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CHAPTER I 

INTRODUCTION AND 

REVIEW OF THE LITERATURE 

A. Objectives 

In recent years it has become evident that en­

dogenous compounds are produced from the condensation 

of catecholamines (CAs) with aldehydes or a-keto acids 

in several pathological conditions. Of interest in 

this dissertation are the simple, 1-alkyl, CA-derived 

condensation products, the tetrahydroisoquinolines 

(THIQs) which are associated with ethanol (EtCH) 

metabolism. The close structural similarities be­

tween CA-derived THIQ alkaloids and CA neurotrans­

mitters (NTs) suggests that these alkaloids may be 

uniquely qualified to modify biogenic amine function 

and metabolism. 

Little is specifically known about catechol­

THIQ metabolic routes in the nervous system and 

to what extent these pathways differ from conven­

tional CA metabolic routes. It is believed that a­

methylation and, possibly, conjugation are the major 

metabolic routes for THIQs. However, it is not known 

whether the in vivo a-methylation of isoquinolines is 
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similar or identical to that of their open-chain precur­

sors, or whether significant stereoselective differences 

might exist between isoquinolines and CAs. These factors 

were investigated in this dissertation. 

A second possible alternative mode of THIQ metab­

olism, oxidation to isoquinolines, was surveyed in vivo 

as a route to the potential formation of intermediates 

which could bind covalently to cellular nucleophiles. 

In view of known formation of THIQs and lack of 

knowledge about the metabolic consequences of these now­

recognized endogenous CA derivatives, studies of their 

effects on the steady state levels of biogenic amines 

and acid metabolites in vivo also were pursued. 

In order to study THIQ metabolism and to evaluate 

the pharmacodynamic events initiated by the presence of 

THIQ alkaloids and their possible metabolites, highly 

sensitive and specific assays were developed for rou­

tine, rapid, analysis of THIQs, biogenic amines and 

their respective metabolites in vivo. 

In summary, the purpose of the work described in 

this dissertation is to elucidate with greater clarity 

the discrete metabolic consequences of THIQs in mamma­

lian systems, with the underlying hypothesis that these 

condensation products may have neuroregulatory and/or 

neuropathological effects. 



B. Background 

1. Nonenzymatic Condensations: Introduction and 

Overview 

Recent experimental findings demonstrate that 

non-enzymatic, bimolecular condensation reactions are 

definite occurrences in mammalian homeostatic and di­

sease states. These reactions, first characterized 

in plants, can be generally defined as multistep 

processes involving an amine or amino acid and a 

carbonyl compound, in equilibrium with the first 

product, an imine (Schiff's base), which, if the amine 

is derived from a CA, undergo an irreversible intra­

molecular cyclization to form a second heterocyclic 

product, a THIQ molecule (Fig. 1). 

Increased levels of catecholamine-carbonyl 

condensation products are evident in at least three 

pathological conditions in man: phenylketonuria, 

Parkinson's disease, and alcoholism. The products 

have been suggested to be involved in some way in 

the sequelae and etiology of these disease states, but 

their involvement is not specifically known. 

Parkinson's disease, a progressive neurological 

disorder, is characterized by degeneration of the sub­

stantia nigra and associated subnormal striatal dopa­

mine (DA) levels. The clinical characteristics of 
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tr~r, bradykinesia and rigidity can be relieved to 

varying degrees by oral L-3,4-dihydroxyphenylalanine 

(L-DOPA) treatment in conjunction with peripheral L­

DOPA-decarboxylase inhibitors. In 1973, Sandler 

et al. (1) unequivocably demonstrated in vivo bio­

synthesis of THIQs in Parkinsonian patients under­

going L-DOPA treatment who were given test doses of 

EtOH. Both salsolinol (SAL.), the DA/acetaldehyde, 

(AcA} condensation product, and tetrahydropapaveroline 

(THP), the DA/3,4-dihydroxyphenylacetaldehyde (DHPAcA) 

condensation product, were found in significant amounts 

(Fig. 2). 
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Further evidence for THIQ synthesis was the finding of 

tetrahydroprotoberberines (THPBs) in the urine of 

Parkinsonian patients undergoing L-DOPA treatment (2). 

THPB alkaloids are suggested to be further "condensa-

tion" products derived from in vivo enzymatic con-

version of THP via a liver s-adenosyl-methionine-N-

methyl transferase, followed by apparent oxidation 

and ring closure (2, 4) (Fig. 3). 

In 1977, Coscia et al. (3) found yet another 

group of THIQs associated with L-DOPA treatment and 

Parkinsonism. The condensation of DA with phenyl­

pyruvates yielded the two 1-benzyl-1-carboxyl-THIQs, 

norlaudanosolinecarboxylic acid (NLCA) and 3-0-



methylnorlaudanosolinecarboxylic acid (MNLCA) (Fig. 4). 

Interestingly, MNLCA was found to be a normal constit­

uent in control urines as well as in human and rat 

brain (3). 

Phenylketonuria (PKU) is a well-known disease 

resulting from a genetic deficiency in functional 

phenylalanine hydroxylase. As a result, large amounts 

of phenylalanine, phenethylamine (PEA) and phenylpyru­

vate accumulate in the tissues and body fluids of PKU 

individuals (5). Initial studies by Y.H. Loo (6) in 

1967 characterized an aldimine condensate of phenethy­

lamine and pyridoxal in the urines of human PKU pa­

tients and in the brain and urines of rats made "phen­

ylketonuric" (Fig. 5). 

In 1979, Lasala and Coscia, utilizing compu­

terized gas chromatography (GC)/mass spectrometry (MS), 

quantitated significant levels of the phenylpyru­

vate/DA condensation product, 3,4-deoxynorlaudano­

solinecarboxylic acid (DNLCA) (Fig. 6), in the urine of 

PKU children and in the urine and brains of rats with 

experimentally-induced hyperphenylalaninemia (7). 

In 1979, Collins and coworkers reported the 

first evidence for the endogenous formation of 

THIQs in alcoholic humans with the finding of SAL 

and a-methylated SAL (isomer unknown) in the urines 
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of patients undergoing detoxification (Fig. 7) {8, 9). 

consistent with these findings, Borg et al. (10) have 

recently found SAL and a-methylated SAL (isomer un­

known) in the urine and lumbar spinal fluid of alco­

holic patients during and after prolonged intoxica­

tion. Earlier work by Collins and Bigdeli provided 

evidence for the formation of SAL in DA-rich brain 

regions in acute EtCH-intoxicated rats pretreated 

with pyrogallol, a potent catechol-0-methyl trans­

ferase (COMT) and aldehyde dehydrogenase inhibitor 

(11, 12). Hamilton et al. provided important addi­

tional evidence for in vivo CNS formation of THIQ 

alkaloids with his finding of a-methylated SAL 

(isomer unknown) in the corpus striatum of mice 

chronically exposed only to EtOH vapors (13), and 

no other pharmacological agents. 

In summary, non-enzymatic products of CA/car­

bonyl condensation reactions are apparently present 

normally in human metabolism. However, during vari­

ous pathological conditions their levels appear to 

be elevated (14). The possible physiological and meta­

bolic roles of these compounds are the central ques­

tions addressed in this dissertation and will be 

discussed in detail. Of particular interest are the 

simple catechol isoquinolines formed during acute 
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and/or chronic alcohol ingestion. 

2. Metabolic Considerations of EtOH Ingestion 

EtOH is an unusual psychoactive drug because 

of its significant interactions and contributions to 

cellular metabolism (15). The primary metabolic fate 

of ingested EtOH is conversion to acetate, which is 

then available to enter cellular metabolism at sev­

eral portals (16). EtOH is primarily oxidized in the 

liver by a cytosolic, nicotinamide-adenine-dinucleo­

tide (NAD+) dependent alcohol dehydrogenase (ADH) 

(17- 19) (Fig. 8). AcA produced during the oxidation 

of EtOH in the liver is metabolized to acetate by mi­

tochondrial NAD+ dependent aldehyde dehydrogenase 

(ALDH) (20- 23). Although the liver has the enzyma­

tic capacity to metabolize EtCH-derived acetate to 

carbon dioxide (co 2), most of the acetate is released 

into the circulation to be metabolized by other organs 

(24, 25). 

Concomitant with the oxidation of EtOH, cyto­

solic NAD+ is reduced to NADH by cytosolic ADH. Most 

of the peripheral metabolic changes associated with 

chronic EtOH ingestion can be traced back to the sub­

stantial decreases in the free NAD+/NADH ratio 

(18, 26). 

The decrease in the free NAD+/NADH ratio in 
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hepatocytes has been shown to have profound effects on 

the intermediary metabolism of these cells (19, 27). 

This change in redox potential during chronic EtOH 

metabolism has been implicated as the cause of de­

creased lipid oxidation, increased fatty acid synthesis 

(28), hyperlactacidemia (29), decreased glucose utili­

zation (30) and diminished activity of the citric acid 

cycle (TCA) (31). Under these conditions the reoxida­

tion of NADH to NAD+ (the requisite cofactor for cyto­

solic ADH) in the mitochrondria is rate-limiting with 

regard to in vivo oxidation of EtOH (32). 

