
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works Faculty Publications

10-20-2016

Software Engineering for Science Software Engineering for Science

Jeffrey C. Carver
University of Alabama - Tuscaloosa

Neil P. Chue Hong
University of Edinburgh

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Numerical Analysis and Scientific Computing Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Jeffrey C. Carver, Neil Chue P. Hong, and George K. Thiruvathukal (editors), Software Engineering for
Science, Taylor and Francis/CRC Press.

This Book Chapter is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It
has been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an authorized
administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.
Copyright (c) 2016, Taylor and Francis, CRC Press.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu

SOFTWARE
ENGINEERING
FOR SCIENCE

Chapman & Hall/CRC
Computational Science Series

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Deputy Director

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

COMBINATORIAL SCIENTIFIC COMPUTING
Edited by Uwe Naumann and Olaf Schenk

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE
Edited by Jeffrey S. Vetter

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE, VOLUME TWO
Edited by Jeffrey S. Vetter

DATA-INTENSIVE SCIENCE
Edited by Terence Critchlow and Kerstin Kleese van Dam

THE END OF ERROR: UNUM COMPUTING
John L. Gustafson

FROM ACTION SYSTEMS TO DISTRIBUTED SYSTEMS: THE REFINEMENT APPROACH
Edited by Luigia Petre and Emil Sekerinski

FUNDAMENTALS OF MULTICORE SOFTWARE DEVELOPMENT
Edited by Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy

FUNDAMENTALS OF PARALLEL MULTICORE ARCHITECTURE
Yan Solihin

THE GREEN COMPUTING BOOK: TACKLING ENERGY EFFICIENCY AT LARGE SCALE
Edited by Wu-chun Feng

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

HIGH PERFORMANCE COMPUTING: PROGRAMMING AND APPLICATIONS
John Levesque with Gene Wagenbreth

HIGH PERFORMANCE PARALLEL I/O
Prabhat and Quincey Koziol

HIGH PERFORMANCE VISUALIZATION:
ENABLING EXTREME-SCALE SCIENTIFIC INSIGHT
Edited by E. Wes Bethel, Hank Childs, and Charles Hansen

INDUSTRIAL APPLICATIONS OF HIGH-PERFORMANCE COMPUTING:
BEST GLOBAL PRACTICES
Edited by Anwar Osseyran and Merle Giles

INTRODUCTION TO COMPUTATIONAL MODELING USING C AND
OPEN-SOURCE TOOLS
José M Garrido

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO ELEMENTARY COMPUTATIONAL MODELING: ESSENTIAL
CONCEPTS, PRINCIPLES, AND PROBLEM SOLVING
José M. Garrido

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS
Georg Hager and Gerhard Wellein

INTRODUCTION TO REVERSIBLE COMPUTING
Kalyan S. Perumalla

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®

Michael A. Gray

PEER-TO-PEER COMPUTING: APPLICATIONS, ARCHITECTURE, PROTOCOLS,
AND CHALLENGES
Yu-Kwong Ricky Kwok

PERFORMANCE TUNING OF SCIENTIFIC APPLICATIONS
Edited by David Bailey, Robert Lucas, and Samuel Williams

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

SOFTWARE ENGINEERING FOR SCIENCE
Edited by Jeffrey C. Carver, Neil P. Chue Hong, and George K. Thiruvathukal

PUBLISHED TITLES CONTINUED

SOFTWARE
ENGINEERING
FOR SCIENCE

Edited by

Jeffrey C. Carver
University of Alabama, USA

Neil P. Chue Hong
University of Edinburgh, UK

George K. Thiruvathukal
Loyola University Chicago, Chicago, Illinois

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160817

International Standard Book Number-13: 978-1-4987-4385-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Carver, Jeffrey, editor. | Hong, Neil P. Chue, editor. |
Thiruvathukal, George K. (George Kuriakose), editor.
Title: Software engineering for science / edited by Jeffrey Carver, Neil P.
Chue Hong, and George K. Thiruvathukal.
Description: Boca Raton : Taylor & Francis, CRC Press, 2017. | Series:
Computational science series ; 30 | Includes bibliographical references
and index.
Identifiers: LCCN 2016022277 | ISBN 9781498743853 (alk. paper)
Subjects: LCSH: Science--Data processing. | Software engineering.
Classification: LCC Q183.9 .S74 2017 | DDC 005.1--dc23
LC record available at https://lccn.loc.gov/2016022277

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures xv

List of Tables xvii

About the Editors xix

List of Contributors xxi

Acknowledgments xxv

Introduction xxvii

1 Software Process for Multiphysics Multicomponent Codes 1
Anshu Dubey, Katie Antypas, Ethan Coon, and Katherine Riley
1.1 Introduction . 2
1.2 Lifecycle . 3

1.2.1 Development Cycle . 4
1.2.2 Verification and Validation 4
1.2.3 Maintenance and Extensions 6
1.2.4 Performance Portability 7
1.2.5 Using Scientific Software 7

1.3 Domain Challenges . 8
1.4 Institutional and Cultural Challenges 9
1.5 Case Studies . 12

1.5.1 FLASH . 12
1.5.1.1 Code Design 12
1.5.1.2 Verification and Validation 14
1.5.1.3 Software Process 16
1.5.1.4 Policies . 18

