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CHAPTER I 

INTRODUCTION 

Children who were undernourished early in life 

frequently have mental capabilities below normally accepted 

levels. Numerous studies of animal models of neonatal 

undernutrition have attempted to determine the neurological 

and/or neurochemical causes of undernutrition-associated 

mental retardation. Nonetheless, the exact mechanisms of 

how undernutrition affect intellectual development are not 

presently known. Recent studies have, however, suggested 

that the synapse is affected by neonatal undernutrition in 

terms of regional density and morphology. 

Gangliosides and glycoproteins are carbohydrate

containing lipids and proteins, respectively, that are 

located in synaptic membranes. Gangliosides and glyco

proteins are known to be involved in cell-cell recognition, 

contact and adhesion processes, and as components of several 

receptors for neurotransmitters. Thus, one would expect 

that an alteration in either the synthesis or structure of 

these components within the synaptic plasma membrane could 

result in altered synaptic connectivity and cause an 

alteration in normal interneuronal communication. 

Thus, the present study was undertaken to examine the 

influences of neonatal undernutrition on synaptic development 

from a neurochemical standpoint. More specifically, this 

1 



dissertation assessed the quantitative accretion of synaptic 

membranes as well as the synthesis of synaptic proteins, 

gangliosides and glycoproteins. These studies were 

performed in age-matched control (C) rats and those that 

were undernourished (U) during lactation. In several 

experiments, the undernourished pups were nutritionally 

rehabilitated (U-RH), and it was hoped that any of the 

previous undernutrition-induced abnormalities might be 

reversed as a result of the nutritional rehabilitation. 

Protein synthesis was studied by following the in vivo 

incorporation of [3H]-leucine into the SPM proteins in both 

control and undernourished animals. A double-label isotope 

technique was used to study the synthesis of SPM gangliosides 

and glycoproteins. An [ 3H]-labeled compound (fucose or N-

acetylmannosamine for glycoproteins or gangliosides, 

respectively) was injected intracerebrally into a control 

animal, and the c14c]-labeled compound was injected into an 

undernourished animal. (In approximately half the samples, 

the order of the isotopes was reversed to eliminate any 

possible isotope effects.) The [3H]- and c14c]-labeled 

2 

samples from control and undernourished animals, respectively, 

were combined and separated on a single polyacrylamide gel 

(glycoproteins) or on a single thin layer chromatography lane 

(gangliosides). This double-labeled radioisotope technique 

facilitates the recognition of small compositional 

differences. The experimental groups (U and U-RH) were 



compared with control rats in order to assess the relative 

severity and reversibility of the nutritional stress. 
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CHAPTER II 

REVIEW OF RELEVANT LITERATURE 

Brain Development 

In all mammals there is a period of rapid brain 

growth which precedes general body growth. This is called 

the brain growth "spurt" during which the brain is quite 

active metabolically. This brain growth spurt in man is a 

perinatal event. It begins about the third trimester of 

gestation and continues until about two years of age. This 

brain growth spurt in the rat is a postnatal event (Davison 

and Dobbing, 1966; Dobbing, 1968). The rat brain weight 

increases slowly during fetal growth. At birth the brain 

weight increases rapidly until weaning (about 21 days of 

age). Thereafter there is a slower growth throughout the 

life of the animal (Dobbing and Sands, 1971; Chevallier et 

al., 1975). 

Biochemical Changes During Development 

During the growth and development of the brain, 

there are many changes in the cellular and molecular levels. 

During the first two weeks after birth in the rat, brain DNA 

content increases in parallel to that of brain weight 

(Dobbing and Sands, 1971). Based on an assumption that the 

DNA content is constant in all diploid cells of any species, 

the total DNA content of an organ at a given time will 
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reflect its total cell number. Early brain development has 

been divided into three phases (Enesco and Leblond, 1962; 

Winick and Noble, 1965). Phase I consists of a period of 

hyperplastic growth in which cell division is quite active 

and cell number increases rapidly (increase in total DNA 

content). Phase II is a period of development characterized 

by both hyperplastic and hypertrophic growth in which there 

is an increase in both cell number and cell size (an increase 

in both DNA and protein content). Phase III consists of a 

period of hypertrophy in which the brain cells increase in 

size only, with no further increase in DNA content. 

Although little information is known about cellular 

growth in the brain regions of man, it is known that post

natal cell division is comparable in the cerebrum and the 

cerebellum and ceases in both areas between 12 and 15 months 

of age (Winick et al., 1970). DNA synthesis continues in 

5 

the rat cerebrum until the 21st day postnatally (Mandel et 

al., 1964). In the cerebellum, the synthesis of DNA 

continues until the 17th day postnatally. In the hippocampus, 

the rise in DNA content between the 14th and 15th day of life 

(Fish and Winick, 1969) corresponds not to an increase in 

cell division but to the migration of neurons from under the 

lateral ventricles into the hippocampus (Altman and Das, 

1966). Although cell numbers can provide information about 

the general stage of development, the functional sign~ficance 

of altered cell numbers remains obscure. For example, an 



alteration of total DNA content does not give an indication 

of which cell types are involved. 

DNA polymerase activity in the developing rat brain 

parallels the rate of cell division and shows two peaks of 

activity (Brasel et al., 1970). The first peak of activity 

occurs prenatally, and the second occurs between 6 to 10 days 

postnatally. Although the exact cell types involved in 

active synthesis are not definitely known, it is believed 

that the first peak of DNA polymerase activity corresponds 

to the cell division of neurons while the second 

corresponds to glial cell division. Two paeks of DNA 

polymerase activity have also been found in man. The first 

peak occurs about 26 weeks of gestation, and the second 

occurs near birth (Dobbing and Sands, 1973). 

There is a rapid decline in the rate of protein 

synthesis soon after birth with a more gradual decline 

thereafter (Schain et al., 1967). This is evidenced by 

results indicating that proteins of all subcellular 

fractions in the young animal are more highly labeled after 

an injection of a radiolabeled precursor than in the adult 

rat brain, .thus indicating a decline in the rate of protein 

synthesis (Abdel-Latif and Abood, 1966; Oja, 1967). The 

average half-life of proteins in the rat brain progressively 

increases with the age of the animal due mainly to an 

increased synthesis of proteins with longer turnover rates 

(Lajtha et al., 1957). Total brain protein content and 

6 



concentration increase progressively in the cortex and white 

matter until about 30 days of age in the rat. A decrease in 

protein concentrations after 30 days of age is due to the 

accumulation of myelin lipids. 

CNS glial cell proliferation has been shown to occur 

shortly after birth in both man and rat. In early brain 

development of all mammals, there is a large acquisition of 

oligodendroglial cells before any myelin can be isolated 

(Bunge, 1968). Myelination of axons by the oligodendroglia 

is primarily a postnatal event. Lipids are present in all 

cell membranes; however, the bulk of the brain lipids are 

present as a component of myelin membranes. Therefore, any 

developmental changes in brain lipids most of ten reflect a 

change in myelination. 

Total brain lipids increase in content during 

development (Sperry, 1962). Brain lipids increase mainly 

within the white matter which reflects the area of heavy 

myelination, rather than in the grey matter (LeBaron, 1970). 

In man, there is no immediate increase in lipid deposition 

in the grey matte~ Adult levels are reached by 3 months of 

age. In the white matter, there is a much less rapid 

increase in lipid deposition, which reaches 90% of its adult 

levels by 2 years of age. 

Brain lipids consist of cholesterol, phospholipids, 

and glycolipids. Cholesterol is present in many cell 

membranes, but it is present in high concentrations within 
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myelin membranes. Although cholesterol is not uniquely 

located within these membranes, cholesterol content has been 

used as an index of brain myelin content (Dobbing and Sands, 

1971). Brain cholesterol content and concentration increases 

during early postnatal development (Brante, 1949; Davison and 

oobbing, 1968; Dobbing and Sands, 1971). There is also an 

increase in phospholipid content during early development, 

which parallels the development of membranes (Davison and 

Dobbing, 1968). 

Glycolipids in the brain consist primarily of 

cerebrosides, sulfatides, and acidic glycosphingolipids 

(i.e., gangliosides). Cerebrosides and sulfatides contain 

long chain (22 to 26 carbon atoms) fatty acids 

attached to a sphingosine residue and D-galactose or sulfate 

ester. In the adult brain, 90% of the total cerebrosides 

are present within the myelin sheath. Therefore, changes in 

myelination might be better reflected by changes in 

cerebroside content. 

Gangliosides are acidic glycosphingolipids which 

contain at least one or more residues of sialic acid in their 

oligosaccharide chains [See Figure l]. The sialic acid 

residue found most commonly in human gangliosides is N

acetylneuraminic acid. Gangliosides are most abundant 

within the grey matter where they are found in neuronal 

membranes, although little is known about the distribution of 

individual ganglioside species within these membranes. 
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Figure 1. Structure of the monosialoganglioside GMl" 
Abbreviations of the gangliosides are those of 
Svennerholm (1963). 
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Gangliosides increase in content and concentration 

during brain development (Suzuki, 1965). During the first 

ten days of normal postnatal brain development in the rat, 

ganglioside content per cell greatly increases. In the 

normal rat cortex, ganglioside content peaks at about 20 

days of age (Bass et al., 1969). This increase is 

correlated with the growth of dendritic processes and the 

formation of synaptic junctional complexes. Most of the 

evidence that the developmental peak in ganglioside 

concentration correlates with the formation of synapses has 

been obtained from observations that polysialogangliosides 

have been found to be particularly concentrated within the 

synaptic cleft region (Wiegandt, 1967; Bondareff and 

Sjostrand, 1969). Synaptic membranes are particularly rich 

in gangliosides (Tettamanti, 1971). 

There is a large increase in (Na+-K+)-activated 

ATPase in the brain during neonatal maturation (Samson and 

Q . 1967) h b . ( + +) . f. uinn, . In t e rain, Na -K -ATPase speci ic 

10 

activity is highest in those subcellular fractions containing 

nerve endings (Abdel-Latif and Abood, 1964; Albers et al., 

1965; Kurohawa et al., 1965; Whittaker, 1965). The early 

postnatal development of this ATPase parallels the 

development of electrical activity in the brain, suggesting 

a probable role in the transmission of impulses (Abdel-Latif 

et al., 1967; Zaheer et al., 1968). -- --



In general, the postsynaptic terminal membrane 

specializes into a postsynaptic density after making 

connection with an appropriate presynaptic terminal 

membrane. Indeed, it has been shown that transient 

connections between dendrites and growing axons do not 

always result in the formation of synapses. However, it 

has also been demonstrated that differentiation of the 

postsynaptic membrane thickening is not entirely dependent 

upon making synaptic contact with a presynaptic terminal 

(Hinds and Hinds, 1976 a, b; Rees et al., 1976), although 

presynaptic membranes were shown to be present within the 

vicinity. During further maturation of the synapse, there 

is an accumulation of mitochondria and synaptic vesicles 

and the formation of a paramembraneous density ("Gray's 

apparatus") within the presynaptic terminal. 

The synapse is a critical point of contact between 

nerve cells. The first detectable evidence of electrical 

activity has been correlated with the appearance of 

structurally mature synaptic components (Abdel-Latif et al., 

1967). Interestingly, dogs, whose mothers were protein

malnourished during gestation, show evidence of marked 

variations in EEG recordings from normal tracings (Stewart, 

1968). Since then, similar findings have been reported in 

children who had been previously malnourished (Stoch and 

Smythe, 1967; Taori and Pereira, 1974). 

11 



§l'naptic Plasma Membranes 

Intact synaptic terminals were first isolated by 

Gray and Whittaker (1960 and 1962) and DeRobertis et al. 

(1962). During homogenization of the central nervous 

system tissue, the nerve terminal region is sheared off and 

reseals while in isotonic solution forming artificial 

structures called "synaptosomes." Isolated synaptosomes 

have been shown to act as follows: 1) concentrate ions 

against a concentration gradient; 2) participate in uptake, 

release and metabolism of neurotransmitters; and 3) 

participate in limited in vitro protein synthesis. The 

synaptosome contains a self-limiting membrane. The 

synaptosome also contains the synaptic cleft, a postsynaptic 

thickening ("postsynaptic density"), affixed pre- and 

postsynaptic membranes, and presynaptically located vesicles 

and mitochondria. 

12 

Once a reasonably pure preparation of synaptosomes 

has been obtained, the synaptosomal constituents can be 

studied. The synaptosome can be subfractioned (usually by 

hypotonic lysis) and the external membranes, synaptic 

vesicles, cleft material, soluble cytoplasm and intraterminal 

mitochondria may be isolated. The isolated synaptic plasma 

membranes (SPM), as observed by electron microscopy, contain 

the synaptic cleft region, postsynaptic density, some 

presynaptic paramembraneous material, and fragments of 

affixed pre- and postsynaptic membranes. 
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There is an age-dependent change in buoyant density 

exhibited by presynaptic terminals (Gonatas et al., 1971) and 

by catecholamine-containing synaptosomes (Oberjat and Howard, 

1973). In 1977, Norman and Howard demonstrated that isolated 

SPMs from the cerebral cortex of 5- to 6-day-old rat pups 

sediment as a broad peak between 0.9 and 1.1 M sucrose on a 

continuous gradient, whereas, SPMs from adult rats sediment 

to 1.2 M sucrose. Therefore, it is important to establish 

whether the densities of the selected membrane fractions 

from experimental rats are the same as those from age-matched 

control rats. It is also important to assess the purity of 

the SPMs from both developing control and undernourished pups 

via enzymatic markers and to assess the relative distribution 

of the marker enzymes on the gradient used to isolate the 

SPMs. 

There are several methods (morphological and bio-

chemical) of assessing the purity of the SPMs. One of these 

is through the use of electron microscopy. Another method of 

assessing the purity of the SPMs is through the use of marker 

enzymes. The objective in assaying marker enzymes is to 

assess the specific activity of enzymes that are reasonably 

specific for a particular membrane or organelle. In the 

+ + . +2 present study (Na -K )-activated, Mg -dependent, ouabain-

sensitive adenosine triphosphatase (ATPase), 5'-nucleotidase, 

alkaline phosphatase, acid phosphatase, 2', 3'-cyclic 

nucleotide 3'-phosphohydrolase (CNPase), monoamine oxidase 



(MAO), and cytochrome c oxidase were used as enzymic 

markers. 

(Na+-K+)-activated ATPase (EC 3.6.1.4.), 5'

nucleotidase (EC 3.1.3.5) and alkaline phosphatase (EC 

3.1.3.1) are generally considered as enzymic markers of 

+ + +2 . plasma membranes. The (Na -K )-dependent, Mg -stimulated, 

ouabain-sensitive ATPase has been shown to be located, 

though not exclusively, within neuronal membranes; being 

particularly concentrated within the synapse region (Abdel

Latif et al., 1967, 1970). The enzyme acid phosphatase 

(EC 3.1.3.2) may be used to assess the presence of lysosomal 

membranes (Verity et al., 1973). 2', 3'-Cyclic nucleotide 

3'-phosphohydrolase, CNPase, (EC 3.1.4.16) has been shown to 

be localized in oligodendroglia and in myelin membranes 

(Kurihara and Tsukada, 1967; Banik and Davison, 1969). Any 

significant CNPase activity would indicate myelin 

contamination. Mitochondrial membrane contamination can be 

monitored using monoamine oxidase, MAO, (EC 1.4.3.4) as an 

enzymic marker for outer mitochondrial membranes (Schnaitman 

et al., 1967) and cytochrome c oxidase (EC 1.9.3.1) activity 

as an enzymic marker for inner mitochondrial membranes 

(Duncan and Mackler, 1966). Some of these enzymes may be 

found with lower specific activities in structures other 

than those for which they are used as markers. However, an 

assessment of a combination of markers can provide important 

information about the purity of the isolated SPMs. 
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The SPM components have been studied extensively by 

a number of investigators (Cotman et al., 1968; Morgan et al., 

1971; Waehneldt et al., 1971; McBride and Van Tassel, 1972; 

Morgan et al., 1973; Wang and Mahler, 1976; Yen et al., 1977; 

Kelly and Cotman, 1977; Smith and Loh, 1979; Mena et al., 

1980). The SPM protein-polypeptide profile on polyacryl

amide gels containing sodium dodecyl sulfate (SDS), is quite 

characteristic of SPMs and is distinguishable from that of 

whole brain, mitochondrial and myelin membranes. However, it 

is similar in some respects to microsomal and synaptic 

vesicular membranes (Mena et al., 1980). (It should be noted 

that microsomal fractions from the brain arise not only from 

endoplasmic reticulum but also from synaptosomal and neuronal 

plasma membranes.) Synaptic plasma membranes have been shown 

to contain at least some twenty or more polypeptides with 

three major polypeptides having apparent molecular weights of 

93-110,000; 52-54,000; and 39-50,000 (Mena et al., 1980; 

Banker et al., 1972; Morgan et al., 1973). 

Fibrous proteins have been identified in synaptosome 

fractions, which may function as a cytoskeleton of the 

synapse. Tubulin has been demonstrated to be a component of 

synaptic membranes (Babitch, 1981). One approach to identify 

the proteins at the synapse has been to prepare antibodies 

against specific proteins of the synaptic membrane fraction 

and to determine if they cross-react with the synapse region 

or influence normal synaptic function. Several neural 



specific proteins such as antigens o1 , o2 , and o3 are 

present in synaptosomal membranes but absent in synaptic 

vesicles and glial cells (J¢rgensen and Bock, 1974; Bock and 

J¢rgensen, 1975; Bock et al., 1975; J¢rgensen, 1976; Reeber 

et al., 1978; J¢rgensen, 1979; J¢rgensen et al., 1980). The -- --
o

1 
antigen was found to be composed of two polypeptide 

chains (apparent molecular weights of 50,300 and 116,000), 

o
2 

of only one polypeptide chain (139,000) and o3 of three 

polypeptides (molecular weights: 14,100; 23,500; and 

34,400). Although tubulin has been demonstrated to be a 

major component of the synaptosomal polypeptides (apparent 

molecular weight ~ 54,000 (Wang and Mahler, 1976; Kornguth 

and Sunderland, 1975)), both Axelsen (1973) and Kr¢11 (1973) 

demonstrated that tubulin was not a component of antigen o1 . 

However, the polypeptide pattern of o1 had certain 

similarities to that of (Na+-K+)-ATPase (J¢rgensen, 1975, 

1979) . 
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The rate of CNS protein synthesis and the turnover of 

individual proteins can be examined metabolically by the use 

of isotopic precursors such as radiolabeled amino acids. 

Lisy and Lodin (1973) showed that the rate of incorporation 

of radiolabeled-leucine into proteins of neuronal perikarya 

and glial cells of the cerebral cortex decrease with age. 

Gurd (1978) investigated the incorporation of [3HJ-

leucine into brain (homogenate), microsomal and synaptosomal 

proteins. He found that there are two peaks of incorporation 
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into synaptosomal proteins, i.e., one at 2-4 hours and 

another at 16 hours after injection. After the first wave of 

incorporation, there is a loss of labeled protein. After the 

second wave of incorporation, at 16 hours, the rate of 

turnover was slower. 

