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Introduction

General Overview
Scientific software is a special class of software that includes software devel-

oped to support various scientific endeavors that would be difficult, or impos-
sible, to perform experimentally or without computational support. Included
in this class of software are, at least, the following:

• Software that solves complex computationally- or data-intensive prob-
lems, ranging from large, parallel simulations of physical phenomena run
on HPC machines, to smaller simulations developed and used by groups
of scientists or engineers on a desktop machine or small cluster

• Applications that support scientific research and experiments, including
systems that manage large data sets

• Systems that provide infrastructure support, e.g. messaging middleware,
scheduling software

• Libraries for mathematical and scientific programming, e.g. linear alge-
bra and symbolic computing

The development of scientific software differs significantly from the devel-
opment of more traditional business information systems, from which many
software engineering best practices and tools have been drawn. These differ-
ences appear at various phases of the software lifecycle as outlined below:

• Requirements:

– Risks due to the exploration of relatively unknown scientific/engi-
neering phenomena

– Risks due to essential (inherent) domain complexity

– Constant change as new information is gathered, e.g. results of a
simulation inform domain understanding

• Design

– Data dependencies within the software

xxvii
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– The need to identify the most appropriate parallelization strategy
for scientific software algorithms

– The presence of complex communication or I/O patterns that could
degrade performance

– The need for fault tolerance and task migration mechanisms to
mitigate the need to restart time-consuming, parallel computations
due to software or hardware errors

• Coding

– Highly specialized skill set required in numerical algorithms and
systems (to squeeze out performance)

• Validation and Verification

– Results are often unknown when exploring novel science or engi-
neering areas and algorithms

– Popular software engineering tools often do not work on the archi-
tectures used in computational science and engineering

• Deployment

– Larger node and core sizes coupled with long runtimes result in
increased likelihood of failure of computing elements

– Long software lifespans necessitate porting across multiple plat-
forms

In addition to the challenges presented by these methodological differences,
scientific software development also faces people-related challenges. First, ed-
ucational institutions teach students high-level languages and programming
techniques. As a result, there is a lack of developers with knowledge of relevant
languages, like Fortran, or low-level skills to handle tasks like code optimiza-
tion. Second, the dearth of interdisciplinary computational science programs
is reducing the pipeline of graduates who have the experience required to be
effective in the scientific software domain. Furthermore, the lack of these pro-
grams is reducing the motivation for graduates to pursue careers in scientific
software. Third, the knowledge, skills, and incentives present in scientific soft-
ware development differ from those present in traditional software domains.
For example, scientific developers may lack formal software engineering train-
ing, trained software engineers may lack the required depth of understanding of
the science domain, and the incentives in the science domain focus on timely
scientific results rather than more traditional software quality/productivity
goals.

The continuing increase in the importance and prevalence of software de-
veloped in support of science motivates the need to better understand how
software engineering is and should be practiced. Specifically, there is a need
to understand which software engineering practices are effective for scientific
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software and which are not. Some of the ineffective practices may need further
refinements to fit within the scientific context. To increase our collective under-
standing of software engineering for science, this book consists of a collection
of peer-reviewed chapters that describe experiences with applying software
engineering practices to the development of scientific software.

Publications regarding this topic have seen growth in recent years as
evidenced by the ongoing Software Engineering for Science workshop se-
ries1 [1–5], workshops on software development as part of the IEEE Inter-
national Conference on eScience2,3 conference, and case studies submitted to
theWorking towards Sustainable Scientific Software: Practice and Experiences
workshop series4,5. Books such as Practical Computing for Biologists [6] and
Effective Computation in Physics [8] have introduced the application of soft-
ware engineering techniques to scientific domains. In 2014, Nature launched a
new section, Nature Toolbox6, which includes substantial coverage of software
engineering issues in research. In addition, this topic has been a longstanding
one in Computing in Science and Engineering (CiSE)7, which sits at the inter-
section of computer science and complex scientific domains, notably physics,
chemistry, biology, and engineering. CiSE also has recently introduced a Soft-
ware Engineering Track to more explicitly focus on these types of issues8.
EduPar is an education effort aimed at developing the specialized skill set (in
concurrent, parallel, and distributed computing) needed for scientific software
development [7]9.