1.5.2 Amanzi/ATS . 19
1.5.2.1 Multiphysics Management through Arcos . . 20
1.5.2.2 Code Reuse and Extensibility 21
1.5.2.3 Testing . 21
1.5.2.4 Performance Portability 22

vii

viii Contents

1.6 Generalization . 23
1.7 Additional Future Considerations 25

2 A Rational Document Driven Design Process for Scientific
Software 27
W. Spencer Smith
2.1 Introduction . 27
2.2 A Document Driven Method 31

2.2.1 Problem Statement . 32
2.2.2 Development Plan . 33
2.2.3 Software Requirements Specification (SRS) 34
2.2.4 Verification and Validation (V&V) Plan and Report . 35
2.2.5 Design Specification 37
2.2.6 Code . 39
2.2.7 User Manual . 40
2.2.8 Tool Support . 41

2.3 Example: Solar Water Heating Tank 41
2.3.1 Software Requirements Specification (SRS) 42
2.3.2 Design Specification 45

2.4 Justification . 47
2.4.1 Comparison between CRAN and Other Communities . 48
2.4.2 Nuclear Safety Analysis Software Case Study 49

2.5 Concluding Remarks . 50

3 Making Scientific Software Easier to Understand, Test, and
Communicate through Software Engineering 53
Matthew Patrick
3.1 Introduction . 54
3.2 Case Studies . 56
3.3 Challenges Faced by the Case Studies 56

3.3.1 Intuitive Testing . 60
3.3.2 Automating Tests . 62
3.3.3 Legacy Code . 64
3.3.4 Summary . 66

3.4 Iterative Hypothesis Testing 66
3.4.1 The Basic SEIR Model 67
3.4.2 Experimental Methodology 68
3.4.3 Initial Hypotheses . 69

3.4.3.1 Sanity Checks 69
3.4.3.2 Metamorphic Relations 70
3.4.3.3 Mathematical Derivations 71

3.4.4 Exploring and Refining the Hypotheses 71
3.4.4.1 Complexities of the Model 72
3.4.4.2 Complexities of the Implementation 73
3.4.4.3 Issues Related to Numerical Precision 74

Contents ix

3.4.5 Summary . 75
3.5 Testing Stochastic Software Using Pseudo-Oracles 77

3.5.1 The Huánglóngbìng SECI Model 78
3.5.2 Searching for Differences 80
3.5.3 Experimental Methodology 82
3.5.4 Differences Discovered 82
3.5.5 Comparison with Random Testing 86
3.5.6 Summary . 87

3.6 Conclusions . 87
3.7 Acknowledgments . 88

4 Testing of Scientific Software: Impacts on Research
Credibility, Development Productivity, Maturation,
and Sustainability 89
Roscoe A. Bartlett, Anshu Dubey, Xiaoye Sherry Li, J. David Moulton,
James M. Willenbring, and Ulrike Meier Yang
4.1 Introduction . 90
4.2 Testing Terminology . 92

4.2.1 Granularity of Tests 92
4.2.2 Types of Tests . 93
4.2.3 Organization of Tests 94
4.2.4 Test Analysis Tools . 95

4.3 Stakeholders and Team Roles for CSE Software Testing . . . 95
4.3.1 Stakeholders . 95
4.3.2 Key Roles in Effective Testing 96
4.3.3 Caveats and Pitfalls 97

4.4 Roles of Automated Software Testing in CSE Software . . . 98
4.4.1 Role of Testing in Research 98
4.4.2 Role of Testing in Development Productivity 100
4.4.3 Role of Testing in Software Maturity and Sustainability 102

4.5 Challenges in Testing Specific to CSE 103
4.5.1 Floating-Point Issues and Their Impact on Testing . . 103
4.5.2 Scalability Testing . 105
4.5.3 Model Testing . 107

4.6 Testing Practices . 109
4.6.1 Building a Test Suite for CSE Codes 110
4.6.2 Evaluation and Maintenance of a Test Suite 112
4.6.3 An Example of a Test Suite 113
4.6.4 Use of Test Harnesses 114
4.6.5 Policies . 116

4.7 Conclusions . 117
4.8 Acknowledgments . 118

x Contents

5 Preserving Reproducibility through Regression Testing 119
Daniel Hook
5.1 Introduction . 119

5.1.1 Other Testing Techniques 120
5.1.2 Reproducibility . 121
5.1.3 Regression Testing . 122

5.2 Testing Scientific Software 123
5.2.1 The Oracle and Tolerance Problems 123

5.2.1.1 Sensitivity Testing 125
5.2.2 Limitations of Regression Testing 125

5.3 Regression Testing at ESG 126
5.3.1 Building the Tools . 127

5.3.1.1 Key Lesson 129
5.3.2 Selecting the Tests . 129

5.3.2.1 Key Lessons 130
5.3.3 Evaluating the Tests 130

5.3.3.1 Key Lessons 130
5.3.4 Results . 131

5.4 Conclusions and Future Work 132

6 Building a Function Testing Platform for Complex
Scientific Code 135
Dali Wang, Zhuo Yao, and Frank Winkler
6.1 Introduction . 135
6.2 Software Engineering Challenges for Complex Scientific Code 136
6.3 The Purposes of Function Unit Testing for Scientific Code . 136
6.4 Generic Procedure of Establishing Function Unit Testing for

Large-Scale Scientific Code 137
6.4.1 Software Analysis and Testing Environment

Establishment . 138
6.4.2 Function Unit Test Module Generation 139
6.4.3 Benchmark Test Case Data Stream Generation Using