Glycoproteins have been demonstrated to serve as 

recognition signals for a number of systems, for example, 

recognized attachment sites (Choppin and Scheid, 1980); cell

to-cell recognition (Steinemann et al., 1979; Muller et al., 

1979; Geltosky et al., 1980); and other target-receptor 

functions (Morita et al., 1980). This is consistent with the 

external localization of membrane glycoproteins (for a review 

of this topic, see Sharon and Lis, 1981). 

Cytochemical evidence also indicates that carbohy

drates are present within the synapse region. Carbohydrate 

stains, such as ruthenium red and periodic acid-silver 

methenamine, are associated with synaptic cleft (Bondareff, 

1967; Rambourg and Leblond, 1969). Using concanavalin 

A-ferritin conjugates, Cotman and Taylor (1974) and Bittiger 

and Schnebli (1974) both demonstrated the presence of a-D

mannosyl and glucopyranosyl residues on the external surface 

of the postsynaptic membranes. Using lactoperoxidase 

iodination, Wang and Mahler (1976) showed that a portion of 

the synaptosomal proteins are located externally. They 

conf irrned that some of these externally located proteins 

contain oligosaccharide chains susceptible to labeling in 



intact synaptosomes by oxidation with galactose oxidase, or 

periodate, followed by reduction with sodium boro-[ 3H]

hydrate (NaB3H4). 

SPM glycoproteins are especially rich in glucosamine 

and galactosamine, in hexoses such as mannose, galactose and 
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fucose, and in sialic acid (Churchill et al., 1976; Smith and 

Loh, 1979). Fucose-containing glycoproteins have been shown 

to be transported to the nerve terminal region within the 

fast component(s) of axoplasmic transport (Zatz and Barondes, 

1971; Levin, 1977; Padilla and Morell, 1980). Membrane 

glycoconjugates may also be examined metabolically by the in 

vivo incorporation of appropriate carbohydrate precursors 

such as fucose (Buchsel et al., 1980; Webster and Klingman, 

1980). Fucose is frequently used as a precursor for many 

membrane glycoproteins because fucose is not metabolized in 

the brain and because it is rapidly incorporated into the 

terminal position of oligosaccharide chains of many neural 

glycoproteins (Quarles and Brady, 1971; Margolis and 

Margolis, 1972). 

Morgan and Routtenberg, 1979, have studied the 

apparent molecular weights, as well as the turnover, of 

fucosylated synaptosomal glycoproteins after intracranial 

injections of [3H]-fucose. They demonstrated at least 10 

major [3H]-fucose containing glycoprotein peaks. The [3H]-

fucose containing glycoprotein peaks were compared with 

coomassie blue stained synaptosomal protein bands separated 



by polyacrylamide gel electrophoresis. The apparent 

molecular weights of the fucosylated glycoproteins ranged 
-

from 32,000 to 180,000 daltons. Tentative identification of 

several of the fucosylated glycoproteins were made by 

comparing their apparent molecular weights to the molecular 

weights of known proteins. 

Using an c125r]-labeled fucose-binding protein, Gurd 

(1979) showed there are a number of fucosyl-glycoproteins in 

synaptic membranes, synaptic junctions and postsynaptic 

density fractions, and the chief fractions do not have the 

same fucosyl-glycoproteins. The highest specific activity 

was found in synaptic membranes, followed in order by 

synaptic junctional complexes and postsynaptic densities. 

Also, using lectin affinity chromatography on Concanavalin 
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~-Sepharose, Gurd showed that synaptic membrane glycoproteins 

could be separated into two fractions (a glycoprotein-rich 

and a glycoprotein-poor fraction). These two Con-A 

separated fractions had different electrophoretic patterns of 

[3H]-fucosylated glycoproteins. Zanetta et al., (1975), also 

using Concanavalin A-Sepharose lectin affinity chromatography 

(under optimal binding conditions), demonstrated three 

glycoprotein-containing elution fractions. The first elution 

fraction (unabsorbed) contained most of the SPM protein (63%) 

but only 23% of the sugar (glycoprotein-poor) . This fraction 

was rich in fucose, galactose and N-acetylneuraminic acid 

(NANA) . The second elution fraction was mildly retained by 



the column and therefore contained glycoproteins which 

reacted weakly with Concanavalin A-Sepharose. This fraction 

was especially rich in N-acetyl-glucosamine and NANA, 

relative to other sugars. The last fraction (absorbed) was 

especially glycoprotein rich, especially in mannose and 

N-acetyl-glucosamine. These three elution fractions had 
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different electrophoretic patterns of coomassie-stained 

proteins and PAS-stained glycoproteins. In a later study 

using lectin affinity chromatography specific for L-fucose, 

Zanetta et al., (1977), showed that fucosyl-glycoproteins 

constitute a major proportion (85%) of the SPM glycoproteins. 

Polyacrylamide gel electrophoresis of the fucosyl-glyco

protein fractions revealed at least 28 major bands. These 

cited studies showed that there exist several different 

classes of fucosylated synaptic membrane glycoproteins. 

Using c125I]-labeled plant lectins, De Silva et al., 

(1979), showed developmentally related alterations of rat 

brain synaptic membrane glycoproteins. They demonstrated a 

2-3 fold increase in synaptic membrane glycoprotein sialic 

acid between 5 and 60 days of age. Recently Fu et al., 

(1981), have also reported changes in the synthesis of 

synaptic membrane and synaptic junctional membrane fucosyl

and sialylglycoproteins with postnatal age. 

In addition to age-dependent changes in glycoprotein 

synthesis, there appear to be environmental influences on 

glycoprotein synthesis. Burgoyne and Rose (1980) showed an 



altered incorporation of [3H]-fucose and [3H]-lysine in the 

visual cortex of dark-reared rats upon first exposure to 

light. Additional support for environmentally related 

alterations of glycoprotein synthesis is found in studies of 

learning and memory (Routtenberg et al., 1974; Irwin et al., 

1978; Sukumar et al., 1980). 

Sialic acid, which is a sugar component present in 

many glycoproteins, is present in all gangliosides. The 

number and position of sialic acid residues on the 

ganglioside molecule determines the particular ganglioside 

species. There is some evidence that there is an enrichment 

of particular ganglioside species within various brain 

regions (Suzuki, 1965; Seyfried et al., 1979; Urban et al., 

1980) and certain membranes, i.e., myelin (Suzuki et al., 

1967, 1968; Ledeen et al., 1973). Little is known about the 

distribution of individual gangliosides within neuronal 

membranes. In a recent report, Seyfried et al., (1982) 

(using particular genetic mouse mutations that selectively 

destroy specific populations of neurons in the cerebellum) 

demonstrated a differential enrichment of ganglioside 

species into particular neuronal cell types. They found 

that GDla is more heavily concentrated in cerebellar granule 

cells than Purkinje cells, whereas GTla is more concentrated 

in the Purkinje cells. 

SPM gangliosides may be studied metabolically by 

using radiolabeled sugars (Harzer et al., 1969; Panzetta 
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et al., 1980). Yohe et al., (1980), demonstrated that --
microsomal gangliosides initially have a higher specific 

radioactivity than synaptosomal gangliosides. However, both 

fractions reach similar specific radioactivities 18 hours 

after an interacerebral injection of the labeled precursor. 

Malnutrition/Undernutrition 

It has been estimated that at least half of the 

children of the world have suffered some type of 
-

malnutrition (Winick, 1969; World Health Organization, 

Scientific Publication No. 251, 1972). (Malnutrition is 

defined as an inadequate intake and/or utilization of 
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protein, minerals or other essential nutrients as a result of 

inadequate supply, inappropriate amounts or ineffective use 

by the body.) Malnutrition early in life has been known to 

affect the physical and mental development of an individual 

(see Tizard, 1974). Malnutrition has been shown to cause a 

decrease in body and brain weight in both animal studies and 

human observations (see Dyson and Jones, 1976, for a review 

on this topic) . 

There have been numerous studies indicating that the 

mental functioning capabilities of children who had been 

malnourished early in life were below normally accepted 

standards (Stoch and Smythe, 1963 and 1967; Chase and Martin, 

1980). In contrast, there are reports of Dutch army recruits 

that suffered through the Dutch potato famine during their 

early childhood (Stein et al., 1972 and 1975) and of adults 



who were raised in Nazi concentration camps whose mental 

aptitude tests were within normal ranges. The effects of 

nutritional deprivation on the mental development of humans 

have been difficult to evaluate, for human malnutrition is 

seldom, if ever, an isolated event. For example, children 

who are subjected to malnutrition frequently come from 

lower socioeconomic environments (where sanitation and 
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health care are lacking, disease is prevalent, educational 

facilities are substandard or not optimally used) or are the 

victims of neglect and abuse. Even when nutritional deficits 

have been indicated as the major factor, it is often 

difficult to obtain sufficient samples to do biochemical 

follow-up studies in order to pinpoint the mechanism of 

mental deficit. Therefore, animal models of malnutrition 

are especially useful since various experimental parameters 

can be carefully controlled. 

When an adult animal is subjected to a nutritional 

deprivation, the animal will depend upon its metabolic 

reserves during the time of stress. If the period of stress 

is long enough, this may result in a decrease in the total 

body mass of the animal. Even in times of severe starvation, 

there may be considerable loss of body weight before there 

is any significant decrease in brain weight. 

It is known that a nutritional deprivation during 

early brain development may lead to a decrease in brain 

weight. For example, undernutrition due to large litters 
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causes a decrease in brain weight that is not fully overcome 

in the 28-week-old adult rat (Dobbing and Sands, 1972). A 

deficit in brain weight has also been reported in humans 

(Stoch and Smythe, 1963 and 1967), the rat (Zamenhof et al., 

1968; Dickerson, 1968; Adlard and Dobbing, 1972; Sobotka et 

!l·i 1974), dog and pig (Stewart, 1968) and rabbit (Schain 

and Wattanabe, 1973). It has also been reported (Lynch et 

al., 1975) that a direct deprivation of rat pups after 

weaning results in a deficit in brain weight which may 

eventually be overcome by subsequent nutritional 

rehabilitation. However, it is often difficult to correlate 

this deficit in brain weight to the decreased mental 

functioning capabilities, behavior alterations, or motor 

coordination abnormalities often seen associated with 

malnutrition. Possible explanation for these inconsistencies 

include: 1) the lack of any direct correlation between brain 

size and intelligence; and 2) the fact that brain weight does 

not accurately reflect cellular composition. 

Ultrastructural Studies 

There is ultrastructural evidence of synaptic 

abnormalities in undernourished rats. Yu et al., (1974, 

1977) found that the most severely affected structure in the 

brains of undernourished rats was the presynaptic terminal. 

Many individual terminals contained lamellar whorls and 

showed aggregation of vesicles. Jones and Dyson (1976) 

demonstrated that both pre- and postnatal undernutrition 
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causes a decreased thickness of the pre- and postsynaptic 

membranes. They also showed a decreased number of synaptic 

terminals associated with the neurons. In addition, they 

showed that undernutrition during gestation and lactation 

results in a higher proportion of immature synaptic junctions 

in the undernourished animals than in controls. Nutritional 

rehabilitation resulted in a shift toward the more mature 

types (Dyson and Jones, 1976). 

Pre- and postnatal malnutrition in the rat have been 

shown to cause a decrease in the thickness of the cerebral 

cortex (Bass et al., 1970; Cragg, 1972; Clark et al., 1973) 

and a poorly defined laminar layering (Bass et al., 1970). 

Assessment of neuronal density in 24- and 50-day-old 

malnourished rats reveals a normal but more compressed 

neuronal pattern (Cragg, 1972). The latter observation 

suggests that normal dendritic outgrowth has not occurred. 

Since the majority of cerebellar neurons (excluding 

the Purkinje cells) are formed postnatally (Altman and Das, 

1966), it is not surprising that postnatal malnutrition 

produces a marked decrease in cerebellar neuronal numbers 

that cannot be overcome by subsequent nutritional 

rehabilitation (Dobbing et al., 1971). According to Neville 

and Chase (1971), the decreased neuronal density is due to 

decreased number of cells of the internal granular and 

molecular layers. The latter cells have been reported to 

develop actively postnatally. 



Eayrs and Horn (1955) demonstrated that the 

dendritic arborization of the cortex was impaired and the 

number of synapses was decreased in starved young rats. In 
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a light microscopic study, Salas et al., (1974), reported a 

reduced number of dendritic spines and a reduction in the 

diameter of dendritic processes near their points of origin 

from the soma in postnatal nutritional deprivation. In an 

electron microscopic study, Cragg (1972) showed that the 

number of synaptic terminals associated with one neuron was 

decreased by as much as 38-41% in the undernourished rat. 

Jones and Dyson (1976) subsequently demonstrated a decreased 

number of synapses and fewer synapses per neuron. This is in 

agreement with observations of decreased dendritic spines per 

neuron as a result of undernutrition. 

Postnatal malnutrition has also been shown to affect 

another cell type that proliferates postnatally. Postnatal 

undernutrition causes a decrease in glial cell numbers in the 

cortex (Bass et al., 1970; Dobbing et al., 1972; Siassi and 

Siassi, 1973) and in the cerebellum (Dobbing et al., 1971; 

Clos et al., 1973). Oligodendroglia are responsible for the 

deposition of myelin sheaths around axons within the CNS. 

With the probable decrease of axonal proliferation in 

undernourished animals, some decrease in myelin content is 

to be expected as the axonal surface area available for 

myelination is decreased. This, however, is not the total 

cause of the myelin lipid deficiency as it has been shown that 



a restriction of the maternal dietary intake results in a 

decreased number of myelin lamellae in the offspring (Sima, 

1974). 

Biochemical Studies 

Severe nutritional deprivation in the adult animal 

causes a decrease in brain protein content while the DNA 

content is unaffected. This indicates that there is only 
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a decrease in cell size and not in cell number as a result of 

deprivation in the adult. It has been noticed that upon 

subsequent nutritional rehabilitation the loss in brain 

and body weights may be fully recovered (Hatai, 1905, 1907; 

Donaldson, 1911; Jackson, 1915; Dobbing and Widdowson, 1965; 

Dobbing, 1968). This is not always the case in the young, 

developing animal. Again, nutritional deprivation in the 

young will cause a decrease in body weight as in the adult; 

however, the brain is affected to a greater degree than in 

the adult. The brain is still the least affected organ 

compared with the rest of the body. There is a decrease in 

both DNA and protein content which suggests a decrease in 

both cell number and cell size within the brain (Winick and 

Noble, 1965; Winick and Noble, 1966; Dickerson and Walmsley, 

1967; Cully and Lineberger, 1968; Guthrie and Brown, 1968; 

Zamenhof et al., 1968; Winick, 1969; Bass, 1970; Dobbing 

and Sands, 1971; Zamenhof, 1971; Krigman and Hogan, 1976; 

Subba Rao et al., 1980). As stated before, this decrease in 

DNA content does not give us an indication of the cell types 



that are most susceptible to alteration by a nutritional 

insult. If the nutritional insult occurs during the period 

of hypertrophic growth, there is a decrease in protein 

content while there is no significant decrease in DNA 

content. Also, it has been noted that the decreased brain 

weight in the latter case may recover completely following a 

nutritional rehabilitation. Therefore, it can be seen that 

the time, length and severity of a nutritional insult and 

any subsequent nutritional rehabilitation are important as 

to the extent of any observed ill effects. 
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In the rat, neuronal cell division occurs prenatally 

in the cerebrum, but in the cerebellum there is a considerable 

increase in neuronal numbers postnatally (excluding the 

Purkinje cells which are formed prenatally). Therefore, a 

postnatal nutritional insult would more likely affect 

cerebellar neuronal numbers than cerebral neuronal numbers. 

Since glial cell proliferation is mainly a postnatal event, 

a postnatal nutritional insult would also affect glial cell 

numbers. Indeed, it has been shown that postnatal under

nutrition in the rat causes a decrease in glial cell numbers. 

Even though it has been shown that glial cells turnover 

throughout the life of the animal, the large deficit in 

glial cells due to early undernutrition is not restored 

following nutritionally rehabilitated after three weeks of 

age (Winick, et al., 1968). This same deficit in glial cell 

numbers has been found in undernourished children (Winick and 



Rosso, 1969). Indeed, it is suggested from the above 

information that the brain region and cell types most 

susceptible to alteration by outside influences depend on 

which processes are most active during the time of insult. 

Early postnatal malnutrition has been shown to 

cause a general decrease in total brain lipids (Davison 
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and Dobbing, 1968; Culley and Lineberger, 1968; Chase, 1972). 

Undernutrition early in postnatal life has also been shown 

to cause a decreased total brain (and potentially myelin) 

cholesterol content and concentration (Dobbing and Widdowson, 

1965; Davison and Dobbing, 1966; Dobbing and Sands, 1971). 

In addition, Culley and Mertz (1965) found that the deficit 

in cerebroside content (used as an index of CNS myelination) 

was most marked following an early postnatal nutritional 

deprivation, suggesting a retardation in myelination. 

Malnutrition has been found to cause a decrease in 

brain ganglioside sialic acid content (Bass et al., 1970). 

Neonatal malnutrition also has been shown to cause a delay 

in the normal peak of ganglioside content. These findings 

have been interpreted as suggestive evidence for a decreased 

sprouting of dendrites as well as a diminished synapse 

formation during postnatal life as a result of the 

nutritional insult (Bass et al., 1970). Merat and Dickerson 

(1974) also demonstrated that neonatal undernutrition caused 

a transient to lasting decrease in ganglioside N-acetyl

neuraminic acid (NANA) content in the forebrain, cerebellum 



and brainstem. Analysis of individual ganglioside species 

(nomenclature according to Svennerholm, 1963) showed 

decreases in the concentrations of GM1 , GDlb' and GT1 

(GDla was also decreased though not as significant) in the 

undernourished rat brains (Reddy and Sastry, 1978). The 

deficits in GDlb and GT1 were most pronounced when the 

nutritional insult was continued through 8 weeks of age. 

However, nutritional rehabilitation after the third week 

eventually reversed the cited ganglioside abnormalities. 

Yusuf and Dickerson (1978) found that the most severely 

affected ganglioside species varied within different brain 

regions (i.e., GDla in forebrain, GDlb in the brain stem and 

GT1 in the cerebellum). 

Undernutrition and Synaptic Membranes 

Gambetti et al. , (1972) showed that although total 

brain protein content was decreased in undernourished 

animals, there was no decrease in synaptosomal protein 

content per cortex at 24 days of age. Rabie and Legrand 

(1973) showed that undernutrition caused a decrease in 

synaptosomal protein content per cerebellum but that 

synaptosomal protein content per mg of cerebellum was 

apparently unaffected. 

Nutritional deprivation has been shown by several 

to have an effect on ATPase activity in the developing rat 

brain. Reddy and Sastry (1978) demonstrated that, in protein 

30 



malnourished rats, the specific activity of 

ouabain-insensitive ATPase was significantly reduced in 

3-week-old rats which could be recovered by rehabilitation. 

