 
striatum.   
 

 We found no evidence of newborn neurons in perilesional cortex at 8 weeks post-

stroke.  Numerous BrdU+ cells closely apposed to NeuN+ neuronal cell bodies were 

observed, which without careful inspection could be mistaken as newborn neurons.  Some 

of these new perineuronal cells were positive for Olig2, identifying these cells as belonging 



 

 

101 

to the oligodendrocyte lineage (Fig 5.7).  These perineuronal cells were found in both 

perilesional and contralesional cortex. 

 

 

Figure 5.7 ▲ Example of new perineuronal oligodendrocyte-lineage cells generated in the 
perilesional cortex after stroke.  Scale bar: 10 µm.  Far right:  orthogonal view of the image 
stack through at the level of the vertical white line shown in the middle panel. 

 

DISCUSSION 

 To our knowledge, this is the first study to use unbiased stereology to quantify the 

number of proliferating cells in the SVZ after distal middle cerebral artery occlusion 

(dMCAO).  A previous report used the optical fractionator to quantify SVZ proliferation 

after distal MCAO in mice, but only in the dorsolateral extension of the SVZ, and not in 

the lateral wall (Moraga et al., 2014).  Furthermore, these results were not compared to a 

sham surgery group, and while a reduction in BrdU+ cell number is evident at day 14 versus 

day 7 after ischemia, BrdU was only injected on days 5 and 6 post-stroke, so it is not 

possible to make any conclusions about cellular proliferation specifically on day 14 (Moraga 
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et al., 2014).  Our estimates of the BrdU+ cell population in the SVZ are consistent 

with published reports (Lois and Alvarez-Buylla, 1994).   

Why striatal but not cortical ischemia appears to upregulate proliferation in the 

SVZ, per previous reports (for example, (Arvidsson et al., 2002)) is unclear, but a few 

explanations may be considered.  First, the striatum is much closer to the SVZ, and 

therefore diffusible factors released from the lesion site that may stimulate proliferation 

would be in greater abundance.  The SVZ is also directly innervated by GABAergic fibers 

from the striatum (Young et al., 2014).  As GABAA receptor activation has been shown to 

suppress neural stem cell proliferation (Liu et al., 2005), loss of GABAergic input after 

striatal neuron loss may lead to an increase in neural stem cell proliferation.  Lastly, the 

intraluminal filament model of transient MCAO has been shown to induce hypoxia in the 

SVZ (Thored et al., 2007), and could possibly mediate direct effects on proliferation.   

 Treatment with anti-Nogo-A antibodies did not upregulate proliferation in the 

SVZ after stroke in vivo at any time point assessed, nor did it upregulate the proliferation 

of primary SVZ neural stem/progenitor cells in vitro.  In the study by Rolando and 

colleagues, treatment with mAb 11C7 similarly did not lead to changes in cellular 

proliferation (Rolando et al., 2012).  The authors postulated that this is because NgR1, the 

Nogo-66 receptor, is responsible for inhibiting proliferation, and therefore an antibody 

targeting the Δ20 domain would not increase proliferation.  However, 11C7 treatment has 

been shown to downregulate surface Nogo-A (Weinmann et al., 2006), thereby indirectly 

leading to a reduction in the amount of Nogo-66 domain available for signaling.  The lack 
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of an effect of 11C7 on cellular proliferation may be explained by the redundancy of 

ligands that activate NgR1, including myelin-associated glycoprotein and oligodendrocyte 

myelin glycoprotein (Schwab and Strittmatter, 2014). 

 Based on Rolando et al.’s report of stalled neuroblast migration in mice treated with 

11C7 in vivo, we expected to detect increased neuroblast density in the SVZ and adjacent 

striatum.  However, we saw no effect of 11C7 treatment on the area of DCX+ pixels.  Our 

apparent lack of an in vivo effect of 11C7 antibody treatment on neuroblast migration is 

consistent with our in vitro studies of 11C7-treated neuroblasts, showing no effects on 

neuroblast locomotion speed, pause properties, or directional persistence, and with the lack 

of Nogo-A surface staining in SVZ-derived neuroblasts (Chapter 4).  Potentially, the 

presence of the stroke injury accounts for the discrepancy between our findings in vivo.   

 Proliferative “satellite” glial cells in the cortex have been recognized in the literature 

(Kornack and Rakic, 2001; Kuhn et al., 1997; Levison et al., 1999). In our study, we 

identified newly generated Olig2+ perineuronal oligodendrocytes in both perilesional and 

contralateral cortices.  The significance of their most striking feature—an extremely close 

association with neuronal cell bodies, sometimes to the point of indentation—is not well 

understood.  Unlike canonical myelinating oligodendrocytes, perineuronal oligodendrocytes 

express the glutamate converting enzyme glutamine synthetase, indicating a potential role 

in glutamate metabolism (D'Amelio et al., 1990).  Potentially relevant in the context of 

ischemia, perineuronal oligodendrocytes have been implicated in neuroprotection in a 

mouse model of demyelinating disease via upregulated synthesis of lipocalin-type 
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prostaglandin D synthase, which produces the anti-apoptotic prostaglandin D2 (Liang 

et al., 2005; Taniike et al., 2002).  As we did not have a matched sham surgery group, we 

cannot assess whether ischemia itself increases the production of new perineuronal 

oligodendrocytes.  However, it is possible that the production of these cells may help to 

buffer their adjacent neurons against future ischemic insults, and deserves further 

examination. 
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CHAPTER SIX 

HIPPOCAMPAL NEUROGENESIS AFTER STROKE AND  

ANTI-NOGO-A TREATMENT 

ABSTRACT 

 Ischemic stroke is a leading cause of adult disability, including cognitive 

impairment.  Our laboratory has shown that treatment with function-blocking antibodies 

against the neurite growth inhibitory protein Nogo-A promotes functional recovery after 

stroke in adult and aged rats, including enhancing spatial memory performance, for which 

the hippocampus is critically important.  Since spatial memory has been linked to 

hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases 

hippocampal neurogenesis after stroke.  After inducing permanent middle cerebral artery 

occlusion in adult rats, we measured cellular proliferation in the dentate gyrus at 5, 10, 14, 

and 21 days post-stroke, as well as the number of newborn neurons at 8 weeks post-stroke 

in untreated, control antibody-treated, and anti-Nogo-A-treated groups.  We found that 

stroke alone transiently increased cellular proliferation and increased neurogenesis in the 

ipsilesional granule cell layer of the dentate gyrus.  Treatment with both anti-Nogo-A and 

control antibodies increased the accumulation of new microglia/macrophages in the 
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dentate granule cell layer, but neither treatment increased cellular proliferation or the 

number of newborn neurons above stroke-only levels.  These results suggest that enhanced 

neurogenesis is not a key determinant of spatial memory recovery after stroke and anti-

Nogo-A immunotherapy. 

INTRODUCTION 

Cognitive impairment is a recognized sequela of ischemic stroke (Gottesman and 

Hillis, 2010).  Our laboratory has shown that treatment with function-blocking antibodies 

against the neurite growth-inhibitory protein Nogo-A (anti-Nogo-A immunotherapy) 

improves spatial memory performance after stroke in aged rats (Gillani et al., 2010), but a 

cellular mechanism of efficacy has not yet been identified.  We and others have previously 

demonstrated that anti-Nogo-A immunotherapy stimulates dendritic and axonal 

remodeling and increases dendritic spine density in the contralesional sensorimotor cortex 

after stroke (Lindau et al., 2014; Papadopoulos et al., 2002; 2006; Seymour et al., 2005; 

Tsai et al., 2007; 2011; Wiessner et al., 2003).  These neuroplastic changes may underlie 

the sensorimotor recovery seen in anti-Nogo-A treated animals (Lindau et al., 2014; 

Papadopoulos et al., 2002; 2006; Seymour et al., 2005; Tsai et al., 2007; 2011; Wiessner et 

al., 2003) (reviewed in (Kumar and Moon, 2013)), as silencing of newly sprouted axonal 

connections ablates the sensorimotor recovery promoted by anti-Nogo-A treatment (Wahl 

et al., 2014).  However, no changes in dendritic complexity or spine density were found in 

anti-Nogo-A-treated animals in pyramidal neurons of CA1 or CA3 or in dentate granule 

cells, despite spatial memory improvement, suggesting an alternate mechanism of efficacy 
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(Gillani et al., 2010).  We and other groups have likewise reported that anti-Nogo-A 

treatment enhances recovery from hemispatial neglect after aspiration lesion of the medial 

agranular cortex (Brenneman et al., 2008) and recovery of cognitive function after 

traumatic brain injury (Lenzlinger et al., 2005; Marklund et al., 2007), positioning Nogo-

A as a promising therapeutic target for improving cognition after brain injury. 

