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Abstract

The genus Escherichia includes pathogens and commensals. Bladder infections (cystitis) result most often from
colonization of the bladder by uropathogenic E. coli strains. In contrast, a poorly defined condition called

asymptomatic bacteriuria results from colonization of the bladder with E. coli strains without symptoms. As part of
an on-going attempt to identify and characterize the newly discovered female urinary microbiota, we report the
genome sequences and annotation of two urinary isolates of £. coli: one (E78) was isolated from a female patient
who self-reported cystitis; the other (E75) was isolated from a female patient who reported that she did not have
symptoms of cystitis. Whereas strain E75 is most closely related to an avian extraintestinal pathogen, strain E78 is a

uncommonly rich in prophages.

member of a clade that includes extraintestinal strains often found in the human bladder. Both genomes are

Keywords: Enterobacteriaceae, Escherichia coli, UPEC, Urinary tract infection, Bladder, Lower urinary tract symptoms

Introduction

Clinicians typically equate the presence of bacteria in
urine with infection, or, less commonly, an ill-defined
phenomenon termed “asymptomatic bacteriuria.” These
and other existing concepts are based on the long-held
“sterile urine” paradigm. Recently, however, bacterial
communities (microbiota) have been discovered in the
female bladder [1-9]. Thus, the “sterile urine” paradigm
is no longer valid.

In an effort to provide a comprehensive view of the
newly discovered female urinary microbiota, we have
established an Enhanced Quantitative Urine Culture
protocol. This enhanced culture protocol isolates bac-
teria from 75 to 90 % of urine samples deemed ‘no
growth’ by the standard clinical microbiology urine cul-
ture method [4, 7, 10]. We have begun to the sequence
and annotate the genomes of these isolated bacteria.

Here, we report the full genome sequences and anno-
tations of two of those bacteria, Escherichia coli strains
E75 and E78 isolated from female patients pursuing
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urogynecologic clinical care. Strain E75 was isolated
from a patient who thought that she did not have a urin-
ary tract infection, while E78 was isolated from a patient
who thought that she did. The strains were sub-cultured
to purity and then identified as E. coli by Matrix-Assisted
Laser Desorption/lonization-Time-of-Flight Mass Spec-
trometry [10]. Strain E75 is most closely related to APEC
O1l, an avian extraintestinal pathogen. In contrast, strain
E78 is a member of a clade that includes extraintestinal
strains often associated with the human bladder, including
uropathogenic strains UTI89 and J89 and asymptomatic
bacteriuric strain ABU83972. Both genomes are uncom-
monly rich in prophages.

Organism information

Classification and features

Escherichia coli is a non-sporulating, Gram-negative, rod
shaped bacterium. It is a facultative anaerobe found
commonly in the environment and the lower intestines
of mammals and other endotherms. Extra-intestinal
strains can colonize other organs, including the urinary
bladder. Most E. coli strains are harmless constituents of
the normal microbiota, but others cause disease. For ex-
ample, uropathogenic E. coli is the major case of urinary
tract infections in humans; other E. coli strains colonize

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
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the bladder without causing symptoms, a condition
called asymptomatic bacteriuria.

Transmission electron microscopy images were gener-
ated for both E75 and E78 (Fig. 1). Cell pellets were
fixed with 0.1 % Ruthenium Red en bloc with sequential
gluteraldehyde and osmium tetroxide fixation steps.
These fixed samples were dehydrated with Ethanol and
embedded in Resin. Ultrathin sections of 80 nm were
mounted on copper grids, post-stained with uranyl acet-
ate and lead citrate and observed in a Hitachi H-600
transmission electron microscope at 75 kV. Films were
taken, negatives developed and scanned via a Microtek
i800 film scanner. PhotoShop was used to convert nega-
tives to positive images and adjust for brightness and
contrast. The transmission electron micrographs re-
vealed the typical E. coli rod-shape morphology. Strain
E75 tended to possess electron poor intracellular inclu-
sions (Fig. 1b, black arrow). The general features of E.
coli strains E75 and E78 are presented in Table 1.