The ouabain-sensitive ATPase specific activity, however, 

was not affected by protein malnutrition. Hernandez (1979) 

showed that there was a significantly increased specific 

activity of (Na+-K+)-ATPase in the brain cortex of rats 

malnourished either during gestation or by raising in large 

litters. In addition, Kissane and Hawrylewicz (1975, 1978) 

have investigated the effects of perinatal protein 

deficiency (during gestation and lactation) on ATPase 

activity in rat brain synaptosomes isolated from the 

cerebellum and cerebral cortex. They demonstrated that 

undernutrition during gestation caused a decrease in the 

ATPase activity that could be reversed by normal protein 

nutrition during lactation. In contrast, undernutrition 

only during lactation severely decreased both cerebral and 

cerebellar ATPase levels in young animals (14- and 20-day

old) almost as severely as those animals who were stressed 

during both gestation and lactation. 

Experimental Models 

Several methods of inducing neonatal undernutrition 

in experimental animals include the following: increasing 

the size of the suckling litter (Widdowson and Mccance, 
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1960; Yu and Yu, 1977; and Crnic and Chase, 1978), decreasing 

the amount of the time spent nursing (i.e., by removing the 



pups from the mother for part of the time) (Eayrs and Horn, 

1955; Culley and Nertz, 1965; Crnic and Chase, 1978; Leuba 

and Rabinowicz, 1979), decreasing the quantity of food 

supplied to the mother (Venkatachalam and Ramanathan, 1964; 

crnic and Chase, 1978; Hall et al., 1979; Leuba and 

Rabinowicz, 1979), or by some combination of these cited 

methods. Each of these methods also have their own special 

problems (Codo and Carlini, 1979; Hall et al., 1979; Smart, 

1980); for example, 1) alteration of maternal care and 

behavior of the pups, especially in large litters; 2) 

competition between pups in large litters with the growth of 

some of the more aggressive pups at the expense of others, 

and 3) problems of keeping the pups warm during their 

separation from the mother or possible lack of maternal 

influences other than thermal or nutritional. 

Normal, commercially prepared laboratory rat chow 

contains 20-28% protein, usually in the form of casein. It 

has been shown tha4when laboratory rats are given a low 

protein (i.e., 7% w/w casein) diet, with the deficit in 

total calories being made up by an excess of carbohydrates, 

that the rats will consume less of their diet than the 

control fed counterparts. When a lactating female is fed a 

low protein diet, the quantity of milk is reportedly 

decreased without altering the proportion of its major 

constituents (Mueller and Cox, 1946; Miller, 1970). In 

contrast, there have been several reports (Crnic and Chase, 
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1978; Vangelder and Parent, 1981) that have found that a low 

protein diet during lactation will result in a lower 

nitrogen content and an elevated total fat content of the 

milk. The differences in findings may be due to recent 

advances which result in increased sensitivity of certain 

analytical procedures. 

There are many problems (i.e., differences in the 

timing of certain developmental events) involved when trying 

to correlate different animal models with each other or with 

human experience. For example, in humans, the peak period 

of brain growth is during the last few months of gestation, 

continuing through the second year of life; whereas, many 

experimental animals (including rats) have their maximum 

brain growth spurt during early postnatal life (Davison and 

Dobbing, 1966; Dobbing, 1968). One possible solution to the 

problems inherent in using experimental models has been to 

correlate certain developmental events to developmental 

periods. 

Since nutritional deprivation has been shown to 

cause both structural and biochemical abnormalities within 

the CNS nerve terminal region, it is quite possible that 
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these abnormalities may cause an alteration in normal synaptic 

function. Therefore, it is of considerable interest to 

examine the effects of a neonatal undernutrition on the 

protein and lipid constituents on the synaptic plasma mem

branes and some of the enzymes involved in normal synaptic 



function. Also, since gangliosides and glycoproteins have 

been reported to have an important role in intercellular 

adhesion and signal-receptor mediated functions, it would be 

of great interest to examine the effects of undernutrition 

on the metabolism of synaptic membrane gangliosides and 

glycoproteins as a possible mechanism of altered synaptic 

connectivity. 
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CHAPTER III 

MATERIALS AND METHODS 

.Animals 

Pregnant Sprague-Dawley rats were obtained from 

Holtzman Supply Co. (Madison, Wisconsin). At birth, the 

litter sizes were adjusted to 9 pups and mothers of the 

experimental pups were placed on a low protein diet (ICN 

Nutritional Biochemicals, Cleveland, Ohio) ad libitum. 

Control mothers were maintained on normal Purina laboratory 

rat chow. The composition of the protein deficient diet was 

8% casein, 78% starch, 10% vegetable oil and 4% salt mixture 

with vitamin fortification, while that of the control diet 

was 25-28% casein, 59% starch, 10% vegetable oil and 4% salt 

mixture with vitamin fortification. All rat mothers and 

off spring were fed standard lab chow after the 20th 

postnatal day. 

Chemicals 

L-[4,5- 3H]-Leucine (6i Ci/rnrnole), L-[1-14c1 fucose 

(59 mCi/rnrnole), L-[l- 3H]fucose (5.4 Ci/rnrnole), N-[ 3H]-acetyl

D-mannosamine (500 mCi/rnrnole) and N-acetyl-D-[u-14c]

mannosamine (18 mCi/rnrnole) were purchased from Arnersham 

(Arlington Heights, Ill.). Analytical grade organic 

solvents, concentrated acids and bases, as well as ammonium 

molybdate and sucrose were purchased from Mallinckrodt, Inc. 
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(St. Louis, Mo.). Scintillation grade toluene was purchased 

from J. T. Baker Chemical Company (Phillipsburg, N. J.). 

Aquasol cocktail fluor, protosol gel solubilizer and 1,4-bis 

(5-phenyloxazol-2-yl) benzene (POPOP) were obtained from New 
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England Nuclear (Boston, Ma.). NCS tissue solubilizer and 2, 

5-diphenyloxazole (PPO) were purchased from Amersham (Arlington 

Heights, Ill.). Eastman Kodak was the source of acrylamide, 

N,N-methylene bis-acrylamide, N,N,N',N'-tetramethylethylene

diamine (TEMED), 2-mercaptoethanol and l-amino-2-naphthol-4-

sulfonic acid. Sephadex G-10 and Ficoll 400 were purchased 

from Pharmacia Pharmaceuticals, Inc. (Piscataway, N. J.). 

Sodium dodecyl sulfate (SOS) was obtained from Matheson, 

Coleman and Bell (Norwood, Oh.). All other analytical reagent 

grade chemicals were purchased from Sigma Chemical Company 

(St. Louis, Mo.). Precoated 20 x 20 cm2 gel 60 thin layer 

chromatography (TLC) and 10 x 20 cm2 silica gel 60 high 

performance (HPTLC) plates were purchased from E. M. Laborato-

ries, MC/B Manufacturing Chemists, Inc. (Cincinnati, Ohio). 

Experimental Procedures 

Preparation and Injection of Isotopes 

The specific activity of L-[l- 3H]-fucose was 

adjusted to 200 mCi/mmole with non-radioactive fucose and 

the specific activity of N-[ 3H]-acetyl-D-mannosamine adjusted 

to 200 mCi/mmole with non-radioactive N-acetylmannosamine 

prior to injection. Under mild ether anesthesia, control 

and undernourished pups were given a single 10 µl 



intracerebral injection (to the right of the midline of the 

skull) of either L-[4,S-3H]-leucine, L-[l-3H]- or L-[1-14c]-
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3 14 : 
fucose, or N-[ H]-acetyl-D- or N-acetyl-D-[U- C]-mannosamine 

in physiological saline. 

[3H]-Leucine was used as a precursor for proteins 

while [3H]- and c
14c]-fucose and [3H]- and c

14c]-N-acetyl-

mannosamine was used respectively as the precursors of 

glycoproteins and of the sialic acid moiety of gangliosides 

and glycoproteins. The amount of each isotope that was 

injected is: 1) 100 µCi of [3H]-leucine; 2) 30 µCi of [3H]

fucose of [3H]-N-acetylmannosamine; or 3) 9 µCi of 

14 14 . [ C]-fucose or [ C]-N-acetylmannosam1ne. In glycoprotein 

and ganglioside studies, approximately half of each group of 

animals (control and experimental) received the [3H]-labeled 

compound and approximately half received the c14c]-labeled 

compound. Animals were sacrificed by decapitation either at 

16 hours (protein study) or 18 hours (glycoprotein and 

ganglioside studies) after injection. These times were 

selected for convenience and because they had been shown by 

others to be optimal for uniform distribution of label into 

proteins or glycoproteins and gangliosides, respectively. 

Synaptic Plasma Membranes 

During mechanical homogenization of nervous tissue, 

the nerve terminals are sheared off. In isotonic solution, 

the nerve terminals can seal and form "synaptosomes.," 

Differential centrifugation techniques can be used to 



separate synaptosomes from cell nuclei, myelin, microsomes, 

mitochondria and other subcellular components. Synaptosomes 

contain a characteristic self-limiting membrane, the 

synaptic cleft region, presynaptic mitochondria and 

vesicles, and other substructures. After synaptosomes are 

hypotonically lysed, the synaptic plasma membranes (SPM) can 

be separated from remnant myelin fragments, presynaptic 

mitochondria and vesicles by differential centrifugation 

techniques. 

In the present study, synaptic plasma membranes were 

prepared following a procedure of Cotman and Matthews (1971) 

[See Figure 2]. Animals were sacrificed by decapitation with 

a guillotine. Pups 20 days and older were lightly 

anesthetized with ether before sacrifice. Brains (including 

the brain stem) were quickly removed, cooled on ice and 

weighed. Brains were homogenized, 20% (w/v), in cold, 0.32 M 

sucrose (pH 7.0) in a glass homogenizer using a motor-driven 

teflon coated pestle. The homogenizer and pestle were 
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rinsed with an equal volume of 0.32 M sucrose (pH 7.0). The 

rinse and homogenate were combined so that the final 

concentration of the homogenate was 10% (w/v) . All subsequent 

steps were done at 0-4°C. An aliquot (0.5-1.0 ml) was then 

removed for protein determination. The homogenate was 

centrifuged in a refrigerated (0-4°C) DuPont Sorvall RC-SB at 

3,000 rpm (1,000-1,100 x g) for 5 minutes using a Sorvall 

SS-34 rotor. This resulted in a crude nuclear pellet (P1 ), 



SYNAPTOSOYiAL PLASMA MEMBRANES 

Fresh brain/brain tissue 

20% (w/v) homogenate!in 0.32 M sucrose, pH 7.0 

! 
dilute to 10% (w/v) homogenate in 0.32 M sucrose 

! 
10% Hl (tissue homogenate) ....-----------! cfg at 3000 rpm (1000-1100xg), 5 min. 

~ 
P1 (discard) Sl (supernatant) 
(rc_ru __ d_e __ nu_c_l_e_a_r ___ pe __ l_l_e_t_) __ .... J cfg at 13,700 rpm (17,000xg), 10 min. 
~ i 
S2 (discard) P2 (crude mitochondrial pellet) 

I 
suspend in 15 ml 0.32 M sucrose by hand homogenization 

.-------------cl cfg at 11,000 rpm (11,000xg), 20 min. + ~ 
SJ (discard) P3 (pellet) 

l repeat sucrose wash at 11,000 rpm 
(11,000xg) for 20 min. 

0.32M 

7. 5% 
Fi coll 

0.32M 

OPTIONAL 

Suspend in 7 ml 0.32 M sucrose 
by hand homogenization. 
Layer onto Ficoll-sucrose gradient. 

cfg at 22,000 rpm (63,581xg) 
in SW-27 (or SW-28), 45 min. 

Synaptosomal material found at the 1.5/13.0% Ficoll
sucrose interface. Remove interface material. 
Dilute with 4 volumes 0.32 M sucrose. ! cfg at 24,250 rpm (106,000xg), JO min. 

Pellet 

1 Osmotic shock in 6mM Tris, pH 8.1, 1.5 hr. 

cfg at 20,300 rpm (54,500xg), 15 min. 
Pellet 

l 
Re suspend in ? ml o. J2 M sucrose 
and layer on sucrose gradient. 

cfg at 22,000 rpm (63,581xg), 1.5 hr. 

SPMs found at 25/32.5~ (w/v) sucrose interface. 
Removelinterface and dilute with 4 vols. 0.1mM EDTA. 

cfg at 24,250 rpm (106,000xg), JOmin. 

Pellet (resuspend in 0.32 M sucrose.pH 7.0). 
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containing cell bodies and nuclei, and a supernatant (S1 ). 

The supernatant (S1 ) was decanted from the nuclear pellet 

and centrifuged at 13,700 rpm (17,000 x g) for 10 minutes in 

the Sorvall. After this centrifugation, the supernatant 

(S 2 ) was decanted. The crude mitochondrial pellet (P 2 ) was 

resuspended in 15 ml of cold 0.32 M sucrose (pH 7.0) by hand 

homogenization using a smooth, round bottom, hand-held 

homogenizer. The suspension was centrifuged at 11,000 rpm 

(11,000 x g) for 20 minutes in the Sorvall. The resulting 

supernatant (S3 ) was decanted and discarded, and the pellet 

(P 3 ) was resuspended in 7.0 ml of 0.32 M sucrose (pH 7.0) by 

hand homogenization. An additional, optional rinse was 

omitted. The suspension was layered on top of a Ficoll 

gradient consisting of 13.5 ml of 13.0% (w/v) Ficoll in o .. 32 

M sucrose (pH 7.0) which had been previously overlayered with 

13.5 ml of a 7.5% (w/v) Ficoll-sucrose solution (pH 7.0). 

The gradient was centrifuged at 22,000 rpm (63,500 x g) for 

45 minutes. This and all subsequent centrifugations were 

performed in a Beckman L 5-65 ultracentrifuge and utilized 

either the SW-27 or SW-28 rotor. All centrifugations were 

stopped by an electrical braking device. Crude myelin was 

found at the 0.32 M sucrose/7.5% Ficoll-sucrose interface. 

Synaptosomal material was found at the 7.5/13.0% Ficoll

sucrose interface. The synaptosomal material was removed, 

diluted with 4 volumes of 0.32 M sucrose (pH 7.0) and 

centrifuged at 24,250 rpm (106,000 x g) for 30 minutes. The 
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supernatant was decanted and the pellet resuspended in a 

small volume of 0.32 M sucrose. The pellet was then 

osmotically shocked for 1.5 hours (0-4°C) by resuspending it 

in 6 mM Tris (pH 8.1). It was shown by Cotman and Matthews 

(1971) that osmotic shock at alkaline pH (pH 8.1) for 1.5 

hours is necessary for the subsequent resolution of synapto-
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somal mitochondria from the synaptic plasma membrane. The 

suspension was centrifuged at 20,300 rpm (54,500 x g) for 15 

minutes. The pellet was resuspended in 7 ml of 0.32 M 

sucrose and layered onto a sucrose gradient consisting of the 

following sucrose solutions in order of decreasing density 

(heaviest on the bottom): 5 ml of 38% (w/v); 7.5 ml of 

35.0% (w/v); 7.5 ml of 32.5% (w/v); and 7.5 ml of 25.0% (w/v) 

sucrose. The gradient was centrifuged at 22,000 rpm (63,500 

x g) for 1.5 hours. Synaptic plasma membrane (SPM) fragments 

were found at the 25/32.5% (w/v) sucrose interface. The SPM 

bands were removed with clean Pasteur pipets and diluted 

with 0.1 mM EDTA. (In the sucrose gradient subfraction study, 

the subf ractions A-D were removed in 8 ml aliquots starting 

from the top of the gradient to the bottom, using a 

graduated 10 ml pipet. The last subfraction, E, included the 

pellet and the remaining 2.5 ml of 38% (w/v) sucrose. The 

subfractions A-E were also diluted with 0.1 mM EDTA.) This 

suspension was centrifuged at 24,250 rpm (106,000 x g) for 30 

minutes. The supernatant was decanted and the pellet was 

resuspended in a small volume of 0.32 M sucrose (pH 7.0) for 



enzyme assays or in deionized H2o for protein, glycoprotein 

or ganglioside studies. 

The relative purity of the SPMs was assessed by 

determining the activities of monoamine oxidase, MAO, (EC 

1.4.3.4) (Youdin, 1975), 2',3'-cyclic nucleotide 3'-phospho-

hydrolase, CNPase, (EC 3.1.4.16) (Kurihara and Tsukada, 
+2 + + 1967), and Mg -dependent, ouabain-sensitive (Na -K )-ATPase 

(Sweadner, 1979) in brain homogenates and in SPMs. MAO, 

+ + CNPase and (Na -K )-ATPase were used as marker enzymes for 

outer mitochondrial membranes, myelin and plasma membranes, 

respectively. In addition, the relative distribution of 

several other 'marker' enzymes was assessed in several 

subf ractions of the discontinuous sucrose gradient used to 

isolate SPMs from lysed synaptosomes from control and 

undernourished rats. The activities of the plasma membrane-

associated enzymes: 5'-nucleotidase (EC 3.1.3.5) (Emmelot et 

al., 1964) and alkaline phosphatase (EC 3.1.3.1) (Linhardt 

and Walter, 1963), and the activities of lysosomal acid 

phosphatase (EC 3.1.3.2) (Linhardt and Walter, 1963) and 

inner mitochondrial membrane cytochrome c oxidase (EC 

1.9.3.1) (Duncan and Mackler, 1966) were also determined. 

The activity of these enzymes was assayed in the 5 

subfractions (A-E) of the 10%/25%/32.5%/35%/38% sucrose 

gradient [See Figure 3]. The subfractions were suspended in 

O.l mM EDTA, pelleted by centrifugation at 24,250 rpm 

(106,000 x g) and resuspended in 0.32 M sucrose (pH 7.0) for 
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SUCROSE 
MOLARITY VOLUME GRADIENT 

(w/v) 

0.32 M 7.0 ml 10 " 
0.73 M 7.5 ml 25 " 

0.95 M 7.5 ml 32.5 

1.02 M 7.5 ml 35 " 
1.11 M 5.0 ml 

GRADIENT 
SUBFRACTI ONS 

A 

B 

c 

D 
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VOLUME 

8.o ml 

8.o ml 

e.o ml 

8.o ml 

2.5 ml 

Figure 3. Osmotically lysed synaptosomal material was 
resuspended in 7.0 ml of 0.32 M sucrose, pH 7.0, and layered 
onto the 25/32.5/35/38% sucrose gradient. (All sucrose 
solutions also contained 5 mM Trizma base.) The gradient was 
centrifuged at 22,000 rpm (63,58lxg, average), in an SW-27 
(or SW-28) rotor) for 1.5 hr. The sucrose gradient 
subfractions (A-D) were removed in 8.0 ml aliquots. The 
final 2.5 ml, including the pellet (subfraction E), were 
resuspended with an additional 5.5 ml of 0.32 M sucrose, pH 
7.0. Each subfraction was diluted with 4 volumes of 0.1 mM 
EDTA and centrifuged at 24,250 rpm (106,000xg, maximum) for 
30 mins. Each pellet was resuspended in a small volume of 
0.32 M sucrose, 5 mM Trizma, pH 7.0 for enzyme marker assays. 



enzyme assays. The "myelin" band at the 10%/25% sucrose 

interface was included in fraction B, and the "SPM" band at 

the 25%/32.5% sucrose interface was included in fraction c. 