Several studies have suggested a correlation between hippocampal neurogenesis and 

spatial memory performance on the Morris water maze (reviewed by (Garthe and 

Kempermann, 2013)), and interventions that increase neurogenesis have also been shown to 

improve Morris water maze performance after brain injury, including stroke (Meng et al., 

2014; Wurm et al., 2007).  Whether Nogo-A plays a direct role in adult hippocampal 

neurogenesis is unknown.  However, a previous study reported that mice deficient for the 

Nogo receptor NgR1 exhibit increased hippocampal neurogenesis and reduced cognitive 

impairment after traumatic brain injury (Tong et al., 2013).  Furthermore, at the 

molecular level, key intracellular mediators of Nogo-A signaling—namely the small 

GTPase RhoA and its effector kinase ROCK (Schwab and Strittmatter, 2014)— play a 

suppressive role in hippocampal neurogenesis ((Christie et al., 2013; Keung et al., 2011), 

reviewed in (Vadodaria and Jessberger, 2013)).  Nogo-A signaling has also been shown to 

inhibit nerve growth factor-mediated CREB phosphorylation in vitro (Joset et al., 2010), 

whereas CREB phosphorylation is important for the maturation and survival of newborn 

dentate granule cells, including after stroke (Jagasia et al., 2009; Zhu et al., 2004).  These 

studies raise the question of whether antibody-mediated Nogo-A neutralization could lead 
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to alterations in neurogenesis, which may in turn contribute to cognitive recovery after 

stroke. 

The goal of this study was to determine whether Nogo-A neutralization enhanced 

post-stroke hippocampal neurogenesis.  Our results showed that while infusion of both 

anti-Nogo-A and control antibodies led to the appearance of new microglia/macrophages 

in the hippocampus, Nogo-A neutralization did not affect the number of newborn neurons 

in the dentate gyrus after stroke.   Therefore, enhanced neurogenesis is unlikely to 

contribute to the improvement in spatial memory observed after stroke and anti-Nogo-A 

immunotherapy.    

EXPERIMENTAL DESIGN 

Cellular proliferation 

For each time point, six 40 µm sections per subject encompassing the dorsal DG 

(every 12th section beginning at the rostral appearance of the dentate granule cell layer, 

between approximately -2 and -4.8 mm with respect to bregma (Paxinos and Watson, 

1998)) were immunostained for BrdU and examined using bright-field microscopy on a 

Leica DM4000B microscope.  Cell counts were performed by manually counting the 

number of BrdU+ nuclei in the subgranular zone (SGZ) and basal layers of the granule cell 

layer (GCL) (approximately < 3 nuclei from the interface between the dentate granule cell 

layer and polymorphic layer) bilaterally.  

To account for potential differences in SGZ/GCL size between subjects, counts 

were normalized to SGZ length (adapted from (Imbimbo et al., 2010; Lee et al., 2012)), 
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measured for each section at the interface of the GCL and polymorphic layer using 

MBF StereoInvestigator software (MBF Bioscience, Williston, VT).  

BrdU+ cell counts at 8 weeks post stroke 

Due to repeated BrdU injections, many more BrdU+ cells were present in the GCL 

than were present for assessing proliferation after a single BrdU injection.  Therefore, we 

employed an automated counting procedure to quantify the total number of BrdU+ cells.  

A total of six 40 µm sections (every 12th section beginning at the rostral appearance of the 

dentate granule cell layer) was stained for BrdU, lightly counterstained with toluidine blue 

to identify the dentate gyrus, mounted and coverslipped.  The hippocampus of each section 

was digitized using Neurolucida software (MBF Bioscience) using a 5x objective and 

imported into ImageJ (Schindelin et al., 2012).  Automated cell counts were performed by 

selecting the entire GCL, thresholding to select only BrdU+ nuclei and not toluidine blue-

counterstained cells, and using the ‘Analyze Particles’ command.  The counts for each 

section were added and multiplied by 12 to estimate the total number of BrdU+ cells per 

dentate gyrus per subject.  Counts were further normalized to GCL volume using 

Cavalieri’s principle (see below). 

Measurement of GCL volume 

The toluidine blue-stained tissue sections used for measuring total BrdU+ cells at 8 

weeks post-stroke (6 sections total per subject) were imaged in MBF StereoInvestigator 
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software.  The Cavalieri Estimator probe was applied to measure GCL area and 

estimate the total volume of the GCL within the dorsal DG encompassed by the six 

sections. 

Quantification of newborn cell phenotypes 

A total of three 40 µm sections (every 24th section beginning at the rostral 

appearance of the GCL and proceeding caudally) were stained for BrdU plus NeuN, Iba1, 

or Sox2, counterstained with DAPI, and examined on a Leica SPE confocal microscope 

using a 63x/1.3 NA oil immersion objective.   

Due to the dense cellularity of the GCL and poor penetration of the NeuN 

antibody that confounded co-expression analysis in the middle of the tissue section, analysis 

of BrdU/NeuN co-labeling was restricted to near the outer surfaces of the tissue where 

NeuN expression was unambiguous.  Approximately 50 cells per dentate gyrus per side 

were examined in each subject.  Workflow was as follows:  BrdU-positive cells were 

identified by first scanning the tissue with the appropriate excitation laser until positive 

nuclei were identified.  Then a single optical section was acquired with 1 Airy unit pinhole 

size, and channels merged to identify 1) total BrdU+ cells, and 2) the number of BrdU+ 

cells that were positive for either NeuN, Iba1, or Sox2.  When co-labeling was not clear 

from a single optical section, z-stacks were acquired to disambiguate the labels. 

Estimates of the total numbers of new neurons were calculated by multiplying the 

total number of BrdU+ cells by the proportion of BrdU+ cells expressing each marker. 
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Treatment antibody fluorescence intensity 

Three tissue sections through the dorsal DG (a 1 in 24 series) from an untreated, 7-

day treated (three subjects each from control antibody and anti-Nogo-A groups) and 8 

weeks post-stroke (three subjects each from control antibody and anti-Nogo-A groups) 

were washed in sodium phosphate buffer and incubated in DyLight-488-conjugated 

donkey anti-mouse (rat serum protein adsorbed) secondary antibody (Jackson 

Immunoresearch, West Grove, PA; 1:200 in PB/0.4% Triton X100) for 90 minutes at 

room temperature.  Sections were washed in PB and then mounted on gelatin subbed slides 

and coverslipped in Fluoromount G.  Z stacks through the entire thickness of each tissue 

section were acquired using a 10x objective on a Leica SPE confocal microscope at 

equivalent parts of the DG in each tissue section.  All image acquisition settings were kept 

constant.  Image stacks were imported into ImageJ and compressed to maximum intensity 

Z projections.  The mean gray value of the tissue was then measured in each section using 

ImageJ and averaged to yield a single intensity value for each hippocampus per subject.  

The mean gray value of the tissue that did not receive antibody treatment was considered 

the amount of non-specific background fluorescence. 
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RESULTS 

Nogo-A is expressed by immature neurons in the normal adult dentate gyrus (DG) 

To determine whether neural precursor cells in the subgranular zone and granule 

cell layer (GCL) of the DG may be potential direct cellular targets of anti-Nogo-A 

immunotherapy, we performed double-label immunofluorescent staining using the Nogo-

A-specific antibody 11C7 and antibodies to cell type-specific markers (Figs 6.1 and 6.2).  

Strong Nogo-A expression was found in immature (doublecortin [DCX]-positive) neurons 

in various stages of development.  Both radially-oriented (more mature) cells with more 

complex arborizations (Fig 6.2a) and tangentially-oriented (transitioning, less mature 

progenitors) (Fig 6.2b) (Kempermann et al., 2004) were positive for Nogo-A.  Nogo-A 

expression was especially enriched in the apical dendrites of radially-oriented DCX+ cells. 

In contrast, Nogo-A expression by mature dentate granule cells within the GCL 

was not appreciable by immunofluorescence (Fig 6.2c), consistent with a previous report 

(Huber et al., 2002), suggesting transient expression of Nogo-A during the development 

of adult-born dentate granule cells.  Robust Nogo-A expression was observed in large, 

pyramidal NeuN+ cells at the GCL/polymorphic layer interface (putative basket cells) (Fig 

2C, arrowhead), while Nogo-A was not detectable in GFAP+ putative stem cells or 

astrocytes of the subgranular zone (Fig 6.2d). 