E. coli strains E75 and E78 were isolated from patients
who sought clinical care at Loyola University Medical
Center’s Female Pelvic Medicine and Reconstructive
Surgery center in September 2014. Patients were asked
the question: Do you feel that you have a urinary tract
infection? E75 was isolated from a patient who answered
‘no, whereas E78 was isolated from a patient who an-
swered ‘yes.” Both patients were white, post-menopausal
women seeking care for Pelvic Organ Prolapse. Neither
patient was taking antibiotics; both were using daily va-
ginal estrogen supplement. The UTI Symptoms Assess-
ment Questionnaire was used to characterize the degree
of severity and bother of the patients’ symptoms [11].
Both E. coli strains were identified at >100,000 colony
forming units per milliliter, using an Expanded Spectrum
version of the Enhanced Quantitative Urine Culture
protocol [10]. After they were sub-cultured to purity,
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Matrix-Assisted Laser Desorption/Ionization-Time-of-
Flight Mass Spectrometry was used to confidently iden-
tify them as E. coli. For E75, the identification score was
2.530; for E78, the score was 2.265. No other microbes
were detected in the urine sample containing strain E75.
In the urine sample containing strain E78, Alloscardovia
omnicolens (10 colony forming units per milliliter) and
Lactobacillus rhamnosus (10 colony forming units per
milliliter) were also detected.

Figure 2 shows a phylogenetic tree of the 16S rRNA
sequences. 16S rRNA gene sequences include Yersinia
enterocolitica (NR_104903), E. coli IAI39 (NC_011750),
E. coli O157:H7 str. Sakai (NR_074891), E. coli K-12
substr. MG1655 (NR_102804), E. coli O157:H7 str.
EDL933 (AE005174), E. coli CFT073 (AE014075), E. coli
VR50 (CP011134), E. coli UMNO026 (NC_011751), E. coli
RRL-36 (JQ398845), E. coli NBRC 102203 (NR_114042),
E. coli U 5/41 (NR_024570), E. coli B str. REL606
(CP000819), E. coli 0O104:H4 str. 2011C-3493
(NC_018658), E. coli XA04 (KR080744), E. coli APEC
O1 (CP000468), E. coli E75, E. coli E78, E. coli J96
(ALIN02000018), E. coli TOP379 149 (AOQB01000139),
E. coli UMEA 3314-1 (AWDE010000004), E. coli UTI89
(CP000243), E. coli ABU 83972 (CP001671), and E. coli
UM146 (CP002167). E. coli genome sequences typically
include seven copies [12].

Genome sequencing information

Genome project history

The sequencing and quality assurance was performed at
the Loyola Genome Facility at Loyola University Chicago,
Maywood, IL, USA. The assemblies and finishing were
done at the Lakeshore Campus of Loyola University
Chicago, Chicago, IL, USA. Functional annotation was
produced by the RAST service [13] and in-house scripts
for COQ classification [14]. Table 2 presents the project

Fig. 1 Transmission Electron Microscopy Images of E78 (a) and E75 (b). E75 tended to have electron poor intracellular inclusions (black arrow)
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Table 1 Classification and general features of E. coli strains E75 and E78
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MIGS ID Property Term Evidence code®
Classification Domain Bacteria TAS [31]
Phylum Proteobacteria TAS [32]
Class Gammaproteobacteria TAS [33, 34]
Order Enterobacteriales TAS [35]
Family Enterobacteriaceae TAS [36, 37]
Genus Escherichia TAS [37, 38]
Species Escherichia coli TAS [37, 38]
Strain: E75 and E78
Gram stain Negative TAS [39]
Cell shape Rod TAS [39]
Motility Motile TAS [39]
Sporulation Non-spore former NAS
Temperature range 7-46 °C NAS
Optimum temperature 37 °C IDA
pH range; Optimum 44-90; 6-7 IDA
Carbon source Not determined, strains grown in complex medium NAS
MIGS-6 Habitat Human female bladder NAS
MIGS-6.3 Salinity 0.5 % (w/v) NAS
MIGS-22 Oxygen requirement Facultative anaerobe TAS [39]
MIGS-15 Biotic relationship Human specimen NAS
MIGS-14 Pathogenicity Non-pathogen (E75) NAS
Suspected pathogen (E78)
MIGS-4 Geographic location Maywood, IL USA NAS
MIGS-5 Sample collection E75 (9/14/2014); E78 (9/25/2014)
MIGS-4.1 Latitude 41.8811° N
MIGS-4.2 Longitude 87.8433° W
MIGS-44 Altitude 623 ft

®Evidence codes—IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e, not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are

from the Gene Ontology project [40]

information and its association with MIGSversion2.0-
compliance [15].