Brain Region Study 

A study was also undertaken to examine the effects 

of neonatal undernutrition on the SPM protein concentration 

within different brain regions in order to evaluate the 

sensitivity of the different brain regions to a nutritional 

insult. The SPMs were isolated from various brain regions 

in both control and undernourished rat pups at several ages: 

10, 14, 20 and 34 days of age. The brain regions selected 

were as follows: prefrontal lobes, hippocampus, cerebral 

cortex and cerebellum. At some of the younger age periods, 

several (6-9) brain regions (i.e., prefrontal lobes and 

hippocampus) were combined in order to obtain sufficient 

material to isolate the SPMs. 

Assays 

PROTEIN 
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Protein determination was done following the 

procedure of Lowry et al. (1951). Crystalline human serum 

albumin (HSA) was used as the protein standard. A standard 

1 mg HSA protein/ml solution was prepared in deionized H2o. 

Protein standards contained 0 µg (reagent blank) - 50 µg HSA. 

Absorbance (Abs) were measured at 700 nm in a Gilford 2400 

spectrophotometer. 
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FISKE - SUBBA ROW INORGANIC PHOSPHATE ASSAY 

Inorganic phosphate was determined following a 

modified procedure of Fiske and Subba Row (1925). A standard 

solution of inorganic phosphate (KH2Po4 ) was made that 

contained 5 - 20 µg P1 per 0.25-1.0 ml. The volumes of the 

standards and sample aliquots were adjusted to 1.0 ml. The 

following solutions were added to the samples and standards: 

1) 0.25 ml 5 N H2so4 ; 2) 0.25 .ml 2.5% (w/v) ammonium 

molybdate; 3) 0.1 ml of reducing reagent. (The reducing 

reagent was prepared by dissolving 3 grams anhydrous Na 2so3 

and 60 grams of NaHS0 3 in 300 ml of deionized water, after 

which 1.0 gram of l-amino-2-naphthol-4-sulfonic acid was 

added. The final volume was adjusted to 500 ml with 

deionized water. The reducing agent was stored at 0-4°C in a 

brown bottle.) The final assay volume was adjusted to 2.6 ml 

with deionized water. After 30 minutes, the absorbance was 

measured at 625 nm in a Gilford 2400 spectrophotometer. 

Sodium-Potassium (Na+-K+)-dependent, 
Magnesium {Mg+2)-stimulated, ouabain-sensitive 

Adenosine Triphosphate Phosphydrolase 

( + K+) d d M +2 ' 1 d b ' ' ' Na - - epen ent, g -stimu ate , oua ain-sensitive 

ATPase (EC 3.6.1.4) enzyme activity was assessed by a 

modification of the procedure of Abdel-Latif et al. (1970). 

The final reaction buffer contained 150 mM NaCl, 20 mM KCL, 

3 mM ATP, 3 mM MgC1 2 and 40 mM Tris, pH 7.4. The final 

reaction volume was 0.5 ml. Ouabain sensitivity was.measured 

using the above reaction mixture plus 10 mM ouabain. The 
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enzyme was preincubated in the buffer (minus ATP) for 10 

minutes at 37°C. It was found that optimal protein enzyme 

concentrations were as follows: a) 30-50 µg SPM protein; 

b) 50-80 µg synaptosomal protein; or c) 90-100 µg of protein 

from a 10% (w/v) brain homogenate. It was also discovered 

that maximal ATPase enzyme stimulation occurred when the 

protein samples were preincubated for two minutes at room 

temperature in 0.02% (w/v) sodium dodecyl sulfate (SDS) prior 

to addition to the reaction mixture (Sweadner, 1979). The 

reaction was initiated by the addition of 50 µl of an ATP 

solution (18.0 mg/ml deionized H2o). After an additional 10 

minutes, the reaction was terminated by the addition of 150 

' µl of ice-cold 50% (w/v) trichloroacetic acid (TCA) and 

placing the reaction tubes in an ice bath. The reaction 

tubes were centrifuged at low speed and a 0.5 ml aliquot of 

the supernatant was removed. The amount of inorganic 

phosphate released from the ATP was then measured by the 

Fiske-Subba Row assay. Corresponding controls included ATP 

and reaction buffer (with or without ouabain) but contained 

no enzyme, to assess nonspecific hydrolysis of ATP, or 

reaction buffer (with or without ouabain) plus enzyme but no 

ATP, to assess for background levels of substrate and 

inorganic phosphate. 

5'-NUCLEOTIDASE 

5'-Nucleotidase (EC 3.1.3.5) was assayed foilowing 

the procedure of Emmelot et al. (1964). A 1.9 ml volume of a 



buffer-substrate solution containing 100 mM KCl, 5 mM MgC1 2 , 

50 mM Tris-HCl and 3 mM 5'-AMP (pH 7.2) was preincubated 

for 5 minutes at 37°C. The reaction was initiated by the 

addition of 0.1 ml of enzyme solution (approximately 200 -

300 µg homogenate protein or 50 - 100 µg of SPM protein) . 

The reaction was incubated for 15 minutes at 37°C and 

terminated by cooling in an ice bath. The cooled mixture 

was immediately centrifuged at low speed and an aliquot was 

removed. The released inorganic phosphate was measured 

using the Fiske-Subba Row inorganic phosphate assay. The 

blank contained buffer-substrate solution without added 

enzyme. 

ALKALINE PHOSPHATASE 

Alkaline phosphatase (EC 3.1.3.1) activity was 

measured by the p-nitrophenyl phosphate method of Linhardt 

and Walter (1963). A 5.0 ml aliquot of an alkaline buffer-

substrate solution containing 0.05 M glycine, 5.5 mM 

p-nitrophenyl phosphate, pH 10.5, was preincubated 5-10 

minutes at 37°C. The reaction was initiated by the 

addition of 0.05 ml of tissue homogenate or sample. After 

incubating for 30 minutes at 37°C, the reaction was 

terminated by the addition of 5.0 ml of 0.02 N NaOH. Blanks 

consisted of no added enzyme after the 0.02 N NaOH. The 

p-nitrophenol liberated by the phosphatase forms a yellow 

anion and was quantitated by measuring the absorbance at 

-5 -4 405 nm. Standards containing 2.5 x 10 rnrnole to 2.5 x 10 
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romole p-nitrophenol were made up in 5.0 ml 0.02 N NaOH, 50 µl 

deionized H2o and 0.5 ml substrate-buffer solution. One 

phosphatase unit is described as the amount of enzyme 

contained in 1000 ml of serum which liberates 1 mmole 

p-nitrophenol at 37°C (mmole units). With an assay volume of 

11.l ml, 0.1 ml sample and an incubation period of 30 

minutes, a unit corresponds to an absorbance of 0.0833 

405 nm. Therefore, the enzyme units were calculated as 

follows: 

Abs.405 . 
0 • 0833 = Abs· 405 x 12. 00 =alkaline phosphatase units (mmole) • 

Alkaline phosphatase specific activity was expressed as 

mmole/time/mg protein. 

ACID PHOSPHATASE 

Acid phosphatase (EC 3.1.3.2) activity was determined 

according to the p-nitrophenyl phosphate method described by 

Linhardt and Walter (1963). The acid buffer-substrate 

solution contained 0.05 M citrate buffer, 5.5 x 10-3 M 

p-nitrophenyl phosphate, pH 4.8. A 0.5 ml aliquot of 

buffer-substrate solution was preincubated for 5-10 minutes 

at 37°C. The reaction was initiated by the addition of 0.05 

ml of tissue homogenate (100-500 µg protein) or sample (10-

50 µg protein). After incubating for 30 minutes at 37°C, the 

reaction was terminated by the addition of 2.0 ml of 0.1 N 

NaOH. Blanks were prepared by adding the enzyme solution 

after the addition of the 0.1 N NaOH and a reagent blank was 



prepared which contained no enzyme. The tubes were vortexed 

and the absorbance of the sample was measured at 40S nm on a 

Guilford 2400 spectrophotometer. Standards containing 

2.s-10 (10-S) mmole p-nitrophenol in 2.0 ml 0.1 N NaOH, SO 
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µl deionized H2o and O.S ml of the substrate-buffer solution. 

Calculations were as follows: 

Abs.40S . 
0 . 362 = Abs. 40 sx2.8l=mmole acid phosphatase units. 

Acid phosphatase specific activity was expressed as mmole/ 

time/mg protein. 

CYCLIC NUCLEOTIDE PHOSPHOHYDROLASE 

2',3'-Cyclic nucleotide 3'-phosphohydrolase (EC 

3.1.4.16), CNPase, was assayed according to the method by 

Kurihara and Tsukada (1967) except that the chromatogram was 

developed in a tank containing isopropahol: concentrated 

ammonia: water, 7:1:2 (v/v/v) as described by Banik and 

Davison (1969). Samples, containing enzyme, were prepared 

in 1% (v/v) Triton X-100 so that 20 µl would contain 

approximately S µgrams of brain homogenate, 2-4 µgrams of 

myelin protein or 10 µgrams of SPM protein. The reaction 

tubes containing substrate, SO µl of 0.03 M 2' ,3'-cAMP, SO 

µl of 0.2 M Na2HP04-o.l M citric acid buffer, pH 6.2 and 80 

µl of deionized H2o were preincubated S minutes at 37°C. The 

reaction was initiated by the addition of 20 µl of the enzyme 

solution in 1% Triton X-100. After 20 minutes, the reaction 

was terminated by the addition of 20 µl of glacial acetic acid 
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and the tubes were placed in an ice bath. The tubes were 

centrifuged at low speed. A 20 µl aliquot of the supernatant 

was spotted onto 20 x 20 cm2 Whatman paper. The paper was 

then chromatographed in isopropanol: ammonia: water, 7:1:2 

(v/v/v) for 3~-4 hours until the solvent reached the top of 

the paper. The paper was allowed to dry and the nucleotide 

spots were visualized using an ultraviolent (U.V.) lamp. The 

location of the visualized spots were marked. A control 

sample, containing the reaction mixture without enzyme, was 

included. Portions of the paper chromatogram which 

corresponded to product, substrate and paper blank (background) 

were cut into small pieces. The substrate and product (and 

blank) were eluted with 4 ml of 0.01 N HCl by shaking the 

paper-HCl mixture for 2 hours at room temperature. The paper 

was pelleted by low speed centrifugation. The optical density 

of the clear solution was determined at 260 nm in a Gilford 

2400 spectrophotometer. Calculations of values were as 

follows: 

sl = Absorbance of substrate - Absorbance of paper blank 

pl = Absorbance of product - Absorbance of paper blank 

x = s 1 /l.5 = Absorbance per µmole per assay 

y = 3(P1 /X) = µmole per 20 µl of assay per hour 

z = Y/mg protein in 20 µl = µmole per hour per mg protein 

Total activity = Z x total (mg) protein. 



51 

MONOAMINE OXIDASE 

The activity of monoamine oxidase (EC 1.4.3.4), MAO, 

was determined by the fluorometric assay by Youdin (1975), 

which is based on the fact that when kynuramine 

dihydrobromide (KDHB) is oxidized by monoamine oxidase it 

spontaneously cyclizes to form the fluorescent 4-hydroyquino

line (4-HOQ). A 0.10 ml aliquot of a 10% (w/v) mitochondrial 

preparation, or other enzyme sample, was added to 0.5 ml of 

a 0.2 M sodium phosphate buffer, pH 7.4, containing 1.0 mole 

kynuramine dihydrobromide (KDHB) . The final volume was 

adjusted to 1.0 ml with deionized water. The reaction 

mixture was incubated for 5-10 minutes at 30°C. The reaction 

was terminated with the addition of 0.50 ml of 20% perchloric 

acid. The mixture was centrifuged at low speed and a 0.5 ml 

of the supernatant was removed and added to 1.0 ml of lN NaOH 

in a quartz fluoremetry cuvette. The product, 4-hydroxyquin

oline (4-HOQ), will fluoresce at 380 nm when excited at 315 

nm. This fluorescence was measured on a Aminco-Bowman 

spectrophotofluorometer. Concentrations were calculated from 

a standard curve of the relative fluorescence intensity of 

4-hydroxyquinoline. A standard solution of 4-HOQ (22 nmoles 

per ml) was prepared. Standards were made containing 

2.2-11 nmoles 4-HOQ in 1.5 ml 1 N NaOH. 

CYTOCHROME C OXIDASE 

Cytochrome c oxidase (EC 1.9.3.1) was assaye~ by the 

procedure of Duncan and Mackler (1966) which measures the 
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rate of decrease in absorbance at 550 run accompanying the 

cytochrome oxidase-catalyzed conversion of ferrocytochrome c 

+2 . +3 (Fe ) to ferr1cytochrome c (Fe ). Ferrocytochrome c was 

prepared by the addition of sodium dithionite to 

ferricytochrome c. Excess dithionite was removed by 

aeration. The assay system consists of 0.2 ml of 0.2 M 

phosphate buffer, pH 7.5, 0.1 ml of 1% (w/v) ferrocytochrome 

c and deionized water in a volume of 1.0 ml. When the 

absorbance at 550 run stabilized, the recorder pen was set to 

100% which corresponded to an absorbance of 2.0 (full scale). 

The reaction was initiated by the addition of 105 µgrams of 

enzyme protein. The rate of reaction was calculated from the 

slope of the linear decrease in absorbance as a function of 

time. 

PROTEINS/GLYCOPROTEINS 

Individual [3H]-leucine-labeled brain homogenate and 

SPM samples from control and undernourished pups were 

lyophylized separately. Combined (dual-label) [3H]

fucosylated control and c14c]-fucosylated undernourished 

(or c14c]-fucosylated control and [3H]-fucosylated 

undernourished) homogenates and SPM samples were also 

lyophylized. Protein/glycoprotein samples were treated 

following the procedure of Druse and Krett (1979). Lipids 

were extracted twice with ether: ethanol, 3:2 (w/v) and 

discarded. The delipidated protein residue was drie.d with 

N2 . The protein pellet was solubilized in a small volume of 
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a 2.5% (w/v) sodium dodecyl sulfate (SOS), 1.0% (w/v) 

Na2co3 , 10% (w/v) 2-mercaptoethanol solution. The volume of 

solution was chosen so that the concentration of protein 

would be approximately 1-2 mg/ml. The solubilized protein 

was dialyzed against a solution containing 0.1% (w/v) SOS, 

1.6 M urea, 0.05% (w/v) dithiothreitol, 0.01 M sodium 

phosphate buffer (pH 7.2) at room temperature for a period of 

16-24 hours. 

SOS-7.5% polyacrylamide gels were prepared as follows: 

one hundred and eighty milliliters of solution A1 were 

prepared by mixing 40 ml of 1% (w/v) SOS with 80 ml of a 

0.5 M sodium phosphate buffer (pH 7.2) and deionized H2o 

(remaining volume). Solution A2 (180 mls) contained 40 grams 

of acrylamide, 1.040 grams of N,N'-methylene-bis-acrylamide 

and deionized water. Solutions A1 and A2 were stored at room 

temperature for periods of less than a month. Solution B 

was prepared immediately prior to use. Solution B contained 

90 mg of ammonium persulfate, 50 µl of TEMEO and 10 ml of 

deionized H2o. The solution necessary to prepare 12 

polyacrylamide gels in glass cylinders ( i. d. 5mm) was 

prepared from 22.5 mls of solution A1 , 16.9 ml of solution 

A2' 5.6 ml of deionized H2o and 5.0 ml of solution B. The 

solutions were mixed and deaerated using a vacuum, for 30 

to 60 seconds. A volume of 2.5 ml of the gel solution was 

layered into clean glass gel tubes. The gel solution was 

carefully overlayed with deionized H2o. Polymerization of 
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the gel occurred in about 30 minutes. Gels were generally 

made 2-4 hours before use. Electrophoresis buffer contained 

0.1% SOS in 0.1 M phosphate buffer, pH 7.2. Bromophenol blue 

was added to the protein samples as a tracking dye. Gels 

were electrophoresed at a maximum of 50 volts or 10 mamps 

per tube. Electrophoresis was terminated when the tracking 

dye reached the end of the gel. 

After electrophoresis, the gels were removed from 

the gel tubes and fixed in a solution containing MeOH:HAc: 

H2o, 45:10:45 (v/v/v). After a minimum of 18 hours in the 

fixing solution, the protein bands on the gels were stained 

with a solution of 1% (w/v) Fast Green dye (prepared in the 

fixing solution) for 2 hours at 37°C. The stained gels were 

placed in a diffusion destainer containing fixing solution. 

Gels were destained until portions of the gel with no protein 

(i.e., in the region of the tracking dye) achieved a light 

or colorless background. 

On gels where the control and experimental samples 

were electrophoresed separately, the gels were scanned 

densitometrically at 600 nm in a recording Gilford 2400 

spectrophotometer. Individual protein bands were quantitated 

(based on their dye binding capacity) by measuring the peak 

areas from densitometric scans. Protein molecular weight 

standards were co-electrophoresed on polyacrylamide gels. 

Samples of [ 3H]-leucine labeled control and 

undernourished SPMs and brain homogenates were electrophoresed 



at the same time and under identical conditions as molecular 

weight standards. These single labeled gels were sliced in 

lmm or 2mm sections using a Mickle gel slicer from Mickle 

Laboratory Engineering, Brinkman Instruments. The gel 

slices were solubilized in capped scintillation vials which 

contained 1 ml Protosol:water, 10:1 (v/v) for 3 days at room 

temperature. Prior to scintillation counting, 10 ml of a 

PPO:POPOP: toluene (16.0 gms: 0.4 gms: 4.0 liters), 

scintillation cocktail was added to each vial. The vials 

were dark-adapted for minimum of 18 hours prior to counting 

in a Beckman LS 7500 liquid scintillation counter. Counts 

per minute (CPM) were automatically converted to 

dissintegrations per minutes (DPM) by the LS 7500 which had 

previously been standardized with quenched standards. 

In the dual-isotope labeled glycoprotein study, a 

[ 3H]-fucosylated SPM sample from a control pup was combined 

with a [14cJ-fucosylated SPM sample from an undernourished 

pup. Similarly, a [14c]-fucosylated SPM sample from a 

control pup was combined with a [ 3H]-fucosylated SPM sample 

from an undernourished pup. In the sialylated glycoprotein 

study, appropriate labeled SPM samples from control and 

undernourished pups were combined as described in the dual-
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isotope labeled fucosylated glycoprotein study. The combined 

control and undernourished samples were then lyophylized. 

The dual-labeled lyophylized samples were delipidated, 

solubilized and electrophoresed as described for the 



c3H]-leucine SPM protein samples. The dual-labeled [ 3H]-/ 

c14cJ-fucosylated glycoproteins or [ 3H]-/[ 14c]-sialylated 
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glycoproteins were sliced from the acrylamide gels according 

to individual protein bands. The gel slices were, similarly, 

solubilized and counted by liquid scintillation counting as 

described for the [ 3H]-leucine SPM proteins. 

EXTRACTION OF GANGLIOSIDES 

Brain homogenates (in sucrose) were dialyzed against 

Spence's salt solution (Spence and Wolfe, 1967) for two days 

at 4°C before lyophylization. Brain homogenate and SPM 

samples were lyophylized and lipids were extracted in 20 

volumes of CHC1 3 :MeOH, 2:1 (v/v). Gangliosides were 

extracted following the procedure of Felch, Lees and 

Stanley (1957) as modified by Suzuki (1964) [See Figure 4]. 