In lieu of these findings, it is interesting 

to note that chronic ingestion of EtOH by rats 

(27, 33) and humans (34) results in an increased 

ability to oxidize EtOH. Although ADH is the major 

enzyme for the oxidation of EtOH in vivo (18, 19), at 

least two other enzyme systems, microsomal EtOH oxi­

dizing system (MEOS) and catalase are thought to con­

tribute to the oxidation of EtOH to AcA. Inducible 

changes in the activity of MEOS and catalase have 

been proposed to be responsible for the increases in 

EtOH oxidation associated with chronic EtOH inges­

tion (35, 36). 

In addition to the metabolic consequences re­

sulting from the oxidation of EtOH to AcA, many of 
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the pharmacological effects associated with EtOH inges­

tion have been ascribed to direct effects of AcA in ani­

mal tissues. Most AcA generated in the liver (as well 

as other tissues) is metabolized to acetate by ALDH 

(37- 39). In normal individuals given a moderate 

test dose of EtOH, a relatively small portion of AcA 

escapes metabolism in the liver and enters circulation 

where it is quickly converted to acetate by other organs 

(40, 41). Circulating AcA levels are maintained at a 

steady-state level by a balance between the rate of 

production and catabolism (42). 

Chronic consumption of EtOH has been observed 

to alter these "steady-state" levels of AcA in humans 

and animals. It has been suggested that these ob­

served changes are the consequence of adaptive in­

creases in EtOH metabolism with concomitant decreases 

in AcA metabolism (35, 43). Chronic, elevated AcA 

levels have been shown to produce structural damage 

in mitochondria which in turn leads to a decreased 

capacity for the metabolism of AcA (43, 44). 

Human alcoholics have been found to have sig­

nificantly higher circulating AcA levels compared to 

controls given a test dose of EtOH (40, 45). These 

observations led to the proposal that a "vicious" 

metabolic cycle may develop during chronic alcohol 



abuse (Fig. 9), where, chronic EtOH ingestion leads to 

induced EtOH metabolism and concomitant decreases in 

AcA metabolism (26, 44). Subsequently, tissues of the 

body are perfused with increasing levels of AcA. High 

AcA levels are believed to contribute not only to the 

pathology at the primary site of AcA metabolism (i.e., 

the liver), but also in other peripheral tissues (46) 

and possibly the brain. 

Little oxidation of EtOH occurs in brain tissue 

due to very low ADH activity (1/4000 of liver activity) 

(47 - 49). However, EtCH-derived metabolites and 

products (AcA and acetate) produced in the periphery 

are metabolized by brain. AcA is primarily metabolized 

to acetate by brain ALDH which has been noted in the 

cytosol, mitochondria and microsomes of brain tissue 

(50). Brain ALDHs located in the parenchymal cells 

of capillaries, glia and neurons are even suggested 

to form a metabolic blood-brain barrier to AcA (51, 

52). Support for this concept comes from data which 

reveal multiphasic increases in brain AcA content 

corresponding to the saturation of various brain ALDHs 

~ by AcA (52, 53) as blood AcA levels increase. 

3. Neuroamine Condensation Products and EtOH: 

Pertinent Theories 

Recently several hypotheses have attempted to 
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relate the potential biosynthesis of CA/aldehyde con­

densation products or their biotransformed products in 

mammalian tissue to some of the actions mediating the 

autonomic and behavioral effects of chronic EtOH in­

gestion. It has been proposed that these compounds 

may also take part in the underlying biochemical me­

chanisms of EtOH tolerance and dependence (54). 

The first hypothesis envisions EtOH, through 

its active metabolite, AcA, inducing alterations in 

the metabolism of CAs to produce complex aberrant 

metabolites (alkaloids) having unique pharmacological 

activities (55, 56). The biogenesis of the proposed 

complex alkaloid products would be the result of the 

known competitive inhibition of aromatic ALDH (57, 

58) by elevated AcA levels (40, 45) generated during 

chronic EtOH ingestion. The inhibition of NAD+ 

linked ALDH would result in a localized increase 

in the highly reactive biogenic aldehydes generated 

by monoamine oxidase (MAO) in tissues rich in CAs. 

Deprived of their normal metabolic route(_s}, the cate­

chol-aldehydes would be available for condensation 

with parent amines (Fig. 10). 

This hypothesis is based on the formation of 

THP. THP is the requisite intermediate in the bio­

synthesis of morphine in the opium poppy Papaver 
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somniferurn (59). As early as 1938, Holtz and Heise (60) 

speculated that biogenic amines and their aldehyde de­

rivatives may condense in animal tissues. In 1964, 

Holtz et al. provided evidence for the in vitro forma­

tion of THP in rat liver homogenates incubated with 

DA (61}. Davis and Walsh, the major proponents of the 

complex-THIQ theor~ utilizing 14c-DA, provided evidence 

for THP formation in rat brainstem homogenates and 

showed that formation was enhanced by addition of in­

creasing amounts of AcA to preparations (55, 62). In 

similar experiments, Davis et al. (63) incubated 
14

-c­

norepinephrine (NE) in rat brainstem homogenate and 

isolated a substance which apparently had the physical 

characteristics of a 4-hydroxylated-THP. Product for­

mation was enhanced by the addition of barbiturates 

to the incubate. Further evidence to support complex 

alkaloid formation, as mentioned in section A., Back­

ground, came from the biotransformation of administered 

THP to complex THPBs in rat brain and liver 

preparations, and the detection of THPBs in the urines 

of Parkinson's patients undergoing L-DOPA therapy (64). 

Stimulated by these initial findings, numerous 

investigators have studied the possible relationships 

between the actions of opiates and that of EtOH (65 -

68). However, experiments involving THIQ interactions 



with opiate systems (through quantitation of naloxone 

displacement and analgesic effects) have yet to pro­

vide consistent data which would elucidate an accepted 

connection between the molecular mechanisms underlying 

EtOH and opiate "addiction." 

Independently, but simultaneously, Cohen and 

Collins (69 - 71) put forth a second hypothesis de­

lineating the relationship between THIQ formation and 

alcohol ingestion. The major premise of this hypoth­

esis was that AcA, in competition with rapid oxida­

tion and binding to macromolecules, can condense 

directly with CAs to form simple 1-alkyl-THIQ alka­

loids (Fig. 11). The similarity in structure be­

tween the THIQs and parent CAs gave rise to the pos­

sibility that THIQs could interact with mechanisms 

that normally regulate the physiological properties 

of CAs. In this way the THIQs, acting as "false" 

NTs, might contribute to the development of EtOH 

dependence and/or to the general pharmacological 

effects of EtOH ingestion (72). 

Although the remainder of this dissertation 

will not deal further with the hypothesis concerning 

"morphine-like" alkaloids and alcoholism, THP and 

other 1-benzyl-THIQs will be included in the dis­

cussion on the properties and interactions of THIQs 
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with biogenic amine systems. 

4. Tetrahydroisoquinoline Alkaloid Synthesis and 

Biosynthesis 

a. Plant Synthesis of THIQs 

The THIQ alkaloids are naturally occurring 

products in plants; many are known to exhibit phar­

macological actions on mammalian nervous and cardio­

vascular systems (73). Examples of naturally occur­

ring THIQs are anhalamine and salsoline, which are 

found in desert cacti (74), and the saguaro alkaloid 

gigantine, which causes hallucinogenic reactions in 

squirrel monkeys and cats (75) (Fig. 12). In plants, 

the formation of THIQ alkaloids is believed to be the 

result of the reaction of a-keto acids with an amine 

followed by decarboxylation (76). Morphine biosyn­

thesis in the opium poppy passes through the 1-benzyl­

THIQ,THP (77). It is believed that THP is formed 

from the condensation of DA with DHPAcA followed by 

enzymatic decarboxylation (78) to a 3,4-dihydroiso­

quinoline (DHIQ) . The DHIQs and their quaternary 

equivalents are established intermediates in the 

biosynthesis of plant alkaloids; chirality is de­

veloped through asymmetric reduction at this stage 

(79) (Fig. 13). Morphine and codeine are subse­

quently formed by a series of ring closures and 
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methylations followed by partial reduction of the DA­

derived benzene ring. 

SAL and THP formation in mammalian systems by 

the THIQ-1-carboxylic pathway is an interesting pos­

sibility in light of the finding of several 1-carboxy­

THP derivatives in the urine of Parkinsonian and PKU 

individuals (3, 7). 

b. General Synthesis and Biosynthesis In Vitro 

As early as 1934 researchers showed that DA and 

epinine would undergo a spontaneous condensation with 

AcA under physiological conditions to form THIQ alka­

loids (80). The formation of THIQs from the condensa­

tion of phenethylamine derivatives and aldehydes (or 

a-keto acids) is characterized by the Pictet-Spengler 

condensation reaction (81) (Fig. 1). Usually, strong 

acid and heat have been used to catalyze the reaction 

(82). Pictet-Spengler condensation reactions of CAs 

(DA, NE, L-DOPA, and epinephrine; EPI) under physio­

logical conditions with various aldehydes such as 

formaldehyde (HCHO) (70), AcA (83), DHPAcA (62), 

and pyridoxal phosphate (84) have been studied. 

