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Two roads diverged in a yellow wood, 
And I sorry I could not travel both 
And be one traveler, long I stood 
And looked down one as far as I could ... 

.•. Two roads diverged in a wood, and I
I took the one less traveled by, 
And that has made all the difference. 

-Robert Frost 
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CHAPTER I 

INTRODUCTION 

Elastin is one of the major connective tissue proteins and is pre-

sent in virtually every organ of the body. It is unique in that it is a 

protein with both elasticity and tensile strength. Elastin is found in 

both "yellow" and "white .. connective tissue (tissue with a high content 

of elastin is designated as yellow, while tissue with a high content of 

collagen is designated as white). It is the functional protein component 

of the elastic fiber and displays an amorphous, highly refractive, gener

ally wavy appearance under light microscopy. Upon stretching of the elas-

tic fibers, the waviness disappears and increased birefringence is dis-

played. These properties are attributed to a parallel arrangement of the 

elastin polypeptide chains within the elastic fiber upon stretching 1. 

Specific stains for elastin have long been in use in light micros

copy. Classic stains for elastin are Verhoeff's hematoxylin, resorcin

fuchsin, and orcein 1' 2. Other stains used to visualize elastic fibers 

include Nile blue sulfate, basic fuchsin, osmic acid, Sudan black, and 

Mallory's aniline blue stain, which distinguishes between elastin and 

collagen 3' 4. Electron microscopy stains, such as uranyl acetate and 

lead citrate, allow the visualization of the surrounding microfibrillar 

component, while elastin itself remains mostly unstained 1. Thus, the 

ability of mature elastic tissue to take up light microscopy stains re

sides either in the presence of unreacted aldehydic groups within the 

elastic matrix or in the strong hydrophobic nature of the protein S,fi 

1 
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From microscopy and biochemical studies, it has been determined that 

elastic tissue is comprised of water (approximately 70%), a microfibril

lar protein component, lipids, carbohydrates, and the protein elastin 7' 8. 

It has been observed that elastin can be found wherever elasticity and 

tensile strength are required, primarily in structures which display high 

deformation under small loads and complete recovery after removal of that 

load. Therefore, elastin is in great abundance in the ligamentum nuchae 

of ungulates, the vertebral ligamenta flava, aorta, lung, and pulmonary 

arteries of all primates 1. Specialized forms of elastic tissue include 

elastic cartilaginous tissue, such as the ear and epiglottis. Bronchi, 

skin, adipose tissue, and loose connective tissues are included as elas

tic tissue even though low in elastin content 1 (Table 1). 

A unique property of elastin is its almost complete resistance to 

methods normally used to solubilize other proteins. This was first ob

served by Richard and Gies who subjected elastin to boiling water which 

served to gelatinize and remove collagen 9 These investigators noted 

elastin's resistance to alkali degradation and its non-polar nature, 

which was attributed to a high carbon to oxygen ratio. Finally, they 

demonstrated that elastin peptides aggregated upon heating. This coacer

vation, which represents a form of precipitation, is believed due to a 

high content of non-polar amino acids in the elastin molecule. 

Using x-ray diffraction studies, Lloyd and Garrod observed struc

tural similarities between elastin and lightly vulcanized rubber in that 

both lack molecular orientation 10 . It was determined that elastin is 

not a true rubber since it requires water as a lubricant. Elastin con

sists of randomly coiled polymer chains which are joined together by 



TABLE 1 

ELASTIN CONTENT OF CONNECTIVE TISSUES FROM DIFFERENT ANIMALS 

Species Aorta Lung Uterus Ear· Ligament 

Human 47.1 24.0 6.2 
Bovine 48.2 6.0 66.0 
Porcine 45.0 24.6 1.0 ' 
Dog 40.0 15.7 0.9 
Rat 40.6 13.4 1.5 
Chick 58.5 12.0 0.9 
Rabbit 17.4 6.0 0.8 4.0 
Guinea pig 25.0 4.2 
Hamster 22.0 2.4 

Elastin content is expressed as percentage of the salt-extracted, freeze-dried tissue. 
Whole lung excluding major pulmonary vessels and bronchi. 
From Starcher and Gallone (101) 

w 



4 
cross-links into an extensible three-dimensional network. The cross-

links are the derived amino acids, desmosine and isodesmosine, identified 

by Partridge and co-workers 11 , 12 These cross-links are responsible for 

the characteristic physical properties of the elastin molecule, i.e., its 

rubber-like elasticity and almost complete insolubility. 

The catabolic turnover rate of elastin is low relative to other pro-

teins. Therefore, changes in tissue content as well as structural compo

sition of elastin is altered principally by de~ syntheses l, 13 . Per

haps the most dramatic changes in elastic tissue and elastin have been 

observed in the arteries, lung~, and skin of various species with age. A 

11 brittleneSS 11 in these organs with age has also been observed. This ob

servation may be related to elastin content 1,9,13, 15 ,18, 21,22 

Elastin has been implicated in several disease states (Table 2). 

It has been suggested that changes in elastin may play a role in alter-

ations which occur in blood vessels during degenerative arterial disease, 

as it is common to see alterations in the microscopic elastic network of 

these vessels during the disease state 1, 9, 13 • There is some evidence 

that certain pulmonary disorders, such as emphysema, may be associated 

with changes in the elastin content of the lung. 1,9,19 ,20 . Finally, 

elastin may be involved in certain hereditary skin diseases 1,9,23 

Thus it would be advantageous to know the amount and composition of 

elastin in normal conditions in order to understand the various patholog

ical processes involved in the mentioned disease states. However, this 

information is lacking in that the major source of data pertaining to the 

amount of elastin is derived from gravimetric determinations on the 

residue remaining following the extraction of minced or milled samples. 



TABLE 2 

EFFECTS OF DISEASE ON ELASTIN AND RELATED FEATURES 

DISEASE 

ATHEROSCLEROSIS 

EMPHYSEMA 

PsEUDOXANTHOMA 
ELASTICUM 

HISTOLOGIC 
ABNORMALITY 

FRAGMENTED ARTERIAL ELAS
TIC LAMELLAE WITH CALCIUM 
AND LIPID DEPOSITS AND IN
TIMAL THICKENING. 

FRAGMENTED ELASTIC FIBERS 
PRESERVATION OF MICROFIBRILS 
DESPITE DESTRUCTION OF AMOR
PHOUS ELASTIN, 

FRAGMENTED ELASTIC FIBERS 1 

GRANULAR DEPOSITS IN PLACE 
OF AMORPHOUS ELASTIN, 

FROM SANDBERG ET, AL, (1) 

FUNCTIONAL 
ABNORMALITY 

t VESSEL STIFFNESS 1 VASCULAR 
OCCLUSION AND TEARS, 

t COMPLIANCE OF THE LUNG AT 
LOW LUNG VOLUMES, 

t CoMPLIANCE OF SKIN AND 
FRAGILE VESSELS, 

U1 



TABLE 2 (CoN'T) 

EFFECTS OF DISEASE ON ELASTIN AND RELATED FEATURES 

DISEASE 

ATHEROSCLEROSIS 

EMPHYSEMA 

PsEUDOXANTHOMA 
E~ASTICUM 

BIOCHEMICAL 
ABNORMALITY 

+ELASTINJ +COLLAGEN CON
TENT AND +CALCIUM AND 
LIPID CONTENT OF ELASTIN 

+POLAR AMINO ACID AND CROSS
LINKS IN ELASTIN, 

EARLY +ELASTIN CONTENT AND 
+ELASTIN SYNTHESIS, LATE: 
+ELASTIN SYNTHESIS AND 

POSSIBLY +ELASTIN DEGRADA-
TION, LATER: NORMAL ELAS
TIN CONTENT: +POLAR AMINO 
ACIDS OF ELASTIN AND POSSIBLY 

tPROTEOGLYCANS, 

PoLYIONIC DEPOSITS ON 
ELASTIC FIBERS, 

ETIOLOGIC 
DEFECT 

PossiBILITIEs: RESPONSE 
TO INJURY; MONOCLONAL ORIGIN 
OF PLAQUES; CLONAL SENESCENCE, 

POSSIBILITY: IMBALANCE BE
TWEEN ELASTASE AND INHIBITOR 
SYSTEMSJ PERHAPS IN RESPONSE 
TO EXOGENOUS AGENTS OR GENETIC 
FACTORS, 

SPECULATION: POLYIONIC DE
POSITS (POSSIBLY GLYCOPRO
TEINS) ATTRACT CALCIUM AND 
CAUSE ELASTIN DAMAGE, 

0'\ 



The determinations are, at best, tedious and somewhat non-reproducible 

and subject to various problems including sample degradation 14 ,24-26. 

In the gravimetric procedures the extraction conditions are varied, and 

so are the results. These extractions include: 1) extraction with 1% 

sodium chloride followed by several cycles of autoclaving 14 ,27 ,28 ; 2) 

extraction with hot 0.1 mol/L sodium hydroxide 14 , 18 ,28- 31 ; 3) extrac

tion with formic acid 14 , 32 , 33 ; and 4) extraction with 5 mol/L guanidine 

followed by treatment with collagenase 14 ,34 

A methodology for the study of elastin currently under development 

focuses on the two cross-linking amino acids, desmosine (Des) and iso

desmosine (Ide). These amino acids have only been found in the protein 

elastin and in the non-elastin protein in egg shell membranes 35-38 . 

Thus, their quantitation may be used as an index of the elastin content 

of tissue, just as hydroxyproline is used as an index of the amount of 

collagen present in a tissue 39 ,49 . 

7 

Although various chromatographic methods have been developed for the 

purification and quantitation of Des and Ide 37 ,41-48 , few studies employ 

amino acid quantitation as an index of elastin content 39 , the chromato

graphic procedures being tedious, cumbersome, and limited in their scope 

of application. The few studies utilizing the desmosines for the estima-

tion of elastin employed automated amino acid analysis, a technique which 

is both costly and time consuming. 

FUNCTIONAL ASPECTS OF ELASTIN 

Many of the physical properties of the elastin molecule resemble 

those of the rubber molecule 50 However, elastin is not believed to be 
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a largely random network of cross-linked chains~ like rubber. In contrast 

it is believed to be a network of cross-linked chains containing signifi

cant ordered structure 51 Several models have been proposed to explain 

its functional aspects, as well as its high degree of organization 50- 56 . 

Partridge envisioned elastin as tetrahedrally packed, globular pro

tein subunits, with the hydrophobic residues turned inward with the cross

links protruding from the surface 50 . Using this model, Weis-Fogh and co

workers suggested the functional properties occur by polar-apolar inter

actions, as the hydrophobic core of the globular subunits are exposed to 

an aqueous environment upon stretching 52 • 

Another model~ the random chain, is supported by evidence suggesting 

that the elastin chains are in rapid Brownian motion 53 ,54 . This model 

is also supported by classical thermodynamic considerations 53 ,54 

A third model, the ••oiled-coil"~ has been suggested by Gray and co

workers 55 They claim that the regions of the elastin molecule which 

contain the cross-links are separated by regions composed predominantly 

of glycine~ proline, and valine. They view these regions as a 11 broad 

left handed coil 11 with the hydrophobic residues on the inside and the hy

drophilic residues on the outside. Upon extension of the molecule, the 

coil would be opened, which would expose the hydrophobic groups to a more 

polar environment. This configuration would be thermodynamically un

favorable and the molecule would tend to return to its original state. 

A fourth coiled model is suggested from the observation that the 

repeating sequences in the elastin molecule predominantely represent a 

single secondary structural feature, the S-turn 56 
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COMPONENTS OF ELASTIN BIOSYNTHESIS 

The biosynthesis of elastin is a complex process that includes: syn

thesis of a microfibrillar component by fibroblasts; synthesis of an 

elastin precursor, tropoelastin; and finally, the formation of the mature 

elastin fiber by the action of lysyl oxidase. 

Microfibril Component: 

The non-elastin component of the elastic fiber is the microfibril 13 . 

This glycoprotein component is referred to as a structural protein, but 

its exact function has not been determined 1. These fibers, which are 10 

to 20 nm in diameter, are synthesized by either the fibroblasts or the 

smooth muscle cells 49 , 57 , 58 . This protein lies adjacent to either the 

fibroblast or the smooth muscle cell (which also produce elastin) respon

sible for its synthesis. The microfibrils are laid in bundles parallel to 

the long axis of the developing elastin fiber. These fibers may represent 

the first immature elastin fibers, and as the elastin matures, the micro-

fibrils are found in the interstices and around the periphery of the elas-

tin fiber. There has been some evidence that, in certain areas, these 

microfibrils display periodicity and take on a beaded appearance 1 

The amino acid content of the microfibrils is dissimilar to that of elas-

tin as evidenced by the presence of histidine, methionine, and cystine, 

and the lack of Des and Ide. Also, the non-polar to polar amino acid 

ratio differs from that of elastin 13 . The microfibrils have been shown 

to contain at least two glycoprotein constituents, designated MFP 1 and 

MFP 2 59 . MFP 1 is a collagenous glycoprotein of 150,00 daltons while 
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MFP 2 is a non-collagenous glycoprotein of 300,000 daltons 59 

Tropoelastin: 

Concomitant with the synthesis of the microfibrils is the synthes~s 

of tropoelastin, or soluble elastin 58 Tropoelastin is synthesized from 

the same fibroblasts or smooth muscle cells as the microfibrils, and was 

first isolated by Smith and co-workers from the aortas of copper-deficient 

swine 60 Since this discovery other native soluble elastin molecules 

have been isolated from the aorta of various species including copper-de

ficient chicks 61 , lathyritic chicks 62 , 63 , and from the ligamentum nu

chae of copper-deficient calves 64 . 

Tropoelastin is composed of a single polypeptide chain of approxi

matly 800 residues (68,000-72,000 daltons) 65 ,66 . At present only 70% 

of the sequence is known, but it is clear that the majority of the resi-

dues are non-polar amino acids, such as glycine, proline, alanine, valine, 

phenylalanine, isoleucine, and leucine. The small number of polar amino 

acid residues, such as aspartic acid, glutamic acid, arginine, and lysine 

lend solubility to the molecule. 

The amino acid content of a tropoelastin preparation is given in 

Table 3. Tropoelastin usually contains little or no histidine. It also 

lacks methionine, and other sulfur-containing amino acids. Arginine is 

present in minimal amounts while the remainder of the molecule consists 

largely of apolar amino acids. For these reasons, the purity of tropo-

elastin is sometimes measured by the absence of histidine and methionine 

in protein hydrolysates 67 . Hydroxyproline, a major component of colla

gen (40%), is found in relatively small amounts (5%) in the tropoelastin 



TABLE 3 
AMINO ACID COMPOSITION OF SOLUBLE AND MATURE 

<INSOLUBLE) ELASTIN FROM THE PIG 

SOLUBLE MATURE 
AMINO AciD ELASTIN ELASTIN 

GLYCINE 245 256 
ALANINE 187 181 
PROLINE 91 90 
HYDROXYPROLINE 7 8 

VALINE 103 92 
ISOLEUCINE 14 14 
LEUCINE 41 41 
TYROSINE 14 12 
PHENYLALANINE 24 25 
ARGININE 4 5 
LYSINE 37 5 
CROSS-LINKS* VERY LOW 25 
ASPARTIC ACID AND 3 5 

ASPARAGINE 

THREONINE 10 11 
SERINE 8 11 
GLUTAMIC ACID AND 12 16 

GLUTAMINE 

METHIONINEJ CYSTEINEJ 0-1 1 
TRYPTOPHAN AND 
HISTIDINE 

HUMAN ELASTIN HAS A SIMILAR COMPOSITION, 

BASED ON AN ASSUMED CHAIN LENGTH OF 800 RESIDUES, 

* - EXPRESSED AS LYSINE EQUIVALENTS, A NUMBER OF INTERMEDIATES ARE 

ALSO INCLUDED IN THIS ESTIMATE, ACTUAL LYSINE EQUIVALENTS IN 

DESMOSINE AND ISODESMOSINE ARE EIGHT TO 10, 
FROM SANDBERGJ ET, AL, (1) 

11 
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molecule. Other hydroxylated amino acids are not found in the tropoelas

tin molecule 68 . 

All methods for the purification of the tropoelastin molecule are 

usually performed in the presence of proteolytic inhibitors 61 -63 ,67 ,69 . 

This is necessary due to the susceptibility of the tropoelastin molecule 

to cleavage by various proteases which are often associated with the sol

uble elastin fractions 13 , 70 

Recently, there has been some discussion of the existence of a pre

cursor of tropoelastin 71 , 72 . Rucker and co-workers have postulated that 

tropoelastin is derived from a soluble protein of approximately 95,000 

daltons 71 . These investigators used aortas from copper-deficient chicks 

and a1-antitrypsin at each step of purification. With this modification 

they were able to detect a pre-tropoelastin. Their conclusions were 

based on terminal amino group analysis of the molecule which they state 

is the same as tropoelastin. Also, the amino acid composition of the 

pretropoelastin is similar to that of tropoelastin. It contains a limit

ed number of aldehydic functions and is a viable candidate for action by 

lysyl oxidase. The pre-tropoelastin was found in greater concentrations 

in the aortas from the copper-deficient chicks. 

Foster and co-workers have reported the isolation of a proelastin, 

120,000-130,000 daltons, from lathyritic chick aorta and second passage 

aortic smooth muscle cells from rabbits 72 . Using a pulse-chase tech

nique, involving the incorporation of 3H-valine and 14c-proline, they ob

served a high molecular weight soluble protein. When chased for a period 

of 30 minutes to 1 hour, its concentration decreased with the concomitant 

appearance of the 70,000 dalton tropoelastin. Direct identification of 
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the high molecular weight protein as a precursor to tropoelastin was pro-

vided by amino acid analysis. The amino acid composition of the high 

molecular weight peak was very similar to that of tropoelastin. Foster 

also reported finding a soluble protein of 90,000-100,000 daltons which 

had also been identified by Rucker 71 . This was added evidence of the 

existence of a pro-elastin molecule. 

These findings are controversial. Rosenbloom and co-workers found 

that the presumed pro-elastin contained considerable amounts of histidine 

while tropoelastin and elastin contained little, if any 73 . Rosenbloom 

used a hisitidine analog, histidinal, that would inhibit elastin biosyn

thesis if pro-elastin were a precursor to elastin. They found that while 

collagen synthesis was markedly inhibited by histidinal, tropoelastin 

synthesis was relatively unaffected. By using pulse-chase experiments 

they observed that the labeled tropoelastin was efficiently incorpora

ted into insoluble elastin both in the presence and absence of histi

dinal. From these findings, Rosenbloom suggests that tropoelastin was 

the primary precursor in elastin biosynthesis in chick aorta. 