Growth conditions and genomic DNA preparation

E. coli strains E75 and E78 were isolated from trans-
urethral catheterized urine specimens of adult women
with urinary symptoms [10] using a Expanded Spectrum
version of the previously described Enhanced Quantita-
tive Urine Culture protocol [4]. Three urine volumes
(1 pL, 10 pL, and 100 pL) of each urine sample was
spread quantitatively (i.e., pinwheel streak) onto t5%
sheep blood (BD BBL™ Prepared Plated Media, Cockeys-
ville, MD), Chocolate, and Colistin Naladixic Acid agars
(BD BBL™ Prepared Plated Media) and incubated in 5 %
CO, at 35 °C for 48 h; 5 % sheep blood and MacConkey
(BD BBL™ Prepared Plated Media) agars incubated aer-
obically at 35 °C for 48 h; two CDC Anaerobic 5 % sheep

blood agars (BD BBL™ Prepared Plated Media) incubated
in either Microaerophilic Campy gas mixture (5 % O,,
10 % CO,, 85 % N), or anaerobically at 35 °C for 48 h.
All agars were documented for growth (i.e., for
morphologies and colony forming units per milliliter)
at 24 and 48 h. Each distinct colony morphology was
sub-cultured at 48 h to obtain pure culture for micro-
bial identification.

Microbial identification was determined using a
Matrix-Assisted Laser Desorption/Ionization-Time-of-
Flight Mass Spectrometer (Bruker Daltonics, Billerica,
MA) as described [4]. Pure cultures were stored at -80 °C
in a 2 ml CryoSaver Brucella Broth with 10 % Glycerol, no
beads, Cryovial, for preservation (Hardy Diagnostics). For
genome extraction and sequencing, the preserved pure
culture isolates were grown on 5 % sheep blood agar
under aerobic conditions at 35 °C for 24 h.
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Fig. 2 Phylogenetic tree based on 16S rRNA sequences. The alignment
length was 1189 bp. Sequences were retrieved from NCBI and aligned
using Muscle. The tree was generated by FastTree using the GTR model.
Support values are shown for branches leading to the placement of the
two bladder isolates presented here
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Genomic DNA extraction was performed using a
phenol-chloroform extraction protocol. Briefly, cells were
resuspended in 0.5 mL DNA Extraction Buffer (20 mM
Tris-Cl, 2 mM EDTA, 1.2 % Triton X-100, pH 8) followed
by addition of 50uL Lysozyme (20 mg/mL), 30ul. Mutano-
lysin, and 5ul. RNase (10 mg/mL). After a 1 h incubation
at 37 °C, 80uL 10 % SDS, and 20uL Proteinase K were

Table 2 Project information
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added followed by a 2 h incubation at 55 °C. 210uL. of 6 M
NaCl and 700ul. phenol-chloroform were then added.
After a 30-min incubation with rotation, the solutions
were centrifuged at 13,500 RPM for 10 min, and the aque-
ous phase was extracted. An equivalent volume of Isopro-
panol was then added, and solution was centrifuged at
13,500 RPM for 10 min after a 10-min incubation. The
supernatant was decanted and the DNA pellet was precip-
itated using 600uL 70 % Ethanol. Following ethanol evap-
oration, the DNA pellet was resuspended in Tris-EDTA
and stored at -20 °C.

Genome sequencing and assembly

DNA samples were diluted in water to a concentration
of 0.2 ng/ul as measured by a fluorometric-based
method (Life Technologies, Carlsbad, CA) and 5 ul was
used to obtain a total of 1 ng of input DNA. Library
preparation was performed using the Nextera XT DNA
Library Preparation Kit (Illumina, San Diego, CA) ac-
cording to manufacturer’s instructions. The isolates
were barcoded, pooled and each isolate was sequenced
twice, on two separate runs, using the Illumina MiSeq
platform and the MiSeq Reagent Kit v2 (300-cycles) to
produce 150 bp paired-end reads. Sequencing reads
were parsed into individual folders according to the re-
spective barcodes.