A recently identified receptor for the Nogo-A Δ20 domain, sphingosine-1-

phosphate receptor 2 (Kempf et al., 2014), was found to be widely expressed in the DG 

GCL (as reported in (Akahoshi et al., 2011)), including in DCX+ cells (Fig 6.2e). 
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Figure 6.1 ▲ Simplified diagram of cell lineage progression and stage-specific expression of 
markers (Sox2, GFAP, DCX, NeuN) referenced in this study.  
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Figure 6.2 ▲ Nogo-A is expressed by immature neurons in the adult dentate gyrus. (A) Nogo-A 
is expressed in the processes and somata of immature neurons (arrowheads), which are also 
positive for doublecortin (DCX).  Scale bar: 25 µm. (B) Horizontally-oriented DCX+/Nogo-
A+ neuroblast. Scale bar: 25 µm. (C) Nogo-A expression is not appreciable in NeuN+ mature 
granule cells, the majority of NeuN+ cells in the GCL.  However, putative basket cells 
(arrow) label strongly for Nogo-A. Scale bar: 25 µm. (D) Nogo-A immunoreactivity was not 
detected in GFAP+ stem cells or astrocytes. Scale bar: 50 µm. (E) Broad expression pattern 
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of S1PR2 in the GCL, including DCX+ immature neurons.  Scale bar: 20 µm.  ML: 
molecular layer; GCL: granule cell layer; PL: polymorphic layer.  
 

Lesion size is not affected by antibody treatment at any time point assessed 

Stroke lesions in all experimental groups were similar in location, encompassing the 

dorsolateral cortex and extending from primary motor cortex rostrally through auditory and 

visual cortices caudally (Fig 5.2).  Little to no infarction of the underlying white matter or 

subcortical structures was evident, consistent with previous observations using this model 

(Gillani et al., 2010).  At all time points, the hippocampus was grossly intact upon brain 

cryosectioning, but occasionally appeared distorted on the side ipsilateral to the stroke 

lesion, possibly due to distention of the cerebral ventricles.  Lesion sizes (typically 17-25% 

of the contralesional hemisphere) were not different among the three treatment groups at 

any time point assessed (10, 14, 21, or 56 days post-stroke) (Fig 5.2).   

Infused treatment antibodies penetrate the hippocampus 

Treatment antibodies penetrated into the hippocampal parenchyma as assessed by 

immunofluorescent staining for mouse IgG after 3 days of treatment (Fig 6.3).  Treatment 

antibody was detected in the hippocampus after 3, 7, and 14 days of treatment.  Five weeks 

after pump removal (7 weeks after treatment initiation), both control and anti-Nogo-A 

antibodies appeared to have been substantially cleared, and were no longer detectable by 

immunofluorescence above background levels in the DG.  
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Figure 6.3 ▲ Anti-Nogo-A antibody penetrates the hippocampus. (A) Immunostaining for 
mouse IgG after 3 days of infusion shows diffuse, uniform penetration of anti-Nogo-A and 
control antibodies in the dentate gyrus (DG), whereas only tissue autofluorescence is evident 
in untreated MCAO rats.  Scale bar: 200 µm. (B) Quantification of mean fluorescence 
intensity shows expected elevated signal intensity 7 days after beginning treatment, whereas 
at 5 weeks after treatment cessation, the signal is not detectable above nonspecific 
background fluorescence by direct immunofluorescence (n=3 rats per treatment group per 
time point). DG: Dentate gyrus. 
 
 

Stroke, but not anti-Nogo-A treatment, potentiates cellular proliferation in the DG 

Cellular proliferation was measured by injecting rats with a single dose of BrdU and 

euthanizing two hours later (Fig 6.4).  Baseline proliferative activity in the SGZ and basal 

layers of the GCL, as measured in sham surgery groups, was generally found to be low 

(3.00 ± 0.19 BrdU+ cells/mm) (Fig 6.4, top panel).  The number of proliferating cells was 

then measured at 5, 10, 14, and 21 days post-MCAO.  Since treatment began 7 days post-

stroke, data obtained at 5 days post-stroke includes only stroke-only subjects.  The majority 
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of BrdU+ nuclei appeared to be localized to the SGZ and basal GCL layers.  Five days 

after stroke, the number of proliferating cells in the ipsilesional DG increased over 3-fold 

(10.91 ± 0.41 BrdU+ cells/mm; p <0.0001 vs. sham, two-tailed t test) and had declined to 

baseline by 10 days post-stroke (2.21 ± 0.27 BrdU+ cells/mm).  The number of 

proliferating cells in the contralesional DG trended toward a more modest elevation above 

sham at 5 days post-stroke (5.76 ± 1.50 BrdU+ cells/mm, p= 0.118 vs sham).  The 

proliferating cells at 5 days post-stroke were generally localized in dense clusters, suggesting 

derivation from common progenitors.  Nearly all proliferating cells at this time point 

(69/70 cells in the ipsilesional DG and 60/60 cells in the contralesional DG across 4 

different rats) were found to be at least weakly Sox2-positive (Fig 5D), suggesting that the 

majority of these proliferating cells were activated stem cells and/or intermediate 

progenitors.  We found no significant effect of antibody treatment on the number of 

proliferating cells at any time point assessed (Fig. 6.4).  
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Figure 6.4 ▲ Stroke induces a transient increase in cellular proliferation in the dentate gyrus 
(DG) that is not altered by anti-Nogo-A treatment. (A) Overview of BrdU injection strategy to 
measure cellular proliferation. (B) Representative images of BrdU immunoreactivity in the 
ipsilesional DG of sham and stroke-only subjects at 5 and 21 days post-stroke.  Numerous 
clusters of BrdU+ nuclei in the SGZ and basal GCL were visible at 5 days post-stroke, which 
were not apparent in sham or 21 days post-stroke groups.  Scale bar: 500 µm. (C) Total 
numbers of BrdU+ nuclei in the SGZ and basal GCL normalized to SGZ length. * p < 0.05 
vs. sham.  Error bars indicate SEM. (D) Representative image of a cluster of Sox2+/BrdU+ 
cells in a stroke-only (untreated) subject at 5 days post-stroke, indicating proliferation of stem 
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cells and/or intermediate progenitor cells.  Nuclei are visualized in merged image with 
DAPI counterstain.  Scale bar: 10 µm.  DG: Dentate gyrus. 
 

 Days post-stroke 

Group 5 dpi 10 dpi 14 dpi 21 dpi 

Sham N/A N/A N/A 3.00 ± 0.19 (4) 

Stroke-only 
(ipsi. DG) 10.91 ± 0.41 (4) 2.21 ± 0.27 (3) 1.04 ± 0.05 (2) 2.48 ± 0.38 (6) 

Stroke-only 
(contra. DG) 5.76 ± 1.50 (4) 2.23 ± 0.17 (3) 1.75 ± 0.25 (2) 2.86 ± 0.34 (6) 

Stroke/ 
Control Ab 
(ipsi. DG) 

N/A 4.27 ± 0.84 (3) 2.12 ± 0.39 (3) 4.13 ± 0.54 (6) 

Stroke/ 
Control Ab 
(contra. DG) 

N/A 6.23 ± 2.87 (3) 1.81 ± 0.35 (3) 3.26 ± 0.38 (6) 

Stroke/ 
Anti-Nogo-A Ab 
(ipsi. DG) 

N/A 2.261 ± 0.480 (4) 1.25 ± 0.18 (4) 4.39 ± 0.69 (7) 

Stroke/ 
Anti-Nogo-A Ab 
(contra. DG) 

N/A 2.269 ± 0.183 (4) 1.43 ± 0.33 (4) 3.05 ± 0.56 (7) 

 
Table 6.1 ▲ Cellular proliferation (cells/mm ± SEM) at each time point assessed (dpi: days 
post-injury).  Sample sizes are in parentheses.   
 

Both control and anti-Nogo-A antibody treatment stimulate the accumulation of new 

microglia/macrophages, but not new neurons, in the dentate granule cell layer (GCL) 

To analyze the phenotypes of newborn cells, rats were administered multiple 

injections of BrdU beginning 7 days after stroke and euthanized 7 weeks thereafter (Fig 

6.5).  Stroke itself led to a significant increase in the total number of BrdU-positive cells 

(ie, cells that had proliferated between days 7 and 11 post-stroke and survived 

approximately 6-7 weeks thereafter) in the ipsilesional (7716 ± 446 cells/mm3) compared 
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to contralesional (4582 ± 431 cells/mm3) GCL.  In both control antibody and anti-

Nogo-A treatment groups, more BrdU+ cells were found in the GCL compared to the 

stroke-only group, but were also more generally distributed throughout the DG.  