When a phenolic substituent is located para to the 

site of ring closure, the reaction was known to 

occur at ambient temperature and neutral pH (69, 80). 

This facilitation is negligible under physiological 

15 
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conditions if the hydroxyl group is a-methylated or meta 

to the site of ring closure (84). 

THIQ synthesis has been studied in tissue homog­

enates (62, 85), isolated intact cells, and organ prep­

arations (70, 86). Perfusion of cow adrenals with AcA 

or HCHO yielded the corresponding THIQs of NE and EPI 

(70, 86). When high concentrations of HCHO were used, 

total conversion of EPI and NE to THIQs was observed 

(69). THIQ synthesis has also been observed when per­

fusion with AcA was in the range of that seen in the 

blood of human subjects ingesting EtOH (87). 

5. Biogenic Amine Biosynthesis and Metabolism 

Before discussing interactions of THIQs with 

biogenic amine metabolism, biogenic amine biosynthesis 

and metabolism will be considered. In the mammalian 

CNS the CAs, EPI, NE •and DA and the indoleamine, sero­

tonin (5HT~ are putative neurotransmitters. 

a. Catecholamines 

Tyrosine is the only dietary amino acid precus­

sor of DA, NE, and EPI (88). Phenylalanine through 

its conversion in the liver to tyrosine by phenylala­

nine hydroxylase can also contribute to CA biosynthe­

sis (89). The rate limiting step in the biosynthesis 

of CAs is the conversion of tyrosine to L-DOPA by ty­

rosine hydroxylase (TH) (90). THis a cytoplasmic 



enzyme requiring reduced biopterin (91) as a cofactor, 

and is under metabolic feedback inhibition by CA prod­

ucts (92). L-DOPA is rapidly decarboxylated to DA by 

L-DOPA decarboxylase (DDC) (93, 94). Because of its 

low specificity for aromatic amino acids, DDC has 

been given the name aromatic acid decarboxylase (AAD) . 

It is known to decarboxylate a variety of aromatic 

amino acids such as 5-hydroxytryptophan, phenylalanine, 

tryptophan and tyrosine. 

DA is converted to NE by the enzyme DA-B-hy­

droxylase (DBH) (95), an ascorbate -requiring, copper 

containing oxygenase (96) • NE is converted to EPI 

by the action of phenylethanolamine-N-methyl-trans­

ferase (PMNT) utilizing S-adenosyl-L-methionine 

(SAM) as a methyl donor (97). Evidence is accumu­

lating that EPI is a putative neurotransmitter in 

the brainstem (98) . 

The only appreciable endogenous metabolites of 

DA in vivo are 3,4-dihydroxyphenylacetic acid (DOPAC), 

homovanillic acid (4-hydroxy-3-methoxy-phenylacetic 

acid, HVA) and 3-0-Methyl-DA(3M-DA) (100 - 102). By 

use of GC, the endogenous occurrence of 3-methoxy-4-

hydroxyphenylethylene glycol (MOPEG) and 3,4-dihydro­

xyphenylethylene glycol (DOPEG) have been demonstrated 

as the CNS metabolites of NE in vivo in many species 
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(99, 103}. Little is known about central metabolism of 

EPI. The main metabolites of intraventricularily admin­

istered 3H-EPI were metanephrine (MET} and vanillylman­

delic acid (3-methoxy-4-hydroxy-mandelic acid, VMA} 

(260). CAs are oxidatively deaminated to their corres-

pending catechol-aldehydes by a multiform, mitochrondrial 

bound enzyme, MAO. Investigators have been able to 

distinguish two forms of this enzyme by the use of 

the selective-irreversible inhibitors clorgyline and 

deprenyl (104, 105}. These studies indicate that 

specific substrates for the A species of the enzyme 

include SHT, NE and normetanephrine (NORMET} whereas 

benzylamine and PEA are the substrates for the B 

species and DA is acted on by both. The aldehydes 

are converted by the actions of aromatic aldehyde 

dehydrogenases or reductases to corresponding acids 

or alcohols. 

In addition to oxidative dearnination, a-methyl-

ation plays a role in the metabolism of CAs. COMT 

catalyzes the transfer of a methyl group preferen-

tially to the "meta" hydroxyl of substrates containing 

the catechol moeity, in the presence of SAM as the 

methyl donor and magnesium ions (Mg++} as activator 

(106). To a very limited extent para a-methylation 

of endogenous substrates is seen in vivo (107). 
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Para 0-methylation of CAs has been shown to be increased 

in such pathological conditions as Parkinson's disease 

(108), neuroblastoma (109, 110) and pheochromocytoma 

(111). COMT shows low specificity, having as some of 

the physiological substrates, EPI, NE, DA, L-DOPA, 

DOPEG, and DOPAC (112). Summaries of possible meta­

bolic routes of NE and DA can be found in Figures 14 

and 15, respectively. 

b. Serotonin (5HT) 

Tryptophan is the immediate precursor of 5HT 

and is converted by the enzyme tryptophan hydroxylase 

to 5-hydroxytryptophan {5HTP) (113). 5HT synthesis 

is controlled at the level of tryptophan hydroxylase. 

5HTP is converted to 5HT by AAD. The main metabolic 

route for 5HT in the CNS and periphery appears to be 

deamination (MAo-A) and subsequent oxidation to 5-hy­

droxyindoleacetic acid (5HIAA) (114). However, fol­

lowing ingestion of large amounts of EtOH, a shift 

in peripheral 5HT metabolism is observed. Increases 

in the reductive metabolism of 5HT to 5-hydroxytryp­

tophol (5HTOL) with a concomitant decrease in 5HIAA 

are seen in the liver and urine, indicating probable 

inhibition of aromatic aldehyde dehydrogenase by 

AcA (115) (Fig. 16). 



20 

c. General Neurotransmitter Events 

In general the biogenic amine NTs are stored in 

high concentrations in selective areas of the peripheral 

and central nervous systems. They are actively se­

questered into dense-granular vesicles located in the 

presynaptic endings of neurons. Stimulation of the 

nerve releases only those transmitters bound within 

the dense-core vesicles. NTs released into the synap­

tic cleft (interneuronal space) can react with speci­

fic post-synaptic receptor sites, initiating a sequence 

of molecular events leading to a post-synaptic response. 

Inactivation of NTs occurs rapidly, primarily due to 

reuptake into the pre-synaptic nerve terminal (>80%). 

Neuronal uptake is an unidirectional, sodium-ion (Na+) 

dependent, stereospecific, energy requiring mechanism 

which follows Michaelis-Menten saturation kinetics. 

After reuptake across the neuronal membrane, NTs can 

be reincorporated into dense-core vesicles. Those 

NTs not stored become available for catabolism by 

MAO and COMT. 

6. Transmitter-Like Properties of THIQs 

The similarities between THIQ and CA structure 

led to the theory that the THIQs may act as "false" 

NTs (69 - 71). The THIQs would then exert their in­

fluence by interacting with mechanisms that normally 
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regulate the physiological properties of CAs. In sup­

port of this theory, investigators have noted that 

THIQs interact with axonal and vesicular transport 

systems leading to their uptake and storage in CA 

neurons, are released from nerve terminals along with 

CAs, and interact with pre- and post-synaptic receptors. 

THIQ alkaloids have been shown to block the up­

take of CAs by rat synaptosomes and tissue slice prep­

arations. The addition of THIQs to rat brain synapto­

somes or tissue slices incubated with 3H-CAs resulted 

in an efflux of 3H-CAs, probably due to displacement 

of the 3H-CAs from storage vesicles (116 - 118). 6,7-

dihydroxytetrahydroisoquinoline [6,7-(0H) 2THIQJ has 

been shown to be taken up and stored in sympathetic 

neurons of rat iris (119, 120). Similarly, THIQs were 

shown to be taken up by rat heart, salivary gland, 

iris, and mouse adrenal (121), by capillary endothe­

lial cells, unidentified neuronal components of rat 

hypothalamus and hypophysis (122), and by synapto­

somal fractions of rat brain (123) • THIQs have also 

been shown to be weak inhibitors of 5-HT uptake into 

rat brain slices (124, 125). Uptake was blocked by 

traditional inhibitors of the axonal membrane such 

as cocaine and desmethylimipramine (119 - 121). 

These results suggest that THIQs and CAs compete with 
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each other for transport sites on the neuronal presynap­

tic membrane (126). 