Lysyl Oxidase: 

Lysyl oxidase is the major enzyme responsible for the conversion of 

tropoelastin to mature elastin. This enzyme has been shown to catalyze 

the reaction of the peptidyl lysine residues in the tropoelastin molecule 

to lysinal. This reaction is necessary if the cross-links found in the 

mature elastin molecule are to occur. Lysyl oxidase has been detected in 

numerous connective tissues and smooth muscle cells in vitro. It has 

been shown to be involved in the oxidation of peptidyl lysine to lysinal 
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in both elastin and collagen biosynthesis 74 . The enzyme has been found 

in close association with its substrate, tropoelastin, and has an abso

lute requirement of copper for maximal activity 7S- 78 . 

There is also evidence that the enzyme exists in various forms 98 . 

Two isozymes of S9,000 and 61,000 daltons, A and B respectively, have 

been isolated from bovine aorta 78 . It is unclear which form predomi

nates ~vivo. Another lysyl oxidase of approximately 180,000 daltons 

has been isolated from bone although its function is not yet known 79 

BIOSYNTHESIS OF ELASTIN 

Three components of elastin biosynthesis (microfibrils, tropoelas

tin, and lysyl oxidase) work in concert to form the mature elastin fiber. 

The general scheme is as follows: first, the fibroblasts or smooth muscle 

cells synthesize the microfibrils which are then deposited along the 

small infoldings on the surface of the cell sa. Second, perhaps concomi

tant with the synthesis of the microfibrils, tropoelastin is synthesized 

intracelluarly on the ribsomes sa. Once tropoelastin is synthesized, it 

is transported outside the cell by an unknown mechanism sa. Here the en

zyme lysyl oxidase oxidizes the E-amino groups of the lysine residues to 

aldehydes. These aldehydes condense, via Schiff base reaction, to form 

the cross-links in the elastin molecule sa. As the modified lysine resi

dues condense, tropoelastin loses its solubility and aggregates around 

the microfibrils, possibly by electrostatic interaction between the two 

molecules, forming the mature elastin molecule 58 
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Mature Elastin: 

In its mature form, insoluble elastin is composed of 4 soluble elas

tin subunits (tropoelastin) that are intermolecularly cross-linked into 

a fibrous network. Elastin, as in tropoelastin, maintains a predomin

ance of non-polar amino acids, with less than 5% polar amino acids 

(Table 3). This predominance of non-polar amino acid residues seems 

unique to elastin and is, therefore, a good means of identification. 

One of the main differences between tropoelastin and elastin is the 

greater lysine content of the former (Table 3). While the tropoelastin 

molecule contains up to 40 lysine residues per 1000, the elastin molecule 

may contain only 3 to 8. This decrease in the amount of lysine is due 

to a direct conversion of lysine into cross-links. As a consequence of 

these cross-links, a highly polymerized and insoluble protein is pro

duced 13 . 

Elastin is similar to collagen in that it contains large amounts of 

the amino acids glycine, valine, alanine, and proline. In fact, due to 

the large amount of valine and proline incorporated in the elastin mole

cule, these amino acids, when labeled with a radioisotope, are used as 

an index of elastin biosynthesis 79 . Elastin contains approximately 10% 

as much hydroxyproline as collagen and contains no hydroxylysine. Elas

tin and egg shell membrane protein are unique in that they are the only 

proteins so far analyzed found to contain Des and Ide , which account for 

approximately 1% by weight (Fig. 1). 

The amino acid composition of elastin has been shown to vary slight

ly between tissues from the same species. A slight variation has also 

been observed in the same tissue from various species. In both cases, 
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Fig. 1. Structure of desmosine and isodesmosine. 
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the variability lies mainly in the non-polar amino acids (Table 4). This 

variability may be due to the purification methods utilized 80 ,81 . 

Much of the elastin molecule appears to be comprised of repeating 

sequences in the form of tetra-, penta-, and hexa-peptide units 13 • For 

example, common tetra-, and penta-peptide sequences are Gly-Gly-Val-Pro 

and Pro-Gly-Val-Gly-Val, respectively. The repeating hexa-peptide unit 

common to elastin is Pro-Gly-Val-Gly-Val-Ala-. There also seems to exist 

a homology with respect to the N-terminal portion of the elastin molecule 

from unrelated species 61 ,62 . 

Another structural feature which seems common to the repeating se

quences in the peptide chain is the beta turn 82 . With this beta turn 

present, the elastin chain is able to fold back on itself. These beta 

turns, when repeated several times, impart a unique structure to the 

elastin molecule, known as the beta spiral. This beta spiral is not 

known to occur in any other mammalian protein and may be important in the 

formation and function of the elastin fiber 1' 82 • 

One other feature which seems to set elastin apart from other pro

teins is its alanine enrichment 1 In the tropoelastin molecule, lysine 

residues almost always occur in pairs, and it is in these regions where 

alanine enrichment seems to occur. That is, the lysine pairs are separa

ted by anywhere from 1 to 3 alanine residues and can be preceded by as 

many as 8 alanine residues in the sequence 83 ,84 . It appears that the 

alanine enrichment is essential for the cross-linking of the lysine re

sidues in the molecule 1. 

From studies on these restricted areas of alanine enrichment, it has 

been proposed that a specialized structure exists in the cross-link areas, 



TABLE 4 
ARTERIAL ELASTIN - COMPOSITION OF INSOLUBLE AORTA ELASTINS 

·- -- --· . ··- --· - ·--
-----·-----

CQW ~ 
AMINO ACID PIG C~ll c K DoG RABBIT AoRTA [I GAMEI'HUM ~ 

GLY 330 340 335 321 311 332 282 281 
ALA 234 180 228 227 223 228 220 232 
VAL 120 177 97 101 137 138 129 126 
PRo 117 131 119 125 132 117 118 112 
HYPRO 11 16 13 16 13 16 11 15 
ILE 18 20 28 22 27 25 27 27 
LEu 54 57 49 58 65 60 62 60 
TRY 16 13 28 28 8 6 25 23 
PHE 33 21 27 22 33 29 25 25 
THR 14 22 15 12 9 10 17 18 
SER 11 13 16 7 9 10 14 16 
AsP + AsN 6 6 8 15 7 8 11 16 
GLU + GLN 19 19 19 14 16 16 23 30 
MET* (2) (2) 
His* <1 2 2 <1 <1 <1 2 4 
ARG 6 8 10 3 6 5 11 14 
LYs 6 4 4 7 5 3 6 10 
IDE 1.2 1.0 0.7 0.6 1.2 0.9 1.1 0.8 
DEs 1.8 1.3 1.0 0.5 2.0 1.4 1.7 1.1 
LNL 0.9 0.7 0.5 . o. Lj 0.9 1.2 0.8 0.6 

fROM RASMUSSEN, ET, AL, (121): BASED ON 1000 RESIDUES, 

* - MET AND HIS MAY REPRESENT OTHER AMINO ACIDS WHICH COCHROMATOGRAPH AS HISTIDINE AND 
METtiiONINE, 

........ 
(X) 
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possibly an a-helical structure 85 . Thus it appears that the elastin has 

a dual nature: one of an extensible portion which contains the hydropho-

bic amino acids; and another compact region, rich in alanine, which con-

tains the lysine residues responsible for the formation of the cross

links in the mature elastin molecule 1. 

Cross-Linking Amino Acids in Elastin: 

All the known cross-links found in elastin are derived from peptidyl 

lysine 3. These cross-links account for elastin's low modulus of elasti

city and its inherent rapid and reversible extensibility. These cross

links maintain the gross structure of the protein as well as limit the 

amount of extensibility under stress. 

LaBella and co-workers found initial evidence for a cross-linking 

substance in 1963 when they reported finding a fluorescent component with 

a yellowish pigment in a partial hydrolysate of thoracic aorta elastin 86 . 

These investigators found that a single substance was responsible for the 

fluorescence at 405, 440, and 460 nm and that the fluorescence increased 

with age. 

Partridge and his group were studying elastin by degradation with 

proteolytic enzymes 86 , 87 . In partial hydrolysates they found amino 

acids, small peptides, and an additional fraction. This fraction con-

tained a component which had a molecular weight higher than ordinary 

amino acids, yet was not a polypeptide 86 ,87 . When this fraction was 

collected it was bright yellow in color and gave the characteristic blue

white fluorescence of elastic tissue. The fraction was then subjected 

to further hydrolysis and two peaks were resolved by ion-exchange chroma-
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tography 86 , 87 . These two peaks were found to be very hygroscopic and 

upon titration each peak displayed 4 pK•s 12 . When the absorbance spec

of the two compounds was determined, compound 11 A11 displayed two absor

bance maxima, 235 and 268 nm, while compound 11 811 displayed only one maxi-

mum at 278 nm. The spectra of compounds A and B were compared to spectra 

of model compounds. It was determined that the structures resembled the 

trimethylpyridines 11 . The structures of these compounds were elucida

ted through these studies, as well as infrared and nuclear magnetic re

sonance spectroscopy (Fig. 1). Compound A was termed desmosine while 

compound B was termed isodesmosine. Both compounds had a MW of 543. 

Biosynthesis of Desmosine and Isodesmosine: 

Partridge and co-workers were among the first to determine that the 

cross-links in elastin were derived from peptidyl lysine 11 ,12, 35-37,83. 

They observed that when the desmosines were oxidized with alkaline ferri

cyanide, the pyridinium ring was destroyed and lysine was liberated. 

Using pulse-chase techniques, other workers found that when 14c-lysine 

was incubated with aorta from chick embryos for 24 hours, the label ap

peared in elastin, while the desmosines remained unlabelled 89 ,90 . Fol-

lowing a 7 day chase period of cold lysine, they observed that the des

mosines became heavily labelled 89 . 

Partridge then injected rats with 14c-lysine daily for a period of 

10 days and isolated the desmosines and lysine from hydrolyzed aortic 

elastin 9° From these studies they determined that the ratio of radio-

activity of desmosine and isodesmosine to lysine was 4 and that it re-

quired approximately 17 days for this ratio to occur. Ultimately Part-
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ridge suggested a biosynthetic pathway whereby 4 neighboring lysine mole-

cules have 3 of their E-amino groups deaminated oxidatively, and then 

cyclize to form a pyridinium ring 58 , 90 . 

Diets deficient in copper and/or containing lathyrogenic agents, 

such as s-aminopropionitrile (BAPN) or semicarbazide, inhibit the synthe

sis of elastin. These same agents were found to inhibit the biosynthe

sis of the desmosines. The inhibition displayed in by a copper deficient 

diet is based on the fact that lysyl oxidase requires copper for acti

vity. The inhibition by BAPN or semicarbazide is due to their binding 

of the aldehyde functions after the catalytic action of lysyl oxidase. 

Using two techniques for inhibiting desmosine and isodesmosine synthe

sis, O'Dell and others found other minor cross-links were possible in 

elastin biosynthesis 91 . They utilized aorta organ culture techniques 

in the presence of lathyrogenic agents with a copper-deficient medium. 

They observed that the rate of 14c-lysine incorporation into elastin was 

not affected, but the rate of labeled lysine incorporation into desmo

sine and isodesmosine was greatly reduced. From these results they de

termined that other cross-links in elastin were possible 91 ,92 . 

Miller and co-workers found the condensation product of two lysine 

molecules in which one of theE-amino groups is deaminated 93 . This con

densation results in the formation of lysinonorleucine (Fig. 2). 

Partridge found that elastin which had been reduced with -sodium 

borohydride and hydrolyzed by acid gave a peak which overlapped with ly

sinonorleucine on amino acid analysis 88 . This compound was found to 

have an 18 carbon backbone with a molecular weight of 436 and was termed 

merodesmosine. It could be derived from the condensation product of 3 
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~H2 ~ ~H2 
CH-(CH2}4-N-(CH2)4-CH 
I I 
C02H C02H 

LYSINONORLEUCINE 

MERODESMOSINE 

Fig. 2. Structure of lysinonorleucine and merodesmosine. 



23 

lysine residues (Fig. 2). With further studies, it was determined that 

merodesmosine could result from two reactions: 1) the condensation of the 

Schiff base of lysinonorleucine (dehydrolysinonorleucine) with a lysine 

residue; or 2) the condensation of 2 aldehydic functions from lysine re

sidues with another lysine residue. Both pathways resulted in the forma-

tion of dehydromerodesmosine which can then be reduced to merodesmosine. 

In summary, the biosynthetic pathway suggested by Partridge seems 

the most plausible 94- 97 . The key step in the pathway seems to be the 

oxidative deamination of the s-amino groups of selected lysine residues, 

yielding a-aminoadipic acid-o-semialdehyde. This reaction is accomplish

ed by the action of lysyl oxidase. The aldehyde can then react in one of 

two ways: 1) formation of a Schiff base with a lysine residue yielding 

dehydrolysinonorleucine; or 2) condensation with another aldehyde via an 

aldol condensation. Dehydrolysinonorleucine can be further reduced to 

form lysinonorleucine or can form 4-hydroxy-2,3-dehyroisodesmopipyridine 

via combination with an aldol condensation product. This compound can 

then be dehydrated to form 2,3,4,5-dehydroisodesmopipyridine, which can 

spontaneously undergo oxidation to form isodesmosine (Fig. 3). If the 

aldol condensation product unites with a lysine residue to form dehydro-

merodesmosine, merodesmosine can be synthesized by a simple reduction. 

However, if the dehydromerodesmosine reacts with a-aminoadipic acid-a-

semialdehyde, 2-hydroxy-5,6-dehydrodesmopipyridine is formed, which can 

spontaneously dehydrate to form 2,3,5,6-dehydrodesmopipyridine. Desmo

sine can then be synthesized by an oxidative reaction (Fig. 3). 

Studies with model aldehydes and amines suggest that after the 

initial enzymatic oxidation of the s-amino groups to lysyl residues, the 
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above reactions occur spontaneously 98 , 99 . 

The amino acid sequences around the cross-linking regions have been 

elucidated 11 ,100. These areas are rich in alanine and also contain a 

high percentage of serine, glutamic acid, phenylalanine, and tyrosine. 

It was proposed by Foster and co-workers that lysines, which are preced

ed and followed by alanine or glycine, are oxidized, but those lysine 

residues followed by large hydrophobic amino acids (particularly tyrosyl 

residues) do n~t undergo oxidation 100• Thus, the placement of the ty

rosyl residues may determine the positions where cross-links are not 

formed 69,100 



CHAPTER 2 

PROPOSAL 

The aim of this research project is to devise a more rapid and accu

rate method for the quantitation of the desmosines and there ~re the es

timation of the elastin. One possible method of quantitation, proven to 

be both rapid and accurate for minute amounts af analytes, is the immuno

assay. In all immunoassays, there is one basic reaction: 

Ab + Ag--+ Ab Ag 

where Ab is the antibody produced against a specific antigen Ag. This 

reaction depends on the specificity of the Ab for the Ag in forming the 

Ab•Ag complex. In this simple reaction, either the depletion of the Ab 

or Ag or the appearance of the Ab•Ag complex may be quantitated. How

ever, this quantitation is usually difficult due to the amounts of Ab or 

Ag present in the reaction, and the minute amount of Ab·Ag complex formed. 

To aid in the quantitation, a label is introduced into the assay system. 

The classical label for such immunoassays is a radioisotope which 

can be attached to the Ag. In this case the reaction for a radioimmuno

assay (RIA) is as follows: 

Ab + Ag + Ag*~Ab·Ag* + Ab·Ag + Ag + Ag* 

where Ag* is the labeled antigen. Due to the effect of mass action, the 

amount of Ag* bound to the Ab is proportional to the concentration of the 

unlabeled Ag. Thus, by varying the amount of Ag, and maintaining the Ab 

and Ag* at constant concentrations, a standard curve for the Ag may be 

constructed. The remaining necessity in RIA involves the separation of 

26 



27 

the Ab•Ag* complex from the Ag*. Because this step involves a physical 

separation (double antibody; activated charcoal; solid phase separation), 

RIA is considered a heterogenous immunoassay technique. 

While RIA is a sensitive and accurate assay it has its drawbacks. 

One, for example, is the fact that the assay employs a radioisotope which 

must be handled and disposed of properly. Secondly, RIA's tend to have 

a short storage life and are expensive. 

Due to these drawbacks, a different type of immunoassay has been 

developed. This assay relies on the basic immunoassay reaction, but the 

label is an enzyme rather than a radioisotope. Instead of determining 

the activity of the isotope, enzyme activity is a measure of the Ag in 

the assay. This technique, developed by Syva, Palo Alto, Ca., is called 

an enzyme multiplied immunoassay technique (EMIT~, and relies on an 

artificially produced phenonmenon by which the enzyme activity can be 

controlled by any desired substance 103 . 

In this system, the enzyme is activated by minute quantities of Aq, 

and this activity is proportional to the concentration of the Aq present. 

This type of assay is developed by first conjugating the Aq or hapten 

(compound of less than 1000 daltons, which by itself does not elicit an 

antigenic response from the host) to an enzyme 103 . The conjugation is 

regulated such that the conjugation site is in the proximity of the re

active site of the enzyme 103 . Finally, specific Abare produced 

against the Ag or hapten (Hp). 

With the addition of the enzyme substrate to the reaction mixture 

which contains the Ab and the enzyme-Ag (Hp) conjugate, no activity is 

detected. This inhibition is thought to be due to the inability of the 
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substrate to reach the active site of the enzyme due to physical blocking 

of the site by the Ab 103 . If, however, free Ag (Hp) is added to there

action mixture, there will be competitive binding between the Ab and the 

enzyme-Ag (Hp) conjugate or the free Ag (Hp), allowing the enzyme tore

act with it~ substrate, thereby displaying activity proportional to the 

amount of free Ag (Hp) present. As the concentration of the free Ag 

(Hp) increases, the Ab binds more of the free Ag (Hp) allowing more of 

the enzyme to react with its substrate, further increasing its activity. 

By varying the concentration of the free Ag (Hp), a standard curve may 

be constructed of the concentration of the free Ag (Hp} vs. enzyme acti

vity. This type of assay is termed a homogenous immunoassay because no 

physical separation step is required. 

Several enzymes are employed with this type of assay, including egg 

white lysozyme (EC 3.2.1.17), and glucose-6-phosphate dehydrogenase (G-

6-PDase EC 1.1.1.49). 