However, the proportion of BrdU+ cells co-labeled for NeuN (ie., new neurons) in the 

GCL was lower in antibody-treated groups, such that the total numbers of newborn 

neurons, specifically, was not statistically different among groups.  
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Fig 6.5 ▲ Both anti-Nogo-A and control antibody treatment induce long-lasting 
accumulation of new microglia/macrophages without altering neurogenesis. (A) Overview of 
BrdU injection strategy to measure differentiation and survival of proliferating cells. (B) 
Representative images of BrdU immunoreactivity in the ipsilesional dentate gyrus at 8 weeks 
post-stroke.  The GCL, in which cells were counted, is outlined in red.  Widespread newborn 
cells are evident in both control and anti-Nogo-A antibody groups. (C) Total BrdU+ nuclei in 
the contralesional (black bars) and ipsilesional (white bars) GCLs. * p < 0.05, ipsilesional vs 
contralesional DG (within treatment group);  @ p < 0.05, vs stroke-only contralesional DG; # 
p < 0.05, vs stroke-only ipsilesional DG. (D) The volume of the GCL in which BrdU+ nuclei 
were counted (in panel ‘C’) was not significantly different among groups. (E) Representative 
image of newborn neurons (BrdU+/NeuN+) and microglia/macrophages (BrdU+/Iba1+) in the 
GCL. Scale bar: 10 µm. (F) Proportions of newborn cells of each phenotype (neuron 
[NeuN+], microglia/macrophage [Iba1+], neural stem/progenitor cell or astrocyte [Sox2+]).  
(G) Total number of new neurons in the GCL. (H) Total number of new 
microglia/macrophages in the GCL.  All error bars indicate SEM. 
 

Group Ipsilesional DG Contralesional DG 

Stroke-only (8) 7715 ± 446 4582 ± 431 

Stroke/Control Ab (5) 14467 ± 1479 10137 ± 716 

Stroke/Anti-Nogo-A Ab (8) 11383 ± 1197 8473 ± 726 
 
Table 6.2a ▲ BrdU+ cell density (cells/mm2) in the dentate gyrus at 8 weeks post-stroke, ± 
SEM.  Sample sizes are in parentheses. 
 

Group NeuN+ Iba1+  Sox2+ 

Stroke-only (8) 0.860 ± 0.032 0.0025 ± 0.0025 0.0459 ± 0.0078 

Stroke/Control Ab (5) 0.567 ± 0.099 0.304 ± 0.077 0.0198 ± 0.0088 

Stroke/Anti-Nogo-A Ab (8) 0.709 ± 0.051 0.246 ± 0.049 0.0276 ± 0.0083 

 
Table 6.2b ▲ Newborn cell phenotype proportions in the ipsilesional DG (± SEM). Sample 
sizes are in parentheses. 
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Group NeuN+ Iba1+  Sox2+ 

Stroke-only (8) 0.903 ± 0.019 0.018 ± 0.010 0.0418 ± 0.0142 

Stroke/Control Ab (5) 0.490 ± 0.040 0.474 ± 0.104 0.0402 ± 0.0065 

Stroke/Anti-Nogo-A Ab 
(8) 0.671 ± 0.074 0.356 ± 0.072 0.0346 ± 0.0097 

 
Table 6.2c ▲ Newborn cell phenotype proportions in the contralesional DG (± SEM). Sample 
sizes are in parentheses. 
 

 

 

 

 

Table 6.2d ▲ Total new neuron numbers ± SEM. Sample sizes are in parentheses. 
 

Group Ipsilesional DG Contralesional DG 

Stroke-only (8) 10 ± 10 40 ± 22 

Stroke/Control Ab (5) 2162 ± 567 2562 ± 608 

Stroke/Anti-Nogo-A Ab (8) 1430 ± 334 1535 ± 342 

 
Table 6.2e ▲ Total new microglia/macrophages ± SEM. Sample sizes are in parentheses. 
 

Group Ipsilesional DG Contralesional DG 

Stroke-only (8) 170 ± 22 94 ± 32 

Stroke/Control Ab (5) 141 ± 66  226 ± 55 

Stroke/Anti-Nogo-A Ab (8) 151 ± 42 143 ± 45 
 
Table 6.2f ▲Total new Sox2+ cells ± SEM. Sample sizes are in parentheses. 
 

Group Ipsilesional DG Contralesional DG 

Stroke-only (8) 3430 ± 299 2167 ± 207 

Stroke/Control Ab (5) 3962 ± 678 2597 ± 217 

Stroke/Anti-Nogo-A Ab (8) 4202 ± 569 2802 ± 378 
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DISCUSSION 

Anti-Nogo-A immunotherapy improves spatial memory after stroke in aged rats, 

but a cellular mechanism of efficacy has not been identified (Gillani et al., 2010).  This 

study was conducted to determine whether Nogo-A neutralization enhances post-stroke 

neurogenesis in the dentate gyrus.  

 We first performed multiple-label immunofluorecent staining to determine 

whether Nogo-A is expressed by neural precursor cells in the adult DG, thereby identifying 

possible direct treatment targets.  Nogo-A was found to be expressed by doublecortin 

(DCX)-positive immature neurons, but not stem cells or mature dentate granule cells.  To 

our knowledge, this is the first report of Nogo-A expression in immature neurons of the 

adult dentate gyrus.  This transient expression suggests a stage-specific role of Nogo-A 

expression in adult hippocampal neuronal development, similar to what has been reported 

in the adult subventricular zone (Rolando et al., 2012) and during embryonic and early 

postnatal development (Aloy et al., 2007; Huber et al., 2002; Mathis et al., 2010; 

Mingorance-Le Meur et al., 2007; Schwab, 2010).  Notably, per many of these reports, 

Nogo-A is expressed by migratory neurons.  While we do not directly address the normal 

physiological role of cell surface and/or intracellular Nogo-A in DG neurogenesis here, we 

may infer from these previous studies that Nogo-A could play a role in migration of 

neuronal precursors in the adult DG (Deng et al., 2010; Sun et al., 2015) or in the 

morphogenesis of new DG neurons (Kurowska et al., 2014; Petrinovic et al., 2013a). 
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Examining treatment antibody distribution, we showed that 

intracerebroventricularly infused antibody entered the hippocampal parenchyma, but was 

undetectable by immunofluorescence five weeks after cessation of treatment.   Therefore, 

direct exposure of target tissue to infused antibody is transient.  As we did not analyze 

antibody distribution at earlier time points after treatment cessation, we cannot conclude 

that complete antibody clearance requires the full five weeks.  However, our findings are in 

line with a previous report noting a reduction in anti-Nogo-A antibody in the brain 

parenchyma just one week after the end of treatment (Marklund et al., 2007).  These 

results raise the possibility that rapid clearance of the antibody from the brain may limit the 

full potential of anti-Nogo-A antibodies to promote functional recovery, and that a longer 

treatment duration may be further clinically beneficial. 

 After inducing a large cortical stroke, we measured the number of proliferating 

cells after various time points with or without antibody treatment.  We found that the 

number of proliferating cells was elevated above sham level at only the earliest time point 

we analyzed, 5 days post-stroke.  This early, transient increase in cellular proliferation after 

focal ischemia is similar to data reported previously by other groups (Matsumori et al., 

2006; Takasawa et al., 2002).  However, anti-Nogo-A treatment did not significantly alter 

the number of proliferating cells in the subgranular zone (SGZ) and basal granule cell layer 

(GCL) at any time point.  The mechanisms responsible for stimulating proliferation after 

cortical injury are not well understood.  One study found that spreading depression, which 

can be triggered by stroke, was sufficient to increase proliferation and neurogenesis in the 
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SGZ (Röther et al., 1996; Urbach et al., 2008).  Notably, in our hands the proliferative 

responses of the SGZ and SVZ to dMCAO were different: whereas stroke induced an 

early, transient, ~3 fold increase in cell proliferation in the SGZ, no such effect was found 

in the SVZ (see Chapter 5). 

 We then investigated the types of cells that were produced after stroke and survived 

long-term.  We found that the proportion of long-lived newborn cells that were positive 

for NeuN (ie., new neurons) was approximately 86-90% in the stroke-only group, similar 

to findings in a previous report (Kluska et al., 2005).  Given the increase in total BrdU+ 

cells in the ipsilesional GCL, this indicates a significant increase in the number of new 

neurons in the ipsilesional versus contralesional DG.   This result is consistent with reports 

of increased hippocampal neurogenesis in numerous animal models of stroke, including 

transient global ischemia (Kee et al., 2001; Liu et al., 1998), transient middle cerebral 

artery occlusion (Jin et al., 2001; Zhu et al., 2003; 2004), photothrombotic cortical stroke 

(Kluska et al., 2005), and distal middle cerebral artery occlusion (Matsumori et al., 2006).  