THIQs formed during the perfusion of cow adrenals 

with AcA and HCHO were retained in the gland and were 

actually found to be stored in the CA-binding vesicles 

(127, 128). 6,7-(0H) 2THIQ was shown to be stored in 

the CA-binding vesicles of the rat iris and pineal 

gland (129). THP was found to be incorporated into 

small granular vesicles when incubated with rat caudate 

slices (130). Vesicular storage of THIQs inCA-binding 

vesicles has been shown to be by a reserpine-resistant 

mechanism both in vitro (119, 129) and in vivo (120). 

Reserpine blocks CA uptake into storage vesicles but 

does not affect the axonal uptake mechanisms. There­

fore, THIQs apparently share axonal transport mechan­

isms with CAs but binding to storage vesicles occurs 

by a mechanism which differs from endogenous amine 

binding (131). 

THIQs have been shown to be released upon nerve 

stimulation via the same mechanisms that control re­

lease of endogenous NTs. EPI and NE condensation 

products formed during perfusion of cow adrenals with 

AcA were released with endogenous EPI and NE upon 

stimulation with acetylcholine or succinylcholine 

(132, 133). In a classical experiment, Mytilineou 



et al. demonstrated the release of 6,7-(0H) 2 THIQ from 

NE nerve terminals in rat iris upon electrical stimu­

lation in vivo (120) . Rats were first depleted of en­

dogenous stores of NE by pretreatment with a-methyl­

para-tyrosine methyl ester and reserpine. Subsequently 

rats received intravenous injections of 6,7-(0H) 2THIQ 

which was shown to accumulate in NE nerve terminals 

within the CA-binding vesicles. Electrical stimula­

tion of the preganglionic fibers of the superior 

cervical ganglion showed depletion of the THIQs from 

the storage vesicles and caused retraction of the 

upper eye lid, protrusion of the eyeball and dila-

tion of the pupil, indicating activation of post­

synaptic adrenergic receptors. 

The THIQs have been shown to interact with CA 

receptors both in vitro and in vivo. This is not 

surprising considering the structural similarities, 

for example, between THP and the pharmacological DA 

agonists apomorphine and bulbocapnine (Fig. 17) 

(134, 135). As early as 1910, THP had been shown to 

have S-agonist actions, lowering blood pressure, in­

creasing heart rate, and causing relaxation of 

uterine muscle in cats (136). Several investigators 

have reported potent lipolytic activity for THP 

(137 - 140) and to a less extent SAL (138). The 
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S(-) isomer of both compounds exerted the most potent 

effects on glycerol and free fatty acid release {138). 

THP has been shown to be a moderate DA-depen­

dent adenyl cyclase inhibitor (140 - 142). SAL also 

exerts adenyl cyclase inhibition but to a lesser degree 

(141, 142). The S(-) isomer of both compounds was 

again the more effective configuration. Thus far, 

SAL has demonstrated relatively weak S-agonist effects 

(137, 143, 144). However, this THIQ has shown mod-

erate a-antagonism of NE on aorta and vas deferens 

of rat (145, 146). It has also been shown to block 

the effects of 5HT stimulation of smooth muscle in 

the vas deferens and uterus and block the effect of 

oxytocin and vasopressin on the uterus of rat (147). 

7. THIQ/Enzyme Interactions 

0-methylation of DA- and NE-derived THIQ alka­

loids has been studied in rat brain and liver homog­

enates (148) and with purified rat liver COMT (149). 

The 0-methylation of THIQs is sensitive to inhibi­

tion by pyrogallol, a known COMT inhibitor. Intra­

cerebroventricular (ICV) administration of THP and 

SAL resulted in half life's (T
112

's) of 24 and 12 

minutes, respectively (150). These T112 's were 

markedly prolonged by pretreatment with pyrogallol. 

In vitro studies have demonstrated that the 
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radioactivity derived from 14c-SAM is incorporated into 

the molecular structure of THP and SAL following in-

cubation with rat liver CaMT preparations (151) . THIQs 

are both substrates and competitive inhibitors of caMT 

(148, 151 - 153). SAL and THP have been reported to 

be equal or better substrates for in vitro a-methyla­

tion by caMT than the endogenous substrates, DA and 

NE (149, 151, 153). Creveling et al. have reported 

that both the 6-(meta) and 7-(para) hydroxyls were 

a-methylated on two DA derived THIQs by purified rat 

liver caMT (154). Bail et al. (155) has presented in­

teresting preliminary evidence indicating that SAL and 

6,7-(aH) 2 THIQ are largely or exclusively a-methy­

lated on the 7-(para) hydroxyl in rat tissues in vivo. 

Extensive a-methylation on the para hydroxyl is simply 

not observed with "normal 11 catecholamine and catechol 

acid substrates. Meyerson et al. have demonstrated 

that the a-methylation of the complex THIQs, THP and 

THPB, is on both the meta and para hydroxyls in vitro 

(156), the ratio (of meta/para a-methylation) being 

significantly influenced by the optical isomer used. 

Locke et al. demonstrated that a-methylated 

forms of 3H-6,7-(aH) 2DHIQ appeared to be retained in 

sympathetically innervated tissues such as heart 

and salivary glands in amounts greater than or equal 
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to the unmetabolized THIQ (121). As mentioned in sec-

tion I, Collins et al. have found 0-methylated-SAL 

(isomer unknown) in the urines of patients undergoing 

alcohol detoxification (8) and Hamilton et al. (13) 

have found 0-methylated-SAL (isomer unknown) in the 

striata of EtCH-treated mice. In view of the rapid 

formation of a-methylated THIQ alkaloids, it is not 

surprising that O'Neill and Rahwan (157) were unable 

to detect SAL in the brain of alcohol-treated mice, 

in the absence of pretreatment with COMT inhibitors. 

With the exception of earlier work by Hjort 

et al. (158, 159) on the gross peripheral pharmacology 

of phenolic THIQs, little work has been done on the 

physiological and pharmacological properties of 0-

methylated-THIQs, which are probably the primary me-

tabolites of catechol-THIQ alkaloids in vivo. 

To date there is no evidence that the cyclic 

THIQ alkaloids are metabolized by MAO. However, SAL 

and THP have been demonstrated to inhibit competiti-

vely the deamination of 5HT in rat brain and liver 

homogenates (151, 160). A variety of THPBs and 

THIQs were shown to inhibit both type A and B 

species of MAO in rat brain homogenates (161). It 

appears that type A is more sensitive to inhibition 

by these substrates. The THPBs proved to be relatively 
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potent and specific inhibitors of MAO type A. How­

ever, sequential methylation of the hydroxyls on the 

berberine ring system resulted in decreased selec-

tivity and potency of MAO inhibition (161). 

Compared to classical inhibitors of MAO (i.e. 

clorgyline, pargyline, deprenyl, etc.) (162), the 

THIQs appear to be relatively weak to moderate in-

hibitors of MAO in vitro. However, the synaptic 

properties of uptake and vesicular storage provide 

mechanisms for1amplification of THIQ actions. Intra-

neuronal inhibition of MAO has been investigated both 

in vivo and in vitro in the sympathetic nerve plexus 

of mouse heart. Cohen and Katz (163) utilized 6,7-

(0H)2THIQ and demonstrated a 38% increase in 3H-NE 

content with a concomitant decrease in 3H-deaminated­

NE in 3H-NE-treated reserpine-pretreated mice, indi-

eating in vivo inhibition of MAO. In a complementary 

in vitro experiment, Katz and Cohen (164) demonstrated 

intraneuronal inhibition of MAO by both SAL and 6,7-

(OH) 2THIQ. THP did not elicit potent inhibitory ac­

tions, apparently because of poor uptake into the 

nerve plexus. 

In vivo experiments in which large doses of 

THP and SAL were administered ICV provided evidence 

that these THIQ alkaloids were able to alter the 
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steady-state levels of endogenous CA and SHT (165). The 

exact mechanism by which their actions are exerted is 

still unknown. Hannigan and Collins (166) demonstrated 

that acute peripheral administration of 3-carboxy-sal-

solinol (3-CSAL), increases SHT levels in the corpus 

striatum and hypothalamus of rats, whereas chronic 

administration decreased the SHT levels in these tis-

sues. Livra et al. (167) further demonstrated that 

THIQ alkaloids can influence cerebral monoamine me-

tabolism in vivo by the finding that HVA and SHIAA 

levels are raised after acute or chronic intraperi-

toneal (i.p.) injections of THP. In addition, THP 

blocked the L-DOPA-induced increase in HVA as well 

as the p-chlorophenylalanine-induced decrease in 

SHIAA. As there is some question as to whether THP 

can cross the blood-brain-barrier (BBB), these ob-

served interactions with biogenic amine systems could 

depend on a peripheral THP metabolite which enters 

the CNS. 

The THIQ alkaloids have been shown to be weak 

inhibitors of the Na+-Potassium ion (K+) ATPase and 

++ 
Mg ATPase systems. These membrane-bound, active 

transport systems participate in modulating the 

Na+ and K+ fluxes of excitation and are fundamental 

to the energy-dependent reuptake and storage of NTs 



released at nerve endings (168- 170). 