Variable Tracking and Instrumentation 139
6.4.4 Function Unit Module Validation 139

6.5 Case Study: Function Unit Testing for the ACME Model . . 140
6.5.1 ACME Component Analysis and Function Call-Tree

Generation . 140
6.5.2 Computational Characteristics of ACME Code 141
6.5.3 A Function Unit Testing Platform for ACME Land

Model . 144
6.5.3.1 System Architecture of ALM Function Test

Framework 144
6.5.3.2 Working Procedure of the ALM Function Test

Framework 146
6.6 Conclusion . 148

Contents xi

7 Automated Metamorphic Testing of Scientific Software 149
Upulee Kanewala, Anders Lundgren, and James M. Bieman
7.1 Introduction . 150
7.2 The Oracle Problem in Scientific Software 152
7.3 Metamorphic Testing for Testing Scientific Software 154

7.3.1 Metamorphic Testing 154
7.3.2 Applications of MT for Scientific Software Testing . . 155

7.4 MRpred: Automatic Prediction of Metamorphic Relations . . 157
7.4.1 Motivating Example 157
7.4.2 Method Overview . 158
7.4.3 Function Representation 160
7.4.4 Graph Kernels . 161

7.4.4.1 The Random Walk Kernel 161
7.4.5 Effectiveness of MRpred 162

7.5 Case Studies . 162
7.5.1 Code Corpus . 163
7.5.2 Metamorphic Relations 165
7.5.3 Setup . 165

7.6 Results . 167
7.6.1 Overall Fault Detection Effectiveness 167
7.6.2 Fault Detection Effectiveness across MRs 168
7.6.3 Effectiveness of Detecting Different Fault Categories . 171

7.7 Conclusions and Future Work 172

8 Evaluating Hierarchical Domain-Specific Languages for
Computational Science: Applying the Sprat Approach
to a Marine Ecosystem Model 175
Arne N. Johanson, Wilhelm Hasselbring, Andreas Oschlies, and Boris
Worm
8.1 Motivation . 176
8.2 Adapting Domain-Specific Engineering Approaches for

Computational Science . 177
8.3 The Sprat Approach: Hierarchies of Domain-Specific Languages 179

8.3.1 The Architecture of Scientific Simulation Software . . 179
8.3.2 Hierarchies of Domain-Specific Languages 181

8.3.2.1 Foundations of DSL Hierarchies 182
8.3.2.2 An Example Hierarchy 183

8.3.3 Applying the Sprat Approach 185
8.3.3.1 Separating Concerns 186
8.3.3.2 Determining Suitable DSLs 186
8.3.3.3 Development and Maintenance 188

8.3.4 Preventing Accidental Complexity 189
8.4 Case Study: Applying Sprat to the Engineering of a Coupled

Marine Ecosystem Model . 190
8.4.1 The Sprat Marine Ecosystem Model 190

xii Contents

8.4.2 The Sprat PDE DSL 191
8.4.3 The Sprat Ecosystem DSL 192
8.4.4 The Ansible Playbook DSL 192

8.5 Case Study Evaluation . 193
8.5.1 Data Collection . 193
8.5.2 Analysis Procedure . 195
8.5.3 Results from the Expert Interviews 195

8.5.3.1 Learning Material for DSLs 195
8.5.3.2 Concrete Syntax: Prescribed vs. Flexible

Program Structure 196
8.5.3.3 Internal vs. External Implementation 197

8.6 Conclusions and Lessons Learned 198

9 Providing Mixed-Language and Legacy Support in a Library:
Experiences of Developing PETSc 201
Satish Balay, Jed Brown, Matthew Knepley, Lois Curfman McInnes,
and Barry Smith
9.1 Introduction . 201
9.2 Fortran-C Interfacing Issues and Techniques 202
9.3 Automatically Generated Fortran Capability 213
9.4 Conclusion . 214

10 HydroShare – A Case Study of the Application of
Modern Software Engineering to a Large Distributed
Federally-Funded Scientific Software Development Project 217
Ray Idaszak, David G. Tarboton (Principal Investigator), Hong Yi,
Laura Christopherson, Michael J. Stealey, Brian Miles, Pabitra Dash,
Alva Couch, Calvin Spealman, Jeffery S. Horsburgh, and Daniel P. Ames
10.1 Introduction to HydroShare 218
10.2 Informing the Need for Software Engineering Best Practices for

Science . 220
10.3 Challenges Faced and Lessons Learned 221

10.3.1 Cultural and Technical Challenges 221
10.3.2 Waiting Too Long between Code Merges 223
10.3.3 Establishing a Development Environment 224

10.4 Adopted Approach to Software Development Based on the
Lessons Learned . 224
10.4.1 Adopting Best Practices in Modern Software

Engineering . 225
10.4.2 Iterative Software Development 226
10.4.3 Virtual Machines . 227
10.4.4 Code Versioning . 228
10.4.5 Code Reviews . 228
10.4.6 Testing and Test-Driven Development 229
10.4.7 Team Communication 229
10.4.8 DevOps . 230