In terms of funding, the United States Department of Energy funded
the Interoperable Design of Extreme-Scale Application Software (IDEAS)
project10. The goal of IDEAS is to improve scientific productivity of extreme-
scale science through the use of appropriate software engineering practices.

Overview of Book Contents
We prepared this book by selecting the set of chapter proposals submitted

in response to an open solicitation that fit with an overall vision for the book.

1http://www.SE4Science.org/workshops
2http://escience2010.org/pdf/cse%20workshop.pdf
3http://software.ac.uk/maintainable-software-practice-workshop
4http://openresearchsoftware.metajnl.com/collections/special/working-towards-

sustainable-software-for-science/
5http://openresearchsoftware.metajnl.com/collections/special/working-towards-

sustainable-software-for-science-practice-and-experiences/
6http://www.nature.com/news/toolbox
7http://computer.org/cise
8https://www.computer.org/cms/Computer.org/ComputingNow/docs/2016-software-

engineering-track.pdf
9http://grid.cs.gsu.edu/ tcpp/curriculum/?q=edupar

10http://ideas-productivity.org
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The chapters underwent peer review from the editors and authors of other
chapters to ensure quality and consistency.

The chapters in this book are designed to be self-contained. That is, read-
ers can begin reading whichever chapter(s) are interesting without reading the
prior chapters. In some cases, chapters have pointers to more detailed infor-
mation located elsewhere in the book. That said, Chapter 1 does provide a
detailed overview of the Scientific Software lifecycle. To group relevant ma-
terial, we organized the book into three sections. Please note that the ideas
expressed in the chapters do not necessarily reflect our own ideas. As this book
focuses on documenting the current state of software engineering in scientific
software development, we provide an unvarnished treatment of lessons learned
from a diverse set of projects.

General Software Engineering

This section provides a general overview of the scientific software devel-
opment process. The authors of chapters in this section highlight key issues
commonly arising during scientific software development. The chapters then
describe solutions to those problems. This section includes three chapters.

Chapter 1, Software Process for Multiphysics Multicomponent Codes pro-
vides an overview of the scientific software lifecycle, including a number of
common challenges faced by scientific software developers (note readers not
interested in the full chapter may find this section interesting). The chapter
describes how two projects, the long-running FLASH and newer Amanzi, faced
a specific set of these challenges: software architecture and modularization, de-
sign of a testing regime, unique documentation needs and challenges, and the
tension between intellectual property and open science. The lessons learned
from these projects should be of interest to scientific software developers.

Chapter 2, A Rational Document Driven Design Process for Scientific Soft-
ware argues for the feasibility and benefit of using a set of documentation
drawn from the waterfall development model to guide the development of
scientific software. The chapter first addresses the common arguments that
scientific software cannot use such a structured process. Then the chapter
explains which artifacts developers can find useful when developing scientific
software. Finally, the chapter illustrates the document driven approach with
a small example.

Chapter 3, Making Scientific Software Easier to Understand, Test, and
Communicate through Software Engineering argues that the complexity of
scientific software leads to difficulties in understanding, testing, and commu-
nication. To illustrate this point, the chapter describes three case studies from
the domain of computational plant biology. The complexity of the underly-
ing scientific processes and the uncertainty of the expected outputs makes
adequately testing, understanding, and communicating the software a chal-
lenge. Scientists who lack formal software engineering training may find these
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challenges especially difficult. To alleviate these challenges, this chapter rein-
terprets two testing techniques to make them more intuitive for scientists.

Software Testing

This section provides examples of the use of testing in scientific software
development. The authors of chapters in this section highlight key issues as-
sociated with testing and how those issues present particular challenges for
scientific software development (e.g. test oracles). The chapters then describe
solutions and case studies aimed at applying testing to scientific software de-
velopment efforts. This section includes four chapters.

Chapter 4, Testing of Scientific Software: Impacts on Research Credibil-
ity, Development Productivity, Maturation, and Sustainability provides an
overview of key testing terminology and explains an important guiding prin-
ciple of software quality: understanding stakeholders/customers. The chapter
argues for the importance of automated testing and describes the specific
challenges presented by scientific software. Those challenges include testing
floating point data, scalability, and the domain model. The chapter finishes
with a discussion of test suite maintenance.