Evidence indicates that SAL is a good in vitro 

inhibitor of rat brain TH, the rate limiting step in CA 

biosynthesis {171). Little stereo-specificity was 

observed with both the S{-) and R{+) configurations 

inhibiting TH activity nearly equally. The inhibi-

tion was found to be competitive with the pterdine 

cofactor {170). THP proved to be a relatively weak 

inhibitor while 4,6,7-trihydroxy-THIQ [4,6,7-{0H) 3 

THIQ] and 3-CSAL demonstrated moderate inhibition of 

TH activity. However, in vivo experiments utilizing 

SAL, 4,6,7-{0H)
3

THIQ and 3-CSAL did not indicate any 

in vivo TH inhibition by these compounds {170). 

Coscia et al. {173) have recently reported on 

the interactions of a variety of NLCA derivatives with 

the enzymes involved in CA metabolism. The NLCAs in-

hibited TH non-competitively with respect to substrate 

and cofactor. DNLCA was shown to inhibit TH both in 

vitro and in vivo. MNLCA proved to be a potent in 

vitro inhibitor of DBH while DNLCA proved less in-

hibitory and NLCA was not effective. NLCA was found 

to be a competitive inhibitor of NE methylation by 

hepatic COMT. The NLCA derivatives showed only minor 

effects on MAO and AAD. 
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8. Possible Oxidative Mechanism For THIQ Metabolism 

A growing amount of evidence derived from human 

and animal alcohol studies now documents that chronic 

EtOH ingestion leads to central and peripheral nerve 

damage despite adequate nutrition (174 - 177). The 

precise mechanisms by which ethanol exerts these 

chronic toxic effects is still unknown. Based on sev­

eral lines of evidence, Collins (178) has proposed a 

discrete chemical mechanism to explain the cytotoxi­

city of ethanol, based on the potential involvement 

of THIQs. Considering the chronic nature of THIQ-re­

lated pathological conditions and attendent excess 

production of these alkaloids, it is conceivable 

that they may have some uniqu~ pat_hological 

effect(s). Supporting this hypothesis are 

experiments by Azevedo and Osswald demonstrating 

that administration of a NE-derived THIQ produced 

selective ultrastructural degeneration of adrenergic 

nerve terminals (179) and hepatotoxicity (180) in 

rats. In addition, Meyers and Melchior (181) dem­

onstrated long-term aberrant behavioral effects (in­

creased ethanol preference) in rats which were in­

duced by ICV administration of THP. 

While the major metabolic routes for cate­

cholic THIQs are probably a-methylation and 
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conjugation, Collins proposed a minor oxidative meta­

bolic route for THIQ metabolism which would lead to 

DHIQs and related N-oxides (Fig. 18). It was suggested 

that the DHIQs, as possible tissue binding agents, may 

play a role in the chronic neurotoxic effects of EtOH. 

The conversion of THIQs to DHIQs is a well-es­

tablished pathway in the aldehyde-induced fluorescence 

method for histochemical demonstration of biogenic 

amines in nerve (182). The decarboxylation of 1-

carboxyl THIQs to afford DHIQs has been accomplished 

by oxidative chemical decarboxylation (183), electro­

chemical oxidation (184), and by horseradish peroxi­

dase enzyme (78). In addition, DHIQs derived from 1-

carboxy-THIQs have been demonstrated as reactive in­

termediates in the biosynthesis of alkaloids in 

plants (79, 185). 

Because of electronic similarities, the me­

chanism by which the DHIQs would exert their neuro­

toxic effects could be analogous to that of 6-hydroxy­

dopamine (60HDA), a potent pharmacological neurotoxin. 

The actions of 60HDA are dependent initially on up­

take into catecholamine neurons and subsequent oxida­

tion to at least two active species, the quinone and 

hydrogen peroxide (186) (Fig. 19). Studies of the 

interactions of 60HDA with various model proteins 
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in vitro (187, 188) and chemical interactions with brain 

tissue in vivo (189, 190) clearly demonstrate that 60HDA 

covalently reacts with and binds nucleophilic groups on 

proteins to form stable covalent bonds (Fig. 20). 

At physiological pH, DHIQs are believed to exist 

predominately at quinoidamine tautomers (191). How­

ever, this is based on studies with formaldehyde-re­

lated DHIQs; the 1-methyl DHIQs in Fig. 19 have not 

actually been studied. Upon examination, the elec­

tronic and structural similarities between DHIQ quin­

oidamines and the oxidized electrophilic quinone of 

60HDA become strikingly apparent (Fig. 19). If two 

DHIQ tautomers share even a degree of the electro­

philic nature of 60HDA, the DHIQs, which are known 

to be taken up and stored in CA neurons (192), should 

be capable of producing neuronal damage via covalent 

attachment to electron-rich cellular ligands (sulfhydryls). 

The DHIQs need not have as extensive electro­

philic and sulfhydryl-binding capabilities of 60HDA 

since they are postulated to form in trace a~ounts 

during chronic ingestion of EtOH. a-methylation of 

THIQs and DHIQs at the meta-hydroxyl (analogous to 

that of the open chain catecholamine precussors) 

would be expected to block the cytotoxic mechanism. 

However, as stated in section 8., evidence now 



indicates that the stereoselective a-methylation pat­

terns of THIQs differs from their catecholamine pre­

cussers (155, 156). 

9. Current Analytical Techniques in THIQ Research 

It has been recognized that available analyti­

cal methods for the neurochemical study of biogenic 

amines and their metabolites are often limited, es­

pecially when dealing with the endogenous levels 

found in small biological samples. This problem is 

exacerbated when dealing with the THIQ alkaloids and 

their metabolites since their levels will always be 

significantly less than their catecholamine precursors. 

Early THIQ research relied heavily on radio-labeled 

precursor studies, with separations by thin layer 

chromatography (TLC), paper chromatography, paper 

electrophoresis and ion-exchange chromatography. 

Detection was by combinations of visualizing stains 

and radioautography (85, 87, 127, 193 - 195). These 

techniques do not offer a very great degree of se­

lectivity, are not generally sensitive (with the 

exception of radio-labeled studies wnich a~~ imprac­

tical for fhe.study of endogenous compounds) and are 

complicated by lorig ardous·isolation procedures. 

More recently, a radioenzymatic method has 

been developed for the detection and quantitation 
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of SAL (196). The principle of this technique is based 

on enzymatic a-methylation of a catechol by CaMT uti­

lizing 14c-SAM as cofactor. Separation is by TLC and 

quantitation by liquid scintillation counting of an 

extract from the developed plate. Although this 

technique is adequately sensitive for the detection 

of endogenous levels of SAL (and probably other THIQs) , 

it is inherently limited by its requirement for ca­

techols. Therefore, endogenous a-methylated or con­

jugated THIQs cannot be assayed directly by 

this approach. 

A significant recent development in the analysis 

of biogenic amines and their congeners is HPLC with 

electrochemical detection. This technique offers an 

inexpensive but sensitive method for the detection of 

picomole concentrations of a range of important phen­

olic and catecholic compounds (197). Initial studies 

utilizing HPLC with electrochemical detection for the 

separation and quantitation of SAL from biological 

samples has proven the efficacy of this technique 

for THIQ analysis. HPLC with electrochemical detec­

tion has been utilized for the detection of NE, DA, 

5HT, SHIAA, HVA and DaPAC in a variety of combina­

tions in discrete brain regions (197). What has not 

been accomplished is the simultaneous assay of all 
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biogenic amines and acids in a given brain structure, 

such as DA, DOPAC, HVA, 5HT and 5HIAA. Separation and 

quantitation of these compounds would give a very com-

plete profile of biogenic amine metabolism within the 

corpus striatum, for example. 

GC/MS is a powerful technique which can con-

elusively identify neuroamines and derivatives present 

in tissue in femtomole amounts. Several investiga-

tors have utilized this technique to identify THIQs 

in discrete brain regions and biological fluids 

(1- 3). This assay, which appears to be the de-

finitive identification step in neurochemical re-

search, is plagued by two serious drawbacks: 1) com-

plicated and sophisticated instruments requiring ex-

pert maintenance and manipulation for both sample 

analysis, data processin~ and interpretation; and, 

5 2) a prohibitive cost ($1.5 - 2 X 10 ) • In lieu of 

these problems, the practicality of GC/MS in the 

average neurochemical laboratory is limited. 

GC with electron capture (EC) detection offers 

a second highly sensitive and specific technique for 

detection of THIQs with picomole/g tissue sensi-

tivity. Several investigators have utilized GC with 

EC detection, with varying degrees of success, to 

determine THIQs in biological samples (8, 11, 13, 155). 



A limiting factor in GC/EC is the ability to separate 

compounds with close structural similarities, which 

is a function of column efficiency. To date the 

separation of geometrical isomers of biogenic amines 

and THIQs on conventional packed GC columns has not 

been accomplished. One possible answer to this 

problem is the use of capillary GC columns. Gen­

erally, capillary columns are those which have in­

ternal diameters less than 1 mm. 