In contrast, only a small number of BrdU+ cells at 8 weeks post-stroke were Sox2-positive.  

Sox2 is expressed by both astrocytes and neural stem cells in the adult rat brain (Komitova 

and Eriksson, 2004).  However, the fact that we found so few Sox2+ cells at 8 weeks post-

stroke, after finding that the majority of proliferating cells at 5 days post-stroke were 

Sox2-positive, suggests that 1) post-stroke astrogliosis in the GCL was minimal, 2) 

normally self-renewing Sox2+ stem cells did not self-renew, and/or 3) this population of 

proliferative cells had progressed past a self-renewal stage at the time of BrdU 
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incorporation.  This could be reconciled if non-renewing progenitors, rather than self-

renewing neural stem cells, are the predominant proliferative cell type after stroke. 

 Both control antibody- and anti-Nogo-A-treated groups exhibited robust 

accumulation of new Iba1-positive microglia/macrophages in the GCL.  In contrast, 

newborn microglia/macrophages were found very rarely in the GCL of stroke-only 

subjects.  Several potential mechanisms behind the observed accumulation of new 

microglia/macrophages may be considered.  First, the absence of differences in lesion size 

between treated and untreated groups argues against a direct effect of the lesion itself.  

Cannulae for antibody delivery are implanted in the lateral cerebral ventricle, and may in 

rare cases puncture the hippocampal fimbria.  However, the fact that BrdU+ cells were 

generally elevated bilaterally and more uniformly distributed, rather than clustered around a 

cannula track, makes it unlikely that the observed response was a reaction to mechanical 

injury.  Infusion of mouse antibody into the rat CNS could potentially induce a 

microglial/macrophage response through either recognition of the antibody as a foreign 

protein, or binding and activation of microglia/macrophage-expressed Fc receptors.  

Antibody immunogenicity in human patients should be reduced by the use of human 

antibodies (Nelson et al., 2010), which are currently in use in anti-Nogo-A clinical trials 

for spinal cord injury and have so far shown an encouraging safety profile (Zörner and 

Schwab, 2010).   While to our knowledge direct demonstration of rat FcR-mouse IgG 

binding has not been demonstrated, cross-species FcR binding has been reported between 
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more phylogenetically distant species (Lubeck et al., 1985), and FcR cross linking has 

been shown to stimulate macrophage proliferation (Luo et al., 2010).  

 The mechanism responsible for improved spatial memory after stroke and anti-

Nogo-A treatment is not yet fully understood.  While our previous work did not find an 

effect of anti-Nogo-A treatment on dendritic complexity in CA1, CA3, or DG GCL 

neurons, a subsequent study noted dendritic alterations in these subfields after acute 

treatment of hippocampal slice cultures with anti-Nogo-A antibody (Zagrebelsky et al., 

2010).  These changes were evident after just 4 days of antibody treatment, a much shorter 

time course than in our previous study, in which histological analysis was performed 10 

weeks after the end of treatment.  Therefore, it is possible that in vivo anti-Nogo-A 

antibody treatment after stroke leads to rapid changes in dendritic growth that may be 

pruned back over time. 

Intriguingly, several studies have shown that Nogo-A and its receptors NgR1 and 

S1PR2 can regulate cognitive function and synaptic plasticity.  Transgenic Nogo-A 

knockdown rats exhibit subtle spatial memory deficits in certain tasks (Petrasek et al., 

2014a; 2014b), while mice overexpressing NgR1 show impaired spatial memory 

performance in the Morris water maze (Karlsson et al., 2016), suggesting that the proper 

balance of Nogo-A signaling, including during development, is necessary for optimal 

cognitive function.   These effects may also depend on whether Nogo-A signaling 

perturbation is chronic (as in the case of Nogo-A- or NgR1-transgenic animals), or acute 

(after neutralizing antibody or blocking peptide treatment).  For example, CA3-CA1 LTP 
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was unaffected by null mutation of NgR1 (in the absence of FGF2) (Lee et al., 2008), 

whereas acute application of an NgR1 blocking antibody enhanced LTP (Delekate et al., 

2011).  However, both Nogo-A knockdown rats (Tews et al., 2013) and acute 

hippocampal slices treated with anti-Nogo-A antibodies (Delekate et al., 2011; Kellner et 

al., 2016) exhibited enhanced CA3-CA1 LTP, suggesting different roles of the ligand 

(Nogo-A) and receptor (NgR1) in the proper development and function of hippocampal 

circuitry.  Given these findings, it is possible that Nogo-A neutralization improves spatial 

memory after stroke through a mechanism involving enhanced synaptic plasticity.    

Lastly, it is possible that other properties related to newborn neuron function that 

we did not examine, including connectivity, synaptogenesis, or morphogenesis, rather than 

the total number of newborn neurons, may be altered by Nogo-A neutralization.  The 

Nogo receptor NgR1 negatively regulates synaptogenesis and dendritic complexity during 

hippocampal development (Wills et al., 2012), raising the possibility of a similar role in 

adult hippocampal neurogenesis.  Future studies examining these changes in adult-born 

neurons after anti-Nogo-A treatment may be enlightening.     

In conclusion, our results suggest that hippocampal neurogenesis does not 

contribute substantially to anti-Nogo-A therapy-mediated spatial memory recovery after 

stroke, and indicate that other mechanisms are likely to underlie this recovery.  These 

results add to our understanding of the scope and limitations of anti-Nogo-A 

immunotherapy, which are vitally important as anti-Nogo-A antibodies continue to be 

used in human clinical trials.  
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CHAPTER SEVEN 

GENERAL DISCUSSION 

SUMMARY AND DISCUSSION OF RESULTS 

 These results show that infusion of anti-Nogo-A neutralizing antibodies does not 

appreciably alter the neurogenic response to ischemic stroke.  Therefore, the contribution 

of neurogenesis to recovery after stroke and anti-Nogo-A treatment is likely minimal.  

However, these studies provided new insights into the functions of Nogo-A within the 

adult brain’s major neurogenic niches. 

 We first defined the expression pattern of Nogo-A and its receptors in the 

subventricular zone (SVZ) and dentate gyrus (DG).  Common to both areas was strong 

expression of Nogo-A in doublecortin (DCX)-positive immature neurons.  S1PR2 

immunoreactivity could be found in DCX-positive cells as well.  In contrast, clear evidence 

of NgR1 expression in the SVZ was not found by immunofluorescence.  In migrating 

neuroblasts, we noted that Nogo-A was particularly enriched throughout the leading 

process, an observation previously made in tangentially migrating embryonic neural 

precursors (Mingorance-Le Meur et al., 2007).  This was more deeply examined in SVZ 

explant culture in vitro, where we showed that Nogo-A colocalizes with the endoplasmic 
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reticulum marker calnexin throughout the length of the leading process.  Through live 

cell staining with two different anti-Nogo-A antibodies in vitro, we found that DCX+ 

SVZ-derived neuroblasts did not show appreciable surface staining.   

These results suggest that neuroblast-associated Nogo-A plays a cell autonomous 

role, rather than signaling to neighboring cells.  However, it does not mean that neuroblasts 

are not subject to Nogo-A signaling from exogenous sources.  Indeed, we noted the 

presence of a myelin-rich zone immediately adjacent to the SVZ that appears well-situated 

to signal to the SVZ.  In examining the motility of SVZ-derived neuroblasts in vitro, we 

found that exogenous Nogo-A-Δ20 peptide led to a reduction in maximum velocity, 

showing that while these cells do not express surface Nogo-A, they are still subject to its 

regulatory influences.  Consistent with a lack of cell surface expression, anti-Nogo-A 

antibody treatment did not significantly alter any property of neuroblast motility that we 

investigated, including speed, pauses, and directional persistence. 

After stroke, we treated adult rats with anti-Nogo-A antibodies using a treatment 

delay (7 days) that promoted functional recovery in our previous studies.  This allowed us to 

correlate effects on neurogenesis with previously observed sensorimotor and cognitive 

recovery.  However, we found that anti-Nogo-A treatment had no effect on the number of 

proliferating cells in the SVZ or DG at any time point assessed, or on neuroblast density in 

the SVZ (Chapter 5) or the number of new neurons produced in the granule cell layer of 

the DG (Chapter 6).  Both anti-Nogo-A and control antibody treatment appeared to 

stimulate an immune response, leading to the accumulation of new microglia/macrophages 
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in the dentate gyrus.  Unexpectedly, stroke itself potentiated cellular proliferation in the 

dentate gyrus, but not the subventricular zone. Therefore, it is unlikely that neurogenesis 

plays a major role in recovery of sensorimotor or cognitive function after stroke and anti-

Nogo-A treatment. 