The samples were vortexed extensively and centrifuged at low 

speed. The chloroform-methanol solution was decanted from 

the CHC1 3-MeOH insoluble pellet and saved. The residue was 

re-extracted with 10 volumes of CHC1 3 :MeOH, 1:2 (v/v) 

containing 5% (v/v) water. The extracts were combined and 

adjusted to a final concentration of CHC1 3 :MeOH, 2:1 (v/v). 

Using 50 ml conical tubes, with ground glass stoppers, 

0.2 volumes of 0.88% (w/v) KCl were added to the 

chloroforrn:methanol, 2:1 (v/v) lipid extract. The conical 

tubes were vortexed extensively during a 30-minute interval. 

The aqueous and organic phases were allowed to separate. 
~ -

Polar gangliosides partitioned into the aqueous upper phase. 



GANGLIOSIDE EXTRACTION 

Brain homogenate SPM sample 

dialyze vs. stenge 's salt solution I 
J days (0-4 ) 

'~~~~•• lyophylize •4---------------------~ 

1 
Add 20 vol. CHClJsl'lieOH, 21 l (v/v) 
mix, vortex for JO minutes .... -------------i cfg at low speed for 15 min. 

supernatant pellet 

l 1 
Add 10 vol. CHClJ10CeOH, 112 (v/v), 

b. containing 5% (v/v) H2o. 
~-c_o_m __ 1_n_e ___________ ...,. N~x. vortex for JO min., 

cfg at low speed for 15 min. 
supernatant pellet • combined 
supernatants • add chloroform to give a final 
concentration of CHClJ:l't'.eOH, 21 l (v/v) 

add 0.2 vol. of o.88% (w/v) 
mix, vortex for JO min. 
let stand to se arate 

lower phase 

add 0.2 vol. Theoretical 

KCl, 

upper phase 

Upper Phase (TUr) containing KCl 
CHClJ:MeOHi0.74% KCl, ):48147 (v/v) 
mix, vortex for JO min. 
let stand to se arate 

lower phase upper phase 

add 0.2 vol. Theoretical 
Upper Phase (TUP) without KCl 
CHC1

3
a!l'.eOH:H20, )148147 (v/v) 

mix, vortex for JO min. 
let stand to se arate 

lower phase upper phase 
(neutral, non-polar lipids) ! 

combine 

combine 

combined upper phase solutions 
(contains gangliosides and 
other polar lipids) 

+ rotary-evaporate to dryness 

Re suspend +in C!-1Cl J :fl'!eOH: H20, 
60:J514.5 (v/v), Solve-nt A 
for Sephadex G-10 desalting 
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The upper phase was removed and saved. The lower phase was 

re-extracted with 0.2 volumes of a theoretical upper phase 

(Me0H:H20:CHC1 3 , 48:47:3 (v/v/v)) containing 0.74% KCl. The 

resulting upper phase was removed and combined with the 

first upper phase. The lower phase was re-extracted with 

0.2 volumes of theoretical upper phase (without KCl). The 

resulting upper phase was removed and combined with the 
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others. The combined upper phases were evaporated to dryness 

-using a rotary evaporator. The dried residue was suspended 

in Solution A (CHC13 :MeOH:H2o, 60:30:4.S, (v/v/v)) and 

samples were desalted on Sephadex G-10 column by the 

procedure of Wells and Dittmer (1963). Sephadex G-10 was 

allowed to swell overnight in deionized H2o. Water was 

decanted the following day. In a series of steps, the 

Sephadex was resuspended in a solution overnight and removed 

from the solution by decanting the liquid the following day. 

The steps utilized the following solutions in sequence: 

1) methanol; 2) CHC1 3 :MeOH, 1:1 (v/v); 3) CHC1 3 :MeOH, 2:1 

(v/v) and 4) Solution A. A slurry of the Sephadex G-10 in 

Solution A was poured into a pasteur pipet containing a glass 

wool plug. The Sephadex column height was adjusted to that a 

void volume of 1.0 ml was obtained. The Sephadex column was 

washed with 20 mls of Solvent A. Samples were suspended in 

1.0 ml of Solvent A and sonicated. The sample was applied to 

the Sephadex bed. An additional 0.5 ml of Solvent A was used 

to rinse the round bottom flask and added to the Sephadex 



column. In order to standardize the column, an SPM 

ganglioside sample which had been labeled with [ 3H]-N

acetylmannosamine was applied to a Sephadex column and 

aliquots of the affluent removed and the radioactivity 

determined. Radioactive gangliosides appeared to come off 

in a volume equivalent to l~ times the void volume. The 

first 1.5 ml of effluent (containing the gangliosides) was 

collected, dried under a stream of N
2 

and resuspended in 

chloroform: methanol, 1:1 (v/v). 

GANGLIOSIDES 

The ganglioside samples were dried under a stream of 

N2 prior to separation of ganglioside species by thin layer 

chromatography (tlc). The dried samples were resuspended in 

a small volume of CHC1 3 :M~OH, 1:1 (v/v). Aliquots of whole 

brain gangliosides (containing 4-5 µg NANA) and SPM 

gangliosides (1-2 µg NANA) were spotted on a 20 x 20 cm2 

silica gel G-60, without fluorescent indicator, 0.25 mm thin 

layer chromatography plates. The plate was developed in a 

saturated tank containing CHC1
3

:MeOH: 0.25% (w/v) cac1 2 , 

60:35:8 (v/v/v) Solvent System I (Irwin and Irwin, 1979; 

Williams and Mccluer, 1980). Alternatively, gangliosides 

were separated on 10 cm x 20 cm HPTLC plates in a 

methylacetate: n-propanol: chloroform: methanol: 0.25% 

aqueous KCl, 25:20:20:20:17 (v/v/v/v/v) Solvent System II. 

After chromatography, the plates were allowed to dry. They 

were sprayed lightly, via atomizer, with resorcinol-HCl 
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reagent (Svennerhlom, 1957). The tlc plate was covered with 

a clean glass plate and heated in an oven at 100-110°C for 15 

minutes (Irwin et al., 1980). During this heating; the 

ganglioside bands turned purple. The tlc plate was 

densitometrically scanned at 580 nm using a Kratos Schoeffel 

SD 3000 densitometer. Individual ganglioside species were 

quantitated by measuring the peak areas from a densitometric 

scan. 

3 14 For radioactive studies, using a [ H]- or [ C]-N-
3 • 

acetylmannosamine, an [ HJ-labeled SPM sample from a control 

animal was combined with a [14cJ-labeled SPM sample from an 

undernourished animal before lyophylization. (The assignment 

of the isotopes was reversed in approximately half of the 

animals.) The combined dual-label samples were simultaneously 

extracted, purified, desalted and chromatographed (using 

System I). The chromatographed gangliosides were 

visualized using iodine (I 2 ) vapors. The separated 

ganglioside species were scraped from the tlc plates and 

placed into scintillation vials. One ml of deionized H2o 

was added to each vial. Vials were sonicated prior to the 

addition of 10 ml of Aquasol cocktail fluor (New England 

Nuclear) • The samples were dark-adapted for a minimum of 18 

hours and counted by liquid scintillation in a Beckman LS 

7500. 



STATISTICAL DETERMINATIONS 

Numerical calculations were generally expressed as 

the mean ± the standard deviation of several determinations 

(where N = the number of determinations). Statistics on the 

differences between two related groups (control and 

undernourished) were performed using the Student's t-test of 

probability. 

In the double-labeled fucosylated glycoprotein or 

sialylated ganglioside studies, a [ 3H]-labeled (fucose or 

N-acetylmannosamine, respectively) sample from a control 

animal was combined with a c14c]-labeled (fucose or N-
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acetylmannosamine, respectively) sample also from an age

matched control animal. The combined samples were extracted 

and separated either by SDS-polyacrylamide gel electrophoresis 

(fucosylated glycoprotein study) or by thin layer 

chromatography (sialylated ganglioside study). The 

individual protein/glycoprotein or ganglioside bands were 

excised (as described previously) and counted by liquid 

scintillation. The results for each determinatio~ were 

expressed as a ratio of the [ 3H] %DPM to c14c] %DPM. This 

was done to determine the normal range of variance between 

control samples. A ratio of 1.0 represents perfect 

correlation. Values between several samples of control 

animals ranged from 0.95 to 1.05. A ratio of the %DPM in a 

sample from an undernourished animal to the %DPM in a sample 

from a control animal of less than 0.95 or greater than 1.05 
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was therefore considered to be abnormal. If this same 

abnormality was consistently observed in three quarter 

similarly paired samples, then the abnormality was considered 

to be significant. 

• 



CHAPTER IV 

RESULTS 

Brain and Body Weights 

One of the most pronounced effects of maternal 

undernutrition was the decreased body weights of the 

off spring [Table I] • The body weights of the undernourished 

pups were 50, 42 and 32% of control levels at 10, 14 and 20 

days of age, respectively. The decreased body weights 

persisted for at least two weeks after nutritional 

rehabilitation was initiated. 

The brain weights of the undernourished rat pups 
• 

were also significantly reduced (85, 78, 71 and 76% of 

control values at 10, 14, 20 and 34 days of age, 

respectively) [Table I] although to a lesser degree than the 

body weights. These findings support the previously 

recognized phenomenon of "brain sparing" in nutritional 

deprivation (Hatai, 1904; Donaldson, 1911; Jackson, 1915; 

Dobbing and Widdowson, 1965; Dickerson and Walmsley, 1967; 

Krigman and Hogan, 1976). 

Brain and SPM Protein 

The whole brain protein content (mg protein/brain) 

was significantly reduced in the undernourished pups at all 

ages examined (84, 78, 70 and 78% of control values at 10, 

14, 20 and 34 days postnatal, respectively) [Table II]. 
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Table I 

BRAIN AND BODY WEIGHTS IN CONTROL (C) AND UNDERNOURISHED (U) RATS 

Age (Days) 

lOd 14d 20d 34d 

Body weight 
(grams) c 24 ± 1 31 ± 2 47 ± 3 138 ± 15 

u 12 ± 2* 13 ± 0.3* 15 ± 2* 58 ± 9* 
u as % of c 50% 42% 32% 42% 

Brain wet weight 
(grams) c 1. 06 ± 0.02 1.29 ± 0.06 1.58 ± 0.05 1.85 ± 0.075 

u 0.90 ± 0.06* 1.00 ± 0.03* 1.12 ± 0.10* 1.40 ± 0.07* 
u as % of c 85% 78% 71% 76% 

Each value represents the mean of 12 samples ± the standard deviation. 
An * indicates that the values from control (C) and undernourished (U) rats are 
different at p<O.O~. 



Table II 

BRAIN AND SPM PROTEIN IN CONTROL (C) AND UNDERNOURISHED (U) RATS 

Brain protein content 
(mg/brain) C 

u 
U as % of C 

Brain protein concentration 
(mg/gram wet weight of 
brain) 

c 
u 

U as % of C 

SPM protein content 
(µg/brain) c 

u 
U as % of C 

SPM protein concentration 
(µg/gram wet weight of 
brain) 

c 
u 

U as % of C 

lOd 

88 ± 5 
74 ± 5* 

84% 

83 ± 5 
83 ± 2 

100% 

206 ± 45 
115 ± 59* 

56% 

193 ± 42 
126 ± 60* 

65% 

Age (Days) 

14d 

135 ± 13 
105 ± 7* 

78% 

104 ± 7 
105 ± 7 

101% 

316 ± 23 
126 ± 9* 

40% 

245 ± 18 
127 ± 12* 

52% 

20d 

188 ± 16 
132 ± 25* 

70% 

119 ± 9 
118 ± 18 

99% 

474 ± 59 
264 ± 40* 

56% 

300 ± 43 
229 ± 43* 

76% 

34d 

220 ± 12 
171 ± 24* 

78% 

119 ± 6 
122 ± 12 

103% 

758 ± 164 
429 ± 84* 

57% 

352 ± 118 
307 ± 54 

87% 

Brain and SPM protein in control (C) and undernourished (U) rats. Values 
represent the mean ± the standard deviation of two separate experiments (n=l2). 
An * represents that the difference between the controls and the undernourished 
animals is significant at p<0.05. 



However, the whole brain protein concentration (mg protein/ 

gram of brain wet weight) was not reduced; this indicated 

that the decreased whole brain protein content was directly 

reiated to the decrease in brain weight. 
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The SPM protein content (µg protein/brain) was 

significantly decreased (56, 40, 56 and 57% of control levels 

at 10, 14, 20 and 34 days of age, respectively) in the under

nourished pups [Table II] • The SPM protein concentration 

(µg protein/gram wet weight of brain) was also significantly 

decreased (65, 52 and 76% at 10, 14 and 20 days, 

respectively) • The size of the deficiency of SPM protein 

was greater than that which could be accounted for solely by 

a decrease in the brain weight in the undernourished pups. 

At 34 days of age, the SPM protein concentration (but not 

content) of the undernourished pups·had returned to normal. 

Assessment of Purity of SPMs 

The relative purity of the SPMs was assessed by 

determining the activities of several "marker" enzymes in 

brain homogenates and in SPMs. In addition, the relative 

distribution of these "marker" enzymes was assessed in 

several fractions of the sucrose gradient used to isolate 

SPMs from lysed synaptosomes [Table III] . 

There was approximately a 5-fold enrichment in the 

specific activity of the plasma membrane marker Mg+ 2-

dependent, ouabain-sensitive (Na+-K+)-ATPase in the SPMs over 

that in the whole brain homogenate of 20-day-old control 



Table III 

DISTRIBUTION OF PROTEIN AND ENZYME ACTIVITY 
ON SYNAPTOSOMAL SUBFRACTIONATION GRADIENT 

Fractions 
\ Protein recovered A JL ...£. D E 

from 9radient 
CONTROL (C) 0 14 17 14 53 
UNDERNOURISHED (U) 0 10 13* 14 63 

SEecific Activit~ Relative SEecific Activit~ 
Enzyme Brain SPM 

(Na+K+)-ATPase c 5.6 26.7 0 2.5 2.6 0.9 0.1 
u 5.3 42.4 0 3.2 2.8 0.7 0.3 

Alkaline c 68 385 0 1.4 2.0 1.8 0.4 
Phosphatase u 52 683 0 1. 7 3.6 1.2 0.3 

5'-Nucleotidase c 2.7 3.5 0 1. 7 1.4 0.6 0.8 
u 2.4 5.3 0 0.8 4.0 1.0 0.4 

Acid c 960 2013 0 1.5 2.2 1.5 0.4 
Phosphatase u 842 2300 0 2.2 2.7 1.2 0.4 

Monoamine c 8.0 0 0 0 0 0 1. 9 
Oxidase u 6.9 0 0 0 0 0.8 1.4 

Cytochrome c 
Oxidase c 16 7.9 0 0.04 0.6 3.9 0.7 
(xl0-4) u 17 10.7 0 0.08 1.3 3.0 0.6 

2' ,3'-cyclic 
nucleotide c 96 81 0 4.8 1.5 0.3 0.02 
phosphorylase u 77 130 0 4.1 1.2 0.8 0.5 

Distribution of protein and enzyme activity on 
synaptosomal subfraction gradient. The 5 fractions (A-E) 
correspond roughly to the 5 sucrose densities (10%, 25%, 
32%, 35% and 38%) in the gradient. The "myelin" interface is 
included in fraction B and the SPM interface is included in 
fraction c. Protein content was determined for each of the 
fractions. The specific activity for each of the enzymes is 
defined in units of µmoles of substrate hydrolyzed (or µmoles 
of product produced) per hour per mg protein, in whole brain, 
purified SPMs and sucrose gradient subfractions of control 
and undernourished pups at 20 days of age. Relative Specific 
Activity (RSA) is defined as the % of the protein recovered 
in a fraction divided by the % of the enzyme activity 
recovered in that fraction. The specific activity and RSA 
of each enzyme was determined in 3 samples. An * indicates 
that the values between control and undernourished animals 
are significant at p<0.05. Statistical analysis was not 
performed on the RSAs. C and U are abbreviations for control 
and undernourished animals, respectively. 
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animals. The relative specific activity (RSA) (% recovered 

enzyme activity/% recovered protein) of (Na+-K+)-ATPase was 

highest in fractions B and c. (An RSA value greater than 

1.0 indicates a particular enrichment in marker enzyme 

activity within that fraction.) 

There was also a 6-fold enrichment in the specific 

activity of alkaline phosphatase in the SPMs over that in 

whole brain in control animals. The relative specific 

activity of alkaline phosphatase ranged from 1.4 to 2.0 in 

fractions B, C and D, which indicated the relative abundance 

of plasma membranes with fraction C having the highest 

(2. 0 RSA) . 
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5'-Nucleotidase is another reported "marker" enzyme 

for plasma membranes. There was, roughly, a 1.4-fold 

increase in the specific activity of 5'-nucleotidase in the 

SPMs over the whole brain. In control animals it was 

observed that the relative specific activity of 5'

nucleotidase was higher (RSA= 1.7) in a lighter fraction of 

the gradient (Fraction B) than in the SPM-containing fraction 

(Fraction C). This is consistent with the report of Cotman 

and Matthews (1971). 

There was approximately a 2-fold increase in specific 

activity of acid phosphatase in the SPMs over the whole brain 

in control animals. The relative specific activity for acid 

phosphatase ranged from 1.5 to 2.2 in fractions B, C and D, 

with the highest (RSA 2.2) in fraction c. 



There was no enrichment in the specific activity of 

the membrane marker (CNPase) in the SPMs over that in the 

whole brain. The relative specific activity of CNPase was 

highest (4.8) in fraction B, whereas there was also some 

activity (RSA 1.5) in fraction C. This may indicate that 

there is some contamination of the SPMs by myelin membranes. 

Assuming there is some degree of contamination of the SPMs 

with myelin membranes, it was calculated that the SPMs 

contain from 0.1 to 0.4% of the total whole brain CNPase 

activity. With the amount of SPM protein recovered at 

20 days of age, in either control or undernourished animals, 

this would amount to less than 5 µgrams of myelin membranes 

present in the SPM fraction (or less than 1% contamination 

by myelin membranes). 

There was no detectable contamination of the SPMs 
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by outer mitochondrial membranes, as indicated by the lack of 

described monoamine oxidase (MAO) activity. Most, if not 

all, of the MAO activity was located in the pellet (fraction 

E) of the sucrose gradient. 

There was also no enrichment in the specific activity 

of cytochrome c oxidase in the SPMs over that in the whole 

brain homogenates. Most of the cytochrome c oxidase relative 

specific activity was found in sucrose fraction D above the 

pellet-containing fraction (fraction E). Although there was 

shown to be relatively no contamination of the SPMs by outer 

mitochondrial membranes (as measured by the MAO activity), 



there may be slight contamination by inner mitochondrial 

membranes (as measured by cytochrome c oxidase activity) . 

This experiment was also performed in order to 

determine whether the SPMs from the undernourished rats 
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(20 day old) would be distributed in the same fraction as 

those from age-matched control rats [Table III]. In general, 

the undernourished rats had a lower proportion of protein in 

fractions B and c, which would be expected to contain myelin 

and SPMs, and a larger proportion of protein in the pellet 

(fraction E). 