Contents xiii

10.5 Making Software Engineering More Feasible and Easier to In-
tegrate into One’s Research Activities 231

10.6 Conclusion . 232

References 235

Index 265

List of Figures

1.1 Development cycle of modeling with partial differential
equations. 5

2.1 Overview of recommended process for documentation. . . . 32
2.2 SRS table of contents. 34
2.3 Proposed V&V plan table of contents. 37
2.4 Proposed MG table of contents. 39
2.5 Example literate code documentation. 40
2.6 Solar water heating tank, with heat flux qc from coil and qP

to the PCM. 42
2.7 Goal statements for SWHS. 43
2.8 Sample assumptions for SWHS. 44
2.9 Sample theoretical model. 45
2.10 Sample general definition. 46
2.11 Sample instance model. 47
2.12 Uses hierarchy among modules. 48

3.1 Some challenges in testing the software. 57
3.2 Program languages used in the Department of Plant Sciences. 59
3.3 Software engineering techniques used in the department. . . 60
3.4 SEIR model schematic. 67
3.5 Typical SEIR graph. 68
3.6 Unexpected complexities of the model. 72
3.7 Unexpected complexities of the implementation. 74
3.8 The effect of tolerance thresholds. 75
3.9 Model schematic for HLB. 79
3.10 Two differences identified between M1 and M2. 85

4.1 Trilinos dashboard. 115

5.1 Schematic of the relationship between the three regression
tester tasks. 128

6.1 The major software component and workflow of the ACME
Land Model ALM functional testing. 138

xv

xvi List of Figures

6.2 Cube visualization showing the call-tree of a three-day ACME
simulation running on 32 nodes (508 cores) of the Titan
machine. 142

6.3 Vampir’s trace visualization showing a three-day ACME
simulation running on 32 nodes (508 cores) of the Titan
machine. 143

6.4 The software function call within ALM. Each node represents
a software function call. 145

6.5 Overview of the ALM unit testing platform. 146

7.1 Function from the SAXS project described in Section 7.5.1
used for calculating the radius of gyration of a molecule. . . 155

7.2 JUnit test case that uses the permutative MR to test the
function in Figure 7.1. 156

7.3 Function for finding the maximum element in an array. . . . 158
7.4 Function for finding the average of an array of numbers. . . 158
7.5 Function for calculating the running difference of the elements

in an array. 158
7.6 CFGs for the functions max, average, and calcRun. 159
7.7 Overview of the approach. 160
7.8 Function for calculating the sum of elements in an array. . . 161
7.9 Graph representation of the function in Figure 7.8. 161
7.10 Random walk kernel computation for the graphs G1 and G2. 163
7.11 Effectiveness of MRpred in predicting MRs. 164
7.12 A faulty mutant produced by µJava. 168
7.13 Overall fault detection effectiveness. 169
7.14 Fault detection effectiveness across MRs. 169
7.15 Fault detection effectiveness across MRs. 170
7.16 Fault detection effectiveness of multiple MRs. 170
7.17 Fault detection effectiveness across different fault categories. 171
7.18 Fault detection effectiveness across fault categories for

individual MRs. 172

8.1 Usage relations in the layered architecture of scientific
simulation software. 180

8.2 Horizontal integration of multiple DSLs. 182
8.3 Multiple layers acting as domain-specific platforms for each

other. 183
8.4 DSL hierarchy for the Sprat Marine Ecosystem Model. . . . 184
8.5 Meta-model for the concept of Domain-Specific Language

(DSL) hierarchies. 186
8.6 Engineering process of the Sprat approach. 187
8.7 IDE for the Sprat Ecosystem DSL. 193

List of Tables

2.1 Improving Scientific Software Qualities via Rational Design 29
2.2 Recommended Documentation 31
2.3 Excerpt from Table of Input Variables for SWHS 45

3.1 Model Parameters Used to Find Differences 83
3.2 p-Values Used to Find Differences 84
3.3 Comparison of Areas under p-Value Progress Curves for the

Search-Based Technique and Random Testing 86
3.4 Comparison of p-Values Achieved after 1 Hour for the Search-

Based Technique and Random Testing 86

5.1 Detected Code Faults Classified by Severity 127

7.1 Functions Used in the Experiment 166
7.2 Details of the Code Corpus 167
7.3 The Metamorphic Relations Used in This Study 167
7.4 Categories of Mutations in µJava 168

xvii

About the Editors

Dr. Jeffrey C. Carver is an associate professor in the Department of Com-
puter Science at the University of Alabama. Prior to his position at the Univer-
sity of Alabama, he was an assistant professor in the Department of Computer
Science at Mississippi State University. He earned his PhD in computer science
from the University of Maryland. His main research interests include software
engineering for science, empirical software engineering, software quality, hu-
man factors in software engineering, and software process improvement. He
is the primary organizer of the workshop series on Software Engineering for
Science (http://www.SE4Science.org/workshops). He is a Senior Member of
the IEEE Computer Society and a Senior Member of the ACM. Contact him
at carver@cs.ua.edu.

Neil P. Chue Hong is director of the Software Sustainability Institute at the
University of Edinburgh, which works to enable the continued improvement
and impact of research software. Prior to this he was director of OMII-UK
at the University of Southampton, which provided and supported free, open-
source software for the UK e-Research community. He has a masters degree
in computational physics from the University of Edinburgh and previously
worked at Edinburgh Parallel Computing Centre as a principal consultant
and project manager on data integration projects. His research interests in-
clude barriers and incentives in research software ecosystems and the role of
software as a research object. He is the editor-in-chief of the Journal of Open
Research Software and chair of the Software Carpentry Foundation Advisory
Council. Contact him at N.ChueHong@software.ac.uk.