In some respects, these results reflect favorably on the applicability of anti-Nogo-A 

treatment to human stroke patients with sensorimotor and/or cognitive deficits.  

Subventricular zone neurogenesis is comparatively much less robust in humans than in 

rodents, and the ultimate fate of proliferating cells in the human SVZ is unclear.  

Furthermore, neurogenesis declines sharply with age even in rodents, and most strokes 

occur in the aged population (Heine et al., 2004; Jin et al., 2003; Knoth et al., 2010; 

Mozaffarian et al., 2016).  That anti-Nogo-A treatment does not rely on neurogenesis to 

promote recovery suggests that this process would not need to be targeted to improve 

recovery in humans.  Still, as anti-Nogo-A antibody has been in clinical trials for spinal 

cord injury (Zörner and Schwab, 2010) and a trial for stroke is in the planning phases, it is 

critical to understand the full scope of anti-Nogo-A on the brain.  This includes whether it 

stimulates any of the various components of neurogenesis, including proliferation, 

migration, and neuronal survival. 

FUTURE DIRECTIONS 

The basic biology of Nogo-A in adult neurogenesis deserves further exploration.  

Neurogenesis is not just a target for repair after brain injury, but has been implicated in 

other conditions such as cancer, epilepsy, and depression.  Revealing the role of Nogo-A in 
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neurogenesis could provide novel insights into these diseases.  Specifically, the 

significance of stage-specific Nogo-A expression in adult-born neurons is unknown.  As 

surface expression of Nogo-A, at least in the SVZ, is minimal, this may be best 

investigated using genetic methods.  Conditional knockout mice, in which Nogo-A is 

knocked out specifically in adult neural stem cells, followed by migration, morphogenesis, 

and behavioral assays, would go a long way in answering this question. 

We noted a stark difference in the recruitment of DCX+ neuroblasts to the 

perilesional cortex versus ischemic striatum (Fig 5.6).  This discrepancy calls for further 

investigation.  Is it simply a matter of distance from the lesion to the SVZ?  While this is a 

possibility, large cortical lesions can be directly dorsal to the SVZ.  In these cases, only the 

corpus callosum separates the SVZ from the lesion cavity.  Do chemotactic factors diffuse 

adequately to the SVZ?  Is the corpus callosum a permissive substrate for migration from 

the SVZ to the cortex?  After stroke, only a small fraction of the total number of SVZ 

neuroblasts appears to be diverted and move into the corpus callosum and external capsule 

toward the cortical lesion.  Notably, the few neuroblasts that do migrate in to the corpus 

callosum appear to mainly align with the direction of the fibers in this area (ie, medio-

laterally), while direct migration to the cortex would require dorsal migration (Fig 7.1).  In 

contrast, neuroblasts migrating toward the ischemic striatum appear to take a more direct 

route.  Does the corpus callosum contain repulsive or migration-inhibitory factors, or 

prevent adequate adhesion?  This scenario draws parallels with myelin-associated inhibitors 

of axon outgrowth.  Lastly, neuroblasts migrate along blood vessels in both the healthy 
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brain (during radial migration in the olfactory bulb) and in the injured brain, (toward 

the ischemic striatum) (Bovetti et al., 2007; Thored et al., 2007; Yamashita et al., 2006).  

Is the orientation of the vasculature in the corpus callosum conducive to direct radial 

migration from the SVZ toward the cortex? 

 

 

Fig ure 7.1 ▲ Doublecortin-positive cells in the corpus callosum (CC) after stroke.  Most 
DCX+ neuroblasts align with the fibers coursing through the CC (red arrowheads), with some 
exceptions (red arrows). 
 

In the adult brain’s main neurogenic niches, newborn neurons are able to extend 

axons and dendrites apparently unimpeded.  Why these cells are uniquely able to 

circumvent the same growth constraints as developmentally born CNS neurons is 

unknown, and is deserving of further research.  Furthermore, robust axon growth from 

transplanted neural stem cells into adult CNS white matter in vivo has been reported (Lu 

et al., 2012; 2014).  In fact, one study remarked that “initial axon outgrowth preferentially 
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occurred through white matter” of the spinal cord (Lu et al., 2012). This suggests that 

these new neural stem cell-derived neurons respond differently to the adult CNS.  Myelin-

associated glycoprotein (MAG) promotes axon outgrowth from young neurons (less than 

P3-4), but inhibits axon outgrowth from older neurons.  A reduction in cAMP in older 

neurons is thought to underlie this switch. (Cai et al., 2001; Mukhopadhyay et al., 1994).   

Could myelin-associated “inhibitors” such as MAG or Nogo-A also promote the growth 

of adult-born CNS neurons in a cAMP-dependent manner?   Additional open questions 

include whether, at the neurite outgrowth phase, adult-born neurons express receptors for 

myelin-associated inhibitors, and if so, whether these receptors couple to the same signaling 

pathways (ie., RhoA, ROCK) that restrict axon outgrowth in adult neurons.  

Understanding how immature neurons grow so well in the adult CNS could open up new 

avenues for neural repair.   

Lastly, hundreds of studies have been published regarding injury-induced 

neurogenesis.  However, widely variable methodology and reporting have made it difficult 

to make unified statements about the exact nature of the neurogenic response to different 

injuries.  For example, “proliferation” may be measured in one study (such as this 

dissertation) through a single BrdU injection 2 hours before sacrifice, while another study 

uses multiple injections over the course of days, at which point other influences such as 

survival and migration begin to creep in.  The current gold standard for ectopic, injury-

induced neurogenesis is co-labelling of BrdU with a mature neuron marker, eg NeuN.  

This strategy requires that 1) a neural progenitor proliferates, and that 2) this proliferation 
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is captured in the window in which BrdU is administered.  However, proliferation is 

not necessary for the generation of a new neuron.  For example, a recent report (albeit, one 

in need of independent confirmation) reported that astrocytes could transdifferentiate into 

neurons after striatal ischemia (Duan et al., 2015).  In this case, proliferation is not a 

prerequisite for neurogenesis.  New methods to globally detect the appearance of new 

neurons that do not rely on BrdU incorporation, combined with whole-brain imaging (eg., 

CLARITY (Chung et al., 2013)) would be both higher throughput and more 

comprehensive than current techniques and provide a powerful, more accurate picture of 

injury-induced neurogenesis.  
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APPENDIX A:  PILOT STUDY ON 

TREATMENT ANTIBODY DISTRIBUTION 
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INTRODUCTION 

 Anti-Nogo-A antibody treatment promotes functional recovery after stroke when 

delivered by osmotic pump via the intracerebroventricular (ICV) (Markus et al., 2005) or 

intrathecal (Lindau et al., 2014; Tsai et al., 2007) routes.  While effective, these routes are 

less desirable for human patients, as they involve surgery and its potential complications.  

Therefore, a less invasive but still effective route would be ideal for use in the clinic. 

Presumably, anti-Nogo-A antibody would not need to be distributed equally 

throughout the entire CNS to be effective.  If this treatment works by disinhibiting 

plasticity at the level of a sprouting grown cone, localized antibody application should be 

effective.  Anti-Nogo-induced axon sprouting occurs preferentially into areas that are 

deafferented or otherwise injured, such as the dorsolateral striatum, pons, and red nucleus 

(Kartje et al., 1999; Papadopoulos et al., 2002; Wenk et al., 1999).  Sprouting into the 

deafferented thalamus has not been reported after stroke and anti-Nogo-A treatment, 

although it has been reported after neonatal lesions, whose neuroplastic response tends to 

mimic what is seen in anti-Nogo-A-treated adults (Yu et al., 1995).  These deafferented 

areas undergo an inflammatory response, which can lead to blood brain barrier dysfunction 

(da Fonseca et al., 2014).  Drugs infused into the cerebrospinal fluid are rapidly cleared into 

the bloodstream (Pardridge, 2011), and direct diffusion of antibodies through the tortuous 

interstitial spaces of the brain parenchyma is slow and inefficient (Wolak et al., 2015).  

These points raise the question of whether anti-Nogo-A antibody may reach its sites of 
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action through the bloodstream, and therefore if intravenous administration may be a 

less invasive but still effective route.  

 In this pilot study, we explored the relationship between BBB permeability and 

treatment antibody diffusion to determine whether intravenous antibody treatment could 

be efficacious.  We found evidence of intracerebroventricularly infused antibody in the 

plasma, and qualitatively, treatment antibody accumulation appeared to correlate with sites 

of inflammation and BBB permeability after stroke.  Furthermore, clearance of infused 

treatment antibodies from the brain appeared to be essentially complete 5 weeks after 

treatment cessation. 