Thus, the first part of this research project is to apply this type 

of assay to quantitating desmosine, and isodesmosine. First, they are 

conjugated to a carrier protein such as bovine serum albumin (BSA). 

Once conjugated, antibodies to both desmosine and isodesmosine can be 

produced using rabbits. Concomitant with the conjugation of the desmo

sines to BSA, desmosine and isodesmosine are conjugated to several en-

zymes, including lysozyme and glucose-6-phosphate dehydrogenase. Once 

these preliminary steps are achieved, an enzyme immunoassay system is 

possible for the quantitation of the desmosines. 

Another potential method for the quantitation of the desmosines from 

elastin is amino acid analysis via high performance liquid chromatography 
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(HPLC). Several methods now exist for amino acid analysis by HPLC uti

lizing several different separation techniques 104- 106 . These techniques 

include the derivatization of the amino acids with a fluorogenic compound 

followed by reverse phase HPLC separation 104 , separation of underivati

zed amino acids by ion-suppression 105 , or the separation of the amino 

acids by ion-exchange HPLC 106 . Another possible means of separating the 

amino acids is by ion-paired HPLC, which in essence creates a pseudo-ion-

exchange column and also employs some of the characteristics of a reverse 

phase column. 

High performance liquid chromatography is a technique whereby a com

plex mixture can be readily separated and each component quantitated. 

While its fundamental theories were drawn from gas liquid chromatography 

(GC), HPLC has supplanted GC in many areas of analytical work, especially 

in the analysis of non-volatile or thermally labile compounds. 

An HPLC system usually consists of a pump, a column, and a detector. 

Of these three, the column is the most important for it is the column 

which actually does the separating of the various components of the mix

ture. It achieves this separation by the interaction of the compound 

with both the stationary phase (column packing) and the mobile phase 

(eluting solvent). This interaction varies according to the stationary 

phase and the mobile phase employed in the separation. 

The interaction of the compound with the various phases on the 

column can be quantitated by the various parameters, k', a, Rs, and N. 

The capacity factor, k', is a measure of the retention of the compound 

on the column for that particular system. It can be calculated by the 

equation: 



k' = 
v1 - vo 

vo 

where v1 is the retention volume of the compound of interest; v0 is the 

void volume of the column. 
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The separation factor, a, is a measure of the ability of the chroma-

tographic system to separate two components of a mixture, and is defined 

as the ratio of the k' of the two components: 

k' 
a= _2_ 

k' 1 

where k2 is the capacity factor for the longer retained component. 

The resolution factor, Rs, expresses the separation of the two peaks 

and includes the average peak width as well as the peak to peak separa

tion. It is calculated as follows: 

v2 - v1 
R = -____;;;~__;;;..,__ 
s 1/2(w1 + w2) 

where w1 and w2 are the width of the two peaks at the baseline. Baseline 

resolution of the two peaks would correspond to an R
5 

value of 1.5 119 . 

Finally, the theoretical plate number, N, which is a term used for 

comparative purposes, describes the efficiency of the column. The ef

ficiency is calculated as follows: 

N = (t/w) 2 

where t is the retention time of the peak and w is the width (em) of r 

the peak at baseline. With this number the efficiency of two different 

columns can be compared for a particular compound providing all other 

operating parameters remain constant. 

As stated earlier, there are different types of HPLC. These include 
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adsorption or liquid-solid chromatography, partition or liquid-liquid 

chromatography, and ion-exchange chromatography. In adsorption chromato

graphy, the components to be separated are bound to the surface of the 

column packing, and this bonding is dependent on the functional qroups 

on the molecule. The common adsorbants are silica gel and alumina. In 

adsorption chromatography the stationary phase is polar while the mobile 

phase is non-polar. 

In ion-exchange HPLC, retention is the result of two simultaneous 

processes: 1) the distribution of compounds between the mobile phase, 

usually polar, and the organic stationary phase; 2) reaction with the 

ionic sites within the stationary phase. These ionic sites usually con

sist of R-so3- groups for cation exchange columns or R-N(CH 3); groups 

for anion exchange columns. Classically, ion-exchange columns have been 

utilized for amino acid analysis. 

Partition chromatography relies on the partitioning of the solute 

between two phases, mobile and stationary, and the functionality of the 

solute for separation. This type of chromatography is the most widely 

used method for HPLC analysis. Partition chromatography is divided into 

two types, normal and reverse phase. In normal phase, so named due to 

historically being the first used, the stationary support is coated 

(bonded) with a polar moiety, while the mobile phase is relatively non

polar. Typically, normal phase supports are bonded to cyano (CN), amine 

(NH2), or hydroxyl (OH) compounds. 

In reverse phase chromatography, the stationary phase support is 

bonded, via siloxanes, to non-polar groups, usually c2 to c18 alkanes. 

Of these, the most widely utilized is the octadecylsilane (ODS). The 
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retention mechanism for reverse phase HPLC is more complex than classical 

forms. In reverse-phase HPLC, the mobile phase is of higher polarity 

than the stationary phase; thus polar substances tend to elute prior to 

less polar. This is just opposite to the results obtained from a normal 

phase column. 

There are 3 possibilities for the separation mechanism in reverse 

phase: 1) partitioning of the solute between the non-polar stationary 

phase and the polar mobile phase; 2) adsorption of the solute to the non

polar functions of the stationary phase; and 3) partitioning of the so

lute molecules between the mobile phase and a 11 new" stationary phase 

which is the organic modifier (usually methanol or acetonitrile) added to 

the mobile phase and adsorbed onto the stationary phase 107 . 

Ionized compounds, such as amino acids, elute very quickly or yield 

poorly defined peaks with severe tailing on a reverse phase column. 

There are several ways to suppress the ionization of the molecules to aid 

in their separation. One such way is to chemically modify the ionic spe

cies by bonding another molecule of less polarity to it 104 . Usually 

this derivatization process not only decreases the ionization of the rna-

lecule (polarity), but also usually produces a chromophore which enhances 

the detection of the molecule 104 Another method for controlling the 

ionization of the molecule is by controlling the pH of the mobile phase 

in order to suppress the ionization of the molecule. This technique is 

called ion-suppression, and is useful for weak acids and bases in the pH 

range of 2 to 8. This technique cannot be used with strong acids and 

bases which remain ionized in that pH range. 

When using strong acids or bases, another technique is available for 
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their separation. With this technique the tailing and poor peak shapes 

can be circumvented by forming ion pairs with a counter ion dissolved 

in the mobile phase. This ion-pair chromatography (IPC) technique has 

several possible modes of retention.of a solute. One mode is the actual 

pairing between the sample and the counter ion, thereby decreasing the 

polarity as shown below: 
+ 

A(aq) + B(aq)---7AB(org) 

where A+ is the aqueous sample; 8- is the counter ion in the mobile 

phase; and AB is the ion paired species. Another possible mechanism is 

the conversion of the reverse phase column to a pseudo-ion-exchange co

lumn, thereby possessing both characteristics of a reverse phase column 

and an ion-exchange column. The actual separation mechanism may be a 

combination of the two processes 107 . 

In this part of the research, the desmosines are separated and 

quantitated by several of the described HPLC techniques, including ion-

exchange HPLC, ion-suppression HPLC, derivatization with a fluorogenic 

compound, and finally by ion paired HPLC. 



CHAPTER 3 

METHODS AND MATERIALS 

PURIFICATION OF DESMOSINE AND ISODESMOSINE 

Commercially prepared desmosine and isodesmosine (Elastin Products, 

St. Louis, Mo.) were dissolved in 5.0 mL of 0.2 mol/L sodium citrate 

buffer, pH 2.20. This solution was then applied to a jacketed column, 

85 x 5 em, packed with Aminex ~1s "C" resin. The column temperature was 

maintained at 45 °C with a circulating water bath. The flow rate was 

maintained at 12.0 mL/min. The column was first eluted with approxi

mately 100 mL of 0.2 mol/L sodium citrate buffer, pH 3.25, followed by 

1.0 L of 0.38 mol/L sodium citrate buffer, pH 4.00. The desmosine or 

isodesmosine was then eluted with 0.38 mol/L sodium citrate buffer, pH 

5.65. 

The eluted desmosine or isodesmosine was then lyophilized and re

dissolved in a minimum of 0.1 mol/L hydrochloric acid and quantitatively 

transferred to a 45 x 2 em column packed with Dowex 50WX8 cation exchange 

resin, 50-100 mesh, in the hydrogen form. The salts were eluted with 3.0 

L of glass distilled, deionized water at a flow rate of 9.0 mL/min and 

the desmosine or isodesmosine was then eluted with 0.5 mol/L ammonium hy

droxide. This solution was then lyophilized. 

Following the elution of the desmosine or isodesmosine, the hydrogen 

form of the cation exchange resin was regenerated. 

34 
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AMINO ACID ANALYSIS 

The purity of the desmosines, as well as the amino acid analysis of 

the protein and tissue hydrolysates, was accomplished with a Beckman 121 

camino acid analyzer. The analyzer utilized an 11.0 x 0.9 em jacketed 

column packed with PA-35, a sperical 7.5% cross-linked sulfonic acid re

sin, with a mean particle size of 13.0 ± 0.6 mm. The column temperature 

was maintained at 56 °C. 

The automatic program (Fig. 4) employed for the separation and quan

titation of the amino acids was as follows. The samples were diluted 

with 0.2 mol/L sodium citrate buffer, pH 2.20. Of this dilution 0.5 ml 

was injected and the column was first eluted with 0.2 mol/L sodium ci

trate buffer, pH 3.45 for 15 min, followed by a second elution with 0.35 

mol/L sodium citrate buffer, pH 4.25 for 60 min. The final eluting buf

fer was 0.35 mol/L sodium citrate, pH 5.25, for a period of 60 min. All 

buffers were pumped at approximately 100 psig, at a flow of 68 ml/min. 

Following the elution of the amino acids~ the column was regenerated 

with 0.2 mol/L sodium hydroxide, followed by column equilibration with 

the initial buffer. All buffers contained 0.4 ml of 25% thiodiglycol/L 

to establish a reducing environment and 1.0 ml of toluene/L to retard 

bacterial growth. 

The eluted amino acids were detected by reaction with ninhydrin. 

The ninhydrin was prepared according to the Beckman amino acid manual. 

SPECTRA DETERMINATION OF DESMOSINE AND ISODESMOSINE 

The purified desmosine or isodesmosine (5.43 mg each) was dissolved 
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in 10.0 ml of deionized, glass distilled water, hereafter referred to as 

water. Each solution was scanned against a water blank from 340 to 190 

nm with a Perkin-Elmer recording spectrophotometer. 

CONJUGATION AND ANTIBODY PRODUCTION 

Purification of the Glutaraldehyde Solution: 

To 100 ml of commercially prepared 25% glutaraldehyde (Sigma Chemi

cal Co., St. Louis, Mo.), 15 to 25 g of activated charcoal was added and 

throughly mixed. This mixture was then filtered through a 0.45 ~m milli-

pore filter. This procedure of Anderson was performed several times un

til the filtrate changed from a straw yellow color to a clear solution 

with a 11 fruity 11 fragrence 109 . The spectrum of the purified glutaralde

hyde was then recorded from 340 to 200 nm with a Beckman DB-1 recording 

spectrophotometer and compared to the literature spectrum 109. 

Conjugation of the Desmosines to Bovine Serum Albumin: 

The purified desmosine or isodesmosine was conjugated to bovine 

serum albumin via a modified method of several authors 110-114. In this 

procedure, 50 mg (0.735 nmol) of bovine serum albumin (BSA) was dissolved 

in 9.78 ml of 0.1 mol/L sodium acetate buffer, pH 5.0. To this was added 

24.0 mg (44.2 nmol) of desmosine or isodesmosine. These amounts were 

added to establish a desmosine or isodesmosine to BSA ratio of 60 114 . 

While slowly stirring, a purified 2% glutaraldehyde solution was added 

dropwise in various amounts to establish a glutaraldehyde to desmosine or 

isodesmosine mol ratio of 1 to 4 114 . The mixture was allowed to react 

for 3 hours at room temperature, after which the mixture was centrifuged 
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at 1,000 x ~for 20 min to remove any protein-protein macro-conjugates. 

The remaining supernatant was either dialyzed against water at 4 °C for 

24 hours or placed on a Sephadex G-50 column (45 x 1 em) and eluted with 

0.1 mol/L sodium acetate buffer, pH 5.0. The eluant was monitored at 280 

nm. The protein conjugate eluted from the column was then dialyzed 

against water for 24 hours at 4 °C to remove the buffer. The dialysate 

was then lyophilized and stored dessicated at 0 °C until needed. 

All other conjugation procedures were modifications of this method. 

Conjugation of the Desmosines to Lysozyme: 

Purified desmosine or isodesmosine was conjugated to lysozyme (EC 

3.2.1.17, Sigma Chemical Co., St. Louis, Mo.), by the method previously 

described for BSA with the following modifications. Fifty mg of lysozyme 

(3.47 x 10-6 mol) was dissolved in 9.78 mL of 0.066 mol/L potassium phos

phate (monobasic) buffer, pH 6.24. To this solution was added 113 mg of 

desmosine or isodesmosine (2.083 x 10-4 mol), followed by the addition 

of 1.05 mL of a 2% glutaraldehyde solution (2.083 x 10-4 mol), dropwise. 

Following the conjugation reaction and centrifugation, the superna

tant was dialyzed against water for 24 hours at 4 °C, lyophilized and 

stored desiccated at 0 °c. 

Conjugation of the Desmosines to Glucose-6-Phosphate Dehydrogenase: 

Purified desmosine or isodesmosine was conjugated to glucose-6-phos

phate dehydrogenase (EC 1.1.1.49, Sigma Chemical Co., St. Louis, Mo.), 

grade IV, by the method previously described for BSA with the following 

modifications. One ml of a glucose-6-phosphate dehydrogenase solution, 
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containing 2.05 mg (2.05 x 10-5 mol) protein, was added to 3.97 mL of a 

0.1 mol/L Tris buffer, pH 7.6. To this was added 0.67 mL of a desmosine 

or isodesmosine solution (1 mg/mL; 1.23 x 10-4 mol). While slowly stir

ring, 0.013 mL of a 2% glutaraldehyde solution was added dropwise. 

Following the conjugation reaction and centrifugation, the superna

tant was dialyzed against water for 24 hours at 4 °C, lyophilized, and 

stored desiccated at 0 °C. 

Determination of Lysozyme Activity: 

Lysozyme, grade I, from egg whites, was assayed by a modified pro

cedure of Shugar 115 . The substrate, Micrococcus lysodeikticus (Sigma 

Chemical Co., St. Louis, Mo.) was prepared by adding approximately 1.5 mg 

~- lysodeikticus to 10.0 mL of 0.066 mol/L potassium phosphate buffer, pH 

6.24. The absorbance of this solution was adjusted to between 0.6 and 

0.7 at 450 nm with buffer. Of this adjusted substrate suspension, 0.625 

mL was added to a micro silica cuvette. To this was added 0.1-0.2 mL of 

either buffer or prepared antisera and mixed. Finally, 0.1 mL of a ly-

sozyme solution or lysozyme-desmosine or isodesmosine conjugate solution 

(1.0 mg lysozyme or lysozyme conjugate dissolved in 10.0 mL of 0.066 

mol/L potassium phosphate buffer, pH 6.24) was added and quickly mixed 

by inversion. Following an initial equilibration period of between 15 

and 120 seconds, the absorbance at 450 nm (A450 ) was recorded every 30 

seconds. The A450 was recorded for a period of 2 to 4 min following the 

initial equilibration, and the relative rate, A450 change/min (6A450 ) was 

determined. 

This assay was utilized to determine the rate of the reaction for 
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unconjugated and the conjugated enzyme, as well as for titering the anti-

sera for the quantitation of the desmosines. 

Determination of Glucose-6-Phosphate Dehydrogenase Activity: 

Glucose-6-phosphate dehydrogenase activity was assayed by a modified 

procedure of Bergmeyer et al 116 . The activity was determined by the 

change in absorbance at 340 nm. The assay was as follows: 2.95 ml of a 

0.1 mol/L Tris buffer, pH 7.6, containing 6.9 mmol/L magnesium chloride, 

1.0 mmol/L glucose-6-phosphate, and 0.39 mmol/L nicotine adenine dinu

cleotide phosphate (NADP) was added to a 3.0 ml cuvette. At time zero, 

0.02 ml of a glucose-6-phosphate dehydrogenase (G-6-PDase) solution (2.05 

mg protein/ml buffer) was added to the sample cuvette and mixed. The re

ference cuvette contained 2.92 ml of 0.1 mol/L Tris buffer, pH 7.6, con

taining the various cofactors. The absorbance at 340 nm was recorded for 

a period of 5 min and the relative rate, A340 change/min was determined. 

This assay was utilized to determine the rate of the reaction for 

the unconjugated and the conjugated enzyme for the quantitation of the 

desmosines. 

Production of Antibodies to Desmosine and Isodesmosine: 

Various amounts of lyophilized BSA-desmosine or BSA-isodesmosine 

conjugates (2.5 to 5.0 mg) were dissolved in a minimal amount of sterile 

normal saline. An equal volume of Freund•s complete adjuvant was added 

and the mixture was emulsified by repeatedly aspirating and expelling the 

mixture from a sterile glass syringe fitted with a 21 gauge needle 117 

A frothy white appearence indicated complete emulsification. 
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The emulsified mixture was administered by a modified method of Vai-

tukaitis et al 117 . The fur was shaved from the back and proximal limbs 

of New Zealand white rabbits, and the emulsion was injected intradermally 

at 15 to 20 sites, such that each rabbit received a total of 2.0 mL. 

Following the initial inoculation, booster injections of from 2.5 

to 5.0 mg of emulsified conjugates (Freund•s incomplete adjuvant) were 

administered intramuscularly bi-weekly. After 8 weeks the rabbits were 

bled 117. Bleeding was accomplished via the central ear artery, follow

ing the shaving of the ear and application of xylene for vasodilitation. 

The blood was collected into sterile 10 ml glass syringes, and transfer

red to silicone coated vacutainers. Two to 4 ml of blood was collected 

from each rabbit per bleeding. After clotting and centrifuging, the 

sera were frozen in 1.0 ml aliquots. Booster injections were continued 

throughout the course of bleeding the rabbits. 

During the course of these procedures, the rabbits were housed at 

the animal research facility, Loyola University Medical Center, and fed 

standard lab chow and allowed water ad lib. 