Chapter 5, Preserving Reproducibility through Regression Testing describes
how the practice of regression testing can help developers ensure that results
are repeatable as software changes over time. Regression testing is the prac-
tice of repeating previously successful tests to detect problems due to changes
to the software. This chapter describes two key challenges faced when testing
scientific software, the oracle problem (the lack of information about the ex-
pected output) and the tolerance problem (the acceptable level of uncertainty
in the answer). The chapter then presents a case study to illustrate how regres-
sion testing can help developers address these challenges and develop software
with reproducible results. The case study shows that without regression tests,
faults would have been more costly.

Chapter 6, Building a Function Testing Platform for Complex Scientific
Code describes an approach to better understand and modularize complex
codes as well as generate functional testing for key software modules. The
chapter defines a Function Unit as a specific scientific function, which may be
implemented in one or more modules. The Function Unit Testing approach
targets code for which unit tests are sparse and aims to facilitate and expe-
dite validation and verification via computational experiments. To illustrate
the usefulness of this approach, the chapter describes its application to the
Terrestrial Land Model within the Accelerated Climate Modeling for Energy
(ACME) project.

Chapter 7, Automated Metamorphic Testing of Scientific Software ad-
dresses one of the most challenging aspects of testing scientific software, i.e.
the lack of test oracles. This chapter first provides an overview of the test or-
acle problem (which may be of interest even to readers who are not interested
in the main focus of this chapter). The lack of test oracles, often resulting from
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the exploration of new science or the complexities of the expected results, leads
to incomplete testing that may not reveal subtle errors. Metamorphic testing
addresses this problem by developing test cases through metamorphic rela-
tions. A metamorphic relation specifies how a particular change to the input
should change the output. The chapter describes a machine learning approach
to automatically predict metamorphic relations which can then serve as test
oracles. The chapter then illustrates the approach on several open source sci-
entific programs as well as on in-house developed scientific code called SAXS.

Experiences

This section provides examples of applying software engineering techniques
to scientific software. Scientific software encompasses not only computational
modeling, but also software for data management and analysis, and libraries
that support higher-level applications. In these chapters, the authors describe
their experiences and lessons learned from developing complex scientific soft-
ware in different domains. The challenges are both cultural and technical. The
ability to communicate and diffuse knowledge is of primary importance. This
section includes three chapters.

Chapter 8, Evaluating Hierarchical Domain-Specific Languages for Compu-
tational Science: Applying the Sprat Approach to a Marine Ecosystem Model
examines the role of domain-specific languages for bridging the knowledge
transfer gap between the computational sciences and software engineering.
The chapter defines the Sprat approach, a hierarchical model in the field of
marine ecosystem modeling. Then, the chapter illustrates how developers can
implement scientific software utilizing a multi-layered model that enables a
clear separation of concerns allowing scientists to contribute to the develop-
ment of complex simulation software.

Chapter 9, Providing Mixed-Language and Legacy Support in a Library:
Experiences of Developing PETSc summarizes the techniques developers em-
ployed to build the PETSc numerical library (written in C) to portably and
efficiently support its use from modern and legacy versions of Fortran. The
chapter provides concrete examples of solutions to challenges facing scien-
tific software library maintainers who must support software written in legacy
versions of programming languages.

Chapter 10, HydroShare — A Case Study of the Application of Mod-
ern Software Engineering to a Large, Distributed, Federally-Funded, Scien-
tific Software Development Project presents a case study on the challenges of
introducing software engineering best practices such as code versioning, con-
tinuous integration, and team communication into a typical scientific software
development project. The chapter describes the challenges faced because of
differing skill levels, cultural norms, and incentives along with the solutions
developed by the project to diffuse knowledge and practice.
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Key Chapter Takeaways
The following list provides the key takeaways from each chapter. This list

should help readers better understand which chapters will be most relevant
to their situation. As stated earlier, the takeaways from each chapter are the
opinions of the chapter authors and not necessarily of the editors.

Chapter 1

- The development lifecycle for scientific software must reflect stages that
are not present in most other types of software, including model devel-
opment, discretization, and numerical algorithm development.

- The requirements evolve during the development cycle because the re-
quirements may themselves be the subject of the research.

- Modularizing multi-component software to achieve separation of con-
cerns is an important task, but it difficult to achieve due to the mono-
lithic nature of the software and the need for performance.