George K. Thiruvathukal is a professor of computer science at Loyola Uni-
versity Chicago and visiting faculty at Argonne National Laboratory in the
Math and Computer Science Division and the Argonne Leadership Comput-
ing Facility. His research interests include parallel and distributed systems,
software engineering, programming languages, operating systems, digital hu-
manities, computational science, computing education, and broadening par-
ticipation in computer science. His current research is focused on software
metrics in open-source mathematical and scientific software. Professor Thiru-
vathukal is a member of the IEEE, IEEE Computer Society, and ACM.

xix

List of Contributors

Daniel P. Ames
Department of Civil &

Environmental Engineering
Brigham Young University
Provo, UT, USA

Katie Antypas
National Energy Research Scientific

Computing Center
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA

Satish Balay
Mathematics and Computer Science

Division
Argonne National Laboratory
Argonne, IL, USA

Roscoe A. Bartlett
Sandia National Laboratories
Albuquerque, NM, USA

Jed Brown
Department of Computer Science
University of Colorado Boulder
Boulder, CO, USA

Laura Christopherson
RENCI
University of North Carolina at

Chapel Hill
Chapel Hill, NC, USA

Ethan Coon
Computational Earth Sciences
Los Alamos National Laboratory
Los Alamos, NM, USA

Alva Couch
Department of Computer Science
Tufts University
Medford, MA, USA

Pabitra Dash
Utah State University
Logan, UT, USA

Anshu Dubey
Mathematics and Computer Science

Division
Argonne National Laboratory
Argonne, IL, USA

Daniel Hook
Software Group
ESG Solutions
Kingston, ON, Canada

Jeffery S. Horsburgh
Department of Civil &

Environmental Engineering
Utah State University
Logan, UT, USA

Ray Idaszak
RENCI
University of North Carolina at

Chapel Hill
Chapel Hill, NC, USA

Arne N. Johanson
Department of Computer Science
Kiel University
Kiel, Germany

xxi

xxii List of Contributors

Upulee Kanewala
Computer Science Department
Montana State University
Bozeman, MT, USA

Matthew Knepley
Department of Computational &

Applied Mathematics
Rice University
Houston, TX, USA

Xiaoye Sherry Li
Computational Research Division
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA

Lois Curfman McInnes
Mathematics and Computer Science

Division
Argonne National Laboratory
Argonne, IL, USA

Brian Miles
CGI Group Inc.
Fairfax, VA, USA

J. David Moulton
Mathematical Modeling and Analysis
Los Alamos National Laboratory
Los Alamos, NM, USA

Andreas Oschlies
GEOMAR Helmholtz Centre for

Ocean Research
Kiel, Germany

Matthew Patrick
Department of Plant Sciences
University of Cambridge
Cambridge, United Kingdom

Katherine Riley
Argonne Leadership Computing

Facility

Argonne National Laboratory
Lemont, IL, USA

Barry Smith
Mathematics and Computer Science

Division
Argonne National Laboratory
Argonne, IL, USA

Spencer Smith
Computing and Software

Department
McMaster University
Hamilton, ON, Canada

Calvin Spealman
Caktus Consulting Group, LLC
Durham, NC, USA

Michael Stealey
RENCI
University of North Carolina at

Chapel Hill
Chapel Hill, NC, USA

David G. Tarboton
Department of Civil &

Environmental Engineering
Utah State University
Logan, UT, USA

Dali Wang
Climate Change Science Institute
Oak Ridge National Laboratory
Oak Ridge, TN, USA

James M. Willenbring
Sandia National Laboratories
Albuquerque, NM, USA

List of Contributors xxiii

Frank Winkler
National Center for Computational

Sciences
Oak Ridge National Laboratory
Oak Ridge, TN, USA

Boris Worm
Biology Department
Dalhousie University
Halifax, NS, Canada

Ulrike Meier Yang
Center for Applied Scientific

Computing
Lawrence Livermore National

Laboratory
Livermore, CA, USA

Zhuo Yao
Department of Electrical Engineering

& Computer Science
University of Tennessee
Knoxville, TN, USA

Hong Yi
RENCI
University of North Carolina at

Chapel Hill
Chapel Hill, NC, USA

Acknowledgments

Jeffrey C. Carver was partially supported by grants 1243887 and 1445344 from
the National Science Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

Neil P. Chue Hong was supported by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) Grant EP/H043160/1 and EPSRC, BBSRC
and ESRC Grant EP/N006410/1 for the UK Software Sustainability Institute.

George K. Thiruvathukal was partially supported by grant 1445347 from
the National Science Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

MATLAB R© is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

xxv

Introduction

General Overview
Scientific software is a special class of software that includes software devel-

oped to support various scientific endeavors that would be difficult, or impos-
sible, to perform experimentally or without computational support. Included
in this class of software are, at least, the following:

• Software that solves complex computationally- or data-intensive prob-
lems, ranging from large, parallel simulations of physical phenomena run
on HPC machines, to smaller simulations developed and used by groups
of scientists or engineers on a desktop machine or small cluster

• Applications that support scientific research and experiments, including
systems that manage large data sets

• Systems that provide infrastructure support, e.g. messaging middleware,
scheduling software

• Libraries for mathematical and scientific programming, e.g. linear alge-
bra and symbolic computing

The development of scientific software differs significantly from the devel-
opment of more traditional business information systems, from which many
software engineering best practices and tools have been drawn. These differ-
ences appear at various phases of the software lifecycle as outlined below:

• Requirements:

– Risks due to the exploration of relatively unknown scientific/engi-
neering phenomena

– Risks due to essential (inherent) domain complexity

– Constant change as new information is gathered, e.g. results of a
simulation inform domain understanding

• Design

– Data dependencies within the software

xxvii

xxviii Introduction

– The need to identify the most appropriate parallelization strategy
for scientific software algorithms

– The presence of complex communication or I/O patterns that could
degrade performance

– The need for fault tolerance and task migration mechanisms to
mitigate the need to restart time-consuming, parallel computations
due to software or hardware errors

• Coding

– Highly specialized skill set required in numerical algorithms and
systems (to squeeze out performance)

• Validation and Verification

– Results are often unknown when exploring novel science or engi-
neering areas and algorithms

– Popular software engineering tools often do not work on the archi-
tectures used in computational science and engineering

• Deployment

– Larger node and core sizes coupled with long runtimes result in
increased likelihood of failure of computing elements

– Long software lifespans necessitate porting across multiple plat-
forms

In addition to the challenges presented by these methodological differences,
scientific software development also faces people-related challenges. First, ed-
ucational institutions teach students high-level languages and programming
techniques. As a result, there is a lack of developers with knowledge of relevant
languages, like Fortran, or low-level skills to handle tasks like code optimiza-
tion. Second, the dearth of interdisciplinary computational science programs
is reducing the pipeline of graduates who have the experience required to be
effective in the scientific software domain. Furthermore, the lack of these pro-
grams is reducing the motivation for graduates to pursue careers in scientific
software. Third, the knowledge, skills, and incentives present in scientific soft-
ware development differ from those present in traditional software domains.
For example, scientific developers may lack formal software engineering train-
ing, trained software engineers may lack the required depth of understanding of
the science domain, and the incentives in the science domain focus on timely
scientific results rather than more traditional software quality/productivity
goals.

The continuing increase in the importance and prevalence of software de-
veloped in support of science motivates the need to better understand how
software engineering is and should be practiced. Specifically, there is a need
to understand which software engineering practices are effective for scientific

Introduction xxix

software and which are not. Some of the ineffective practices may need further
refinements to fit within the scientific context. To increase our collective under-
standing of software engineering for science, this book consists of a collection
of peer-reviewed chapters that describe experiences with applying software
engineering practices to the development of scientific software.

Publications regarding this topic have seen growth in recent years as
evidenced by the ongoing Software Engineering for Science workshop se-
ries1 [1–5], workshops on software development as part of the IEEE Inter-
national Conference on eScience2,3 conference, and case studies submitted to
theWorking towards Sustainable Scientific Software: Practice and Experiences
workshop series4,5. Books such as Practical Computing for Biologists [6] and
Effective Computation in Physics [8] have introduced the application of soft-
ware engineering techniques to scientific domains. In 2014, Nature launched a
new section, Nature Toolbox6, which includes substantial coverage of software
engineering issues in research. In addition, this topic has been a longstanding
one in Computing in Science and Engineering (CiSE)7, which sits at the inter-
section of computer science and complex scientific domains, notably physics,
chemistry, biology, and engineering. CiSE also has recently introduced a Soft-
ware Engineering Track to more explicitly focus on these types of issues8.
EduPar is an education effort aimed at developing the specialized skill set (in
concurrent, parallel, and distributed computing) needed for scientific software
development [7]9.

In terms of funding, the United States Department of Energy funded
the Interoperable Design of Extreme-Scale Application Software (IDEAS)
project10. The goal of IDEAS is to improve scientific productivity of extreme-
scale science through the use of appropriate software engineering practices.

Overview of Book Contents
We prepared this book by selecting the set of chapter proposals submitted

in response to an open solicitation that fit with an overall vision for the book.

1http://www.SE4Science.org/workshops
2http://escience2010.org/pdf/cse%20workshop.pdf
3http://software.ac.uk/maintainable-software-practice-workshop
4http://openresearchsoftware.metajnl.com/collections/special/working-towards-

sustainable-software-for-science/
5http://openresearchsoftware.metajnl.com/collections/special/working-towards-

sustainable-software-for-science-practice-and-experiences/
6http://www.nature.com/news/toolbox
7http://computer.org/cise
8https://www.computer.org/cms/Computer.org/ComputingNow/docs/2016-software-

engineering-track.pdf
9http://grid.cs.gsu.edu/ tcpp/curriculum/?q=edupar

10http://ideas-productivity.org

xxx Introduction

The chapters underwent peer review from the editors and authors of other
chapters to ensure quality and consistency.

The chapters in this book are designed to be self-contained. That is, read-
ers can begin reading whichever chapter(s) are interesting without reading the
prior chapters. In some cases, chapters have pointers to more detailed infor-
mation located elsewhere in the book. That said, Chapter 1 does provide a
detailed overview of the Scientific Software lifecycle. To group relevant ma-
terial, we organized the book into three sections. Please note that the ideas
expressed in the chapters do not necessarily reflect our own ideas. As this book
focuses on documenting the current state of software engineering in scientific
software development, we provide an unvarnished treatment of lessons learned
from a diverse set of projects.

General Software Engineering

This section provides a general overview of the scientific software devel-
opment process. The authors of chapters in this section highlight key issues
commonly arising during scientific software development. The chapters then
describe solutions to those problems. This section includes three chapters.