Titering of the Antisera: 

The antisera collected from the rabbits were diluted 1:1, 1:10, 

1:100, and 1:1000 with either 0.066 mol/L potassium phosphate buffer, 

pH 6.24, or 0.1 mol/L Tris buffer, pH 7.6 to be used in the lysozyme or 

G-6-PDase assays, respectively. The various dilutions were then added to 

their respective assays, as previously described, and the relative rate 

of the reaction calculated for each. 
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3H-Isodesmosine Conjugation to BSA: 

To 24.0 mg of unlabeled isodesmosine, approximately 0.5 ml of 3H

isodesmosine (0.02 mg; ~100 ~Ci), prepared by Amersham (Arlington Heights, 

IL.) was added. This mixture was then conjugated to BSA as previously 

described with an isodesmosine to BSA ratio of 60 and a glutaraldehyde to 

isodesmosine ratio of 1. Following its lyophilization, the conjugate was 

dissolved in a minimum amount of glass distilled, deionized water. To 

this was added 8.0 mL of scintillation fluor (4% PPO, 10% BSS, toluene, 

w/v) and the conjugate was counted to a 0.2% error in a Beckman scintil

lation counter. 

HPLC DETERMINATIONS 

All HPLC determinations for desmosine or isodesmosine utilized a 

Water•s M-6000 pump system connected to a Water•s U6K injector fitted 

with a 2.0 ml injection loop. The amino acids were detected with either 

a Water•s M-440 dual wavelength detector (254 and 280 nm) or a Water•s 

M-450 variable wavelength detector at 205 nm, or a Water•s M-420 fluor

escence detector (334 nm excitation, 450 nm emission). An Omniscribe 

dual pen recorder was utilized to quantitate the various amino acids as 

they eluted via the peak height method. All injection were made with a 

Hamilton 50 ~L syringe, designed for the Water•s injector. 

Ion-Exchange HPLC: 

For all ion-exchange determinations, a Whatman SCX/Partisil 10, 25 x 

0.4 em column was utilized. The column consisted of sulfonic acid func

tional groups bound to inert particles 10 ~m in size. For determina-
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tions the amino acids were first dissolved in 0.1 mol/L potassium hydro-

xide (10 mg amino acid/50 ml). Five ~L of each were injected onto the 

column and eluted with 0.2 mol/L ammonium phosphate (dibasic) buffer, 

with the pH varied from 2.5 to 3.5. The mobile phase was maintained at 

a constant flow of 0.7 ml/min (300 psig). The amino acids were detected 

at either 280, 245, or 205 nm as they eluted from the column. 

Reverse Phase and Ion-Suppression HPLC: 

For all reverse phase and reverse phase-ion suppression HPLC deter

minations a Water's C-18 ~-Bondapak 30.0 x 4.0 mm, 10 ~m particle size, 

column was utilized. This column consists of octadecyl alkane moieties 

chemically bonded to silica particles. The amino acids were separated 

and quantitated by a modified method of Hancock 104 . In this procedure, 

5 to 10 ~L of the amino acid solutions (10 mg amino acid/50 ml water) 

were injected onto the column and eluted with a mobile phase, which con

sisted of a methanol/water/phosphoric acid solution, which varied from 

0/99/1 to 40/59/1 (v/v). The pH varied from 2.5 to 6.0. The flow rate 

was maintained at 1.0 mL/min (1800 to 2500 psig, depending on the methan

ol percentage of the mobile phase). The amino acids were detected at 205 

nm as they eluted from the column. 

Derivatization with ortho-Phthaldialdehyde: 

The methods of Lindroth and Mop per 105 , and Gardner and ~·1i 11 er 106 , 

were employed for the derivatization and detection of the amino acids. 

The method utilized a pre-column derivatization procedure prior to the 

injection of the amino acids onto the C-18 column. Again a Water's C-18 
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column was utilized. The amino acids were derivatized with o-phthaldal-

dehyde (OPA) reagent, which consisted of 270 mg OPA (Sigma Chemical Co., 

St. Louis, Mo.) dissolved in 5.0 mL of absolute ethanol. To this was 

added 200 ~L of 2-mercaptoethanol. The OPA reagent was then made to 500 

mL with 0.4 mol/L boric acid, pH 9.5. 

To derivatize the amino acids, 100 ~L of OPA reagent was added to 20 

~L of the sample, and allowed to react at room temperature for 2.0 min. 

Ten ~L of the derivatized sample was then injected onto the column and 

eluted with 0.05 mol/L sodium phosphate (monobasic) buffer, pH 7.3, with 

the methanol percentage varied between 50 ~nd 95%. The mobile phase was 

maintained at a constant flow of 1.0 mL/min, and the amino acids were 

detected as they eluted from the column by fluorescence, at an excitation 

wavelenth of 340 nm and an emission wavelength of 450 nm. 

Ion-Paired HPLC: 

This method of separation (PIC R Supplement, Water•s Inc.) utilized 

the sodium salt of heptane sulfonic acid (Eastman Kodak Co., Rochester, 

N.Y.) as the counter ion. For separation of the desmosines, this system 

employed either a Water•s C-18 column as previously described or a Bio

Rad ODS-5, 15 em x 4 mm i.d., C-18 column (5 ~m particle size). The 

amino acids either from standards or from hydrolysates were eluted with 

a methanol/water solvent, with the methanol percentage varied between 19 
' 

and 30%. The solvent contained 0.01 mol/L heptane sulfonic acid, sodium 

salt, and was adjusted to pH 3.0 with phosphoric acid. The mobile phase 

was maintained at a constant flow of 1.0 mL/min (1000 to 2500 psig, de

pending on the methanol percentage in the mobile phase). The eluted 
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amino acids were detected at either 205, 254, or 280 nm and were quanti-

tated by peak height, as compared to a standard curve. 

Tissue Preparation: 

Tissue samples from both canine and human aortas were first cleaned 

by removing any plaque and fat deposits which were visibly present. The 

tissue was minced and weighed to yield a wet weight of from 2 to 4 g. 

The minced tissue was then dried at 60 °C at 0.05 mm Hg pressure over

night to a constant weight. The dried tissue was then defatted by a 

series of ethanol, ethanol-ether (1:1), and finally ether extractions. 

The tissue was again dried and weighed to yield a fat free dry weight 

(FFDW). 

The FFDW tissue was then hydrolyzed at 110 °C for 48 hours with 6 

mol/L hydrochloric acid. Following hydrolysis, 20 to 30 mg of activated 

charcoal was added to the hydrolysate and the mixture was again heated to 

60 °C with agitation for 10 min, followed by filtering through a 3 ~m 

Millipore filter to remove the charcoal. 

For amino acid analysis by the Beckman 121 C, the hydrolysate was 

diluted with 0.2 mol/L sodium citrate buffer, pH 2.2, and analyzed as 

previously described. For analysis by HPLC, the hydrochloric acid had 

first to be removed. This was accomplished by a series of washings with 

water, each followed by evaporation under vacuum. Once the hydrochloric 

acid was removed, the hydrolysate was diluted to final volume with glass 

distilled, deionized water. 
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RECOVERY STUDIES OF THE DESMOSINES USING HPLC 

Recovery from Hydrolyzed BSA: 

To determine the analytical recovery and to check the linearity of 

the ion-paired HPLC method, desmosine and isodesmosine were added to BSA, 

prehydrolysis. In this method, 50 mg of BSA was added to consecutively 

numbered hydrolysis tubes. To the first tube, no desmosine or isodesmo

sine was added. To the remaining tubes, desmosine and isodesmosine were 

added in various amounts to achieve the following concentrations: Tube 2, 

0.0224 and 0.0130 mmol/L; tube 3, 0.0448 and 0.0180 mmol/L; tube 4, 

0.0597 and 0.0265 mmol/L; and to tube 5, 0.0784 and 0.0397 mmol/L, desmo

sine and isodesmosine, respectively. The BSA was then hydrolyzed as pre

viously described, followed by the determination of the desmosines. 

Recovery from Hydrolyzed Canine Aorta: 

The above recovery studies were then repeated substituting prepared 

canine aorta for the BSA. Once the initial desmosine and isodesmosine 

concentration of the aorta sample was determined, the remaining tissue 

was spiked {prehydrolysis) with desmosine and isodesmosine to achieve the 

following concentrations of desmosine and isodesmosine, respectively: 

0.056 and 0.049 mmol/L; 0.060 and 0.056 mmol/L; 0.070 and 0.061 mmol/L; 

0.072 and 0.066 mmol/L; and finally 0.080 and 0.078 mmol/L. The spiked 

aorta samples were then hydrolyzed and the desmosine and isodesmosine 

concentrations determined, as previously described. 
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COLLAGEN DETERMINATIONS 

Hydroxyproline Determinations: 

The collagen content of all the tissue hydrolysates was determined 

by the method of Blumenkrantz and Asboe-Hanson 40 In this method, the 

hydroxyproline content is correlated to the amount of collagen present in 

the tissue. For this method, 1.0 mL of hydrolysate was mixed with 1.5 mL 

of a borate-alanine buffer, pH 8.7 and 600 uL of a 0.2 mol/L chloramine T 

solution. Following a 20 min reaction time, 2.0 mL of a 3.6 mol/L thio

sulfate solution was added and throughly mixed. Sodium chloride was then 

added to the mixture to saturation levels. After a 20-30 minutes, 3.0 

mL of toluene was added to the.tube , followed by heating at 100 °C in a 

water bath. The tubes were then cooled and allowed to set for 15 min 

followed by a slow speed centrifugation for 10 min. 

One mL of the organic layer was then removed and mixed with 0.4 ml 

of Ehrlich's reagent (Appendix A). After a 30 min reaction time in the 

dark, at room temperature, the solution was read in a spectrophotometer 

at 565 nm against a reagent blank. The A565 was compared to a standard 

curve for hydroxyproline. 



CHAPTER 4 

RESULTS 

PURIFICATION OF THE DESMOSINES 

From the amino acid analysis of the commercially prepared desmosine 

and isodesmosine, it was observed that mutiple unknown peaks appeared on 

the aminograms. Since the desmosines would be used in the conjugation 

reactions, it was decided that they should be further purified. The des

mosines were then purified as described in Chapter 3. 

Two criteria were used to judge the purity of the desalted, purified 

desmosines, the first being a single eluting peak on amino acid analysis, 

and secondly a comparison of their respective ultra-violet (UV) spectra 

to those published. Following their purification, desmosine and isodes

mosine were both found to elute as single peaks on amino acid analysis, 

at 70 and 78 min, respectively, devoid of any extraneous peaks first ob

served on amino acid analysis of the unpurified desmosines (Figs. 5,6). 

These purified fractions were then subjected to UV analysis, as previous

ly described. Both desmosine and isodesmosine were found to display UV 

absorption in the 200 to 280 nm range, desmosine displaying its charac

teristic bi-modal absorption spectrum, having absorbance maxima at 238 

and 268 nm, with a slight inflection at 273 nm (Fig. 7), while isodesmo

sine displaying its characteristic single absorption maximum at 278 nm, 

with an inflection at 217 nm (Fig. 8). Both these obtained spectra cor

related well with those previously published 8,9 
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51 



ID 
u 
c 

"' ~ ... 
0 

"' ~ 
< 

200 260 
nm 

320 

Fig. 8. Ultraviolet spectrum of purified isodesmosine. 

52 



53 
Therefore, from the results obtained from amino acid analysis and UV ana-

lysis, it was determined that the desmosine and isodesmosine preparations 

were pure. The purified desmosine and isodesmosine, hereinafter referred 

to as desmosine and isodesmosine, were used in the conjugation and anti

body production phase of the research, as \'le 11 as for the standards in 

all automated amino acid analysis and HPLC method development. 

CONJUGATION AND ANTIBODY PRODUCTION 

Purification of Glutaraldehyde: 

In order to elicit an antigenic response from the inoculated rab

bits, desmosine or isodesmosine first had to be conjugated to a carrier 

molecule, BSA fraction V. It was decided that this conjugation of either 

Des or Ide to BSA should be attempted via a reaction with glutaraldehyde. 

However, before attempting this conjugation, the commercially prepared 

25% glutaraldehyde was purified. This purification involved the stirring 

of the glutaraldehyde solution with activated charcoal, as described in 

Chapter 3. According to the literature, an absence of an absorbance 

peak at 235 nm, as well as the solution being clear and colorless with a 

distinct "fruity" fragrance, are all indicative of a pure solution 109 . 

In the commercially prepared solution of glutaraldehyde, a strong ab

sorption peak was noted at 235 nm and the solution had a yellowish tinge. 

However, on treatment with activated charcoal, the filtrate was observed 

to be clear and colorless, with a "fruity" fragrance. The purified so

lution also did not display any absorption peak at 235 nm. Using the 

before mentioned criteria, it was determined that the glutaraldehyde 

solution was pure and suitable to be utilized in the conjugation reac-
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tion. 

Conjugation of the Desmosines to BSA: 

Following the purification of the desmosines, and the glutaraldehyde 

solution, conjugation of either Des or Ide to BSA was attempted, as pre

viously described in the methods. In all conjugation studies the mol 

ratio of Des or Ide to BSA was maintained at 60:1, with the mol ratio of 

glutaraldehyde to Des or Ide varied from 1:1 to 10:1. 

During the course of the conjugation reaction, it was noted that the 

mixture changed from a clear, colorless solution to a straw yellow color, 

and that a white flocculant precipitate formed. Upon completion of the 

reaction, the solution was placed on a Sephadex G-50 column, and eluted 

with the appropriate buffer. The eluant was monitored at 280 nm and 2 

peaks were observed (Fig. 9). The first peak eluted with the void vo

lume, while the second eluted at approximately 60 ml. The first peak was 

found to contain the protein portion of the reaction, while the second 

peak contained the unconjugated Des or Ide. No attempt was made to quan

titate the unconjugated Des or Ide. The white flocculant precipitate 

which formed was thought to be protein-protein macroconjugates, which 

form as a side reaction to the conjugation process 114 . 

Following the initial conjugation, the glutaraldehyde (Glu) to Des 

ratio was varied from 1-10. In these conjugation reactions, the appear

ence, color and the amount of precipitation was qualitatively noted. 

Finally, the amount of protein remaining in the supernatant, following 

the 1,000 x ~centrifugation, was quantitated by the Lowry method. 

Table 5 shows the results of the various conjugation conditions uti-
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Fig. 9. Elution profile of conjugation reaction mixture applied 
to a Sephadex G-50 column, and eluted with 0.1 mol/L 
sodium acetate buffer, pH 5.0. BSA-Desmosine conjugate 
and unreacted desmosine detected at 280 nm. 
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TABLE 5 

DETER,"1INATION OF GLUTARALDEHYDE TO DES~10SINE RATIO 

IN BSA-DESMOSINE CONJUGATION 

AMOUNT 
GLU/DES APPEARANCE* PRECIPITATION** PROTEIN*** 

0 CLEAR NONE 48 MG 

1 liGHT YELLOW SLIGHT 46 MG 

2 STRAW YELLOW ~10DERATE 40 MG 

3 YELLOW MODERATE-HEAVY 20 MG 

4 YELLOW HEAVY 0 MG 

DETERMINATION OF GLUTARALDEHYDE TO DESMOSINE RATIO FOR CONJUGATION OF 

DESMOSINE TO BSA, RATIOS ARE MOLAR AND BASED ON A DESMOSINE TO BSA 

RATIO OF 60 USING 50 MG OF BSA IN THE REACTION, 

• 
•• 
*** 

APPEARANCE OF REACTION MIXTURE FOLLOWING 3 HR, AT ROOM TEMPERATURE, 

RELATIVE AMOUNT OF PRECIPITATE FOLLOWING CENTRIFUGATION, 

PROTEIN REMAINING IN SUPERNATANT FOLLOWING CENTRIFUGATION, 
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ized to determine the optimum glutaraldehyde to Des or Ide ratio. It was 

noted that as the glutaraldehyde to Des ratio was increased from 1 to 4, 

the amount of protein precipitation increased, with a concomitant de

crease in the amount of protein remaining in the supernatant. It was also 

observed that during the course of the reaction, the appearance of the 

mixture changed from a colorless solution to a dark yellow, the color de

pendent on the glutaraldehyde to Des ratio. 

From these findings, it was determined that all conjugation reac

tions would utilize a glutaraldehyde to Des or Ide ratio of 1 in order 

to assure a maximum yield of conjugate (protein remaining in the super

natant) with a minimum of precipitation. 

Conjugation of the Desmosines to Lysozyme or G-6-PDase: 

Des or Ide was conjugated to lysozyme and G-6-PDase as previously 

described in the methods. The glutaraldehyde to Des or Ide ratio was 

maintained at 1 (as determined in their conjugation to BSA) in order to 

minimize any protein-protein macrocomplexes, which would decrease the 

amount of available enzyme. No visible precipitation was noted upon the 

completion of the conjugation reaction; however, following the centrifu

gation, a minute amount of a white precipitate was noted. 

In order to determine the loss of lysozyme activity due to the con

jugation procedure, unconjugated lysozyme activity was compared to that 

of the lysozyme-Des or -Ide conjugate. When the two were normalized to 

mg protein, a substantial decrease was noted in the conjugated enzyme 

(9.05 ± 0.16 ~A/min/mg vs. 1.37 ± 0.07 ~A/min/mg, respectively). This 

decrease amounts to a loss of approximately 85% of the unconjugated lyso-
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zyme activity. This loss, however, was not unexpected, as loss of enzyme 

activity upon conjugation has been reported 110 , 111 , 113 Even with the 

85% loss of activity, it was decided that the remaining activity should 

be sufficient for the quantitation of the desmosines utilizing lysozyme. 

Glucose-6-phosphate dehydrogenase activity was also compared between 

the unconjugated and conjugated enzyme. In these assays the rates were 

normalized to units of activity. Upon normalization, it was found that 

51% of the unconjugated enzyme activity was lost due to the conjugation 

process (2.05 ± 0.04 6A/min/unit vs. 1.23 ± 0.06 6A/min/unit). 

Of the two enzyme assays, there was a greater sensitivity, as well 

as a greater yield of active enzyme, with G-6-PDase. However, both en-

zymes were utilized to titer the antisera, in order to determine which 

enzyme was better suited for the quantitation of the desmosines. 