- The development of scientific software (especially multiphysics, multi-
domain software) is challenging because of the complexity of the un-
derlying scientific domain, the interdisciplinary nature of the work, and
other institutional and cultural challenges.

- Balancing continuous development with ongoing production requires
open development with good contribution and distribution policies.

Chapter 2

- Use of a rational document-driven design process is feasible in scientific
software, even if rational documentation has to be created post hoc to
describe a development process that was not rational.

- Although the process can be time consuming, documenting require-
ments, design, testing and artifact traceability improves software quality
(e.g., verifiability, usability, maintainability, reusability, understandabil-
ity, and reproducibility).

- Developers can integrate existing software development tools for tasks
like version control, issue tracking, unit testing, and documentation gen-
eration to reduce the burden of performing those tasks.

Chapter 3

- Scientific software is often difficult to test because it is used to answer
new questions in experimental research.
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- Scientists are often unfamiliar with advanced software engineering tech-
niques and do not have enough time to learn them, therefore we should
describe software engineering techniques with concepts more familiar to
scientists.

- Iterative hypothesis testing and search-based pseudo-oracles can be used
to help scientists produce rigorous test suites in the face of a dearth of
a priori information about its behavior.

Chapter 4

- The complexity of multiphysics scientific models and the presence of het-
erogeneous high-performance computers with complex memory hierar-
chies requires the development of complex software, which is increasingly
difficult to test and maintain.

- Performing extensive software testing not only leads to software that
delivers more correct results but also facilitates further development,
refactoring, and portability.

- Developers can obtain quality tests by using granular tests at different
levels of the software, e.g., fine-grained tests are foundational because
they can be executed quickly and localize problems while higher-level
tests ensure proper interaction of larger pieces of software.

- Use of an automated testing framework is critical for performing regular,
possibly daily, testing to quickly uncover faults.

- Clearly defined testing roles and procedures are essential to sustain the
viability of the software.

Chapter 5

- Use of regular, automated testing against historical results, e.g., regres-
sion testing, helps developers ensure reproducibility and helps prevent
the introduction of faults during maintenance.

- Use of regression testing can help developers mitigate against the or-
acle problem (lack of information about the expected output) and the
tolerance problem (level of uncertainty in the output).

Chapter 6

- The use of a scientific function testing platform with a compiler-based
code analyzer and an automatic prototype platform can help developers
test large-scale scientific software when unit tests are sparse.

- The function testing platform can help model developers and users bet-
ter understand complex scientific code, modularize complex code, and
generate comprehensive functional testing for complex code.



Introduction xxxv

Chapter 7

- The oracle problem poses a major challenge for conducting systematic
automated testing of scientific software.

- Metamorphic testing can be used for automated testing of scientific soft-
ware by checking whether the software behaves according to a set of
metamorphic relations, which are relationships between multiple input
and output pairs.

- When used in automated unit testing, a metamorphic testing approach
is highly effective in detecting faults.

Chapter 8

- Scientists can use domain-specific languages (DSLs) to implement well-
engineered software without extensive software engineering training.

- Integration of multiple DSLs from different domains can help scientists
from different disciplines collaborate to implement complex and coupled
simulation software.

- DSLs for scientists must have the following characteristics: appropriate
level of abstraction for the meta-model, syntax that allows scientists
to quickly experiment, have tool support, and provide working code
examples as documentation.

Chapter 9

- Multi-language software, specifically Fortran, C, and C++, is still im-
portant and requires care on the part of library developers, benefitting
from concrete guidance on how to call Fortran from C/C++ and how
to call C/C++ from Fortran.

- Mapping of all common C-based constructs in multiple versions of For-
tran allows developers to use different versions of Fortran in multi-
language software.

Chapter 10

- Use of modern software engineering practices helps increase the sus-
tainability, quality and usefulness of large scientific projects, thereby
enhancing the career of the responsible scientists.

- Use of modern software engineering practices enables software develop-
ers and research scientists to work together to make new and valuable
contributions to the code base, especially from a broader community
perspective.

- Use of modern software engineering practices on large projects increases
the overall code capability and quality of science results by propagating
these practices to a broader community, including students and post-
doctoral researchers.
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