There are three main types of capillary 

columns: 1) micropacked, miniaturized versions of 

ordinary packed columns; 2) support-coated open 

tubular (SCOT), which have small particles of solid 

support adhered to the wall, but have an unrestricted 

flow path; 3) wall-coated open tubular (WCOT) , in 

which the liquid phase is directly coated to the 

inner wall of the column as a thin film. With this 

type of column, the highest efficiency can be at­

tained (>3,000 theoretical plates/m). 

GC/EC utilizing a 25m WCOT capillary chro­

matograph has been utilized for the separation and 

quantitation of the principal_in vitro metabolites 

of prostaglandin endoperoxides (198). Detection 

limits equaled or exceeded those obtained for packed 

column separations and EC detection. The S-antagonist~ 
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alprenolol and oxyprenolo~ have been successfully quan­

titated and separated, after isolation from human blood 

samples, using EC/GC with a 25M X 0.25mm WCOT glass 

capillary column {199). The lowest detectable amount 

of the halogenated {heptafluoracyl) derivatives of 

alprenolol and oxprenolol were 2 pg. Preliminary 

studies utilizing model compounds to represent various 

classes of biogenic amines indicated that fluoracyl 

derivatives of biogenic amines and their metabolites 

could be rapidly separated and quantitated by EC/GC 

with WCOT columns. 

In light of the rapidly accumulating evidence 

of THIQ involvement in pathological conditions and the 

current state-of-the-art for THIQ and biogenic amine 

analysis, highly sensitive and specific assays to 

simultaneously detect these compounds and their me­

tabolites are definitely needed. The requirements 

for the assays are the ability to separate a broad 

spectrum of closely related compounds at picomole 

sensitivity with minimal cost and high reproducibility. 

Assays that would meet these requirements would enable 

the investigator to assess THIQ involvement in human 

pathological conditions. 
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CHAPTER II 

EXPERIMENTAL: MATERIALS AND METHODS 

A. Standard Analytical Methods for the Characteri­

zation of Purity and Identity of Compounds 

Synthesized in Section II 

Identity and purity of synthesized compounds 

were established by co~parison of melting 

points to literature values, co-chromatography with 

authenic samples (when available), infrared (IR) 

spectra and nuclear magnetic resonance (NMR) spectra. 

HPLC, conventional and capillary GC and TLC techniques 

were employed where stated. HPLC and GC techniques 

are discussed in a separate section. 

1. Melting Point 

Melting points were obtained (uncorrected) on 

dried, crystalline samples utilizing a standard melting 

point apparatus (Gallenkamp). 

2. IR Spectrum 

IR spectra were performed by making a potassium 

bromide (KBR; Mallinckrodt) pellet with dried crystals. 

The spectra between 4000 and 400 nm were obtained on a 

grating IR spectrophotometer (Perkin Elmer, model 337). 
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3. NMR Spectrum 

NMR spectra were performed utilizing deuterium 

oxide (D 20) solvent. The spectra between 10 and 0 ppm 

(H
2

) were obtained on a 60 MHz NMR system (Varian 360; 

courtesy Dr. D. Crumrine, Loyola University, Depart­

ment of Chemistry) . 

4. TLC 

TLC was utilized to assess the progress and com­

pletion of synthetic reactions. Two principal proce­

dures were utilized. TLCs of CA-derived THIQs were 

performed by spotting 1 - 5 microgram quantities on 

4 X 10 em silica gel (Whatman) plates. The plates 

were developed in a butanol/acetic acid (HOAc)/water 

(distilled, deionized; dH 20) 4/1/1, (V/V/V) solvent 

system. Starting material, suspected product and a 

mixture of the two were run on the same plate simul­

taneously. Completed plates were air dried and vis­

ualized in an iodine (I 2 ) chamber unless otherwise 

described. 

Mono- and di-methylated THIQs, DHIQs, and CAs 

were separated from their dihydroxylated derivatives 

by utilizing alumin~~ oxide (AL
2
o

3
) plates (Macherey­

Nagel) . Development was in a chloroform/methanol 

(MeOH)/dH 2o, 70/50/5, (V/V/V) solvent system. Start­

ing material, suspected product, and a mixture of the 
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two were run on the same plate. Completed plates were 

air dried and visualized in an I 2 chamber, or with a 

K
3 

Fe (CN) 6 (Mallinckrodt; 0.25 rng/rnl in 0.2 Na2HP0 4 

buffer pH 8-.3} spray which is allowed to dry and then 

counter stained with Fe c1 3 (Mallinckrodt; 2.5% Fe c1 3 

freshly mixed in 1.5 volumes of acetone) (70). 

B. Synthesis of Tetrahydroisoquinolines 

1. Synthesis of 1-Methyl-6,7-Dihydroxy-1,2,3,4-

Tetrahydroisoquinoline (Salsolinol; SAL) HCl 

A solution of 1.87 g (8.0 rnMoles) of DA HBr 

(Aldrich) in 30 rnl of dH2o was adjusted to pH 4.5 

with dilute NH40H (Mallinckrodt). Ice-cold redis­

tilled AcA (J.T. Baker, 0.79 g; 18 rnMoles) was 

added. The reaction was capped and allowed to stir 

slowly at room temperature (RT 0
). After 3 days, the 

reaction was blown to dryness under a stream of extra 

dry nitrogen (N2Ex) (Benster Welding). The residue 

was dissolved in a minimum vol~.e of hot, absolute 

EtOH (U.S. Industrial Chern.) and brought to the cloud­

point by drop-wise addition of ethyl acetate (EtOAc). 

The suspension was placed in a -20°C freezer over­

night, to yield a primary crop of white needle-like 

crystals. The mother liquor was not recrystallized. 

The crystals were dried over night in a vacuum des­

sicator with phosphorous pentoxide (P 2o5 ) and 
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characterized by NMR, IR, TLC, GC, HPLC and melting 

point comparison (Table 1.) 

2. Synthesis of 1-Methyl-1-Carboxy-6-Hydroxy-7-

Methoxy-1,2,3,4-Tetrahydroisoquinoline (7-0 

MethY-l -1-Carboxy-Salsolinol; 7M-l-CSAL) 

A solution of 0.5 g (2.5 mMoles) of 4-0-Methyl­

dopamine (4M-DA) (HCL salt; Aldrich) and 0.264 g 

(4.4 ~~oles) of pyruvic acid (Sigma) in 10 rnl of 

dH 2o was adjusted with concentrated (cone.) NH 40H to 

pH 4.5 and allowed to stir gently. After 4 days, the 

reaction was seeded by scratching the side of the 

glass vial with a glass rod and was then placed in a 

refrigerator for 1 hr. The crystals which separated 

were filtered and washed with cold dH 2o to remove 

any excess pyruvic acid. The product was dried under 

vacuum in the presence of P2o5 and characterized by 

NMR, IR, TLC, GC, HPLC and melting point comparison 

(Table 1). 

3. Synthesis of 1-Methyl-1-Carboxy-6,7-Dihydroxy 

1,2,3,4-Tetrahydroisoquinoline (1-Carboxy­

Salsolinol; 1-CSAL) 

A solution of 3.0 g (16 mMoles) of DA (HCl 

salt; Sigma) and 1.85 g (42 mMoles) pyruvic acid 

in 10 ml of dH 2o was adjusted to pH 4.0 with cone. 

NH40H. After gentle stirring for 4 days at RT 0
' 
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reaction was seeded by scratching the side of the reac­

tion vial. The reaction mixture was placed in a re­

frigerator for 1 hr. The white powdery crystals which 

separated were isolated over a sintered glass filter 

and washed with cold dH 2o to remove excess pyruvic 

acid. The product was dried overnight under vacuum 

in the presence of P 2o5 and characterized by NMR, IR, 

GC, HPLC, TLC and melting point comparison (Table 1). 

4. Synthesis of 6,7-Dihydroxy 1,2,3,4-Tetrahydro­

isoquinoline [6,7-(0H) 2THIQ]HBr 

A suspension of DA(HBr salt; 0.233 g; 1 mMole) 

in 5 ml of dH2o was adjusted to pH 4.5 with dilute 

NH 40H. HCHO (37% solution; Mallinckrodt; 1.23 ml) 

was added and the reaction mixture was sealed and 

allowed to stir gently at ~0 • After 24 hr, the re­

action mixture was brought to dryness under a stream 

of N2Ex The residue was dissolved in a minimum 

volume of hot, absolute EtOH and brought to the 

cloud-point by dropwise addition of EtOAc. This 

suspension was placed in a -20°C freezer overnight 

yielding a primary crop of white needle-like crystals. 

The mother liquor was not recrystallized. The crystals 

were dried over night under vacuum in the presence of 

P2o5 and characterized by NMR, IR, TLC, HPLC, GC, and 

melting point comparison (Table 1). 