Antibody Production: 

Bovine serum albumin-desmosine or isodesmosine conjugates were in-

jected into New Zealand white rabbits as previously described. A total 

of 8 rabbits (4 groups) were inoculated with either 2.5 or 5.0 mg conju

gate/injection. Rabbits 1 and 2 recieved 2.5 mg BSA-Des conjugate/injec

tion, while rabbits 3 and 4 received 5.0 mg BSA-Des conjugate/injection. 

Rabbits 5 and 6, and 7 and 8, were injected with 2.5 and 5.0 mg BSA-Ide 

conjugate/injection, respectively. 

Following the initial inoculations, lesions developed at the sites 

of the injections. These lesion eventually cleared, and no other gross 

problems were encountered during the course of the antibody production. 

The initial bleeding of the rabbits occurred after 8 weeks, and was 



continued every 2 weeks thereafter, up to 16 weeks. Booster injections 

were administered every 2 weeks, with Freund•s incomplete adjuvant, and 

continued throughout the 16 weeks. 
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The antisera collected from each bleeding were diluted to various 

titers {1, 1:1, 1:10, 1:100, 1:1000) with buffer used for each enzyme. 

These various titers were then assayed for antibody activity utilizing 

both the Des or Ide conjugated lysozyme or G-6-PDase preparations. If 

antibody activity was present, then a decrease in enzyme activity {rate) 

from the control activity {sera from untreated rabbits) should be obser

ved. When the various antisera obtained from the rabbits over several 

bleedings were assayed, no decrease in either enzyme activity from con

trol values were noted (Tables 6-9). The specific data shown is for the 

final bleeding at 16 weeks. No differences were noted between the rab

bits in each group, or the time interval from the initial inoculations. 

It was noted that the enzyme activity substantially increased when any 

serum (both control and antiserum) was added to the assay mixture. This 

increase is thought to be due, in part, to non-specific activation of 

the enzymes by the proteins or the co-factors present in the serum of 

the rabbits. 

The lack of inhibition of either enzyme assayed, at the various 

titers of the antisera, could be accounted for by several reasons. One, 

that the assays were not sufficiently sensitive enough to detect the de

crease in the activity {rate) of the enzymes, or two, that antibodies to 

either Des or Ide were not produced. Since both enzymes employed in this 

research have been extensively utilized in this type of assay, it was 

decided to investigate the possibility that antibodies were not being 



TITER OF 

ANTISERA 

0* 

1 

1:1 

1:10 

1:100 

1:1000 

CONTROL** 

TABLE 6 

TITERING OF DESMOSINE ANTISERA 

FROM RABBIT 1 

LYSOZYME 

(liA/MliM·1G PROTEIN) 

1.36 :t 0.07 

1.66 :t 0.03 

1.69 :t 8.04 

1. 67 ± 0. 03 

1.65 ± 0.02 

1.68 ± 0.03 

1.63 :t 0.05 

G-6-PDASE 

CM/MIN/UNIT) 

1.22 :t 0.05 

1.52 ± 0.04 

1.?1 ± 0.03 

1.49 ± 0.06 

1. 53 ± 0.02 

1.50±0.03 

1.53 ± 0.04 

RATE OF REACTION FOR LYSOZYME- AND G-6-PDASE-DESMOSINE CONJUGATES 

AT VARIOUS TITERS OF ANTISERA FROM RABBIT 1. 
ADMINISTERED 2.5 MG BSA-DESMOSINE CONJUGATE/INJECTION, 

* ASSAYED WITH APPROPRIATE BUFFER, REPLACING ANTISERA, 

**ASSAYED WITH SERA FROM UNTREATED RABBIT, 
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TITER OF 

ANTISERA 

0* 

1 

1:1 

1:10 

1:100 

1:1000 

TABLE 7 

TITERING OF DESMOSINE ANTISERA 

FROM RABBIT 3 

LYSOZYME 

<~A/MIN/MG PROTEIN) 
' 

1. 36 :!: 0. 07 

1.69 :!: 0.05 

1.65 :!: 0.03 

1.67:!: 0.03 

1.68 :!: 0.04 

1.65:!: 0.03 

CONTROL** 1. 66 :!: 0.06 

G-6-PDASE 

(t.A/MIN/UNIT) 

1.22 :!: 0.05 

1.54 :!: 0.05 

1.58 :!: 0.04 

1.58 :!: 0.06 

1.56 :!: 0.02 

1.52 :!: 0.03 

1.52 :!: 0.04 

RATE OF REACTION FOR LYSOZYME- AND G-6-PDASE- DESMOSINE CONJUGATES 

AT VARIOUS TITERS OF ANTISERA FROM RABBIT 1. 
ADMINISTERED 5,0 MG BSA-DESMOSINE CONJUGATE/INJECTION 

* ASSAYED WITH APPROPRIATE BUFFER~ REPLACING ANTISERA. 

** ASSAYED WITH SERA FROM UNTREATED RABBIT, 
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TITER OF 
ANTISERA 

o· 
1 
1:1 
1:10 
1:100 
1:1000 

TABLE 8 

TITERING OF ISODESMOSINE ANTISERA 
FROM RABBIT 5 

LYSOZYME 
(6A/MIN/MG PROTEIN) 

1.36 ± 0.07 

1. 64 ± a. 03 
1.67 ± 0.04 
1. 60 :!: 0.05 
1.65 ± 0.03 
1. 63 :!: 0. 04 

CONTROL** 1.64 :!: 0.02 

G-6-PDASE 
(6A/M1N/UNIT) 

1.22 ± 0.05 
1.45 :!: 0.04 
1.43 :!: 0.07 
1.48 :!: 0.06 
1. 45 :!: 0.03 
1.44:!: 0.04 
1.46 ± 0.03 

RATE OF REACTION FOR LYSOZYME- AND 6-6-PDASE-ISODESMOSIN~ 

CONJUGATE AT VARIOUS TITERS OF ANTISERA FROM RABBIT 5, 
ADMINISTERED 2.5 MG BSA-ISODESMOSINE CONJUGATE/INJECTION, 

* ASSAYED WITH APPROPRIATE BUFFER1 REPLACING ANTISERA, 

** ASSAYED WITH SERA FROM UNTREATED RABBIT, 
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TITER OF 
ANTISERA 

0* 

1 

1:1 
1:10 

1:100 

1:1000 

TABLE 9 

TITERING OF ISODES~10SINE ANTISERA 

FROM RABBIT 7 

LYSOZYME G-6-PDASE 

(~A/MIN/MG PROTEIN) ( M/MIN/UN IT) 

1.36 ± 0.07 1.22 ± 0.05 

1.56 ± 0.05 1.40 ± 0.03 

1. 50 ± 0. 04 1.38 ± 0.04 

1.55 ± 0.06 1.42 ± 0.02 

1.52 ± 0.05 1.40 ± 0.05 

1.50 :t 0.03 1.41 :t 0.03 

CONTROL** 1.53 ± 0.04 1.40 ±. 0.06 

RATE OF REACTION FOR LYSOZYME- AND G-6-PDASE-ISODESMOSINE 

CONJUGATES AT VARIOUS TITERS OF ANTISERA FROM RABBIT 7, 
ADMINISTERED 5,0 MG BSA-ISODESMOSINE CONJUGATE/INJECTION 

* ASSAYED WITH APPROPRIATE BUFFER, REPLACING ANTISERA, 

** ASSAYED WITH SERA FROM UNTREATED RABBIT, 
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produced to either Des or Ide. 

Immunodiffusion Studies: 

In order to determine if in fact antibodies were being produced to 

the desmosines, immunodiffusion studies were undertaken. In this tech

nique, six wells are punched in a 1% agarose gel film, in a hexagonal 

shape, with a seventh well punched in the center of the hexagon. The 

antisera is placed in the center well, while the antigens are placed in 

the surrounding wells. As the solutions diffuse through the agarose, 

they eventually interface with each other. At the interface between the 

antisera and its specific antigen, a precipitin band will be observed, 

due to the antigen-antibody complex which is formed. 

In this study, prepared immunodiffusion plates {Travenol, 1% aga

rose, containing 0.1% sodium azide to retard bacterial growth) were uti

lized. The various titers of each antisera were placed into the center 

well, while the outer wells contained solutions of the various possible 

antigens. To one well, a 10% solution of BSA was added, while to another 

well, either BSA-Des or BSA-Ide was added, depending on the antisera in 

the center well. To the third well, the corresponding G-6-PDase-Des or 

-Ide conjugate was added. Finally the corresponding lysozyme-Des or 

-Ide conjugate was added. The plates were allowed to incubate at 5 °C 

for periods up to 1 week, with daily observation. 

It was observed that precipitin bands formed at all titers investi

gated (1:1, 1:10, and 1:100, antisera in 0.9% sterile saline) to the 10% 

BSA solution, as well as the BSA-conjugates, within 1 days incubation. 

No precipitin bands were observed between the antisera and the corres-



pending enzyme conjugates by the end of the fifth day. 

In order to determine if the two buffers utilized in the enzyme 

assays had an effect on the antigen-antibody complex formation, the ex

periment was repeated using the corresponding enzyme buffers in lieu of 

the 0.9% sterile saline solution used to prepare the various titers of 

the antisera. The results were essentially the same, precipitin bands 

were formed between all titers of the antisera to the BSA solution or 

the BSA-conjugates. Again, however, no precipitin bands were observed 

between the antisera and its respective enzyme conjugate. 

In both of the immunodiffusion studies, untreated rabbit sera was 

run as a control, and in all cases, no precipitin bands were formed be

tween any of the solutions during the 5 day incubation preiod. 
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From these results it was concluded that antibodies were being pro

duced to BSA, however, no evidence existed that antibodies to enzyme 

conjugates were being produced. These results implied that antibodies 

to Des or Ide were not being produced by the rabbits. 

Conjugation Studies: 

The results from the previous study, i.e., the production of anti

bodies to BSA, while no apparent antibody production to Des or Ide, could 

be explained by the failure to conjugate the desmosines to the BSA mole

cule. This occurence would also explain the large amount of unreacted 

Des or Ide eluted from the Sephadex G-50 column following conjugation. 

Therefore, in order to determine if this situation existed, Des was con

jugated to BSA in the manner previously described, maintaining the Des to 

BSA ratio of 60, and varying the glutaraldehyde to Des ratio from 0 to 4. 
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Following the conjugation reaction, the conjugate was separated into its 

two fractions via gel filtration, both fractions being collected. The 

first fraction (presumptive conjugate) plus any precipitate formed during 

the conjugation reaction was collected and hydrolyzed as previously de

scribed. The hydrolysates were then analyzed for their amino acid com

position, as was the second fraction eluted from the column. Table 10 

displays the results from these studies, and as can be observed, no Des 

was detected in the first fraction at any of the Glu to Des ratios inves

tigated, and that the amount of Des recovered from the second fraction 

did not significantly differ from the control reaction (Glu to Des = 0). 

From these results it was concluded that Des or Ide, in amounts 

capable of being detected by automated amino acid analysis, were not 

being conjugated to the BSA molecule at the glutaraldehyde to Des or Ide 

ratio utilized in the initial preparation of the conjugates. 

3H-Isodesmosine Conjugation Study: 

In the event that the amino acid analyzer was not sensitive enough 

to detect the amount of Des or Ide being conjugated to the BSA molecule, 

a radiolabeled tracer (3H-isodesmosine) was utilized in a conjugation re

action. The labeled isodesmosine was reacted with the BSA as described 

in the methods, and following the conjugation, the amount of 3H-label in

corporated into the BSA molecule was determined by liquid scintillation 

counting. 

At a glutaraldehyde to Ide ratio of 1, the ratio employed in the 

initial conjugation reactions, no activity above background could be 

detected in the first fraction off the column, while the second fraction 



TABLE 10 

DESr10SINE CONJUGATED TO BSA AT 

VARIOUS GLUTARALDEHYDE TO DESMOSINE PATIOS 

GLU/DES MOLE DES/f·10LE BSA DES RECOVERED *** 

CONTROL* 0 0 

0** 0 0.043 MMOLE 

1 0 0.043 MMOLE 

2 0 0.042 MMOLE 

3 0 0.043 MMOLE 

DETERMINATION OF THE AMOUNT DESMOSINE CONJUGATED TO BSA AT VARIOUS 

GLUTARALDEHYDE TO DESMOSINE RATIOS BY METHOD PREVIOUSLY DESCRIBED, 

DESMOSINE DETERMINED BY AMINO ACID ANALYSIS, 

.. 
•• .... 

fiFTY MG BSA HYDROLYZED AND ANALYZED, 

As IN CONJUGATION REACTION WITHOUT ADDITION OF GLUTARALDEHYDE, 

DETERMINED FROM DESMOSINE FRACTION FROM SEPHADEX G-50 COLUMN • 
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collected contained significant activity. 

From this qualitative study, when combined with the other conjuga

tion studies, it was determined that at the glutaraldehyde to Des or Ide 

ratio utilized in this project, the two derived amino acids were not 

being conjugated to BSA, and consequently not producing antibodies. 

HPLC STUDIES 

Due to the inability to produce antibodies for use in an EIA for 

the desmosines, alternative methods of quantitation were investigated. 

These methods utilized high performance liquid chromatography, specifi

cally, ion-exchange, reverse phase, reverse phase with ion suppression, 

and ion-pairing for the separation and quantitation of the desmosines. 

Ion-Exchange HPLC: 

The first technique investigated for the separation and quantitation 

of the desmosines was ion-exchange HPLC, due to its similarity to auto

mated amino acid analysis (AAA). However, in contrast to AAA, which uses 

several buffers to elute the amino acids, this HPLC system uses only one 

buffer to elute all the amino acids (isocratic). 

Initial attempts to separate the desmosines from the other amino 

acids used a system which consisted of 0.2 mol/L ammonium phosphate buf

fer, pH 3.5, with the eluted amino acids detected at either 205 or 254 

nm. A representitive chromatogram of an amino acid standard containing 

Trp, Phe, and Des is shown in Fig. 10. With this system, the 3 amino 

acids separated from one another, Trp eluting first, followed by Phe and 

Des. However, when a mixture of Des and Ide was injected, the two amino 



nnin. 

Fig. 10. Cation exchange HPLC separation of amino acid 
standard containing Trp, Phe, and Des. Stan
dards eluted with 0.2 mol/L ammonium phosphate 
buffer, pH 3.5, and detected at 254 nm. 
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TABLE 11 

K' VALUES OF VARIOUS AMINO ACIDS AT PH 3,5 AND 2.5 
USING ION-EXCHANGE HPLC 

ArliNO ACID 
PH 3.5 PH 2.5 

K' K' 

TYR •• 0.25 
ALA ** 0.28 
TRP 0.52 0.68 
LEU •• 1.03 
lLE •• 1.03 
PHE 0.90 1.21 
DEs 1.50 1.97 
IDE 1.50 1.97 

K' DETERMINED FOR VARIOUS AMINO ACIDS USING JON-EXCHANGE HPLC ANALYSIS 

WITH A MOBILE PHASE OF 0.2 MOLfL AMt-IONIUM PHOSPHATE BUFFER, PH 3.5 AND 

2.5, WITH A FLOW RATE OF 0.7 MLIMIN (300 PSIG), AMINO ACIDS DETECTED 

AT 205 AND 254 NM, 

* TEN MG OF AMINO ACID DISSOLVED IN 50 ML OF 0.01 MOLIL KQH. 

INJECTION VOLUME OF 5 pl. 
•• Nor DETERMINED, 
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acids failed to separate. This result was further verified by injecting 

single amino acid standards of Trp, Phe, Des, and Ide, and determining 

their respective k' values. The k' values for Trp, Phe, and Des; or Trp, 

Phe, and Ide were sufficiently different such that they could be quanti

tated (Table 11). However, the k' values for Des and Ide were identical, 

making it impossible to accurately quantitate them in a mixture. 

In an attempt to separate the desmosines, the pH of the mobile phase 

was lowered to 2.5, and again a series of amino acid standards were in

jected. With this modified system, the k' values of the amino acids in

creased from those obtained initially, and other amino acids were now 

resolvable (Tyr, Ala, Leu, or Ile). However, Des and Ide were still un

resolvable, as was Leu and Ile (Table 11). 

From these results, it was concluded that although Des and Ide could 

be separated from various other amino acids, it was not possible to sep

arate the two utilizing either of the two isocratic elution schemes dis

cribed. These results were also confirmed by Farris and co-workers, when 

they failed to separate Des form Ide utilizing a similar ion-exchange 

system 118. 

Reverse Phase HPLC: 

Since the desmosines were found to be unresolvable with either of 

the isocratic, ion-exchange systems described, another separation tech

nique was investigated. Reverse phase HPLC encompasses 3 different me

thods of separation, all of which rely on the interaction between the 

organic characteristics of the analytes and the octadecyl (C-18) column. 

The first method investigated utilized a system which would separate 
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the desmosines without any enhancement of their organic nature. This 

system consisted of a methanol/phosphoric acid/water (30/1/69, v/v) buf

fer, pH 5.85. The eluted amino acids were detected at either 205 or 254 

nm. A representitive chromatogram of a standard containing Des, Phe, and 

Trp is shown in Fig. 11. With this system the 3 amino acids were found 

to elute in reverse order from the ion-exchange system (Des, Phe, and 

Trp), and with sufficiently different retention times to facilitate their 

quantitation. However, it was noted that Des eluted with the void volume 

of the column, and that when a mixture of Des and Ide was injected, they 

both eluted with the void volume. These results were indicative of no 

interaction between the desmosines and the C-18 column (Table 12). 

Since the desmosines were eluting unresolved with the void volume 

of the column, it was attempted to increase their interaction with the 

column by lowering the methanol percentage of the mobile phase to 10%. 

This modification should allow for more hydrophobic interactions to 

occur between the desmosines and the column. It was found that while 

this modification of the mobile phase did increase the k' values of the 

other various amino acids, though not substantially, Des and Ide still 

eluted with the void volume (Table 12). 