Chapter 1, Software Process for Multiphysics Multicomponent Codes pro-
vides an overview of the scientific software lifecycle, including a number of
common challenges faced by scientific software developers (note readers not
interested in the full chapter may find this section interesting). The chapter
describes how two projects, the long-running FLASH and newer Amanzi, faced
a specific set of these challenges: software architecture and modularization, de-
sign of a testing regime, unique documentation needs and challenges, and the
tension between intellectual property and open science. The lessons learned
from these projects should be of interest to scientific software developers.

Chapter 2, A Rational Document Driven Design Process for Scientific Soft-
ware argues for the feasibility and benefit of using a set of documentation
drawn from the waterfall development model to guide the development of
scientific software. The chapter first addresses the common arguments that
scientific software cannot use such a structured process. Then the chapter
explains which artifacts developers can find useful when developing scientific
software. Finally, the chapter illustrates the document driven approach with
a small example.

Chapter 3, Making Scientific Software Easier to Understand, Test, and
Communicate through Software Engineering argues that the complexity of
scientific software leads to difficulties in understanding, testing, and commu-
nication. To illustrate this point, the chapter describes three case studies from
the domain of computational plant biology. The complexity of the underly-
ing scientific processes and the uncertainty of the expected outputs makes
adequately testing, understanding, and communicating the software a chal-
lenge. Scientists who lack formal software engineering training may find these

Introduction xxxi

challenges especially difficult. To alleviate these challenges, this chapter rein-
terprets two testing techniques to make them more intuitive for scientists.

Software Testing

This section provides examples of the use of testing in scientific software
development. The authors of chapters in this section highlight key issues as-
sociated with testing and how those issues present particular challenges for
scientific software development (e.g. test oracles). The chapters then describe
solutions and case studies aimed at applying testing to scientific software de-
velopment efforts. This section includes four chapters.

Chapter 4, Testing of Scientific Software: Impacts on Research Credibil-
ity, Development Productivity, Maturation, and Sustainability provides an
overview of key testing terminology and explains an important guiding prin-
ciple of software quality: understanding stakeholders/customers. The chapter
argues for the importance of automated testing and describes the specific
challenges presented by scientific software. Those challenges include testing
floating point data, scalability, and the domain model. The chapter finishes
with a discussion of test suite maintenance.

Chapter 5, Preserving Reproducibility through Regression Testing describes
how the practice of regression testing can help developers ensure that results
are repeatable as software changes over time. Regression testing is the prac-
tice of repeating previously successful tests to detect problems due to changes
to the software. This chapter describes two key challenges faced when testing
scientific software, the oracle problem (the lack of information about the ex-
pected output) and the tolerance problem (the acceptable level of uncertainty
in the answer). The chapter then presents a case study to illustrate how regres-
sion testing can help developers address these challenges and develop software
with reproducible results. The case study shows that without regression tests,
faults would have been more costly.

Chapter 6, Building a Function Testing Platform for Complex Scientific
Code describes an approach to better understand and modularize complex
codes as well as generate functional testing for key software modules. The
chapter defines a Function Unit as a specific scientific function, which may be
implemented in one or more modules. The Function Unit Testing approach
targets code for which unit tests are sparse and aims to facilitate and expe-
dite validation and verification via computational experiments. To illustrate
the usefulness of this approach, the chapter describes its application to the
Terrestrial Land Model within the Accelerated Climate Modeling for Energy
(ACME) project.

Chapter 7, Automated Metamorphic Testing of Scientific Software ad-
dresses one of the most challenging aspects of testing scientific software, i.e.
the lack of test oracles. This chapter first provides an overview of the test or-
acle problem (which may be of interest even to readers who are not interested
in the main focus of this chapter). The lack of test oracles, often resulting from

xxxii Introduction

the exploration of new science or the complexities of the expected results, leads
to incomplete testing that may not reveal subtle errors. Metamorphic testing
addresses this problem by developing test cases through metamorphic rela-
tions. A metamorphic relation specifies how a particular change to the input
should change the output. The chapter describes a machine learning approach
to automatically predict metamorphic relations which can then serve as test
oracles. The chapter then illustrates the approach on several open source sci-
entific programs as well as on in-house developed scientific code called SAXS.

Experiences

This section provides examples of applying software engineering techniques
to scientific software. Scientific software encompasses not only computational
modeling, but also software for data management and analysis, and libraries
that support higher-level applications. In these chapters, the authors describe
their experiences and lessons learned from developing complex scientific soft-
ware in different domains. The challenges are both cultural and technical. The
ability to communicate and diffuse knowledge is of primary importance. This
section includes three chapters.

Chapter 8, Evaluating Hierarchical Domain-Specific Languages for Compu-
tational Science: Applying the Sprat Approach to a Marine Ecosystem Model
examines the role of domain-specific languages for bridging the knowledge
transfer gap between the computational sciences and software engineering.
The chapter defines the Sprat approach, a hierarchical model in the field of
marine ecosystem modeling. Then, the chapter illustrates how developers can
implement scientific software utilizing a multi-layered model that enables a
clear separation of concerns allowing scientists to contribute to the develop-
ment of complex simulation software.

Chapter 9, Providing Mixed-Language and Legacy Support in a Library:
Experiences of Developing PETSc summarizes the techniques developers em-
ployed to build the PETSc numerical library (written in C) to portably and
efficiently support its use from modern and legacy versions of Fortran. The
chapter provides concrete examples of solutions to challenges facing scien-
tific software library maintainers who must support software written in legacy
versions of programming languages.