There was approximately an 8-fold enrichment in the 

specific activity of Mg+2-dependent, ouabain-sensitive 

(Na+-K+)-ATPase in the SPMs over that in the whole brain 

homogenate in the undernourished animals, compared to the 

5-fold enrichment observed in control animals. In addition, 

the undernourished animals had a higher RSA of (Na+-K+)

ATPase in fraction C was very similar in both control and 

undernourished animals. 

There was a 13-fold enrichment in the specific 

activity of alkaline phosphatase in the SPMs over that in 

whole brain in undernourished animals. This compared to only 

approximately a 6-fold enrichment in the SPMs over whole brain 

in control animals. In addition, there was an increase in 

the specific activity and relative specific activity of 

alkaline phosphatase in the SPM gradient fraction B when 

undernourished animals are compared with age-matched controls. 



The specific activity of 5'-nucleotidase in whole 

brain homogenates was comparable in control and under

nourished pups. There was, roughly, a 2-fold increase in 
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the specific activity of 5'-nucleotidase in the SPMs over the 

whole brain in both control and undernourished animals 

However, there was an increase in the relative specific 

activity of 5'-nucleotidase in the sucrose fraction c in the 

undernourished animals. 

There was no difference in the enrichment of acid 

phosphatase specific activity in the SPMs of control or 

undernourished rats. There was also no altered distribution 

of this enzyme-containing membrane fraction within the 

sucrose gradient of either control or undernourished animals 

as measured by the relative specific activity of acid 

phosphatase. 

There were comparable amounts of the myelin membrane 

marker (CNPase) in the SPMs of both undernourished and 

control animals. There was a slight enrichment in specific 

activity of CNPase in the SPMs from undernourished animals 

although there was no altered distribution of the relative 

specific activity of CNPase within the sucrose subfractions 

in the undernourished animals. 

There was no detectable contamination of the SPMs by 

outer mitochondrial membranes in either control or under

nourished animals as measured by the absence of any 

detectable monoamine oxidase activity. There was, however, a 
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slight increase in the specific activity of inner membrane 

cytochrome c oxidase activity in the purified SPMs of the 

undernourished animals when compared to that in the controls, 

although the distribution (relative specific activity) within 

the sucrose gradient subfractions were nearly comparable in 

control and undernourished animals. Assuming that there was 

some degree of contamination of the SPMs by inner 

mitochondrial membranes, then it can be calculated that from 

0.1 to 0.2% of the total cytochrome c oxidase activity was 

present in the SPMs from control and undernourished animals, 

respectively. This amount of cytochrome c oxidase activity, 

even though sligntly higher in SPMs from undernourished 

animals, still amounts to considerably less than 1% 

contamination of the SPMs by inner mitochondrial membranes. 

Brain Region Study 

There were no significant differences between control 

and undernourished animals at any of the ages examined (14, 

20 and 34 days) [Table IV] for brain region tissue protein 

concentration in any of the selected brain regions (prefrontal 

lobes, hippocampus, cerebral cortex and cerebellum). This is 

in agreement with the findings (above) of normal whole brain 

protein concentration in undernourished animals [Table II]. 

When SPMs were isolated from each of these brain regions, it 

was found that there was a significant decrease in SPM protein 

concentration (µg SPM protein/gram wet weight of brain region 

tissue) only in the hippocampus region (61 and 31% of control 
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Table IV 

BRAIN REGION TISSUE PROTEIN CONCENTRATION 

Age (Days) 

14d 20d 34d 

Pre frontal lobes c 85.l ± 20.5 110.8 ± 13.2 103.3 ± 1.4 
u 74.2 ± 11.7 86.9 ± 4.2 91.8 ± 5.1 

Hippocampus c 68.9 ± 11.4 89.5 ± 19.4 105.9 ± 9.3 
u 61. 7 ± 13.5 83.9 ± 4.9 84.1 1 21.4 

Cortex c 95.5 ± 6.5 101.3 ± 9.2 100.5 ± 1.0 
u 83.9 ± 5.4 97.2 ± 13.l 108.5 ± 9.3 

Cerebellum c 99.5 1 5.7 112.5 ± 9.9 115.1 ± 6.3 
u 93.8 ± 13.l 104.2 ± 3.0 111.6 ± 6.0 

Units represent mg protein per gram wet weight of 
tissue. Values represent the mean ± standard deviation of 
three experiments. Brain region tissue was obtained from 6-9 
animals to obtain sufficient material from both control (C) 
and undernourished (U) rat pups. 
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values at 14 and 20 days of age, respectively) of the 

undernourished pups [Table V] . 

(Na+-K+)-ATPase ACTIVITY 

The activity of (Na+-K+)-ATPase in the synaptic 

plasma membranes (SPMs) was investigated at several stages 

of development in control and undernourished rats. In order 

to optimize the assay conditions, we performed the following 

experiments. 1) We measured the effects of various cations 

in the incubation buffer on ATPase activity [See Figure 5]. 

It can be seen from the graph that a large part of the 

ATPase activity is dependent on the presence of Mg+ 2 (3mM) 

ions. There is only a low amount of activity when Na+ and K+ 

(150 mM and 20 mM, respectively) are present in the medium 

and when Mg+2 is lacking. Optimal activity is achieved in 

the presence of all three (Na+, K+ and Mg+2 ) cations in the 

incubation buffer (150 mM NaCl, 20 mM KCl and 3 mM MgC1 2 ). 

2) Since ATPase is a membrane-bound enzyme, the effects of 

such membrane solubilizing detergents as sodium dodecyl 

sulfate (SDS), Triton X-100 and sodium deoxycholate (DOC) on 

ATPase activity were determined. It can be seen from Figure 

6 that SDS concentrations from 0.01-0.04% (w/v) had a 

stimulatory effect on the membrane ATPase activity, while 

concentrations of SDS greater than 0.04% (w/v) reduced the 

activity of the enzyme even below control (no SDS) levels. 

Concentrations of less than 0.01% (w/v) SDS had little or no 

effect on stimulating the membrane ATPase activity. While 
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Table V 

BRAIN REGION SPM PROTEIN CONCENTRATION 

Age (Days) 

14d 20d 34d 

Pref rontal lobes c 359 ± 96 356 ± 73 267 ± 169 
u 185 ± 17 157 ± 118 265 ± 116 

Hippocampus c 503 ± 39 483 ± 58 256 ± 124 
u 307 ± 70* 152 ± 52* 356 ± 104 

Cortex c 299 ± 37 421 ± 183 222 ± 38 
u 220 ± 28 231 ± 80 278 ± 85 

Cerebellum c 282 ± 68 215 ± 50 282 ± 58 
u 252 ± 9 285 ± 202 290 ± 55 

Units represent µg SPM protein per gram of tissue wet 
weight. Values represent the mean ± standard deviation of 
three experiments. An * indicates that values from control 
{C) and undernourished (U) rats are different at p<0.05. SPMs 
were isolated from brain region tissue isolated from 6-9 
animals to obtain sufficient material. 
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Figure 5. Effect of various cations on ATPase activity in 
whole brain homogenates. The reaction buffers contained: 
(•) 150 mM NaCl and 20 mM KCl; (o) 3 mM MgCl2; (o) 150 mM 
NaCl, 20 mM KCl and 3 mM MgCl2; or (•) 150 mM NaCl, 20 mM 
KCl, 3 mM MgCl2 and 10 mM ouabain. All reaction buffers 
contained 40 mM Tris, pH 7.4. Reactions were initiated by 
the addition of 3 mM ATP. The reactions were stopped by the 
addition of 150p.l of ice-cold trichloroacetic acid. The 
reaction tubes were centrifuged at low speed for 10 minutes, 
and the amount of inorganic phosphate in the supernatant was 
determined using the Fiske-Subba Row inorganic phosphate 
assay. Values represent the average of a single assay done 
in duplicates. 
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Figure 6. Effect of several membrane solubilizing agents 
on brain ATPase activity. Samples were preincubated with 
the appropriate concentration of detergents for 2 minutes at 
room temperature before initiation of enzyme activity. 
Control levels represent samples that were preincubated in 
the absence of detergent. Enzyme activities were determined 
from the amount of inorganic phosphate released from ATP 
during a six minute incubation at 37°C. Values represent the 
average of a single experiment done in duplicates. SDS and 
DOC are abbreviations for sodium dodecyl sulfate and· 
deoxycholate, respectively. 
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0.005-0.10% (w/v) Triton X-100 and 0.10% (w/v) DOC had a 

stimulatory effect on (Na+-K+)-ATPase activity [Figure 6]; 

neither detergent achieved the level of stimulation as that 

of 0.02% SOS. Thus, 0.2% (w/v) SOS was included in the pre-

incubation step of all subsequent ATPase assays. 

+2 + + . 
The Mg -dependent (Na -K )-stimulated ATPase 

activity was determined in the absence and presence of 

ouabain. The enzyme activity was expressed as micromoles of 

inorganic phosphate released per hour per milligram of 

protein (µmole Pi/hr/mg protein). Mg+2~dependent, ouabain

sensitive (Na+-K+)-ATPase was determined in whole brain and 

SPMs at 10, 14, 20 and 34 days of age in both control and 

undernourished rat pups. Total ATPase activity in whole 

brain was decreased to 63, 48, 54 and 63% of control levels 

in the undernourished pups at 10, 14, 20 and 34 days of age, 

respectively [Table VI]. This decrease was statistically 

significant (using the Student's t-test) at 14, 20 and 34 

days of age. The specific activity of (Na+-K+)-ATPase in 

brain homogenates was also significantly decreased in 

undernourished rats at 14 days of age. Although the ATPase 

specific activity in the SPMs was significantly decreased to 

33% of control levels by 10 days in the undernourished pups, 

it was increased to 171 and 194% of control levels at 20 

and 34 days, respectively. This is in contrast to 

observations by Kissane and Hawrylewicz (1975, 1978) who 

found that (Na+-K+)-ATPase specific activity was de~reased 
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Table VI 

+ + (Na -K )-ATPase ACTIVITY IN DEVELOPING CONTROL (C) AND UNDERNOURISHED (U) RATS 

Age (Days) 

lOd 14d 20d 34d 

Brain c 353 ± 191 915 ± 183 1651 ± 575 3067 ± 418 
Total Activity 
(µmole Pi/hr) u 224 ± 65 438 ± 159* 887 ± 234* 1927 ± 113* 

u as % of c 63% 48% 54% 63% 

Brain c 3.9 ± 2.0 6.8 ± 1.5 9.0 ± 3.7 13.8 ± 2.2 
Specific Activity 
(µmole Pi/hr /mg prot.) u 3.1 ± 1.0 4.2 ± 1.4* 6.6 ± 2.7 11.5 ± 2.0 

u as % of c 79% 62% 73% 82% 

SPM c 1.6 ± 1.2 6.1 ± 2.6 11.8 ± 2.8 36.5 ± 10.0 
Total Activity 
(µmole Pi/hr) u 0.3 ± 0.5 3.7 ± 2.3 11.8 ± 0.7 21.5 ± 1.2 

u as % of c 19% 61% 100% 59% 

SPM c 8.4 ± 4.4 19.6 ± 8.4 25.1 ± 6.4 27.4 ± 15.8 
Specific Activity 
(µmole Pi/hr/mg prot.) u 2.8 ± 3.1* 13.8 ± 3.1 42.9 ± 2.1* 53.2 ± 8.4* 

U as % of c 33% 70% 171% 194% 

(Na+-K+)-ATPase activity in developing control (C) and undernourished (U) 
rats. Each value represents the mean ± the standard deviation of two separate 
experiments each done in triplicate (n=6). An* indicates that the values 
between the control and undernourished rats are different at p<0.05. 
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in rat brain synaptosomes as a result of neonatal 

undernutrition. 

SPM PROTEINS 

L-[4,5- 3H]-Leucine (100 µCi in 10 µl of saline) was 

injected intracerebrally into control and undernourished pups 

of selected ages: 9,13,19 and 33 day old. Pups were 

sacrificed 16 hours later by decapitation, and SPMs were 

prepared as described previously. There was an increased 

incorporation (total dpm and dpm/µg protein) of [ 3H]-leucine 

[Figure 7] into the brain and SPM protein of young (10- to 

20-day-old) undernourished pups. This increase was 

statistically significant (p<.05) at several ages. The 

highest specific activity (dpm/µg protein) of [ 3H]-leucine 

in SPM and brain proteins was observed at the earliest age 

examined (10 days). 

The SPM proteins were delipidated, solubilized and 

separated by electrophoresis on polyacrylamide gels as 

described in the methods section. There were two major 

protein bands in the SPMs and about 20 minor bands that 

stained with Fast-Green [Figure 8]. One of the major 

protein bands had an apparent molecular weight (96,000) 

similar to the subunit weight of ATPase (Morgan et al., 

1973). The other band had an apparent molecular weight of 

56,000, which is similar to that reported for tubulin (Kelly 

and Cotman, 1977; and Yen et al., 1977). The relative 

distribution of dye-binding capacity of the individual peaks 
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Figure 7. Incorporation of [ 3H]-leucine into whole brain 
(Hl) and SPMs of control (•) and undernourished (o) rat pups. 
Values represent the mean ± the standard deviation of six 
animals from two separate experiments. An * indicates that 
the difference between control and undernourished animals is 
significant at p<0.05. 
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SP M PROTEIN PROFILE 
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Figure 8. SPM protein densitometric tracing. SPM proteins 
(250 grams) from a 34-day-old control rat pup were 
delipidated with ether/ethanol, 3/2 (v/v), solubilized in 
SOS-urea and electrophoresed on SDS-7.5% polyacrylamide disc 
gels. The protein bands were stained with 1% Fast Green (in 
fixing solution: MeOH/HAc/H20 1 45/10/45 (v/v) for two hours 
at 37°C and allowed to destain by diffusion in fixing 
solution. The gel was scanned densitometrically at 600 nm in 
a recording Guilford 2400 spectrophotometer with a scan rate 
of 1 cm/min and a chart speed of 1 in/min. Numbers 1-11 
represent corresponding protein bands for which molecular 
weights and peak areas were determined. 
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per region of the gel in Figure 8 is presented in Table VII. 

The relative proportion of the SPM band with a molecular 

weight of ~ 96,000 (band 5) increased in normal animals from 
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~ 18.2% at 10 days to 27.5% at 34 days [Table VII]. Although 

the relative proportion of this band (ATPase) was comparable 

in 10- and 14-day-old control and undernourished pups, it was 

statistically decreased (20%) and increased (though not 

statistically) (15.6%) in 20- and 34-day-old undernourished 

pups, respectively. The undernourished animals had a 

statistically significant (p<0.05) increase in the proportion 

of the band (8) with an apparent molecular weight of 56,000 

at 20 days of age, in contrast to a statistically significant 

(p<0.05) decreased proportion of this band at 34 days 

compared to controls. 

The relative distribution of [ 3H]-leucine derived 

radioactivity on SDS gels was calculated according to the 

following formula: 

% DPM/gel slice = DPM for each gel slice x lOO% 
Total DPM in the whole gel 

Approximately 70-80% of the total counts recovered from the 

gels were localized in the first half of the gels at all gels 

examined. There was no major incorporation into any 

particular protein with molecular weight below 40,000 [Figure 

9]. Therefore, the first one half of each gel was cut into 1 

mm sections. Results are shown for the first half of the 

[ 3H]-leucine-labeled SPM protein samples from control and 



Table VII 

SPM PROTEIN PROFILE 

Age (Days) 

Peak Apparent lOd 14d 20d 34d 
# mol. wt. 

(xl0-3) c -- u c u c u c u 
1 145 2.2±1.6 2.9±1.6 3.4±1.5 2.4±1.5 1.8±1.5 0.6±0.2 0.4±0.l 0.4±0.0 

2 130 2.8±2.0 3.3±1.5 1.6±0.4 2.4±1.l 2.8±1.0 2.3±1.0 2.7±0.l 2.4±0.2 

3 123 1.3±1.5 2.1±1.5 1.2±0.6 1.4±0.9 1.7±0.5 1.7±0.5 1.4±0.4 1.3±0.2 

4 110 6.6±2.l 7.2±2.6 8.2±1.7 7.0±1.2 9.2±0.8 6.4±2.4* 6.3±0.4 8.5±0.9 

5 96 18.2±3.9 18.4±4.5 21. 8±1. 8 21.1±1.9 26. 1±2 •. 8 21. 6±3. 9* 27.5±2.3 31.8±2.7 

6 80 6.4±0.9 5.4±2.4 6.2±0.4 5.6±1.3 5.9±1.5 4.5±1.3 5.0±0.4 5.4±0.5 

7 64 10.0±5.2 6.7±1.3 9.6±1.7 8.0±1.4 9.7±4.4 10.2±4.2 13.8±0.4 14.5±0.4 

8 56.5 33.2±8.3 37.3±3.6 29.7±6.6 36.4±6.7 23.9±2.9 31.3±3.4* 29.6±0.8 25. 3±1. 5* 

9 44.8 8.0±2.7 6.6±2.5 7.8±2.7 6.0±1.4 9.4±3.8 9.5±3.8 6.6±2.0 5.3±2.0 

10 36 6.1±1.6 5.8±1.4 6.4±2.4 6.8±1.3 5.3±1.4 8.6±5.0 3.8±0.6 3.8±0.7 

11 28 5.1±3.4 5.4±2.l 3.8±2.9 3.5±2.9 2.2±1.2 4.1±2.6 3.0±0.l 1.2±0.4 

SPM protein profile. SPM proteins from control (C) and undernourished (U) rat 
pups at 10, 14, 20 and 34 days of age were separated by electrophoresis on SDS-7.5% 
polyacrylamide disc gels. The protein peaks correspond to those indicated on Figure 8. 
The.apparent molecular weights of the SPM proteins were determined by comparison to protein 
standards of known molecular weights on similar gels. The values represent the mean ± the 
standard deviation of the relative peak areas obtained from densitometric tracings (n=6). 
An * represents that the difference between the control and undernourished animals is 
significant at p<0.05. 
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Figure 9. [ 3H]-Leucine (Leu) incorporation into SPM 
proteins. Control (•) and undernourished (o) rat pups at 10 
days of age were injected intracranially with 100 µCi [3H]
leucine in 10 µl saline. Animals were sacrificed 16 hours 
later and SPMs were isolated. Individual SPM protein samples 
were electrophoresed on SDS-7.5% polyacrylamide disc gels. 
The gels were sliced into 2 mm slices and the radioactivity 
in each counted by liquid scintillation. Values are 
representative of two separate experiments each done ,in 
triplicates. 



undernourished animals at each observed age (10, 14, 20 and 

34 days) [Figure 10]. A large proportion of the [ 3H]

radioactivity (DPM) was found associated with a protein with 

an apparent molecular weight of 96,000. There was a 

statistically significant increased relative incorporation 
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in this 96,000 daltons protein band in the SPMs of the 

undernourished animals at 14, 20 and 34 days. There was a 

trend towards an increased incorporation of [ 3H]-leucine into 

an SPM protein band with an apparent molecular weight of 

64,000 daltons in the undernourished animals at 10 days of 

age. In contrast there was a trend towards a decreased 

relative incorporation into this 64,000 molecular weight 

protein in the undernourished animals at 34 days of age. 