42 



43 

s. Conversion of 1-Methyl-6,7-Dimethoxy-3,4-Dihydro­

isoquinoline (l-ME-6,7DMDHIQ) HCl to 1-Methyl-6, 

7-Dihydroxy 3,4 Dihydroisoquinoline (1-ME-6,7-

DHIQ) HBr 

1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline 

HCl (1-Me-6,7-DMDHIQ; synthesized by A. Hashmi, 1978; 

1 g; 4.2 m Moles) was placed in a 20 ml screw top vial. 

Borontribromide (BBr
3

; 10 ml; Aldrich) was added, the 

vial was capped with. a plastic-lined top and the solution 

was stirred at ~o for 3 hr. The reaction mixture was 

Ex blown to dryness in a hood under a stream of N2 . 

The residue was brought up in a minimum volume of hot, 

absolute EtOH and brought to the cloud-point by drop-

wise addition of EtOAc. The suspension was placed in 

a -20°C freezer overnight to yield a crop of yellow 

crystals. The mother liquor was not recrystallized. 

The product was dried over night under vacuum in the 

presence of P 2o5 and characterized by NMR, IR, TLC, 

HPLC, GC and melting point comparison (Table 1). 

6. Conversion of 1-Methyl-6-Methoxy-7-Hydroxy-

3,4-Dihydroisoquinoline (l-Me~6M-DHIQ) HCl 

to 1-ME-6,7-DHIQ HBr 

1-methyl-6-methoxy-7-hydroxy-3,4-dihydroiso-

quinoline (HCl salt; 0.5 g; 2.2 m Moles; synthesized 

by A. Hashmi, 1978) was placed in a 20 ml screw top 



vial. BBr3 (10 ml) was added, the vial was capped 

with a plastic lined top, and the reaction was 

stirred at ~0 • After 3 hrs, the reaction was taken 

Ex to dryness under a stream of N2 and the residue 

was brought up in a minimum volume of hot, absolute 

EtOH. The solution was brought to the cloud point 

by drop-wise addition of EtOAc. The suspension 

was placed in a -20°C freezer overnight to yield 

a crop of yellow crystals. No effort was made to 

recrystallize the mother liquor. The crystals 

were dried overnight, under vacuum, in the presence 

of P2o5 and characterized by NMR, IR, TLC, GC, HPLC 

and melting point (Table 1). 

A summary of selected physical data for the syn-
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thesized compounds in section B. can be seen in Table 1. 

C. Techniques for Animal Studies 

Compounds utilized in the studies in this disser-

tation were dissolved in sterile, isotonic saline and 

administered to male Sprague-Dawley rats (King; 100 +Sg) 

either centrally by stereotaxic injections into the la-

teral cerebral ventricles or peripherally by intraperi-

toneal injection. Stereotaxic coordinates (200) were 

bregma +0, lateral +1.4 from the midline suture and 

verticle +1.4 from the point of entry. Initial experi-

ments utilizing black I.ndia ink dye confirmed that the 
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injections were in the lateral cerebral ventricles. So-

dium pentobarbital (Abbott) was utilized as the surgical 

anesthesia. It was injected (50 mg/Kg i.p.) 10 minutes 

prior to central injections. At specified time points 

after central injections, experimental rats and their 

paired saline injected controls were sacrificed by de-

capitation. Brain areas and peripheral parts of in-

terest were quickly dissected out according to Holman 

et al. (201) and placed in plastic weigh boats on dry 

ice. The samples were weighed by difference and placed 

in plastic centrifuge tubes for extraction. 

D. Extraction of Biogenic Amines, THIQs and Their 

Metabolites From Tissue 

To each plastic centrifuge tube (7 ml) con-

taining a tissue sample was added 100 ~1 of dH 2o con­

taining 200 ng of an appropriate internal standard. 

The solvent of choice (acid or aqueous EtOH, vide 

infra) was added to the plastic centrifuge tube 

(5 ml/g) and the sample was homogenized with a 20 sec 

burst of a (Tekmar) Tissue-mizer. The blades of the 

Tissue-mizer were washed with an equal volume of sol-

vent, the washings were combined and the homogenate 

then was centrifuged in a Sorvall refrigerated (4°C) 

centrifuge at 30,000 X g for 20 min. The blades of 

the Tissue-mizer were scrupulously washed with dH 2o 
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and wiped dry between each tissue sample to avoid cross­

contamination of samples. 

1. Acid Extraction 

Tissue samples were homogenized in either lN HCl 

or 0.4N HClo 4 (5 ml/g tissue). After homogenization 

and centrifugation as described (vide supra) , the super­

natants were decanted into 20 ml screw-top vials, and 

the pHs were adjusted to 5.5 with 2.0N NaOH followed 

by 0.2N NaOH. The neutralized samples were then fro­

zen, lyopholized and stored at -20°C until cation 

column isolation and/or direct HPLC analysis. 

2. Ethanol Extraction 

Tissue samples were homogenized in aqueous 75% 

EtOH (5 ml/g) which had been stored at -20°C. After 

homogenization and centrifugation as described (vide 

supra) the supernatants were decanted into 20 ml 

screw-top vials and the volumes were doubled with 

dH2o. These solutions were then frozen, lypholized, 

and stored at -20°C until cation column isolation 

and/or HPLC analysis. 

3. Strong Cation-Exchange Column Chromatography 

Isolation Procedure 

a. Resin Preparation 

Dowex AG50-WX, 200/400 mesh (Bio-Rad Labs) 
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(H+ form) was stirred with 4 volumes of dH2o. Small par­

ticles were removed from the suspension by allowing the 

resin to settle and aspirating any suspended particles 

along with the dH 2o layer. This procedure was repeated 

until the supernatant was clear, thus indicating a ho­

mogenous resin bed. The aqueous layer was then removed 

and replaced with 4 volumes of 2 N NH 40H. The slurry 

was allowed to stir for 1 hr after which it was poured 

into a sintered glass filter (coarse-pore) and washed 

with dH2o until the pH of the effluent was 4.0. The 

resin was resuspended in 4 volumes of 2N HCl and 

stirred 1 hr. It was again washed as described (vide 

supra) with dH2o until the effluent pH was 4.0. Ion 

exchange columns (2.50 mx 0.6 em) were prepared in 

plastic columns equipped with sintered plastic fil-

ters (Isolabs). The columns were washed with 5 ml of 

4N HCl/MeOH, 1/1, (V/V) and with dH 20 until pH 4.0. 

b. Column Procedure (Dowex) 

The supernatants from acid-precipitated tissues 

or solutions of standards (prior to neutralization 

and lypholization) were decanted directly onto the 

resin and the columns were allowed to drain. Subse­

quently, the columns were washed with 25 ml of dH 2o, 

5 ml of 40/60 dH20/MeOH (V/V) and eluted with 5 ml of 

4N HCl/MeOH, 1/1 (V/V). The acid/MeOH elution was 



then lyophilized to dryness. The dried residue was 

stored at -20°C for subsequent analysis by HPLC, or 

was derivatized and analyzed by GC. 

c. Weak Cation Exchange Column Chromatography 

Isolation Procedure 

1. Resin Preparation 

BioRex-70, 200/400 mesh, Na+ form (Bio-Rad Labs) 

was sized and washed by repetitive stirring and aspira­

tion in 4 volumes of dH2o. Once the supernatant was 

clear of all fine particulate, the aqueous layer was 

removed and replaced with 4 volumes of 3N HCl. The 

resin was stirred for 1 hr, decanted over a sintered 

glass funnel (coarse-pore) and washed to pH 5.0 with 

dH 2o. The resin was then resuspended in 5 volumes 

of 3N NaOH and allowed to stir for 1 hr, transferred 

to a sintered glass funnel (coarse-pore) and washed 

to pH 5.0 with dH 2o. The resin was then suspended 

in a O.lM Na 2HP0 4)NaH2Po 4 buffer (8.Zg NaH 2Po 4 · 

H2o, 5.68g Na2HP0 4 ; pH 6.5) containing 10% Na 2EDTA. 

2.5 em X 0.6 em resin columns were prepared utilizing 

plastic support columns equipped with plastic sin­

tered filters (Isolabs) . Prior to utilization the 

columns were washed with 5 ml of dH 2o. 

2. Column Procedure 
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The supernatants from neutralized acid-percipitated 



or EtOH-percipitated samples were pipetted onto the 

resin and allowed to drain into 20 ml screw top (scin­

tillation) vials. The columns were then washed with 

2 ml of 0.02 M Na2HP0 4/NaH 2Po 4 buffer (1.66 g NaH 2 

po 4 ·H 2o, 1.14 g Na 2HP0 4 ; pH 6.5) followed by 5 ml of 

dH 2o. The primary elution plus buffer and dH 2o 

washes contained all acid and amphoteric compounds, 

with no detectable amine constituents as ascertained 

by HPLC analysis. The amine compounds were then 

eluted with 5 ml of l.ON HCl. Both fractions were 

frozen in a dry-ice/acetone bath and lyophilized 

to dryness. Dried sample residues, after dissolving 

in appropriate solvent, were analyzed directly by 

HPLC, or were derivatized and analyzed by GC. 