Reverse Phase-Ion Suppression HPLC Studies: 

With the failure to resolve the desmosines with a lowering of the 

methanol percentage in the mobile phase, it was decided to decrease their 

polarity by partially suppressing their ionic nature. With this ion sup

pression, the desmosines should interact with the C-18 moieties of the 

column more effectively. Therefore, the pH of the mobile phase was 
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Fig. 11. Reverse phase HPLC separation of amino acid standard 
containing Trp, Phe, and Des. Standards eluted with 
a mobile phase consisting of methanol/water/phosphoric 
acid (30/69/1, v/v/v) and detected at 254 nm. 
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TABLE 12 

K' VALUES OF VARIOUS AMINO ACIDS 

ELUTED WITH 30 AND 10 % r·1ETHANOL 

USING REVERSE PHASE HPLC 

30% 
N1!NO ACID* 

K' 

DEs 0.00 
IDE 0.00 
PHE 0.66 
TRP 1.11 

10% 
K' 

0.00 
0.00 
0.72 
1.20 

K' DETERMINED FOR VARIOUS AMINO ACIDS USING REVERSE PHASE HPLC ANALYSIS 

WITH A MOBILE PHASE OF METHANOL/PHOSPHORIC ACID/WATER (30/1/69 AND 

10/1/89, v/v), PH 5.35, WITH A FLOW RATE OF 1 MLIMIN. AMINO ACIDS 

DETECTED AT 254 NM, 

* TEN MG AMINO ACID DISSOLVED IN 50 ML OF WATER. 

INJECTION VOLUME OF 5 pL. 
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to 2.5, a pH at which several of the carboxyl functions on the desmosines 

would be protonated, thereby decreasing their polarity. To further en

hance their interaction with the column, the methanol was entirely re

moved from the mobile phase. 

Amino acid standards of Des, Ide, Phe, and Trp were then injected 

and eluted with this modified mobile phase of water/phosphoric acid 

(99/1, v/v), pH 2.5 (Table 13). It was found that, though the k' values 

of Phe and Trp did substantually increase, Des and Ide still eluted with 

the void volume of the column. 

From the results of the reverse phase and ion-suppression studies, 

it was concluded that although the desmosines were found to separate from 

other various amino acids using these particular systems, the desmosines 

themselves were still unresolvable. 

Reverse Phase with OPA Derivatization: 

From the previous studies it was determined that the polarity of the 

desmosines would have to be further reduced in order to achieve any type 

of separation between the two. One method which should substantially 

decrease their polarity would be to chemically modify the molecule. This 

modification could be accomplished by derivatizing the desmosines with a 

fluorogenic compound, such as OPA. This derivatization would not only 

enhance their interaction with the C-18 moieties, but also aid in their 

detection by being fluorescent. 

The OPA derivatized amino acids were initially eluted with a mobile 

phase consisting of 0.05 mol/L sodium phosphate buffer/methanol (50/50, 

v/v), pH 7.3, and detected by fluorescence emission at 405 nm. A repre-



TABLE 13 

K' VALUES OF VARIOUS AMINO ACIDS 

USING ION SUPPRESSION HPLC 

A11 I NO AC ID* 

DEs 

IDE 

PHE 

TRP 

K' 

0.00 
0.00 
1.16 
2.02 

K' DETERMINED FOR THE VARIOUS AMINO ACIDS USING REVERSE PHASE-ION 

SUPPRESSION HPLC ANALYSIS, WITH A MOBILE PHASE OF WATER/PHOSPHORIC 

ACID (99/l, v/v), PH 2,5, AT A FLOW RATE OF 1.0 MLIMIN, THE AMINO 

ACIDS WERE DETECTED AT 254 NM, 

* TEN MG AMINO ACID DISSOLVED IN 50 ML OF WATER, 

INJECTION VOLUME OF 5 pL. 
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sentative chromatogram of an amino acid standard is shown in Fig. 12. 

It was found that several of the derivatized amino acids were resol-

vable from one another. However, upon injection of derivatized Des or 

Ide no peaks were detected. It was initially thought that since the des-

mosines contained 4 amino groups available for derivatization with OPA, 

they could be retained by the column longer than 30 min. Therefore, it 

was decided to increase the methanol percentage of the mobile phase to 

70% in order to decrease their retention time. 

Fig. 13 is a representative chromatogram of the same amino acid 

standard as previuosly injected, this time eluted with the modified mo

bile phase containing 70% methanol. ~·lith this modification it was found 

that all the derivatized amino acids eluted within 10 min, decreasing 

their retention times by approximately one third. Again, however, Des . 
and Ide were not detected. Finally, the methanol percentage was increas

ed to 90%, and the same amino acid standards injected. With this in-

crease in the methanol percentage, it was found that all the amino acids 

eluted within 1 min, yet Des and Ide were still undetected. 

After reviewing the results from the derivatization method, it was 

discovered that Des and Ide were eluting close to the void volume of the 

column, and appeared as multiple peaks on the chromatogram. Multiple 

peaks could result from the 4 amino groups having different reactivities 

with the OPA. Similar results have been reported for dibasic amino acids 

with OPA derivatization by Lindroth and r1opper 105 . 

As the desmosines were found to elute in several fractions with the 

OPA derivatization method, and as the desmosines were unresolvable using 

the other reverse phase methods described, it was decided to attempt 



40 
minutes 

Fig. 12. Reverse phase HPLC separation of amino acid standard 
containing His, Tyr, Leu, Ile, Phe, Arg, Lys, Ide, 
and Des pre-derivatized with OPA. Standard eluted 
with 0.05 mol/L sodium phosphate buffer/methanol 
(50/50, v/v), pH 7.3, and detected by fluorescence 
(340 nm excitation; 450 nm emission). 
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Fig. 13. Reverse phase HPLC separation of amino acid standard 
containing His, Tyr, Leu, Ile, Phe, Arg, Lys, Ide and 
Des pre-derivatized with OPA. Standard eluted with 
0.05 mol/L sodium phosphate buffer/methanol (30/70, 
v/v), pH 7.3, and detected by fluorescence (340 nm ex
citation; 450 nm emission). 
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their separation by ion-paired HPLC. 

Ion-Paired HPLC: 

Ion-paired HPLC utilizes a counter ion to one of the ionic species 

present on the molecules to be separated 119 . It was decided to use a 

counter ion to protonated amino groups which could be generated on the 

desmosines. This would require the mobile phase to be acidic, an en

vironment suitable for the C-18 column. The counter ion chosen for this 

method was the sodium salt of heptane sulfonic acid, due to its wide

spread use in ion-paired systems, and its general availability 119 . 

The concentration of the counter ion in most ion-paired systems vary 

from 0.005 mol/L to 0.02 mol/L. For this method of separation, knowing 

that hydrolysates were to be used, it was decided initially to use a con

centration of 0.01 mol/L. 

Thus the ion-paired system utilized a methanol/water mobile phase, 

containing 0.01 mol/L sodium heptane sulfonate at an acid pH. Initially, 

a pH of 3 was used because at this pH several of the amino groups of the 

desmosines were protonated. Also, at this pH, minimal deterioration of 

the column occurs (optimal pH range for C-18 columns is between 2.5 and 

7.0) 12 , 119. The eluted amino acids were detected at 205 nm, therefore, 

the pH of the mobile phase was adjusted with phosphoric acid 104 . 

With this system, it was found that many amino acids could be sep

arated from one another, including the desmosines. It was also found 

that by varying the methanol percentage of the mobile phase, the reten

tion times of the amino acids could be varied. With this knowledge, it 

was decided to use a methanol percentage which would yield minimum 
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retention times for the desmosines, yet allow their separation. Thus in 

these preliminary studies, the methanol percentage of the mobile phase 

was varied from 10 to 30%. 

Initial attempts of the separation of the desmosines proved fruit

ful, in that it was found that the desmosines could be resolved using 

this ion-paired system. Finally, it was determined that by using a sys

tem consisting of methanol/water (26/74, v/v), pH 3.0, containing 0.01 

mol/L heptane sulfonic acid, baseline resolution of the two desmosines 

could be achieved. With this method, Ide and Des were found to elute at 

57 and 62 min, respectively, having k1 values of 50.80 and 57.33. 

Once it was determined that the desmosines could be resolved, other 

amino acids were investigated to determine if they would interfere. 

These amino acids were then injected and their k1 values determined 

(Table 14). It was found that from this series of 25 amino acids, all of 

which could possibly be present in the hydrolysates to be analyzed, none 

eluted close to either Ide or Des, the closest being Trp with a k1 value 

of 22.00. Tryptophan, however, should be destroyed in the acid hydroly

sis procedure, thereby separating the desmosines from the other amino 

acids by approximately 30 min. 

Once it was determined that the method would reproducibly separate 

the desmosines from the other amino acids, the various chromatographic 

constants (k•, a, Rs' and N) of the method were investigated (Table 15). 

As previously described in Chapter 2, the capacity factor, k1
, is a 

measure of the retention of a particular solute by the system. Though 

usually, in the interest of time, the k1 values are kept below 10, in 

the case of the desmosines, the k1 values were approximately 5 times 



TABLE 14 
K' VALUES FOR VARIOUS AMINO ACIDS USING ION-PAIRED HPLC 

AMINO ACID K' 

HYDROXYPROLINE 0.56 
PROLINE 0.76 
CYSTEINE 0.81 
GLYCINE 1.10 
ALANINE 1.12 
GLUTAMIC ACID 1.25 
GLUTAMINE 1.30 
SERINE 1.30 
THREONINE 1.35 
AsPARTIc AcID 1.42 
AsPARAGINE 1.44 
VALINE 3.40 
ORNITHINE 5.96 
HYDROXYLYSINE 6.36 

LYSINE 6.92 
TYROSINE 7.25 
HISTIDINE 7.47 
IsoLEUCINE 7.60 

LEUCINE 8.80 
ARGININE 8.85 
NoRLEUCINE 9.00 
PHENYLALANINE 9.80 

TRYPTOPHAN 22.00 
IsoDESMOSINE 50.80 

DESMOSINE 57.33 

k' values of various amino acid standards, calculated as 
described in Chapter 2. Amino acids eluted with methanol/ 
water (26/74, v/v), pH 3.0, containing 0.01 mol/L heptane 
sulfonic acid, and detected at 205 nm. 
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TABLE 15 

CHRONATOGRAPHIC CONSTANTS FOR DESMOSINE 
AND ISODESMOSINE SEPARATION USING 

ION-PAIRED HPLC 

K' Rs 

IDE DES 

N 

IDE DEs 
(HETP)* (HETP) 

50.80 57.32 1.13 4.80 29J026 25J600 
(0.001) (0.001) 

VARIOUS CHROMATOGRAPHIC CONSTANTS DETERMINED FROM DES AND IDE 

STANDARDSJ ELUTED WITH A MOBILE PHASE OF METHANOL/WATER (26/74J 

v/v)J PH 3.0J WITH A FLOW RATE OF 1.0 ML/MIN, 

AMINO ACID DETECTION AT 205 NM, 

CONSTANTS CALCULATED AS DESCRIBED IN CHAPTER 2. 
* HEIGHT EQUIVALENT TO THEORETICAL PLATES. 
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that value. In an attempt to lower the k1 values for the desmosines 

either by increasing the methanol percentage in the mobile phase, or by 

adjusting the pH, the resolution of the two amino acids decreased. 

Therefore, it was decided not to adjust the k1 values. 

Although the k1 values of Des and Ide were higher than usual, the 
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separation factor, a, was found to be in an acceptable range. This fac

tor, as described in Chapter 2, is actually a measure of the relative re-

tention of Des and Ide, and is related to the chemical parameters of the 

method. By definition, this factor should be greater than 1.00, and 

since the factor utilizing this method of separation was greater than 

1.3, modifications were not necessary 119. 

The efficiency (N) of the C-18 column to separate the desmosines was 

found to be excellent, both having theoretical plate values exceeding 

25,000. Though these values are somewhat higher than those usually en

countered in an HPLC method, this can be explained by the long retention 

times of the desmosines and their relatively narrow peak width on elution 
119 

Another measure of the efficiency of the column to separate the 

analytes is the height equivalent to theoretical plates (HETP), sometimes 

abbreviated H 119. This value is simply the column length in em divided 

by the efficiency factor, N. For this constant, the better the effi

ciency, the lower the H value, just opposite to the definition for the 

N factor. 

Finally, the ability of this method to resolve the desmosines was 

determined. The factor, Rs, should be greater than 1 for quantitation, 

and greater than 1.5 for baseline resolution 119 As described in 



85 

Chapter 2, this factor takes into account all the other calculated con-

stants determined for that specific system. Thus, Rs is a measure of 

the selectivity of the column for the analytes (as determined by the a 

factor); secondly, it takes into account the efficiency of the column for 

the analytes (as determined by theN factor); and thirdly, it takes into 

account the capacity of the system for the analytes (as determined by 

ki)· 

Utilizing this method for the separation of the desmosines, the Rs 

value was in excess of 4, indicating, for the amount of time on the col

umn, the separation of the two eluted amino acids approached the base

line. Thus, the desmosines should be able to be quantitated by this 

method with no interference from the other amino acids, or themselves. 

Method Parameters: 

As previously stated, a is a term which is dependent on the chemical 

interactions of the analytes with the system. Therefore, it was decided 

to investigate several of the chemical parameters of the method, and de

termine their effects on the separation of the desmosines. The first 

parameter investigated was the effect of the methanol percentage of the 

mobile phase on the separation of the desmosines. In the initial deve

lopment of the method, the methanol percentage was varied to achieve max

imum separation of the desmosines. Qualitatively, as the methanol per

centage increased, the retention times of the desmosines decreased, as 

did their resolution. Thus as the methanol increased, N, a, and R
5 

de

creased. It was found that above a methanol percentage of 30, the effi

ciency (N) decreased drastically as did the separation factor, a, which 
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decreased to 1. The Rs was also found to decrease from 4.8 with 26% me-

thanol to less than 1 with a percentage above 36%. In all cases, the 

methanol percentage yielding maximal chromatographic characteristics was 

determined to be between 25 and 28%. 

It was also found that as the column aged, the retention times of 

the desmosines decreased. In order to offset this decrease, the concen

tration of the methanol was lowered. The decrease in the retention time 

by the column is believed due to deterioration of the column with usage 
119 Finally, it was noted that as the methanol percentage increased, 

the column head pressure also increased. 

The next chemical parameter investigated was the effect of the mo

bile phase pH on the separation of the desmosines. From these studies, 

it was determined that as the pH increased above 3.0, the k1 values of 

the amino acids decreased (Fig. 14). It was noted that the desmosines 

could effectively be separated up to a pH of approximately 3.2; however, 

several of the other amino acids could not be resolved at this pH. It 

was also found that if the pH was decreased below 3.0, no substantial 

effects were observed. Therefore, it was decided to maintain the pH at 

3.0. 

From these studies it was determined that the pH decreased the value 

of N, a, and Rs constants, similar to increasing the methanol concentra

tion. These interactions are believed due to the amount of ionization 

of the amine groups on the amino acids with the sulfonic acid residues 

of the counter ion 119 . 

. Finally, the effect of the counter ion concentration was investiga

ted. With ion-paired systems, the solvent strength can be varied by 



k' 

o.o;-------r--------,-------,...-------. 
3.0 3.2 3.4 3.6 3.8 

pH 

Fig. 14. Effect of ion-paired mobile phase pH on k' values of 
several amino acid standards. Mobile phase consisted 
of methanol/water (26/74, v/v), containing 0.01 mol/L 
heptane sulfonic acid, with the pH varied from 3.0 to 
3.8. 
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changing the counter ion concentration 119 . Thus, by increasing the con-

centration of the counter ion in the mobile phase, the k' values of the 

analytes can be increased, if the analyte is not fully ionized 119 . 

Therefore, a change would be expected in a. If however, the analyte is 

fully ionized, little or no change should be observed in a. 

When the heptane sulfonic acid concentration was increased to 0.02 

mol/L, a very small increase was noticed in the k' values of the desmo

sines. However, no change was observed in the a factor. If the concen

tration was decreased, both Des and Ide k' values were found to decrease, 

substantually decreasing a. Therefore, for this method it was decided 

to maintain the heptane sulfonic acid concentration at 0.01 mol/L. 

Quantitation of the Desmosines: 

Once it was determined that the method would reproducibly separate 

the desmosines from one another and other amino acids, their quantitation 

was attempted. In order to access their ability to be quantitated, a 

standard curve was constructed, as described in Chapter 3. Essentially, 

various concentrations of Des and Ide standards were injected separately 

and together, such that any deviations, with their simultaneous quanti-

tation, would be detected. 

Desmosine and Ide were found to display a linear response to the 

various concentrations injected, both singly and together, when detec

ted at 205 nm (Figs. 15, 16; circles). Upon analysis of the curve, Des 

and Ide yielded almost identical equations of the lines (y = 68.28x + 

0.04 for Des, andy= 64.55x - 0.07 for Ide). Not only did both amino 

acids display similar slopes and y-intercepts, they were found to display 
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Fig. 15. Standard curve (0} and recovery from hydrolyzed BSA (~) 
of desmosine using the ion-paired HPLC method. 
(0) Known concentrations of purified desmosine standards 

injected and peak heights determined. 
(~) Known concentrations of purified desmosine standards 

added to BSA prior to hydrolysis. Recovery peak 
heights compared to standard curve peak heights. 
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Fig. 16. Standard curve (0) and recovery from hydrolyzed BSA (~) 
of isodesmosine using the ion-paired HPLC method. 
(0) Known concentrations of purified isodesmosine standard 

injected and peak heights determined. 
(~) Known concentrations of purified isodesmosine standards 

added to BSA prior to hydrolysis. Recovery peak 
heights compared to standard curve peak heights. 



excellent correlation between their respective concentrations and peak 

heights (r greater than 0.99 for both). 
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Once it was determined that the desmosines could be quantitated at 

205 nm, various other wavelengths were used in their detection. Again, 

the peak height was used as the measure of quantitation. Initailly, the 

wavelength was decreased in order to increase the sensitivity of the 

detection. However, it was found that as the wavelength decreased the 

baseline absorbance increased, such that the desmosines were undetec

table. This effect was due to the methanol in the mobile phase, as me

thanol has been shown to have an absorbance cutoff at 205 nm. 

When the wavelength was increased, the sensitivity for the detection 

of the desmosines decreased. While this decrease was not substantial 

(approximately 10% at 215 nm), it was considered significant. Therefore, 

the desmosines were detected at 205 nm, as previously described. 

From these studies it was concluded that not only would this system 

separate the desmosines, but would simultaneously quantitate Des and Ide. 

Once it was determined that the desmosines could be quantitated, the 

reproducibility of the method was investigated. For this precision 

study,standards of Des and Ide (0.0851 and 0.0569 mmol/L, respectively) 

were injected according to two schedules. For the intra-day precision, 

Des and Ide were injected 10 times daily, while for the inter-day preci

sion, Des and Ide were injected once daily for 10 days. In all cases, 

the peak heights were determined and used in the calculations. 