There was also a statistically significant increased 

incorporation into a broad band region having an apparent 

molecular weight of approximately 56,500 in the undernourished 

pups at 10 and 14 days. This corresponds to the earlier 

finding that this band also represents a larger relative 

proportion of the SPM proteins (as determined by its dye 

binding capacity) in the undernourished pups than in the 

controls at 10 and 14 days of age. 

SPM FUCOSYLATED GLYCOPROTEINS 

Control and undernourished rat pups were injected 

intracranially with [ 3H]-fucose (30 µCi) or [14c]-fucose 

(9.6 µCi) at selected ages (13, 19 and 33 days). The animals 

were sacrificed 18 hours later, and the SPMs were isolated as 
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Figure 10. [ 3H]-Leucine incorporation into SPM proteins. 
Control (•) and undernourished (o) rat pups at A) 10, B) 14, 
C) 20 and D) 34 days of age were injected intracranially 
with 100 µCi [3H]-leucine in 10 µl saline. Animals were 
sacrificed 16 hours later and the SPMs were isolated. 
Individual SPM protein samples were electrophoresed on SDS-
7. 5% polyacrylamide disc gels. The top half of the gels were 
sliced in 1 mm slices and the bottom half of the gels were 
sliced in 2 mm slices. The radioactivity in each slice was 
determined by liquid scintillation. Each graph represents 
only the top half of the gels containing proteins with 
molecular weights~ 40,000. Values are representative of 
two separate experiments each done in triplicate. 
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described previously. The SPM proteins were electrophoresed 

on 7.5% polyacrylamide disc gels and stained with Fast-Green, 

as also described previously. Individual protein bands were 

excised, and radioactivity was determined by liquid 

scintillation counting. The major fucosylated SPM glyco

proteins had apparent molecular weights of 110,000, 96,000, 

86,000, 80,000, 64,000, 56,500, 36,000 and 28,000 and 

corresponded to gel slice numbers 4, 6, 7, 8, 10, 12, 15 and 

17, respectively [Figure 11]. 

Several developmentally-related trends in the relative 

distribution of fucose-associated radioactivity were noted in 

control rats, i.e., 1) a developmentally related increase 

(8.6 to 9.8%) in the band with apparent molecular weight of 

96,000, 2) a decrease (between 14 to 20 days) in the band 

with an apparent molecular weight of 86,000, and 3) an 

increase (between 14 and 20 days) in the band that 

corresponds to tubulin (apparent molecular weight of 56,500). 

An [ 3HJ-labeled control sample was combined with a 

[14cJ-labeled sample from an undernourished animal prior to 

electrophoresis. The order of the assigned isotopes was 

reversed in approximately half of the samples. The dual-label 

studies demonstrated several significant differences between 

the relative distribution of radioactivity among fucosylated 

SPM glycoproteins from control and undernourished pups. The 

SPMs from the 14-day-old undernourished pups [Figure 12] have 

a significantly higher proportion of radioactivity in the SPM 
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Figure 11. Developmental alteration of fucosylated SPM 
glycoproteins. Control animals at 14 (•), 20 (c) and 34 (•) 
days of age were injected intracranially with 30 µCi [3H]
fucose. Animals were sacrificed 18 hours later and SPMs were 
isolated. SPM protein/glycoprotein samples were electro
phoresed on SDS-7.5% polyacrylamide disc gels. The gels were 
sliced according to particular protein bands and the 
radioactivity in each counted by liquid scintillation. The 
apparent molecular weight for each major fucosylated 
glycoprotein is indicated above each peak. Values represent 
the mean of 2-3 samples each. 
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Figure 12. Fucosylated SPM glycoproteins in 14-day-old 
control (•) and undernourished (c) rats. The lower graph 
shows the results of a single control-undernourished pair 
that is representative of four such pairs. SPM protein/ 
glycoprotein samples were electrophoresed on SDS-7.5% 
polyacrylamide cylindrical disc gels. The gels were sliced 
according to particular protein bands (as shown on Figure 11) 
and the radioactivity in each counted by liquid scintillation. 
The top graph shows these same results expressed as the 
ratio: (%dpm in the undernourished)/(%dpm in the control) 
for each gel slice. The recovery of isotopes in this pair 
was 12,400 dpm [3H]-fucose in the control and 4,250 dpm 
[14c]-fucose in the undernourished. 
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band with molecular weight of 64,000 and a significantly 

decreased proportion in the protein band with molecular 

weights of 96,000. At 20 days of age [Figure 13], 

undernourished rats had a decreased proportion of radio

activity in SPM glycoproteins with molecular weights of 

80,000, 56,000. At 34 days of age [Figure 14], no consistent 

differences in incorporation of fucose into SPM glycoproteins 

were detected between the undernourished and the control pups. 

SPM SIALYLATED GLYCOPROTEINS 

Sialic acid has been shown to be a constituent of 

both glycoproteins and glycolipid (ganglioside) components. 

N-Acetylmannosamine has been shown to be a specific in vivo 

precursor for sialic acid (Yohe et al., 1980). The 

incorporation of radiolabeled N-acetylmannosamine into SPMs 

(combined glycoproteins and gangliosides) of undernourished 

pups was increased, over that in controls at all ages 

examined although only the difference at 14 days was 

statistically significant [Figure 15]. Protein bands 

corresponding to those taken in the fucosylated glycoprotein 

study were also cut and counted for radioactivity by liquid 

scintillation. It appears that N-acetylmannosamine was 

incorporated into the sialic acid moiety of several SPM 

glycoproteins that previously were also shown to be 

fucosylated. However, there was an absence of sialic acid 

labeling of a chloroform:methanol insoluble fucosylated 

glycoprotein with a molecular weight of 80,000. 
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Figure 13. Fucosylated SPM glycoproteins in 20-day-old 
control (•) and undernourished (c) rats. The lower graph 
shows the results of a single control-undernourished pair 
that is representative of four such pairs. SPM protein/ 
glycoprotein samples were electrophoresed on SDS-7.5% 
polyacrylamide cylindrical disc gels. The gels were sliced 
according to particular protein bands (as shown on Figure 11) 
and the radioactivity in each counted by liquid scintillation. 
The top graph shows these same results expressed as the 
ratio: (%dpm in the undernourished)/(%dpm in the control) 
for each gel slice. The recovery of isotopes in t~is pair 
was 29,350 dpm [3H]-fucose in the control and 3,300 dpm 
[14c]-fucose in the undernourished. 
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Figure 14. Fucosylated SPM glycoproteins in 34-day-old 
control (•) and undernourished (o) rats. The lower graph 
shows the results of a single control-undernourished pair 
that is representative of four such pairs. SPM protein/ 
glycoprotein samples were electrophoresed on SDS-7.5% 
polyacrylamide cylindrical disc gels. The gels were sliced 
according to particular protein bands (as shown on Figure 11) 
and the radioactivity in each counted by liquid scintillation. 
The top graph shows these same results expressed as the 
ratio: (%dpm in the undernourished)/(%dpm in the control) 
for each gel slice. The recovery of isotopes in this pair 
was 2,500 dpm [14c]-fucose in the control and 13,500 dpm 
[3H]-fucose in the undernourished. 
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Figure 15. Specific incorporation of radiolabeled 
N-acetylmannosamine into SPMs of developing control (•) and 
undernourished (c) rat pups. Values represent the mean ± 
standard deviation from two separate experiments (n~B). An * 
represents the difference to be significant at p<0.05. 
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In this study, [ 3H]- and [14c]-sialic acid labeled 

samples from control and undernourished animals were combined 

as described for the fucose study. Several important 

differences were observed in the relative distribution of 

radioactivity among sialylated SPM glycoproteins from control 

and undernourished rats at 14 days of age [Figure 16]. The 

undernourished rats consistently had an increase in the 

proportion of radioactivity in sialylated SPM glycoproteins 

of molecular weights: 110,000, 86,000, 64,000, 40,000 and 

36,000, and a decreased proportion in the sialylated SPM 

glycoproteins with molecular weight of 56,500. At 20 days 

of age, there was a consistent increase in the proportion of 

sialylated radioactivity in SPM glycoproteins with apparent 

molecular weights of > 140,000, 110,000, 86,000, 64,000, 

36,000 and 28,000 in the undernourished pups compared to 

controls [Figure 17]. At 34 days of age, there were very 

few significant differences between the sialylated SPM 

glycoproteins of the control and undernourished pups. 

However, there was a consistent increase in the proportion of 

radioactivity among sialylated glycoproteins with molecular 

weight of > 140,000 in the undernourished rats and a 

consistent decrease in the proportion of radioactivity 

associated with molecular weight of 96,000 compared to con

trols [Figure 18]. 
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Figure 16. Sialylated SPM glycoproteins in 14-day-old 
control (•) and undernourished (o) rats. The lower graph 
shows the results of a single control-undernourished pair 
that is representative of four such pairs. SPM protein/ 
glycoprotein samples were electrophoresed on SDS-7.5% 
polyacrylamide cylindrical disc gels. The gels were sliced 
according to particular protein bands (as shown on Figure 11) 
and the radioactivity in each counted by liquid scintillation. 
The top graph shows these same results expressed as the 
ratio: (%dpm in the undernourished)/(%dpm in the control) 
for each gel slice. The recovery of isotopes in this pair 
was 1600 dpm [3H]-N-acetylmannosamine in the undernourished 
and 700 dpm [14c]-N-acetylmannosamine in the control. 
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Figure 17. Sialylated SPM glycoproteins in 20-day-old 
control (•) and undernourished (o) rats. The lower graph 
shows the results of a single control-undernourished pair 
that is representative of four such pairs. SPM protein/ 
glycoprotein samples were electrophoresed on SDS-7.5% 
polyacrylamide cylindrical disc gels. The gels were sliced 
according to particular protein bands (as shown on Figure 11) 
and the radioactivity in each counted by liquid scintillation. 
The top graph shows these same results expressed as the 
ratio: (%dpm in the undernourished)/(%dpm in the control) 
for each gel slice. The recovery of isotopes in this 
pair was 2200 dpm [3H]-N-acetylmannosamine in the control 
and 700 dpm [14c]-N-acetylmannosamine in the undernourished. 
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Figure 18. Sialylated SPM glycoproteins in 34-day-old 
control (•) and undernourished (o) rats. The lower graph 
shows the results of a single control-undernourished pair 
that is representative of four such pairs. SPM protein/ 
glycoprotein samples were electrophoresed on SDS-7.5% 
polyacrylamide cylindrical disc gels. The gels were 
sliced according to particular protein bands (as shown on 
Figure 11) and the radioactivity in each counted by liquid 
scintillation. The top graph shows these same results 
expressed as the ratio: (%dpm in the undernourished)/(%dpm 
in the control) for each gel slice. The recovery of 
isotopes in this pair was 6200 dpm [3HJ-N-acetylmann~samine 
in the undernourished and 1400 dpm [14c]-N-acetylmannosamine 
in the control. 
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SPM GANGLIOSIDES 

To assess any qualitative alteration in particular 

ganglioside species in undernourished offspring, whole brain 

and SPM gangliosides were separated by thin-layer chroma

tography as described previously. Ganglioside positions 

were compared with those of ganglioside standards (GT
1

, 

GDla' GM1 and GM2 ). The positions of additional gangliosides 

were tentatively identified by their relative positions in 

comparison with those previously published. The following 

additional ganglioside species were tentatively identified: 

GQlb' GTlb' GDlb' GD 3 , and GM3 . Since gangliosides GD 2 
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and GTla did not separate from each other, the data from them 

were combined. GD 3 (which migrates between GDla and GM1 in 

the solvent system used) appeared as an easily-separated 

doublet. A slower migrating of the doublet was designated 

"carbohydrate(CHO)-GD
3

" as such because it gave a slight 

yellow or brown color when visualized with the resorcinol

HCL spray. 

There were no major differences in the proportion of 

individual ganglioside species between control and 

undernourished rat pups in either brain or SPM gangliosides 

at all ages examined (14, 20 and 34 days). There were 

several small differences. However, they were consistently 

observed between control and undernourished animals. There 

was a consistent decrease in GDlb in the whole brain of the 

undernourished animals at 14 days [Figure 19]. There were 
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Figure 19. Whole brain ganglioside distribution in control 
(C) and undernourished (U) rats at 14, 20 and 34 days of age. 
Aliquots of whole brain gangliosides were spotted on 20cm x 20 
cm silica gel G-60 thin layer chromatography (tlc) plates. 
The plates were developed in a saturated tank containing 
CHCl3:MeOH: 0.25% (w/v) CaCl2, 60:35:8 (v/v), Solvent System 
I. After chromatography, the ganglioside spots were 
visualized with resorcinol-HCl reagent. The tlc plate was 
densitometrically scanned at 580 nm using a Kratos Schoeffel 
SD 3000 densitometer. Individual ganglioside species were 
quantitated by measuring the peak areas from the densito
metric scans. Values represent the mean ± the standard 
deviation of the relative distribution (% ganglioside-NeuAc) 
for each species. An * indicates that the difference between 
the control and undernourished animals is significant at 
p<0.05. (The ganglioside species indicated by "X" is 
unidentified and may be due to lactone formation.) 
Abbreviations used are tlc and NeuAc for thin layer 
chromatography and N-acetyl neuraminic acid, respectively. 
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also consistent increases in GQlb and GTlb in the whole 

brain of the undernourished animals at 20 days and of GD3 in 

the undernourished at 34 days of age. There was a consistent 

decrease in GTlb in the SPMs of the undernourished animals at 

14 days of age and a consistent increase in GDla in the SPMs 

of the undernourished at 34 days [Figure 20]. The relative 

distribution of the ganglioside species was comparable 

between whole brain and SPMs with the notable exception of a 

possible enrichment of GDlb in the SPMs of both control and 

undernourished rats over whole brain gangliosides. 

The effects of the maternal protein deficiency on the 

incorporation of radiolabeled N-acetylmannosamine into brain 

and SPM gangliosides was also examined using the dual-label, 

[ 3HJ-/[ 14cJ-isotopic precursor (N-acetylmannosamine) 

technique described previously. The SPM gangliosides were 

separated by thin layer chromatography as in the quantitative 

ganglioside study. The ganglioside species were visualized 

using iodine (I 2 ) vapors and identified according to co

chromatographed ganglioside standards. The ganglioside spots 

were scraped from the plates, and radioactivity was determined 

by liquid scintillation counting. There were no statistically 

significant abnormalities in the relative distribution of 

radioactivity among SPM gangliosides from 14-, 20- and 34-day

old undernourished rats [Figure 21]. 

There were several developmentally related trends in 

the distribution of the radiolabel among SPM gangliosides. 
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Figure 20. SPM ganglioside distribution in control (C) and 
undernourished (U) rats at 14, 20 and 34 days of age. 2 Aliquots of SPM gangliosides were spotted on 20x20 cm 
silica gel G-60 thin layer chromatography (tlc) plates. The 
plates were developed in a saturated tank containing CHC1 3 : 
MeOH: 0.25% (w/v) CaCl2, 60:35:8 (v/v/v), Solvent System 
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I. After chromatography, the ganglioside spots were 
visualized with resorcinol-HCl reagent. The tlc plate was 
densitometrically scanned at 580 nm using a Kratos Schoeffel 
SD 3000 densitometer. Individual ganglioside species were 
quantitated by measuring the peak areas from the densitometric 
scans. Values represent the mean ± the standard deviation of 
the relative distribution (% ganglioside-NeuAc) for each 
species. An * represents that the difference between the 
control and undernourished animals is significant at p<0.05. 
(The ganglioside species indicated by "X" is not identified 
and may be due to lactone formation.) Abbreviations-used are 
tlc and NeuAc for thin layer chromatography and N-acetyl
neuraminic acid, respectively. 
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Figure 21. Distribution of radiolabeled N-acetylmannosamine 
among SPM gangliosides of control (C) and undernourished (U) 
rats at 14, 20 and 34 days of age. The combined dual-labeled 
samples were simultaneously extracted, purified and 
chromatographed (using System I). The gangliosides were 
visualized using iodine (I2) vapors. The separated 
ganglioside species were counted by liquid scintillation. 
The values represent the mean ± the standard deviation of the 
relative percent distribution of the radiolabel in four 
control-undernourished pairs at each of the ages indicated. 
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There was a developmentally related increase in the 

proportion of radiolabel ~ncorporation associated with GD 2 

and GTla in both the control and undernourished animals 

(from 4% of the total dpms at 14 days to less than 9% at 34 

days). 
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CHAPTER V 

DISCUSSION 

In agreement with a number of previous reports 

(Guthrie and Brown, 1968; Adlard et al., 1970; Dobbing and 

Sands, 1971; Chase, 1972; Balazs and Patel, 1973; Dyson and 

Jones, 1976; West and Kemper, 1976), neonatal undernutrition 

caused a decrease in body and brain weights in rat pups. 

Undernutrition also caused a significant decrease in the 

brain protein content. This decrease in brain protein 

content is directly correlated with a decreased brain weight 

since the brain protein per gram wet weight of tissue in the 

undernourished pups was equal to that in the age-matched 

controls. 

Undernutrition also caused a decrease in the SPM 

protein content. The decreased brain weight could not fully 

account for the deficit in SPM protein, as evidenced by the 

fact that the SPM protein concentration (µg protein per gram 

wet weight of brain tissue) was also decreased in the 

undernourished animals. There are several possible 

explanations for this decreased amount of SPM protein in the 

undernourished animals: 1) decreased number of synapses per 

brain; 2) a decreased size of the synapse although normal 

number of synapses; or 3) a decreased quantitative isolation 

of the SPMs from the undernouri.shed animals. These 

possibilities are discussed in greater detail below. 
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Undernutrition has been reported to cause a decrease 

in dendritic arborization. This has been demonstrated with 

morphological evidence of decreased synaptic density (Dyson 

and Jones, 1976) and a decreased synapse-to-neuron ratio 

(Cragg, 1972; Bedi et al., 1980; Thomas et al., 1980). There 

is also substantial biochemical evidence of decreased 

synaptosomal protein in undernourished rats (Rabie and 

LeGrand, 1973; Smart et al., 1974). 

In addition to affecting the number of synapses, 

undernutrition affects the structure of the synapse. Yu and 

Yu (1977) found abnormalities within the presynaptic terminal 

of young undernourished animals. Dyson and Jones (1976) 

found a decrease in the length of the synaptic cleft and also 

a decreased thickening in both the pre- and postsynaptic 

membranes in the off spring of dams that were fed a protein

calorie restricted diet during gestation and lactation. 

Although there is evidence from the cited studies 

that neonatal undernutrition can affect both the number and 

size of synapses, one must also consider that the deficiency 

of SPM protein may have also resulted from an increased 

difficulty in the isolation of synaptic membranes from the 

undernourished animals. A delay in synaptic maturation could 

possibly affect the density of the synaptosomes and SPMs, 

since the buoyant density of both have been shown to increase 

during normal development (Gonatas et al., 1971; Oberjat and 

Howard, 1977). The synaptosomes were separated from myelin 



fragments and mitochondria using Ficoll~sucrose gradients. 