Chapter 10, HydroShare — A Case Study of the Application of Mod-
ern Software Engineering to a Large, Distributed, Federally-Funded, Scien-
tific Software Development Project presents a case study on the challenges of
introducing software engineering best practices such as code versioning, con-
tinuous integration, and team communication into a typical scientific software
development project. The chapter describes the challenges faced because of
differing skill levels, cultural norms, and incentives along with the solutions
developed by the project to diffuse knowledge and practice.

Introduction xxxiii

Key Chapter Takeaways
The following list provides the key takeaways from each chapter. This list

should help readers better understand which chapters will be most relevant
to their situation. As stated earlier, the takeaways from each chapter are the
opinions of the chapter authors and not necessarily of the editors.

Chapter 1

- The development lifecycle for scientific software must reflect stages that
are not present in most other types of software, including model devel-
opment, discretization, and numerical algorithm development.

- The requirements evolve during the development cycle because the re-
quirements may themselves be the subject of the research.

- Modularizing multi-component software to achieve separation of con-
cerns is an important task, but it difficult to achieve due to the mono-
lithic nature of the software and the need for performance.

- The development of scientific software (especially multiphysics, multi-
domain software) is challenging because of the complexity of the un-
derlying scientific domain, the interdisciplinary nature of the work, and
other institutional and cultural challenges.

- Balancing continuous development with ongoing production requires
open development with good contribution and distribution policies.

Chapter 2

- Use of a rational document-driven design process is feasible in scientific
software, even if rational documentation has to be created post hoc to
describe a development process that was not rational.

- Although the process can be time consuming, documenting require-
ments, design, testing and artifact traceability improves software quality
(e.g., verifiability, usability, maintainability, reusability, understandabil-
ity, and reproducibility).

- Developers can integrate existing software development tools for tasks
like version control, issue tracking, unit testing, and documentation gen-
eration to reduce the burden of performing those tasks.

Chapter 3

- Scientific software is often difficult to test because it is used to answer
new questions in experimental research.

xxxiv Introduction

- Scientists are often unfamiliar with advanced software engineering tech-
niques and do not have enough time to learn them, therefore we should
describe software engineering techniques with concepts more familiar to
scientists.

- Iterative hypothesis testing and search-based pseudo-oracles can be used
to help scientists produce rigorous test suites in the face of a dearth of
a priori information about its behavior.

Chapter 4

- The complexity of multiphysics scientific models and the presence of het-
erogeneous high-performance computers with complex memory hierar-
chies requires the development of complex software, which is increasingly
difficult to test and maintain.

- Performing extensive software testing not only leads to software that
delivers more correct results but also facilitates further development,
refactoring, and portability.

- Developers can obtain quality tests by using granular tests at different
levels of the software, e.g., fine-grained tests are foundational because
they can be executed quickly and localize problems while higher-level
tests ensure proper interaction of larger pieces of software.

- Use of an automated testing framework is critical for performing regular,
possibly daily, testing to quickly uncover faults.

- Clearly defined testing roles and procedures are essential to sustain the
viability of the software.

Chapter 5

- Use of regular, automated testing against historical results, e.g., regres-
sion testing, helps developers ensure reproducibility and helps prevent
the introduction of faults during maintenance.

- Use of regression testing can help developers mitigate against the or-
acle problem (lack of information about the expected output) and the
tolerance problem (level of uncertainty in the output).

Chapter 6

- The use of a scientific function testing platform with a compiler-based
code analyzer and an automatic prototype platform can help developers
test large-scale scientific software when unit tests are sparse.

- The function testing platform can help model developers and users bet-
ter understand complex scientific code, modularize complex code, and
generate comprehensive functional testing for complex code.

Introduction xxxv

Chapter 7

- The oracle problem poses a major challenge for conducting systematic
automated testing of scientific software.

- Metamorphic testing can be used for automated testing of scientific soft-
ware by checking whether the software behaves according to a set of
metamorphic relations, which are relationships between multiple input
and output pairs.

- When used in automated unit testing, a metamorphic testing approach
is highly effective in detecting faults.

Chapter 8

- Scientists can use domain-specific languages (DSLs) to implement well-
engineered software without extensive software engineering training.

- Integration of multiple DSLs from different domains can help scientists
from different disciplines collaborate to implement complex and coupled
simulation software.

- DSLs for scientists must have the following characteristics: appropriate
level of abstraction for the meta-model, syntax that allows scientists
to quickly experiment, have tool support, and provide working code
examples as documentation.

Chapter 9

- Multi-language software, specifically Fortran, C, and C++, is still im-
portant and requires care on the part of library developers, benefitting
from concrete guidance on how to call Fortran from C/C++ and how
to call C/C++ from Fortran.

- Mapping of all common C-based constructs in multiple versions of For-
tran allows developers to use different versions of Fortran in multi-
language software.

Chapter 10

- Use of modern software engineering practices helps increase the sus-
tainability, quality and usefulness of large scientific projects, thereby
enhancing the career of the responsible scientists.

- Use of modern software engineering practices enables software develop-
ers and research scientists to work together to make new and valuable
contributions to the code base, especially from a broader community
perspective.

- Use of modern software engineering practices on large projects increases
the overall code capability and quality of science results by propagating
these practices to a broader community, including students and post-
doctoral researchers.

	Software Engineering for Science
	Recommended Citation

	tmp.1483747862.pdf.y3SMQ