It was found that the standard deviations (S.D.) and the coeffi

cients of variation (C.V.) were less than 0.2 em and 3%, respectively, 

for both the intra- and inter-day precision studies (Table 16). It was 



TABLE 16 

INTRA- AND INTER-DAY PRECISION STUDIES 
FOR DESMOSINE AND ISODESMOSINE DETERMINATIONS 

BY ION-PAIRED HPLC 
N=lO 

INTRA-DAY INTER-DAY 
DES IDE DES IDE 

PEAK HEIGHT (eM) 7.99 

0.07 

0.93 

3.98 

0.06 

1.58 

7.96 

0.14 

1.69 

3.79 

0.09 

2.39 

S.D. (eM) 

c.v. (%) 

DESMOSINE AND ISODESMOSINE STANDARDS (0.0851 AND 0,0569 MMOL/l 

INJECTED 10 TIMES PER DAY FOR INTRA-DAY PRECISION, AND ONCE 

DAILY FOR 10 DAYS FOR THE INTER-DAY PRECISION DETERMINATIONS, 
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also noted that the S.D. and the C.V. of the intra-day determinations 

were approximately one-half the inter-day determinations. This result 

is to be expected, as the within day precision is almost always greater 

than the between day precision 120 

A C.V. of less than 5% is usually acceptable for analytical deter

minations 120. Therefore, with this method displaying a low C.V. for 

both the desmosines (less than 3%), it was concluded that it was well 
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within the acceptable limit of reproducibility for an analytical method. 

Recovery Studies: 

The final analytical parameter investigated was the percent recovery 

of Des and Ide from various samples, to demonstrate the accuracy of the 

method. The first study utilized BSA, a protein which contains no desmo

sines. To this protein, Des and Ide were added, prehydrolysis, and the 

samples prepared as described in Chapter 3. 

Following the analysis of the hydrolysates, the Des and Ide concen-

trations were determined, and compared to their standard curves. Both 

Des and Ide were well within the peak heights for their respective spikes 

(Figs. 15, 16; triangles). The slope andy-intercept for both the Des 

and Ide spikes (y = 71.48x- 0.02 andy= 60.56x + 0.02, respectively), 

correlated well with the slopes and y-intercepts of the standard curves 

for Des and Ide (r = 0.99). The range of recovery for the Des spikes 

were between 98 and 102%, with an average recovery from the spiked BSA 

of 99.6%. The average recovery of Ide from spiked BSA was 98.5%, with a 

recovery range from 96 to 102%. 

Also, from this initial recovery study, the lower limit of detection 
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for either Des or Ide was approximately 100 pmol. Below this level, the 

desmosine peak was indistinguishable from the baseline noise of the de

tector. 

Following the determination of the recoveries from a sample which 

contained no desmosines, a Des and Ide spike was added to a sample known 

to contain both the amino acids. For these studies, a canine aorta sam

ple was obtained and prepared as described in Chapter 3. Again, the Des 

and Ide was added prior to the hydrolysis procedure. In this study, one 

sample of the aorta remained unspiked, while the remaining 5 samples were 

spiked with both Des and Ide. 

Upon analysis and determinations of the Des and Ide concentrations 

of the unspiked and spiked samples, the recoveries were calculated, and 

the observed values (ion-paired HPLC determinations) vs. the predicted 

values (calculated from the amount of the spike) were plotted. The re

coveries for both Des and Ide were found to be excellent. The recovery 

range for Des was between 95 and 100%, with an average recovery of 97.2%. 

The recovery range for Ide was determined to be between 96 and 102%, with 

an average recovery of 99%. 

When the observed concentrations were compared to the predicted con

centrations, both Des and Ide were found to display a linear relationship 

(Figs. 17, 18). Upon statistical analysis of the recoveries, both Des 

and Ide displayed similar slopes and y-intercepts (y = 0.99x + 0.002 for 

Des, andy= 0.95x + 0.003 for Ide), and were found to correlate well 

with their respective predicted values (r greater than 0.97 for both 

amino acids). 
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Fig. 18. Recovery of purified isodesmosine from hydrolyzed canine 
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concentrations plotted against the predicted concentra
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Canine Aorta Studies: 

From all the previous analytical studies, the method was determined 

to be reproducible, accurate and precise for the separation and quanti

tation of the desmosines 119 , 120. This having been established, it was 

decided to attempt to quantitate the desmosines, using tissue samples. 

The tissue to be investigated was canine aorta (aortic arch region). 

This tissue was chosen because the concentration of both the desmosines, 

as well as the elastin content, is well documented 101 , 121 - 123 In this 

study, the Des and Ide concentrations of the aorta samples, determined 

by ion-paired HPLC, were compared to those concentrations obtained by 

automated amino acid analysis (AAA). Finally , the elastin content of 

the canine aortas was estimated from the Des and Ide concentrations of 

the samples, and compared to the elastin content as determined by gravi-

metic procedure. 

Thirteen canine aortas were obtained and prepared as described in 

Chapter 3. Of the prepared, diluted hydrolysates, 10 ~L of each was in

jected, and the desmosines quantitated as described by the ion-paired 

method. The desmosines were found to elute in a manner similar to the 

Ide and Des standards, with retention times of 52 and 57 min, respec

tively (Fig. 19). The other amino acids present in the hydrolysates 

were also found to elute similar to their respective standards. In all 

the chromatograms of the aorta samples, one prominent peak was observed 

to elute between Phe and Ide, with a k' value different from any investi

gated amino acid (31.50). This peak was thought to be lysinonorleucine, 

a minor cross-link found in elasti'n (see Chapter 1). 

The concentrations of Des and Ide were then calculated from their 
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Fig. 19. Representative ion-paired HPLC chromatogram of 
hydrolyzed canine aorta. Hydrolysate eluted with 
methanol/water (26/74, v/v) mobile phase, con
taining 0.01 mol/L heptane sulfonic acid, pH 3.0. 
Detection at 205 nm. 
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respective standard curves, for each of the 13 canine tissue samples 

(Table 17). In a similar fashion, the Des and Ide concentrations of each 

of the 13 samples were determined by AAA, as previously described in 

Chapter 3 (Table 17). 

Once the Des and Ide concentrations were determined by both methods, 

the results were compared. Both Des and Ide were found to correlate well 

with the AAA, both having a linear relationship, with slopes of approxi

mately one with small intercepts, and with correlation coefficients of 

greater than 0.97 (Figs. 20, 21). These results indicated that no sig-

nificant difference existed between the two methods of determination for 

Des and Ide (p<O.OOl). 

From this study it was concluded that Des and Ide concentrations 

could be determined from tissue samples using the ion-paired HPLC method, 

with no significant difference between the results obtained by ion-paired 

HPLC, and those obtained from the accepted method of AAA 124- 126 . 

Estimation of Elastin and Collagen Content of the Aorta: 

The elastin content of the aorta was estimated from the Des and Ide 

concentrations 39, 121 , 122 . For this estimation, it was initially nec

essary to determine the percentage of the total desmosines (Des plus Ide) 

in elastin. In order to determine this percentage, the amino acid anal

yses of purified elastins from human and canine aorta and lung were ob

tained from several investigators 101 ,121- 123 . Lung elastin was included 

for several reasons: one, it has been shown that the amino acid content 

of purified elastin from aorta and lung are very similar; and secondly, 

the majority of recent publications on the purification and amino acid 
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TABLE 17 

DESMOS I NE AND I SODESMOS I NE CGrlCENTRA T IONS 
AS DETERMINED BY HPLC AND AUTOMATED 

AMINO ACID ANALYSIS 

AUTOMATED 
AMINO ACID ANALYSIS 
DES (MMOLfL) IDE DEs 

0.406 0.305 0.441 
0.204 0.165 0.257 
0.123 0.097 0.117 
0.474 0.367 0.446 
0.310 0.256 0.280 
0.318 0.254 0.301 
0.348 0.295 0.341 
0.482 0.346 0.510 
0.267 0.256 0.289 
0.452 0.360 0.458 
0.338 0.290 0.360 
0.328 0.276 0.363 
0.516 O,t(S6 0.565 

HPLC 
(MMOLIL) IDE 

0.295 
0.184 
0.103 
0.360 
0.285 
0.293 
0.306 
0.361 
0.271 
0.344 
0.312 
0.297 
0.473 

DESMOSINE AND !SODESMOSINE CONCENTRATIONS OF 13 CANINE AORTA SAMPLES 
PREPARED AS DESCRIBED IN CHAPTER 3. 
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Fig. 21. Regression analysis of isodesmosine concentrations of 13 
hydrolyzed canine aortas as determined by AAA and ion
paired HPLC. 
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content of elastin has utilized lung tissue 101 , 121- 123. 

Upon examination of the amino acid content of these elastin prepara

tions, it was found that there are approximately 2-4 total desmosine 

residues per 1000 residues. Thus in order to determine the percent total 

desmosines in elastin, the molecular weight (~~) contribution of the 

total desmosines was divided by the total MW of the 1000 residues of 

elastin and then multiplyed by 100. 

From these determinations, it was found that approximately 1.3% of 

elastin is total desmosines, or for every mg elastin, 13 ~g is contri-

buted by the desmosines. To further substantiate the use of the purified 

lung elastin in the percentage determination, when the percent desmosines 

were calculated in the lung preparation only (not incorporating any data 

from the aorta), the percent was again found to be 1.3. 
. 

Thus for the elastin calculations, the Des and Ide concentrations 

were first converted from mmol/L to nmol total desmosines/mg aorta FFDW. 

The nmol total desmosines were converted to ~g total desmosines by the 

MW of the desmosines, yielding a ~g total desmosines/mg aorta FFDW. The 

elastin content was finally arrived at by using the conversion factor of 

13 ~g total desmosines per mg elastin. 

These calculations were performed on the Des and Ide results, ob

tained by ion-paired HPLC and AAA, from the 13 canine aorta samples 

(Table 18). Upon statistical analysis, both methods were found to be in 

good agreement with one another, displaying a linear relationship (Fig. 

22), with a slope of approximately one (y = 0.91x +53), and an r value 

of 0.9326, indicating excellent correlation between the two methods 

(p<0.001). Also, no significant difference was found between the mean 



TABLE 18 
ELASTIN AND COLLAGEN CONTENT OF CANINE AORTA 

DOG 
% ELASTIN % COLLAGEN % CTP** 

AAA HPLC UNCORR~ CORR.* UNCORR.* CORR.* 

1 38.9 40.3 28.6 22.5 68.0 62.8 
2 30.9 37.1 46.9 41.3 84.0 78.4 
5 25.5 25.5 52.0 48.1 77.5 73.6 
6 IJ3,8 42.0 30.5 24.1 72.5 66.1 
7 38.5 38.5 27.4 20.7 65.9 59.2 
8 41.0 42.5 24.9 18.4 67.4 60.9 
9 44.8 45.0 21.2 14.3 66.2 59.3 
10 41.2 43.5 27.2 25.0 70.7 64.0 
11 31.3 34.9 30.4 25.0 65.3 59.9 
12 45.2 44.6 28.8 22.0 73.4 64.6 
13 LJ2, 5 LJ5 .LI 26.9 20.0 72.3 65.4 
14 37.8 1Jl.2 23.6 17.3 64.8 58,5 
15 46.2 50.9 29.0 21.3 79.9 72.2 

~------------- ·--· 
------------

ELASTIN AND COLLAGEN CONTENT (UNCORRECTED AND CORRECTED) CALCULATED AS DESCRIBED IN CHAPTER 4, 
* UNCORR ~ UNCORRECTEDj CORR. ; CORRECTED 

** % CTP; %CONNECTIVE TISSUE PROTEIN, AS DETERMINED BY PERCENT ELASTIN PLUS COLLAGEN. 

ELASTIN coNTENT DETERMINED FROM DEs AND IDE auANTITATION BY JON-PAIRED HPLC 
....... 
0 
..J:::. 
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Fig. 22. Regression analysis of elastin content of 13 canine 
aortas, calculated from Des and Ide concentrations as 
determined by AAA and ion-paired HPLC. 
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elastin content obtained from AAA (390.5 ± 63 mg elastin/g aorta FFDW) 

and the mean elastin content as determined by ion-paired HPLC (408.8 ± 

62 mg elastin/g aorta FFDW). 
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Once the elastin content had been calculated from the Des and Ide 

concentrations, it was decided to compare these results to the elastin 

content of the same canine aorta samples as determined by a gravimetric 

procedure. This method of elastin determination relied on the insolubi

lity of the protein through several extractions including; a 1% sodium 

chloride extraction, followed by several autoclavings at 121 °C and 18 

psig, until the resulting supernatant was devoid of protein, and finally, 

the remaining residue was extracted with hot (100 °C) 0.1 mol/L sodium 

hydroxide to remove any remaining non-elastin proteins. The residue re

maining following the alkali extraction was considered elastin 27 ,29 . 

This procedure was performed on 5 canine aorta samples, and the 

elastin content as determined by both methods (gravimetric and calcu

lated) were compared. The average elastin content obtained by the cal

culation method (408.7 ± 61 mg elastin/g aorta FFDW) was found to be 

somewhat higher than the elastin content as determined by the gravimetric 

procedure (325.1 ± 27.5 mg elastin/g aorta FFDW), though no significant 

difference between the two methods was noted. 

From this study it was determined that no significant difference 

existed between the gravimatric and calculation procedures for the esti

mation of the elastin content of the canine aorta. This finding, how

ever, may be biased by one result which yielded the same elastin content 

by both procedures. If this result was not included, a significant in

crease was observed in the elastin content when dete~ined by HPLC. 
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Aorta Collagen Determinations: 

Though elastin has been shown to be a major component of the aorta, 

another major connective tissue protein, collagen, is also present. 

Therefore, in order to determine the total connective tissue protein con

tent of the aorta, the collagen content of the aorta samples was deter

mined. Collagen content is frequently estimated by the hydroxyproline 

(Hyp) content of the tissue, in a manner similar to the use of Des and 

Ide for the estimation of the elastin content 40 . Therefore, in order to 

determine the collagen content, the percent Hyp in collagen was deter

mined. This determination was based on the amino acid analyses of vari

ous purified collagen preparations 127-129 It was found that there were 

between 88 and 95 Hyp residues per 1000 residues of collagen. From this, 

the percent Hyp in collagen was calclated, by the previously described 

methods, to be 11.1%. Therefore, for every mg collagen, 111 ~g is con-

tributed by Hyp. 

Using this Hyp percentage, the collagen content of the 13 canine 

aorta samples were determined as described in Chapter ·3 (Table 18). It 

was found that the collagen content of the aortic samples varied from 20 

to 50%, with an average collagen content of 305.7 ± 110.6 mg collagen per 

g aorta FFDW. The total connective tissue protein content of the aorta 

samples were found to vary from 60 to 80% of the total weight, with an 

average of 700.0 mg total connective tissue protein/g aorta FFDW. During 

the course of this study it was noted that generally, as the elastin con

tent increased, the collagen content decreased. 

As previously mentioned, the collagen content is derived from the 

quantitation of Hyp. However, other proteins, specifically elastin, have 
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been shown to contain Hyp 101 , 121 - 123 . Since it has been shown that the 

aorta contains a significant amount of elastin (approximately 40%), the 

Hyp from elastin is being included in the total amount of Hyp in the tis

sue. Thus, non-collagen Hyp would tend to elevate the collagen levels 

in tissues which are rich in elastin. 

In order to determine if this apparent increase in the collagen con

tent would be significant, the Hyp component of elastin was calculated 

by determining the percent Hyp in purified preparations of elastin. It 

was found that elastin contained approximately 1.7% by weight Hyp 101 , 
121-123 This non-collagen Hyp was then subtracted from the total Hyp 

and the collagen content was recalculated, to obtain a "corrected" col-

lagen content of the canine aortas (Table 18). Upon analysis of the 

"uncorrected" and "corrected" collagen content, it was found that the 

difference between the uncorrected and corrected values was significant 

(p<0.01), and that the corrected values were approximately 10% less than 

the uncorrected values. It was also noted that the largest apparent de

crease in the collagen content occurred in samples which contained high 

percentages of elastin. 

As previously stated, it was found that as the elastin content of 

the aorta increased, the collagen content was found to decrease. When 

the various elastin and collagen percentages of the 13 canine aortas were 

plotted, an inverse relationship was, in fact, found to exist (Fig. 23). 

This relationship may be biased by the inclusion of two samples which 

were found to be high in collagen and low in elastin (Dogs 2 and 5). If 

these two samples were excluded from the population no relationship could 

be inferred. However, no justification existed for their exclusion, 
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Fig. 23. Relationship between elastin and collagen (corrected) 
content for canine and human aortic tissues. Elastin 
calculated from Des and Ide concentrations as determined 
by ion-paired HPLC. Collagen content calculated from 
corrected Hyp concentrations. 
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therefore, they were included in the population. 

Effect of Age on the Elastin and Collagen Content of Human Aortas: 

Having determined the validity of both the ion-paired HPLC method 

for the quantitation of the desmosines, and their subsequent use for the 

estimation of the elastin content, an investigation of the effect of age 

on both the elastin and collagen content of human aortic arch tissues was 

undertaken. For this study, samples of human aorta (aortic arch region) 

were obtained from eleven post-mortem examinations at Loyola University 

Medical Center. Only tissue that on gross examination by a pathologist 

appeared free of pathological processes were used in this study. The age 

and sex of each subject from whom the tissues were obtained were noted 

(Table 19). The all Caucasian population included 5 females and 6 males, 

ranging in ages from 2 to 90 years. 

Following the tissue preparation (as described in Chapter 3), the 

Des and Ide concentrations were determined by both the ion-paired HPLC 

method, and by AAA (Table 20). It was noted that the ion-paired HPLC 

chromatograms obtained from the human aorta hydrolysates were very simi

lar to the chromatograms obtained from the canine hydrolysates, with Ide 

and Des eluting at 59 and 66 min, respectively (Fig. 24). 