The gradient density separation was considered to be large 

enough to allow isolation of synaptosomes with a broad 

density with minimal contamination, although the exact 

densities necessary to achieve this in the event of 

undernutrition was not checked. 
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The yield of isolated SPM protein reported here is 

somewhat less than the 1.5-2.0 mg of SPM protein from 1-2 

grams of tissue weight reported by other investigators 

(Cotman and Matthews, 1971; Gurd et al., 1974). There are 

several possible reasons for this; i.e., 1) whole brain was 

used in this study versus cerebral cortices which may contain 

enrichment of synaptic connections; 2) the extent of 

homogenization has been shown to cause an effect in the 

yield of SPMs (Cotman, 1974); and 3) Gurd et al. (1974) also 

stated that the method of removing the supernatants from 

synaptosomal pellets may cause a loss in synaptosomal 

material (also Smith, Tonetti and Druse, unpublished 

observations). However, since this was a comparative study 

of the effects of undernutrition on the development of the 

SPMs,and since samples were processed in similar manner, one 

would expect the trends of the present observations to be 

reliable. 

There was a developmental increase in tissue protein 

concentration in each of the brain regions studied

prefrontal lobes, hippocampus, cerebral cortex and cerebellum. 
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The most dramatic rate of increase was observed in the 

hippocampus from 69 mg of protein/gm wet weight tissue at 14 

days of age to 105 mg protein/gm wet weight at 34 days. This 

may be due to the rapid migration of neurons into the hippo

campus between day 14 and 15 in the rat pup (Altman and Das, 

1966). Undernutrition could have caused a decrease in the 

migration of neurons into the hippocampus, thus resulting in 

fewer synaptic connections. It was demonstrated in these 

studies that neonatal undernutrition resulted in a significant 

deficit in SPM protein concentration which was observed only 

within the hippocampus at 14 and 20 days of age. However, 

the SPM protein concentration in the hippocampus in the under

nourished animals at 34 days of age had returned to normal. 

At present it is not known if this recovery would have 

occurred by itself or if it was due directly to the effects 

of nutritional rehabilitation in the previously undernourished 

pups. 

The purity of the SPMs from both control and under

nourished pups at 20 days of age was measured by assaying for 

marker enzymes specific for desired membranes and possible 

contaminating membranes. There was a significant enrichment 

in the specific activity for plasma membrane spec.ific markers 

in the SPM fraction; (Na+-K+)-ATPase and alkaline phosphatase 

specific activity were increased in the SPMs from 4.8- and 

5.7-fold, respectively, in control animals and 8- and 13-fold, 

respectively, in undernourished animals. 
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Although the enrichment of (Na+-K+)-ATPase in these 

SPM preparations over that in whole brain may be somewhat 

lower than the 5- to 10-fold enrichment reported by several 

other workers (Cotman and Matthews, 1971; Morgan et al., 

1971; Gurd et al., 1974), it should be noted that the animals 

used in this study were only 20 days of age versus 

considerably more mature animals in the other studies. Also, 

the SPM fraction isolated from whole brain may be less 

enriched in membranes that contain a higher specific activity 

+ + of (Na -K )-ATPase than from a particular brain region (i.e., 

cerebral cortices). 

There was also an enrichment (1.5-3 fold) of 

5'-nucleotidase in the SPM fraction in both control and 

undernourished pups over that in whole brain. However, this 

marker is not as specific for synaptic membranes since it is 

more enriched within the membrane fraction that migrates 

above that of the SPMs on the sucrose gradient (Cotman and 

Matthews, 1971). This marker enzyme may be more specific for 

vesicular and endoplasmic reticulum membranes. Therefore, its 

presence within the SPM fraction may be indicative of some 

degree of contamination by these membranes or indicate a 

nonspecific distribution. Gurd et al. (1974) advocated the 

use of several washes of the synaptosomal fraction is 0.32 M 

sucrose before hypotonic lysis in order to reduce the amount 

of contamination by microsomal membranes. 
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There was approximately a 2-fold enrichment of acid 

phosphatase within the SPM fractions from both control and 

undernourished pups. This may be an indication of 

contamination of the SPMs by lysosomal membranes (Cotman and 

Matthews, 1971). However, it has also been proposed that 

acid phosphatase may indeed be a component of the SPMs 

(Verity et al., 1973; Gurd et al., 1974). 

Assays of other marker enzymes suggest relatively 

little or no contamination of the SPMs by either inner (less 

than 0.2%) or outer mitochondrial membrane. There may, 

however, be some contamination by myelin membranes as 

determined by the activity of CNPase in the SPM fraction 

from control animals (about 0.2%) and undernourished animals 

(0.4%). This might present a potential problem when doing 

the comparative studies between control and undernourished 

animals; however, the degree of contamination was considered 

to be minor. Also, when the SPM proteins were separated by 

SDS-polyacrylamide gel electrophoresis, there were no 

observed protein bands characteristic of myelin membranes. 

Myelin contamination of the SPM preparations could have 

become a problem as the quantity of myelin increased at 34 

days of age in both the control and undernourished animals. 

This could possibly be reduced by increasing the volume 

separating the 10/25% sucrose interface from the 25/32.5% 

sucrose interface (Smith, Tonetti and Druse, personal 

observations) • 



Since (Na+-K+)-ATPase is highly enriched in the SPM 

preparations, it was decided to examine the effects of 

neonatal undernutrition on the development of ouabain

sensi tive (Na+-K+)-ATPase in both whole brain and the SPMs. 

Before measuring the ATPase activity in these membranes, it 

was necessary to examine several parameters in order to 

achieve optimal enzyme activity. The effects of several 

membranes solubilizing detergents were tested on the SPM 

ATPase activity. It was discovered that concentrations of 

0.02% to 0.04% (w/v) SDS would maximally stimulate the 

ATPase activity. Concentrations of SDS greater than 0.04% 

caused a decrease in the ATPase activity below that of 

control (no SDS) levels. This decrease in activity may in 

part be due to an alteration of the lipid environment of 

the enzyme or perhaps denaturation of the enzyme. Triton 

X-100 and deoxycholate were also tested and were able to 

stimulate ATPase activity above control levels, although 

the levels of activation at any of the examined concentra

tions of Triton X-100 or DOC did not stimulate as much as 

that of 0.02% SDS. It was not determined in these studies 

if SDS activation was comparable for ATPase in the SPMs 

from both control and undernourished pups. 

There was a large (10-fold) increase in total whole 

brain (Na+-K+)-activated, ouabain-sensitive ATPase during 

normal neonatal development from 10 to 34 days of age (350 

µmole Pi/hr to 3000 µmole Pi/hr, respectively). This is in 
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general agreement with previous reports (Samson and Quinn, 

1967; Abdel-Latif et al., 1967). There is, however, 

considerable controversy concerning the effects of 

malnutrition/undernutrition on brain (Na+-K+)-ATPase 

activity. Hernandez (1979) demonstrated that both 

gestational malnourished and large-litter-induced 

malnutrition caused a significant increase in the specific 

activity of (Na+-K+)-ATPase in the brain cortex of the rat 

while Reddy and Sastry (1978) demonstrated that protein 

malnutrition in 3-week-old rats did not affect the specific 

activity of ouabain-sensitive ATPase. As found in this 

study, undernutrition caused a significant reduction in 

+ + (Na -K )-ATPase content at 14, 20 and 34 days of age. 

112 

Adlard et al. (1973) reported that 21-day-old undernourished 

rats had a decreased ability of maintaining Na+-K+ gradients 

in the whole brain. 

Subcellular fractions containing nerve endings 

isolated from whole brain homogenates show the highest 

specific activity of (Na+-K+)-ATPase (Abdel-Latif and Abood, 

1964; Hosie, 1965; Albers et al., 1965; DeRobertis, 1967; 

Morgan et al., 1971). (Na+-K+)-ATPase is considered to be an 

important metabolic pump in maintaining proper Na+-K+ ionic 

concentrations across the synaptic terminal membrane and may 

be involved in neurotransmitter release. 

Kissane and Hawrylewicz have studied the effects of 

protein malnutrition on the ATPase activity in cerebellar and 



cerebral synaptosomes during the perinatal period (Kissane 

and Hawrylewicz, 1975) and postweaning period (Kissane and 

Hawrylewicz, 1978) in rat pups. They found that ATPase 

specific activity in isolated cerebral synaptosomes was 

significantly reduced in pups protein malnourished either 

during gestation or lactation. The decrease in ATPase 
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specific activity in cerebral and cerebellar synaptosomes was 

most pronounced when the dams were subjected to protein 

malnutrition during both gestation and lactation. The 

deficit in cerebral synaptosomal ATPase reached normal levels 

after weaning in both malnourished groups. This is in 

contrast with the observation that protein malnutrition 

during lactation alone does not decrease the ATPase specific 

activity in cerebellar synaptosomes (Kissane and Hawrylewicz, 

1975). 

The enrichment of (Na+-K+)-ATPase within the SPMs 

suggests a particular localization of this enzyme within the 

synaptic membranes. It was demonstrated here that there was 

a significant increase in the specific activity of ATPase in 

the SPMs from undernourished animals at 20 and 34 days of 

age. This is in contrast with observations by Kissane and 

Hawrylewicz (1975, 1978) who showed that neonatal under-

. . d d . ( + +) . f. nutrition cause a ecrease in Na -K -ATPase speci ic 

activity in rat brain synaptosomes. The differences between 

the studies reported here and those of Kissane and 

Hawrylewicz (1975, 1978) could be due to the fact that 
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synaptosomes also contain synaptic vesicles and mitochondria 

in addition to the synaptic plasma membranes. Further 

evidence which supports an increase in the ATPase in SPMs 

comes from the observation of an increased incorporation of 

[3H]-leucine into this SPM protein band [Figure 10]. There 

are several possible explanations for this higher specific 

activity of ouabain-sensitive (Na+-K+)-ATPase in the SPMs of 

the undernourished animals at 20 and 34 days of age. 1) 

There could be a conservation of this protein within the 

synapse, at the expense of proteins that are less important 

in terms of their involvement in synaptic transmission. 2) 

Alternatively, there could be increased synthesis of this 

enzyme to maintain proper intraterminal ionic concentrations 

because of an increased leakiness in the synaptic membranes 

as a result of the undernutrition. 3) The isolation of a 

particular population of synaptosomes/SPMs more enriched in 

ATPase concentration as a result of undernutrition. 

Despite the decreased content of brain and SPM 

proteins, the incorporation of [3H]-leucine into the proteins 

of both of these fractions were increased in the 10- to 20-

day-old undernourished pups. The higher specific activities 

in the undernourished pups may reflect an attempt to "catch

up" to the control levels of brain and SPM proteins. An 

increased incorporation of [3H]-leucine into CNS myelin 

subfractions has been observed during an attempted "catch-up" 

period in undernourished rats (Figlewicz et al., 1978). 
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Synaptic plasma membranes were isolated from rat 

brain and the proteins separated by SDS-polyacrylamide gel 

electrophoresis. The protein/polypeptide profile obtained 

from synaptic plasma membranes differs significantly from 

that of whole brain, mitochondria, myelin and soluble 

cytoplasmic proteins. However, the protein/polypeptide 

profiles from synaptic vesicles and SPM contain many similar 

bands (Morgan et al., 1973 a,b). This is not surprising 

since the synaptic vesicle fraction also contains synaptic 

membrane fragments and the synaptic membrane fraction of ten 

contains synaptic vesicles attached to the synaptic membrane. 

The SPM protein/polypeptide profile, obtained from 

adult rat SPMs, contains several major bands (apparent 

molecular weights 95,000, 52-56,000, and 45,000 daltons) and 

at least twenty minor bands that are visible after staining 

with coomassie blue. Although the postsynaptic density 

protein pattern was not examined in this study, the band 

with an apparent molecular weight of 52,000 daltons is 

reportedly the major protein in the post synaptic density 

(Yen et al., 1977; Kelly and Cotman, 1978). Other proteins 

have been tentatively identified in the SPM fractions 

separated by SDS-PAGE: the two subunits of tubulin at 

54,000 and 56,000 daltons; actin at 45,000 (Blitz and Fine, 

1974); troponin at 37,000 and 24,000 (Mahendran and Berl, 

1977);and (Na+-K+)-ATPase at 95,000 (Morgan et al., 1973; 

Mahler, 1977). Protein kinase activity has been detected in 



the SPMs and has been identified with the SOS-PAGE protein 

molecular weights of 40,000 for the catalytic subunit and 

48,000 for the regulatory subunit (Miyamoto et al.; 1973). 

Great care should be taken, however, in the identification 

of particular SPM proteins (at least those separated by 

SOS-PAGE in one dimension) . Each protein band may contain 

heterogeneous populations of proteins and also certain 

proteins can be broken down into several subunits by the 

SOS treatment. 

There was a developmental alteration (from 10 to 34 

days) in the profile of SPM protein/polypeptides separated 
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by SOS-PAGE on 7.5% polyacrylamide gels [Table VI] that has 

also been shown by others (Kelly and Cotman, 1981). Although 

the SPM protein/polypeptide pattern as observed by using 

Fast-Green protein dye and that obtained by Kelly and 

Cotman (1981) using coomassie blue are quite similar. Any 

differences between these two studies may be due to: 1) 

differences in the dye-binding capacity for the protein/ 

polypeptides between the two stains; 2) differences in the 

concentrations of polyacrylamide gels leading to better 

resolution of certain bands; or 3) the method used in deter

mining the developmental alterations. In the study 

reported here, the relative proportion of the total dye

binding capacity of all SPM proteins was measured, whereas 

Kelly and Cotman (1981) measured increases or decreases in 

the staining intensity for particular proteins. 



In this study it was reported that a major protein 

(as determined by its proportion to the total dye-binding 

capacity} had an apparent molecular weight of 56,500 [Table 

VI]. In the SPMs from the undernourished animals at 10-20 

days of age, this protein band was greater in proportion 

than in age-matched controls. This may indicate a 

conservation of the basal cytoskeletal structure of the 

synapse in the event of undernutrition. 
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The higher specific activity of ouabain-sensitive 

(Na+-K+)-ATPase in the SPMs of the undernourished pups at 20 

and 34 days was consistent with the higher proportion of this 

band in the SPM protein profile of 34-day-old undernourished 

animals and with the increased incorporation of [3H]-leucine 

into this SPM band [Figure 9c, 9d]. There was very little 

incorporation (less than 20% of the total dpms) into any SPM 

proteins with apparent molecular weights below 40,000. This 

is consistent with observations that most of the SPM proteins 

stained with Fast-Green had molecular weights at or above 

40,000. There was very little significant difference in the 

incorporation of [3H]-leucine into any particular SPM 

protein between the control and undernourished pups at any 

of the observed ages. The only significant difference was 

an increased incorporation of [3H]-leucine by the 

undernourished animals into SPM protein with an apparent 

molecular weight of 96,000. 
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Using a dual-label isotope technique as previously 

described, a c14c]-fucose labeled SPM sample from an 

undernourished animal was combined with a [3H]-fucose labeled 

SPM sample from an age-matched control (or vice versa). The 

dual-label isotope technique was chosen in order to eliminate 

any variances between separation techniques; it was hoped 

that even minor abnormalities in the glycoprotein composition 

between undernourished and controls would be detected. It 

was shown in these studies that there were only transient 

abnormalities in the fucosylation of the SPM glycoproteins in 

the offspring of the protein deficient rats. Abnormalities 

in the relative distribution of radioactivity among 

fucosylated SPM glycoproteins were only seen at 14 and 20 

days. By 34 days of age, the distribution in the under-

nourished animals had returned to a near-normal pattern. 

In dual-label [3H]/[ 14cJ-sialylated SPM glycoprotein 

study, it was noticed that the distribution of radiolabeled 

N-acetylmannosamine into SPM glycoproteins was very similar 

to the distribution of the labeled fucose. The exception to 

this statement is that there was no incorporation of 

radiolabeled N-acetylmannosamine into an SPM protein/ 

glycoprotein band with an apparent molecular weight of 

80,000. Any observed abnormalities in the relative 

distribution of sialylated glycoproteins (significant only at 

14 days of age), were transient. The distribution was 

generally normal at later ages. Since this return to normal 
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distribution of SPM glycoproteins occurs after weaning, when 

the undernourished pups were given a chance for nutritional 

rehabilitation, it is not known if the abnormalities were 

due to a delayed maturation process (which would eventually 

reach normal values) or was totally dependent upon the period 

of nutritional rehabilitation. Since only a few of the many 

SPM proteins and glycoproteins have been identified, it is 

difficult to state how the functional significance of these 

minor alterations due to undernutrition might affect proper 

neural connectivity. 

The effects of neonatal undernutrition on brain and 

SPM gangliosides were examined both quantitatively and 

qualitatively. The reported findings indicate that there is 

an enrichment in the proportion of GDlb in the SPMs from both 

control and undernourished animals over that in whole brain 

gangliosides. There were no major developmental alterations 

in the distribution in either whole brain or SPM gangliosides 

in the controls. There were only minor abnormalities in the 

distribution in certain gangliosides between the control and 

undernourished in either whole brain or SPMs. This is in 

general agreement with Merat and Dickerson (1974) who showed 

that malnutrition did not seem to cause any change in the 

normal ganglioside distribution patterns among the several 

brain regions examined. It may be that whole brain SPMs 

mask any abnormalities in the NANA content or ganglioside 



patterns that may be present in specialized brain regions 

where particular groups of synapses may be more affected. 
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SPM gangliosides were studied metabolically by the 

incorporation of radiolabeled N-acetylmannosamine. There 

were only minor abnormalities within the distribution of the 

radiolabels in the SPM gangliosides between the control and 

undernourished pups at the ages examined (14, 20 and 34 days). 

Therefore, it may be concluded that neonatal undernutrition 

in the rats does not cause any significant abnormalities in 

either the content or composition of whole brain or SPM 

gangliosides and that any abnormalities seen may only be 

transient at most. 

It has been suggested here from studies on the 

ouabain-sensitive (Na+-K+)-ATPase content and concentration 

in SPMs isolated from undernourished rat pups that neonatal 

undernutrition may affect an altered synaptic function. 

Indeed, it was demonstrated by Stoch and Smythe (1967) that 

children who had been previously malnourished exhibited 

several E.E.G. abnormalities. 

In addition to finding a reduced amount of SPM 

proteins and abnormalities within certain SPM proteins, the 

studies presented here demonstrate small and transient 

abnormalities within SPM gangliosides and glycoproteins in 

the offspring of protein deficient rats. Although several 

SPM enzymes have been reported to be glycoprotein in 

character (Salvaterra et al., 1977), it is presently not 
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known if or how these small abnormalities might affect 

neurological function. It has generally been considered 

that SPM glycoproteins are important in interneuronal 

recognition, adhesion and synaptic connectivity (Brunngraber, 

1968; Barondes, 1970; Mahler, 1979). 

One aim of this dissertation was to examine how 

maternal protein deficiency might affect the SPM gangliosides 

and glycoproteins in the developing off spring with the 

possibility of altering normal neuronal synaptic 

connectivity. Although the observed SPM ganglioside and 

glycoprotein abnormalities were small and transient, it is 

currently not known which of these are most crucial during 

the critical period of synaptogenesis. These results do not 

preclude the possibility that maternal protein deficiency can 

result in larger abnormalities of specialized synapses in the 

offspring. Since the SPMs isolated here presumably came from 

a heterogeneous population of synapses, differences within a 

small population of specialized synapses might not be 

detected. 
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