EXPERIMENTAL DESIGN 

Assessment of treatment antibody distribution 

 Tissue sections were incubated in biotinylated anti-mouse antibodies that had been 

adsorbed against rat serum proteins, and processed for peroxidase-nickel DAB detection 

with an ABC kit as previously described.  Tissue sections were then scanned at high 

resolution on a flatbed scanner and imported into Adobe Photoshop CS6.  Control tissue 

sections from untreated rats were also processed in parallel and all contrast adjustments 

applied equally to all tissue. 

Plasma collection and dot blot 

At sacrifice, blood was withdrawn from the right atrium and stored on ice in 

EDTA tubes, then spun down.  Plasma was transferred to different tubes and stored at 

minus 80° C until analysis.  For dot blotting, a PVDF membrane was wet in methanol, 
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then dH2O and TBS.  The membrane was placed on a piece of filter paper dampened 

with TBS, and 2 uL of undiluted plasma samples were spotted (from 2 different untreated 

rats, and 3 different rats each from control antibody- and 11C7-treated rats, all after 7 days 

of treatment).  The membrane was allowed to dry and then re-wet for 20 min with 

methanol containing 3% H2O2 to inactivate peroxidases within the samples.  The 

membrane was then blocked in 2% non-fat milk in TBS/0.05% Tween 20 for 90 min, then 

blocked in Vector Avidin/Biotin block (2 drops avidin in 10 mL TBS for 15 min, rinsed in 

TBS, then 2 drops biotin in 10 mL TBS for 15 min, then rinsed.)  The membrane was 

then incubated in biotinylated donkey anti mouse (rat adsorbed), 1:5000 in TBS/Tween, 

for 90 min, washed, and incubated in Vector ABC (1 drop each in 10 mL TBS/Tween) for 

90 min.  After washing in TBS, the membrane was incubated in Pico ECL, and developed 

on film for 60 sec. 

Qualitative assessment of blood-brain barrer (BBB) permeability 

 BBB permeability was defined by the extravasation of rat immunoglobulins into the 

brain parenchyma (Saunders et al., 2015).  Tissue from sham surgery and stroke-only 

subjects from various time points was subject to inactivation of endogenous peroxidases by 

incubation in 3% H2O2, washed, and then incubated in a biotinylated anti-rat IgG 

antibody.  After washing, the tissue was incubated in avidin-biotin-peroxidase complex 

(ABC) and then reacted in nickel-enhanced DAB.  Tissue sections were then scanned at 

high resolution and imported into ImageJ.  To better visualize the distibution of reaction 
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product, a lookup table was applied to the image, essentially generating a heat map 

indicating stronger or weaker staining. 

RESULTS 

 Treatment antibody, infused into the ipsilateral cerebral ventricle, could be found in 

the brain parenchyma by immunohistochemistry as early as 3 days after the start of 

treatment (the earliest time point we examined) (Fig A.1).  Staining tended to be stronger 

on the ipsilateral side, especially in the septum, striatum, hippocampus, thalamus, and 

cortex adjacent to the lesion.  Five weeks after the end of treatment, the antibody appeared 

to have been substantially cleared from the brain parenchyma.  

 

 

Figure A.1 ▲ Immunostaining for mouse IgG in an untreated (left), 3 day anti-Nogo-A treated 
(middle), and 5 weeks post-anti-Nogo-A treatment cessation (right) brain.  
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 Blood samples were collected from rats upon euthanasia and dot blotted for 

evidence of mouse IgG in the plasma.  As expected, plasma from untreated rats did not 

react with an anti-mouse IgG antibody (Fig A.2, top).  However, strong signals were 

observed in the plasma from both control and anti-Nogo-A-treated rats, suggesting the 

presence of treatment antibody in the blood (Fig A.2, middle and bottom). 

 

Figure A.2 ▲ Dot blot of mouse IgG in rat plasma after 7 days of intracerebroventricular 
treatment.  No reactivity was visible in untreated rat plasma (n=2), whereas clear reactivity is 
seen in both control (n=3) and anti-Nogo-A antibody- (n=3) treated rats. 
 

We examined inflammation by staining for ED1, a lysosomal protein expressed by 

activated microglia and macrophages.  Abundant ED1 immunoreactivity was observed in 

areas of axonal degeneration including the dorsolateral striatum and thalamus, even at 8 

weeks post-stroke (Fig A.3).   
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Figure A.3 ▲ Inflammation in the striatum and thalamus after cortical stroke. (A) Low 
magnification images of ED1 immunoreactivity in the ipsilesional striatum (top) and 
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thalamus (bottom) at 2 weeks (left) and 8 weeks (right) post-stroke. (B) Low 
magnification image of the thalamus (Nissl stain) at 8 weeks post stroke demonstrating 
cellular infiltration and disorganization in the ipsilateral versus contralateral VPL/VPM (red 
ovals).    
 

 Lastly, we examined the collection of rat IgG in the brain parenchyma by 

immunohistochemistry to identify sites of blood brain barrier (BBB) permeability.  Rat 

IgG was seen in known areas of BBB permeability, including the hypothalamus, median 

eminence, and septum.  Additionally, evidence of IgG extravasation was seen in sites with 

high levels of ED1 staining, including the perilesional cortex and ipsilesional dorsolateral 

striatum and thalamus (Fig A.4).  These areas (septum, hypothalamus, striatum, thalamus, 

perilesional cortex) also appeared to show the strongest signals for the distribution of 

infused treatment antibody.  Unexpectedly, the staining intensity of anti-Nogo-A 

antibodies was typically weaker in the white matter than in the surrounding gray matter. 
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Fig ure A.4 ▲ Correlation between rat IgG extravasation (top) and treatment antibody 
localization (bottom) at 14 days post-stroke.  DAB reaction product intensities have been 
converted to heat maps to better visualize the staining distribution. 
 

DISCUSSION 

The results of this study show that the localization of ICV-infused treatment 

antibody in the tissue parenchyma correlates with sites of inflammation and BBB 

breakdown.   

As we infused the antibody into the ipsilesional ventricle, we cannot say whether 

stronger antibody penetration into the ipsilesional side is due to proximity of the infusion 

cannula or inflammation.  If this same pattern of antibody distribution were found after 

contralateral ICV or intrathecal infusion, this would provide evidence for blood-to-brain 

spread.    

Due to the rapid clearance of drugs from the cerebrospinal fluid (CSF) to the 

plasma, CSF injection has been compared to a “slow intravenous infusion” (Christy and 
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Fishman, 1961; Pardridge, 2011).  Macromolecule diffusion from the CSF (which 

circulates around the ventricles and outer surfaces of the brain) to the extracellular fluid of 

the brain’s tortuous interstitial spaces (typically the site of drug action) is limited (Kamali-

Zare and Nicholson, 2013; Wolak and Thorne, 2013; Wolak et al., 2015).  Furthermore, 

antibodies, once in the brain parenchyma, are rapidly effluxed to the blood through Fc-

receptor mediated transport (Schlachetzki et al., 2002; Zhang and Pardridge, 2001).  

Therefore, it appears that direct infusion of anti-Nogo-A treatment antibody into the CSF 

is an inefficient means of delivery. 

There are several implications of determining the exact route by which anti-Nogo-

A antibody enters the brain and diffuses to its sites of action.  First, this may suggest more 

clinically preferable routes of administration, such as intravenous (IV).  Second, if ICV-

delivered antibody does indeed reach its site of action via a circuitous route into the 

bloodstream and then back into the brain at sites of BBB permeability, this suggests that 

BBB permeability facilitates the beneficial effects of anti-Nogo-A antibody.  This leads to 

the intriguing questions of whether BBB healing could limit the time frame in which anti-

Nogo-A is effective, and if so, whether interventions to disrupt the BBB locally (such as 

focused ultrasound (Konofagou et al., 2012)) could help re-open a window for treatment 

efficacy in chronic stroke patients.  Future studies should establish 1) whether antibody 

distribution patterns after ICV administration are different in the stroke-injured versus 

normal brain, 2) the brain distribution pattern of IV-infused antibody, and 3) whether IV 

treatment is effective in promoting functional recovery.  
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APPENDIX B: 

R SCRIPTS FOR CELL TRACKING 
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The following R script was written by Ian Vaagenes, PhD.  It is used to extract 

information about the motility of SVZ-derived neuroblasts that had been analyzed with the 

ImageJ plugin TrackMate and saved as .csv files. 

library(ggplot2) 
library(ggthemes) 
library(dplyr) 
library(reshape) 
datm <- read.csv(file.choose()) 
 