Following the quantitation of the desmosines in the human aorta 

hydrolysates, the percent elastin in each was estimated as previously 

described in the canine aorta studies (Table 21). From these calcula

tions, it was found that the results obtained from the ion-paired HPLC 

method again correlated well (r = 0.96) with the results obtained via the 

AAA, yielding a linear relationship between the two methods (y = 1.00x + 



SAMPLE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE 19 

DEMOGRAPHICS OF HUMAN SAMPLES 

LAB # * SEX 

81A-21 , M 

81A-20 F 

81A-22 M 

81A-30 F 

81A-31 M 

81A-19 F 

81A-33 M 

81A-32 F 

81A-18 M 

81A-34 M 

81A-17 F 

AGE 
(YRS) 

2 

5 

17 

34 

58 

66 

66 

67 

70 

70 

90 

AGE AND SEX INFORMATION OF SAMPLES OBTAINED FROM HUMAN SUBJECTS, 

* lABORATORY ASSIGNED NUMBER, 
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TABLE 20 
DESMOSINE AND ISODESMOSINE CONCENTRATIONS OF HUMAN AORTIC ARCH 

TISSUES AS DETERMINED BY HPLC A~D AUTOMATED 
AMINO ACID ANALYSIS 

AUTOMATED 
SAMPLE AMINO ACID ANALYSIS HPLC 

DES (MMOLfL) IDE DEs (MMOLIL) IDE 

1 0.174 0.155 0.186 0.149 
2 0.114 0.119 0.139 0.113 
3 0.177 0.130 0.176 0.126 
4 0.123 0.103 0.118 0.088 
5 0.106 0.071 0.110 11,083 
6 0.131 0.088 0.132 0.098 
7 0.114 0.094 0.116 0,086 
8 0.102 0.062 0.109 0.083 

9 0.131 0.076 0.147 0.101 
10 0.117 0.095 0.116 0.094 
11 0.098 0.078 0.094 0.072 

DESMOSINE AND ISODESMOSINE CONCENTRATIONS OF HUMAN AORTIC ADCH 
SAMPLES PREPARED AS DESCRIBE IN CHAPTER 3, ALL SAMPLES RUN IN 
DUPLICATE, 
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Fig. 24. Representative ion-paired HPLC chromatogram of hydro
lyzed human aorta. Hydrolysate eluted with methanol/ 
water (26/74, v/v) mobile phase containing 0.01 mol/L 
heptane sulfonic acid, pH 3.0. Detection at 205 nm. 



TABLE 21 
ELASTIN AND COLLAGEN CONTENT OF HUMAN AORTIC ARCH TISSUE 

% ELASTIN % COLLAGEN % CTP** 
SAMPLE 

AAA HPLC UNCORR.* CORR.* UNCORR.* CORR.* 

1 45.8 46.6 40.6 33.5 87.2 80.1 
2 31.2 35.1 44.7 39.5 79.8 74.6 
3 42.7 42.1 40.4 33.9 82,5 76.0 
4 31.5 28.6 31.2 25.1 59,8 53.7 
5 27.0 26.8 36,0 31.9 62,8 58.7 

6 24.6 26.9 37.0 32.9 63,9 59,8 

7 30.5 32,0 . 26.7 22.7 58,7 54.7 

8 28.4 27.8 33.1 28.9 60.9 56.7 

9 33.0 35.8 30,5 25.0 66,3 60,8 

10 29.5 30.4 32.7 28.0 63.1 58.4 

11 24.5 23.1 37,9 34.4 61.0 57,5 

ELASTIN AND COLLAGEN (UNCORRECTED AND CORRECTED) CONTENT CALCULATED AS DESCRIBED IN CHAPTER 4, 
• UNCORR. = UNCORRECTEDi CoRR, : CORRECTED 

** % CTP = % CONNECTIVE TISSUE PROTEIN~ AS DETERMINED BY PERCENT ELASTIN PLUS COLLAGEN, 

ELASTIN CONTENT DETERMINED FROM DES AND IDE QUANTITATION BY ION-PAIRED HPLC, 

....... 

....... 

.J::> 
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0.6). Therefore, the elastin content, as determined by the ion-paired 

HPLC quantitation of the desmosines was utilized in all further analyses 

of the human aorta samples. 

Upon statistical analysis of the human aorta samples, it was found 

that they segregated into two groups. The first group (age 2-17) had a 

mean elastin content of 412.6 ± 58.1 mg/g aorta FFDW, while the second 

group (age 34-90) was found to have a mean elastin content of 288.7 ± 

38.1 mg/g aorta FFDW. These two means were determined to be statisti

cally different (p<0.01). From these results it was concluded that with 

age, the elastin content of the aorta (aortic arch region) decreased 

significantly. 

Following the determination of the elastin content of the human 

aorta samples, the collagen content of these same samples were deter

mined, as previously described in the canine aorta study. Again, both 

the uncorrected and corrected collagen content of each sample was calcu

lated (Table 21). 

Upon statistical analysis, it was found that the uncorrected colla

gen content of the aorta samples were segregated into 2 age groups, iden

tical to the age groups found in the elastin study. The first group (age 

2-17) had a mean collagen content of 419.0 ± 24.5 mg collagen/g aorta 

FFDW, while the second age group {34-90) was found to have a mean colla

gen content of 331.2 ± 37.0 mg collagen/g aorta FFDW. These two means 

were found to be statistically different (p=0.05). However, when the 

correction for the non-collagen Hyp content of the aorta samples were 

made, and the corrected collagen content.determined, it was found that 

while the younger age group had a somewhat higher mean collagen content 
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than the older group (356.0 ± 34.4 mg collagen/g aorta FFDW vs. 286.9 ± 

45.5 mg collagen/g aorta FFDW), and that there was a decrease in the col

lagen content from young to old, the significance observed in the uncor

rected collagen diminished. This decreasing tendency in the collagen 

content of aortic samples with age has been observed by other investiga

tors 134,135 

From these results it was concluded that the significant age dif

ference observed in the uncorrected collagen content between of two 

groups may be due to the Hyp content of the elastin. Thus, when the 

non-collagen Hyp is subtracted from the total Hyp content of the tissues, 

the age difference previously observed in the uncorrected collagen con

tent diminished, although a decreasing trend in the corrected collagen 

content with age is still observed. These results stress the necessity 

to correct for the non-collagen Hyp content in tissues which are rich in 

elastin, such as the aorta. 

Following the collagen determinations, the percent connective tis

sue protein in the human aortas was calculated as previously described 

(Table 21). Again, a significant difference was observed between the two 

age groups, whether the uncorrected or corrected collagen content was 

used in the calculations. Using the corrected collagen content of the 

aortas, the mean percent connective tissue protein for the 2-17 year 

group was determined to be 76.9 ± 2.85%, while the mean percentage deter

mined in the 34-90 year group was 57.5 ± 2.4%. Clearly, these results 

show a significant decrease (approximately 1/3) in the total connective 

tissue component of the aorta with age (p<O.OOl). This result is to be 

expected since this research has shown the elastin, and possibly, the 



117 

collagen content of the aorta decrease with age. 

Hydroxyproline Determination by Ion-Paired HPLC: 

During the development of the ion-paired HPLC method for the quanti-

tation of the desmosines, it was observed that standards of Hyp and Pro 

displayed k' values different from the other amino acids investigated 

(Table 14). From this finding, it was thought that it may be possible to 

simultaneously quantitate the Hyp and the desmosines in tissue hydroly

sates, thereby yielding an estimate of both the elastin and collagen con

tent from one analysis. However, it was found that that the mobile phase 
I 

which maximized the separation of the desmosines failed to sufficiently 

resolve Hyp and Pro in the tissue hydrolysates. 

In an attempt to separate Hyp from Pro and the other amino acids in 

the hydrolysate, the methanol percentage of the mobile phase was decrea

sed to 19%. At this methanol percentage, Hyp was observed to completly 

separate from Pro (Fig. 25). The elution profile of the desmosines at 

this decreased methanol percentage, however, was such that they were un-

able to be quantitated, the peaks being very broad and unsymmetrical, due 

to the extended length of time on the column. 

It may still be possible to quantitate Hyp with the desmosines if a 

gradient elution technique is applied to the existing ion-paired HPLC 

method. With this system, the methanol percentage of the mobile phase 

would be gradually increased from 19% to 26% during the course of the 

analysis. Therefore, the Hyp, eluted at the lower methanol percentage, 

would separate from the other amino acids, and the desmosines, eluted at 

the higher methanol percentage, could still be quantitated. 
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Fig. 25. Chromatogram of Hyp and Pro separation by ion
paired HPLC. Amino acid standards eluted with 
methanol/water (19/81, v/v), pH 3.0, containing 
0.01 mol/L heptane sulfonic acid. Amino acids 
detected at 205 nm. 
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CHAPTER 5 

DISCUSSION 

Elastin is one of the major connective tissue proteins of the body, 

and is unique in that it displays both elasticity and tensile strength. 

This protein has been implicated in several pathological conditions, in

cluding atherosclerosis, emphysema, and a rare hereditary disease, pseu

doxanthoma elasticum. Thus, it would be advantageous to determine the 

amount and composition of elastin in both 11 normal 11 and 11 pathological 11 

processes. However, this information is lacking in that the major source 

of data pertaining to the quantitation of elastin is derived from gravi

metric determinations of the residue remaining following several extrac-

tion procedures. 

These extraction results have been shown to be non-reproducible when 

compared to both with-in and between method evaluations 14 ,24-26 . This 

variability of results has been partially explained by the glycoprotein 

content of the remaining residue, which is often defined as elastin. 

This glycoprotein content has been shown to vary considerably with the 

source and age of the tissue, and may be due to the method utilized to 

extract the various other proteins 46 ,86 . Also, these extraction methods 

are tedious, require several days for completion, and prone to methodo

logical errors. 

Recently, a method for the estimation of elastin, which relies on 

the cross-linking amino acids Des and Ide, has been proposed 39 This 

method utilizes the quantitation of the two derived amino acids as an 

119 
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index to the amount of elastin present in the tissue, just as the quanti-

tation of Hyp is frequently used as an index to the amount of collagen 

present 49• This inference is possible because Des and Ide have only 

been found in elastin and the non-elastin protein in egg shell membranes. 

This method of quantitation has several advantages over the extrac

tion procedures. For one, after the tissue is dried and defatted, it is 

simply hydrolyzed in one step, which negates any errors associated with 

the possible loss of elastin by extraction procedures. Secondly, by its 

nature, the procedure is less tedious, and eliminates several methodo

logical errors introduced by the extraction procedures. 

With this method, the desmosines are routinely quantitated by auto

mated amino acid analysis. While this method of quantitation has been 

the accepted technique, there are disadvantages associated with the amino 

acid analyzers. For one, relatively few laboratories have a completely 

automated amino acid analyzer at their disposal, the instrument being. 

somewhat cost prohibitive. Secondly, amino acid analysis is a time con

suming procedure, the average analysis requiring 3 to 6 hours. Finally, 

the limit of detectability for the desmosines with an amino acid analy

zer, utilizing ninhydrin from detection, is at best 5 nmols, thereby 

limiting its use to tissues rich in elastin (aorta, lung) unless concen

tration procedures are utilized. 

The results described in Chapter 4 show that an alternative method 

of quantitation of the desmosines is possible. This ion-paired HPLC 

method for the separation and quantitation of Des and Ide was shown not 

only to correlate well with the accepted method of quantitation, but to 

rival the amino acid analyzer in terms of general availability (not as 
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cost prohibitive), analysis time (less than 1 hour for complete analysis 

with no column regeneration), and sensitivity (lower limit of detection 

being approximately 100 pmol). 

This research has also shown that the estimation of the elastin con-

tent of canine aortic tissues, when calculated from the concentration of 

the desmosines, as opposed to determination by gravimetric procedures, 

were higher in 4 of the 5 samples studied. Yet due to one high gravimet

ric result, the difference observed between the two methods was not sig

nificant. This finding may be biased by the limited number of samples 

.investigated. The higher elastin content obtained by the HPLC method 

in the 4 samples mey be explained by sample degradation due to the harsh-

ness of the extraction procedures utilized in the gravimetric method 14 • 
24-26 The elastin results obtained by the quantitation of the desmo-

sines, when compared to those previously reported, were nund to be near

ly identical 101 . 

When the elastin content of the canine aortas were combined with 

their respective collagen contents, it was observed that there was an in

verse relationship between the two connective tisue proteins, and that 

the elastin plus collagen content of the canine aortas accounted for ap

proximately 2/3 of their total FFDW. If, however, the non-collagen Hyp 

content of the aortas (elastin contains approximately 1.7% Hyp) was sub

tracted from the total Hyp content, and the collagen determined using 

these corrected concentrations, a significant decrease of approximately 

10% was observed in the canine aortas. This is the first report of the 

overestimation of the collagen content in tissues rich in elastin. 
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hydrolysates (aortic arch region), it was observed that the elastin con-

tent varied according to the age of the individual. It was found that 

in the 11 human aorta samples studied, the highest elastin content oc

curred in the first two decades of life, and decreased thereafter. These 

findings have been substantiated by others, though the absolute decrease 

varied between investigators, depending on the method utilized for the 

estimation of the elastin content 130- 132. 

The average elastin content of the human aortas was found to be 

somewhat less than those previously published 101 • This difference may be 

accounted for by the age dependence associated with the elastin content, 

and the sample population being skewed towards the aged. 

The collagen content of the human aortas were again shown to be in

versly proportional to the elastin content, and this relationship was ob

served to fall into the 2 age groups described for the elastin content 

(p=0.05). Also, a substantial decrease was noted in the collagen con

tent of the human aortas when the non-collagen Hyp from elastin was sub

tracted from the total Hyp content. 

There have been conflicting reports on the age dependence of the 

collagen content of human aortas, varying from a decrease with age to re

ports of increases observed in the collagen content with age 133- 135 . 

These conflicting results may, in part, be explained by the non-collagen 

Hyp contribution of elastin. However, no definitive statement can be 

made in regard to the significance of the dependence of the collagen con

tent with age from the results qescribed in Chapter 4. These findings, 

however, further emphasize the necessity for correcting for the Hyp con

tent of elastin, in tissues rich in this protein. 
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Finally, the connective tissue protein content of the human aortas 

was determined to be approximately 2/3 the total FFDW, using the cor

rected collagen content. This value is approximately 10% higher than 

those of a previous report 18 . However, the method of elastin and col

lagen content utilized in that report involved extremely harsh extraction 

procedures, which could lead to sample degradation. 

As previously described in Chapter 4, an unknown peak appeared on 

the chromatograms of all the canine and human aorta hydrolysates. This 

peak was speculated to be lysinonorleucine, a minor cross-link found in 

elastin. With further observations, the relative peak height was found 

to increase with the age of the human aorta samples. If this peak is in 

fact lysinonorleucine, perhaps an inverse relationship may exist between 

it and the the desmosines. Thus with age, as the concentration of the 

desmosines decrease, the concentration of lysinonorleucine would in

crease. This finding has been substantiated by other investigators 130 . 

This finding leads to a problem associated with the measurement of 

elastin by the quantitation of the desmosines, or any other amino acid. 

This problem is the question of possible changes in the absolute number 

of cross-links (Des, Ide, or lysinonorleucine) per unit elastin with 

time. There is some evidence that the Des and Ide cross-links in early 

fetal elastin is very low, and then increases in late fetal elastin 136 

Also, there is some evidence of a decrease in the number of Des and Ide 

cross-links per unit elastin in aged individuals 130 . If, in fact, this 

occurs, an argument can be made for a concomitant increase in the lysine

norleucine cross-links, with a decrease in the number of Des and Ide 

cross-links. Assuming that the Des and Ide cross-links are required for 
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the elasticity and tensile strength displayed by the elastin molecule, a 

decrease in their absolute number, with a concomitant increase in the 

non-functional lysinonorleucine cross-links, may explain the "brittle

ness" often associated with aging of the aorta. 

Yet, with these drawbacks, it may well be that the quantitation of 

the desmosines for their use as an index to the elastin content is as 

good as index as the others thus far suggested for postnatal measure

ments. This would especially be true in dealing with tissues from a 

given species, of similar age. 

Recently, 3 other methods have been developed for the quantitation 

of the desmosines for use in the estimation of elastin 137-139 The 

first of these methods relies on the Hyp content of the tissue to deter

mine both the elastin and collagen content 137 While, this method would 

offer simultaneous quantitation of the two connective tissue proteins, 

there are certain drawbacks associated with it. For one, since Hyp is 

contained in both elastin and collagen, each would be susceptible to con

tamination from one another, thus tending to increase their amounts. 

Secondly, these methods rely on extraction procedures, whose problems 

have been previously described. Both of these problems can be eliminated 

if Des and Ide are utilized in place of the Hyp, since Des and Ide are 

specific markers for elastin, and their quantitation requires no extrac

tion procedures. 

Another method recently developed employs an RIA for the quantita

tion of desmosine 138 . Undoubtedly, this method would be more sensitive 

than any method previously described. However, this method is very de

pendent on antibody production to desmosine, which has been shown to be 



a difficult procedure, by both the developers of the RIA method and in 

this research (Chapter 4). Also, the time of the assay is somewhat 

limiting, in that it requires a long equilibration procedure. 
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Finally, Faris and co-workers have reported using a HPLC system si

milar to the ion-exchange method investigated during the course of this 

study, for the quantitation of the desmosines 139 Though their system 

fails to resolve Des from Ide, they claim to quantitate the total desmo

sine concentration by detection at 275 nm. While this method may be 

useful as a preparative procedure, the absolute quantitation of the des

mosines would be suspect for several reasons. For one, their method as

sumes that the molar absorbance coefficients of Des and Ide are identi

cal at 275 nm, however, their data fails to confirm this. Secondly, 

their method of quantitation assumes the Des to Ide ratio to be constant. 

This, however, was not shown in their report, in fact, the Des to Ide 

ratio has been shown to vary from tissue to tissue 101 , 121 - 123 It was 

for these reasons that the ion-exchange method was abandoned during the 

early HPLC investigations in this research. 

Therefore, the ion-paired HPLC method for the quantitation of the 

desmosines, and their subsequent use for the estimation of the elastin 

content, is clearly as good as, if not superior, to the methods previous

ly described. Also, with further refinements (gradient elution), simul

taneous quantitation of Hyp, Des, and Ide may be possible with the ion

paired HPLC method. Thus the quantitation of these 3 amino acids from 

one analysis would yield an estimation of both the elastin and collaqen 

content, negating the use of a separate assay for Hyp. 
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APPENDIX A 

PREPARATION OF EHRLICH 1 S REAGENT: 

Solution A: 
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To 25 ml of cold absolute ethanol, 3.42 ml of concentrated sulfuric 

acid was slowly added. The mixture was kept cooled until needed. 

Solution B: 

To 25 ml of cold absolute ethanol, 15 g of para-dimethylaminobenz

aldehyde was added and dissolved. 

Reagent: 

Solution A was slowly added to solution B (1:1) in an ice bath. 

The reagent was stable for 4 weeks if stored in a cold dark room. 
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