Sequence assembly was conducted using Velvet [16]
(Table 2). The tool VelvetOptimiser was used to deter-
mine the best hash length; 99 was used in the two as-
semblies performed here. The scaffolding software
SSPACE [17] was utilized for scaffold finishing. The gen-
ome of strain E75 was assembled into 463 contigs. The
genome of strain E78 was assembled into 62 contigs. To
confirm that the contigs were Enterobacteriaceae (i.e.
not the result of contamination), each contig was

MIGS ID Property E75 Term E78 Term
MIGS 31 Finishing quality High quality draft High quality draft
MIGS-28 Libraries used Paired-end library of 150 bp Paired-end library of 150 bp
MIGS 29 Sequencing platforms lllumina MiSeq lllumina MiSeq
MIGS 31.2 Fold coverage 51-431x 53-30724x
MIGS 30 Assemblers Velvet Velvet
MIGS 32 Gene calling method GLIMMER GLIMMER
Locus tag
Genbank ID LXGO00000000 LXQHO0000000
GenBank Date of Release May 9, 2016 May 9, 2016
GOLD ID
BIOPROJECT PRINA316969 PRINA316969
MIGS 13 Source Material Identifier

Project relevance

Human commensal

Human pathogen
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Table 3 Summary of genomes: two chromosomes and two

plasmids

Label Size (bp) Topology INSDC identifier
Chromosome E75 5,032,328 Circular LXGO00000000
Chromosome E78 5,021,201 Circular LXQHO0000000
Plasmid pE78.1 4083 Circular LXQH00000000
Plasmid pE78.2 2113 Circular LXQHO0000000

BLASTed locally against all publicly available bacterial
genomes (obtained from NCBI). Coverage across all
contigs was on average 50.95-431.17X (for E75) and
52.59-30,723.61X (for E78). The high coverage observed
within the E78 sequencing is the result of two contigs,
one 4083 bp in length (coverage 72,734X) and the other
2113 bp in length (99,530X). Assembly was repeated
using the SPAdes assembler [18], given its recent success
in producing full plasmid sequences [19]. Two plasmids
were identified by the SPAdes assembler with high
coverage. Querying these two contigs against the Gen-
Bank nr/nt database revealed sequence homology to the
annotated E. coli plasmids p2PCNO033 (GenBank:
CP006634) and pVR50G (GenBank: CP011141) (among
other E. coli plasmids), respectively. These two plasmids
are listed in Table 3 as Plasmid pE78.1 and Plasmid
pE78.2, respectively. All 62 E78 contigs were also
assessed for putative plasmid sequences using Plasmid-
Finder [20]. While PlasmidFinder recognized pE78.2, it
did not detect pE78.1. The complete genome of the E78

Table 4 Genome statistics
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chromosome is thus represented within 60 contigs
(mean coverage 272x).

Genome annotation

Genes were identified using GLIMMER using the g3-
from-scratch.csh script included in the package [21] The
predicted CDSs were translated using the transeq script
within the EMBOSS suite [22]. rRNA genes were identi-
fied by RNAmmer [23] using the parameter set to iden-
tify bacterial rRNA sequences. The program tRNA-Scan
[24] identified tRNA sequences, using the parameter for
bacterial tRNAs. Trans-membrane proteins were identi-
fied using TMHMM with standard parameters [25]. Sig-
nalP [26] predicted signal peptides. All CDSs were
queried (blastp) locally against the COG sequence data-
set ([14]) and assigned based upon their sequence hom-
ologies. CRISPR elements were detected through
CRISPR-db [27]. Genes with Pfam domains were ascer-
tained via searches of the Pfam database (E-value thresh-
old 1.0) [28].

Genome properties

Tables 4 and 5 include the summaries of the properties
and statistics of each genome. Sequencing of the E78
isolate identified two plasmids (Table 3); the E75 isolate
did not contain any identifiable plasmid sequences. The
E75 and E78 chromosomes are similar in length and GC
content: E75 is 5,032,328 bp (GC content 50.4 %), while
E78 is 5,021,201 bp (GC content 50.3 %). The genomes
for E75 and E78 are predicted to include 4587 and 4743

Strain E75 E78

Attribute Value % of Total® Value % of Total®
Genome size (bp) 5,032,328 100.00 5,021,201 100.00
DNA coding (bp) 4,466,253 88.75 4,348,152 86.60
DNA G +C (bp) 2,537,751 5043 2,525,290 5029
DNA scaffolds 463 na 60 na
Total genes 4666 100.00 4839 100.00
Protein coding genes 4581 98.18 4743 98.02
RNA genes 85 1.82 96 1.98
Pseudo genes 0 0 0 0
Genes in internal clusters na na na na
Genes with function prediction 3290 70.51 3401 70.28
Genes assigned to COGs 3496 7492 3603 7446
Genes with Pfam domains 2067 4430 2233 46.15
Genes with signal peptides 361 7.74 374 7.73
Genes with transmembrane helices 1083 2321 1114 23.02
CRISPR repeats 6 5