###add columns for cumulative distance and frame by frame distance 
uniq_neurons<-unique(datm$TRACK_ID) 
datm$distance<-rep(NA,nrow(datm)) 
datm$cum_distance<-rep(NA,nrow(datm)) 
datm$velocity<-rep(NA,nrow(datm)) 
 
big_list<-list() 
index<-0 
 
for(i in uniq_neurons){ 
  #i = uniq_neurons[2] 
  temp<-filter(datm, TRACK_ID == i)   
   
  for(j in 2:nrow(temp)){ 
    temp$distance[j]<-sqrt(((temp$POSITION_X[j]-temp$POSITION_X[j-

1])^2)+((temp$POSITION_Y[j]-temp$POSITION_Y[j-1])^2)) 
    temp$velocity[j]<-sqrt(((temp$POSITION_X[j]-temp$POSITION_X[j-

1])^2)+((temp$POSITION_Y[j]-temp$POSITION_Y[j-1])^2))/300 
  } 
  index<-index+1 
  temp$distance[is.na(temp$distance)] <- 0 
  temp$cum_distance<-cumsum(temp$distance) 
   
  big_list[[index]]<-temp 
}   
 
datm <- data.frame(do.call(rbind, big_list)) 
########### 
###functions needed#### 
velocity_function <- function(test){ 
  indicator <- 0 
  counter<-1 
  df <- NULL 
  for(i in 1:nrow(test)){ 
    #print(i) 
    if(test$pause[i]==1){ 
      #print(i) 
      indicator <- test$cum_distance[i] 
    }else{ 
      #print(i) 
      if(test$pause[i+1] == 1 | is.na(test$pause[i+1]) == T){ 
        #print(i) 
        df<-c(df,((test$cum_distance[i]-indicator)/(counter*5))) 
        counter<-1 
      }else{ 
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        counter <-1+counter 
      } 
    } 
  } 
  return(data.frame(df)) 
} 
##distance during movement function 
distance_function <- function(test){ 
  indicator <- 0 
  counter<-1 
  df <- NULL 
  for(i in 1:nrow(test)){ 
    #print(i) 
    if(test$pause[i]==1){ 
      #print(i) 
      indicator <- test$cum_distance[i] 
    }else{ 
      #print(i) 
      if(test$pause[i+1] == 1 | is.na(test$pause[i+1]) == T){ 
        #print(test$value[i]) 
        df<-c(df,(test$cum_distance[i]-indicator)) 
        counter<-1 
      }else{ 
        counter <-1+counter 
      } 
    } 
  } 
  return(data.frame(df)) 
} 
##pause duration 
pause_duration_function <- function(test){ 
  counter<-1 
  df <- NULL 
  for(i in 1:nrow(test)){ 
    #print(i) 
    if(test$pause[i]==0){ 
      counter <- 1 
    }else{ 
      #print(i) 
      if(test$pause[i+1] == 0 | is.na(test$pause[i+1]) == T){ 
        #print(i) 
        df<-c(df,counter) 
        counter<-1 
      }else{ 
        counter <-1+counter 
      } 
    } 
  } 
  return(data.frame(df)) 
} 
 
##move duration 
move_duration_function <- function(test){ 
  counter<-1 
  df <- NULL 
  for(i in 1:nrow(test)){ 
    #print(i) 
    if(test$pause[i]==1){ 
      counter <- 1 
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    }else{ 
      #print(i) 
      if(test$pause[i+1] == 1 | is.na(test$pause[i+1]) == T){ 
        #print(i) 
        df<-c(df,counter) 
        counter<-1 
      }else{ 
        counter <-1+counter 
      } 
    } 
  } 
  return(data.frame(df)) 
} 
 
run_diff <- function(x){ 
  diffs <- rep(NA, length(x)) 
  for(i in 2:length(x)){ 
    diffs[i]<-abs(x[i] - x[i-1]) 
  } 
  return(as.data.frame(diffs)) 
} 
############# 
############# 
############# 
#create pause function 0.4566 
pause <- function(x){ 
  ifelse(x >= 0.4566, 0, 1)} 
############################# 
############ 
############ 
############ 
 
datm1 <- datm 
  diffs<-datm %>% group_by(TRACK_ID) %>% do(run_diff(.$cum_distance)) 
   
  datm$diffs <- diffs$diffs 
  datm$pause <- pause(datm$diffs) 
datm2 <- datm   
#need to delete the first and last behavior(movement or pause) because 

their lengths are censored   
 
#head(datm) 
#delete first and last behavior 
#get indices for end of beginning run and start of last run 
neurons<-unique(datm$TRACK_ID) 
biglist <- list() 
 
for(i in 1:length(neurons)){ 
  temp1 <- filter(datm, TRACK_ID == paste(neurons[i])) 
  temp2<-rle(temp1$pause) 
  start_index<-temp2$lengths[2] + temp2$lengths[1] + 1 
  end_index<-length(temp1$pause) - temp2$lengths[length(temp2$lengths)] 
  biglist[[i]]<-temp1[start_index:end_index,] 
  } 
#use for duration 
datm <- data.frame(do.call(rbind, biglist)) 
#need first pause for average velocity but discard last behavior 
biglist <- list() 
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for(i in 1:length(neurons)){ 
  temp1 <- filter(datm2, TRACK_ID == paste(neurons[i])) 
  temp2<-rle(temp1$pause) 
  #start_index<-temp2$lengths[2] + temp2$lengths[1] + 1 
  end_index<-length(temp1$pause) - temp2$lengths[length(temp2$lengths)] 
  biglist[[i]]<-temp1[1:end_index,] 
} 
#use only for velocity 
datm_for_velocity <- data.frame(do.call(rbind, biglist)) 
datm_for_velocity <- 

datm_for_velocity[which(!is.na(datm_for_velocity$pause)),] 
#compute avg pause duration and total pause number 
runs_function <- function(){ 
  avg_pause_duration <- rep(NA, length(neurons)) 
  total_pause_number <- rep(NA, length(neurons)) 
  for(i in 1:length(neurons)){ 
    temp <- filter(datm, TRACK_ID == paste(neurons[i])) 
    temp1<- rle(temp$pause) 
    avg_pause_duration[i] <- mean(temp1$lengths[temp1$values==1], na.rm = 

T) 
    total_pause_number[i] <- length(temp1$lengths[temp1$values==1]) 
  } 
  return(data.frame(avg_pause_duration, total_pause_number, neurons)) 
} 
 
 
#get velocity 
 
 
velocity_by_move<-group_by(datm_for_velocity, TRACK_ID) %>% 

do(velocity_function(.)) 
#testing velocity funciton 
for(i in 1:length(neurons)){ 
  df<-filter(datm_for_velocity, TRACK_ID == neurons[i]) 
  print(neurons[i]) 
  print(velocity_function(df)) 
} 
 
   
### 
pause_durations<-group_by(datm, TRACK_ID) %>% 

do(pause_duration_function(.)) 
 
distance_by_move <- group_by(datm, TRACK_ID) %>% do(distance_function(.)) 
 
movement_durations <- group_by(datm, TRACK_ID) %>% 

do(move_duration_function(.)) 
 
#create main dataframe 
avg_velocity <- group_by(velocity_by_move, TRACK_ID) %>% 
  summarise(average_velocity = mean(df)) 
names(avg_velocity)[1]<-"neurons" 
maindf<-runs_function() 
#maindf$treatment <- noquote(sapply(strsplit(logs[l], " "), "[[", 2)) 
#maindf$explant_number = noquote(sapply(strsplit(logs[l], " "), "[[", 1)) 
maindf<-inner_join(avg_velocity, maindf) 
avg_move_durations <- group_by(movement_durations, TRACK_ID) %>% 
  summarise(average_move_duration = mean(df)) 
names(avg_move_durations)[1]<-"neurons" 
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maindf<-inner_join(maindf, avg_move_durations) 
 
##function to get directional persistence 
group_by(datm1, TRACK_ID) %>%  
  filter(row_number()==1 | row_number()==n()) %>% 
  select(TRACK_ID, POSITION_X, POSITION_Y, cum_distance) %>%  
  summarise(total.displacement = sqrt(diff(POSITION_X)^2 + 

diff(POSITION_Y)^2), cumulative.distance.travelled = max(cum_distance)) %>% 
  mutate(directional.persistence = total.displacement / 

cumulative.distance.travelled) %>%  
  select(neurons = TRACK_ID, directional.persistence) %>%  
  inner_join(.,maindf) -> maindf 
 
 
##to copy into excel, you could save as csv and import or just use the 

following and paste 
 
write.csv(maindf, file="maindf.csv",row.names=FALSE,quote=FALSE) 
write.table(maindf, "clipboard", sep = "\t", row.names = F) 
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