“The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome
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Table 5 Number of genes associated with general COG functional categories

Strain E75 E78
Code Value %age Value %age Description
J 237 5.16 240 5.06 Translation, ribosomal structure and biogenesis
A 2 0.04 2 0.04 RNA processing and modification
K 242 528 258 544 Transcription
L 151 3.29 152 3.21 Replication, recombination and repair
B 0 0 0 0 Chromatin structure and dynamics
D 44 0.96 43 0.91 Cell cycle control, Cell division, chromosome partitioning
V 85 1.85 82 1.73 Defense mechanisms
T 158 345 160 337 Signal transduction mechanisms
M 238 5.19 241 505 Cell wall/membrane biogenesis
N 89 1.94 95 2.00 Cell motility
U 52 1.13 50 1.05 Intracellular trafficking and secretion
0 149 325 149 3.14 Posttranslational modification, protein turnover, chaperones
C 266 5.80 278 586 Energy production and conversion
G 366 7.98 386 8.14 Carbohydrate transport and metabolism
E 336 733 338 7.3 Amino acid transport and metabolism
F 104 227 102 2.15 Nucleotide transport and metabolism
H 167 3.64 169 356 Coenzyme transport and metabolism
I 115 251 118 249 Lipid transport and metabolism
P 213 464 212 447 Inorganic ion transport and metabolism
Q 53 1.16 53 1.12 Secondary metabolites biosynthesis, transport and catabolism
R 173 377 178 375 General function prediction only
S 206 4.50 202 4.26 Function unknown
1085 23.69 1140 24.04 Not in COGs

The total is based on the total number of protein coding genes in the genome

protein coding genes, respectively. A similar coding
density is observed within the two genomes. The 85
RNA genes identified within the E75 genome include 78
tRNAs and 7 rRNAs. The E78 genome encodes for more
RNA genes: 83 tRNAs and 13 rRNAs. The scaffolds of
E75 and E78 are only annotated as having a single 16S
rRNA gene, an underestimation due to recognized chal-
lenges of assembling sequences containing genes with
multiple copies such as the rRNA genes [29] Thus, we
fully expect that the E75 and E78 genomes harbor rRNA
gene numbers on par with the genus.

Insights from the genome sequence

Although E75 was isolated from a woman who reported
that she did not have symptoms of cystitis, its genome
encodes proteins associated with E. coli pathogenesis, in-
cluding the P pilus, RTX toxin, and o-fimbriae. These
genes were not found in E78. While the E75 strain did
not include plasmid sequences, genome sequencing of
the E78 isolate contained two. Plasmid pE78.2 was
nearly identical (one mismatch) to the E. coli plasmid

pVR50G, collected from urine obtained from an individ-
ual with asymptomatic bacteriuria [30].

Both genomes included a number of prophages. Each
prophage sequence within the genomes was BLASTed
(blastx) to the nr/nt database revealing numerous hits to
phage sequences annotated as infecting Escherichia spp.
Annotations within the genomes of the temperate
phages Lambda and P4 were identified most frequently
within the E75 and E78 genomes, respectively. Table 6
lists the statistics of this search. The vast majority of the

hits were to phages annotated as infectious for
Table 6 Predicted sequences of phage origin and putative
origin
E75 E78
Number of predicted phage 112 112
CDSs
Exhibit no sequence homology 4 10
to GenBank
Species with most hits (# hits)  Enterobacteria phage  Bacteriophage
lambda (19) P4 (10)

Sequence homologies determined via blastx
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Escherichia, Salmonella, and/or Shigella spp. Neverthe-
less, prophage sequences for both temperate as well as
lytic phages were identified. The abundance of prophage
sequences within these two genomes exceeds that previ-
ously identified in E. coli genomes.

Conclusions

The genome of E75, isolated from a woman who re-
ported no symptoms of cystitis, is more closely related
to the avian extraintestinal pathogen APEC 01. The gen-
ome of E75, isolated from a woman who reported cyst-
itis symptoms, resides in a clade populated by human
extra-intestinal strains that are either uropathogenic or
asymptomatic bacteriuric. Both genomes contain an un-
usually large number of prophage sequences.
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