E. Gas Chromatographic Analysis of Catecholamines, 

THIQs and Their Metabolites 

Quantiation of the isolated catecholamines, 

THIQs and respective 0-methylated metabolites were 

carried out by EC/GC employing either capillary or 

conventional packed columns. A Varian model 3700 

gas chromatograph with 63Ni detector (pulsed mode) 

was utilized. 

Wall coated, open tubular (WCOT) , glass 

capillary columns (10M X 0.25 mm i.d.; Alltech 

Assoc.) coated with polyphenylmethylsiloxane (OV-17) 
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were employed. The splitter at the injection port was 

adjusted to a ratio of 10/1. Head pressure of the 

0 F 2 carrier gas, N2 , oxygen free (N2 2 ) was 0.8 kg/ern • 

peak areas and retention times were obtained with a 

varian CDS-lllC computing integrator. 

Conventional, packed, stainless steel columns 

were prepared in our laboratory. The liquid phase 

of choice was a 3% polydirnethylsiloxane (OV-101; ap-

plied Sci. Labs.) coated over a Gas Chrorn G, H.P. 

100/120 mesh solid support ( ALltec~.Assoc.) by a sol-

vent evaporation technique, utilizing a rotary flash 

evaporator. Column lengths varied from 1 ft to 5 ft. 

Prepared columns were conditioned at their maximum 

operating temperature for 48 hr prior to use. Peak 

areas and retention times were obtained utilizing 

a Varian CDS-lllC computing integrator. 

1. Preparation of Fluoracyl Derivatives for GC 

a. Fluoroacyl Derivatives of Non-Carboxylated 

Catecholarnines, THIQs and Their 0-Methylated 

Metabolites 

Initial studies were undertaken with several 

types of acylating agents to determine which agent 

would give maximum EC responses, completeness of 

reactions, derivatives with good stabilities and 

optimum separations. To 1 rng of crystalline compound 
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or lyophilized tissue residue in a 20 ml screw-top vial 

were added 500 ~1 of sequanal grade acetonitrile (ACN; 

pierce) and 50 ~1 of either heptafluorobutyric anhy-

dride (HFBA), pentafluoropropionylanhydride (PFPA), 

or trifluoroacetic anhyhydride {TFAA) (Pierce). Each 

vial was sealed with a plastic lined cap and allowed 

to react at ~o for 30 minutes. The solutions were 

brought to dryness in a hood with a stream of N2Ex. 

The residues were taken up in 1 ml of sequanal grade 

toluene (Pierce). 0.5 ml of 1M (NH
4

)
3

Po
4 

buffer 

(pH 5.8) was added, the mixture vortexed for 60 sec 

and centrifuged in a clinical centrifuge for 5 min. 

b. Formation of Fluoroacyl Derivatives of Carboxyl­

ated THIQs and Their a-Methylated Metabolites 

To 1 mg of crystalline carboxylated compound 

or lyophilized tissue residue in a 20 ml screw-top 

vial was added 0.2 ml of hexafluoroisopropanol (HFIP; 

Pierce) and 0.05 ml of PFPA. Each vial was sealed 

with a plastic-lined screw-top cap and allowed to 

react at ~o for 20 min. The solutions were blown 

Ex dry under a stream of N2 . The residue was treated 

with 0.5 ml of ACN and .05 ml of PFPA for 20 min in 

sealed vials. The samples were again brought to 

dryness with N Ex 
2 I 

toluene ( 1 ml) was added, and the 

solution was washed with (NH 4 ) 3Po 4 as described above. 
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rmmediately following centrifugation, the toluene phase 

(1 ~1) was injected directly into the GC system. 

F. HPLC Methodology 

Lyophilized tissue extracts were brought up in 

o.OlN HCl (0.5 ml) and chromatographed on BioSil, c18 , 

reverse phase; 25 CM columns (Bio-Rad Labs) using 

electrochemical detection (B.A.S.; 0.79 volts). Vari­

ous buffer systems were employed for optimum separa­

tions and sensitivity of detection. The mobile phase 

flow rate utilized was generally 1.0 ml/min, as indi­

cated in Results. 

1. Paired-Ion Buffer System 

Degassed dH20(-850 ml), 1.1 g (8 mM) heptane­

sulfonic acid (HSA; waters) and 9.7 ml of glacial 

HOAc were mixed and adjusted to pH 3.5 with NH 40H, 

if necessary. MeOH (Baker Reagent grade), 100 ml, 

was then added and the mobile phase was then brought 

to 1 liter with dH2o. 

2. Ionic-Suppression Buffer System 

The ionic-suppression buffer consisted of 

0.1 M NaH 2Po4 with 1 mM Na 2 EDTA. The pH was ad­

justed to precisely yield optimum separation (pHs 

4.7- 5.2). 

3. Reverse Phase HPLC Column Regeneration 

Repeated injections of tissue samples lead 
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to loss of separation of isolated compounds even in the 

presence of a guard pre-column (Altex). Reverse phase 

columns were cleaned of absorbed tissue com-

ponents and paired-ion reagent by the technique of 

Hannigan (202). After disconnecting the electrochem-

ical detector, the column was washed successively 

with 25 ml of 10 mM oxalic acid (pH 3.5 with concent­

rated NaOH; Sigma); 25 ml MeOH/dH 20 1/1 (V/V); 25 ml 

• methylene chloride/tetrahydrofuran, 1/1 (V/V), 25 ml 

MeOH and 25 ml MeOH/dH 2o, 1/1 (V/V). The mobile phase 

of choice ·t.hen .was run through the column for 30 

min, the detector reconnected, and allowed to stabi-

lize before use. 

G. Procedure for In Vivo Studies on Stereoselective 

0-Methylation of Catechol Isoquinolines 

A variety of catechol isoquinolines were inves-

tigated to represent various combinations of catechol-

amine-carbonyl condensation products. Compounds 

utilized (Fig. 21) were SAL, 1-CSAL, 3-CSAL, 4,6,7-

(0H)3 THIQ and 1-Me-6,7-DHIQ, a compound which could 

theoretically form from the oxidation of SAL or oxi-

dative decarboxylation of 1-CSAL. A group of rats 

were pretreated with the MAO inhibitor pargyline 

(50 mg/Kg, i.p. 2 hr pre-DA}, anesthetized and in-

jected bilaterally in the lateral cerebral ventricles 
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with DA. Separations and quantitations of isoquinolines 

and their respective 6- and 7-0-methylated metabolites 

were carried out by EC/GC on a WCOT glass capillary col­

umn and reverse phase HPLC with electrochemical detec­

tion, as described (vide supra) . 

Male Sprague-Dawley rats (100 + 5 g) were anes­

thetized and stereotaxically injected bilaterally (ICV) 

with 50 ~g (25 ~g/ventricle; 12.5 ~g/~1; free base) in 

isotonic saline. Control rats were given equal volumes 

of isotonic saline. 50 min after the ICV injections, 

rats were sacrificed by decapitation and the hypothal­

amus, corpus striatum and hippocampus were removed. 

They were weighed, homogenized in 75% aqueous EtOH 

with 200 ng of dihydroxybenzylamine (DHBA, internal 

standard) and centrifuged as described at 30,000 X g, 

4°C for 20 minutes. The supernatants volumes were 

doubled with dH2o, were decanted onto Bio Rex-70 cation 

exchange columns and differentially eluted for acid 

and amine constituents as described. All fractions 

were frozen on dry ice and lyophilized to dryness. 

The residues were taken up into O.OlN HCl and analyzed 

by HPLC utilizing the ionic suppression buffer system 

with electrochemical detection. An aliquot of each 

fraction was taken lyophilized and depending on the 

isoquinoline to be assayed differentially derivatized 
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for acids (PFPA/HFIP) or amines (HFBA) . 

Confirmation of peak identity was determined by 

comparison of retention times of authentic standards on 

both HPLC and GC as well as co-chromatography with 

authentic standards added to derivatized tissue samples. 

Regional brain parts of saline-injected controls were 

analyzed for the presence of interfering peaks on both 

HPLC and GC. 

H. Procedure for Study of the Uptake of Peripheral 

Salsolinol Into CNS 

Male Sprague-Dawley rats were administered 

5 - 20 mg/Kg (i.p.) of SAL (HCl). At 0.5, 2.0, 5.0, 

and 10 hr post-administration, rats were sacrificed 

by decapitation. The hypothalamus, corpus striatum, 

and hippocampus were removed, weighed, homogenized 

in 0.4N HCL0 4 with 200 ng of DHBA (as internal stand­

ard) and centrifuged at 30,000 X g, 4°C, for 20 minutes. 

The pH of the su?ernatant was adjusted to 5.5. The 

supernatan'c the11 was. decanted onto Bio Rex-70 cation 

exchange columns and differentially eluted for acid 

and amine constituents. The amine fraction was lyo­

philized, the residue derivatized with HFBA/ACN, and 

analyzed by capillary GC with EC detection for the 

possible presence of SAL, 7-o-MethyrSAL (7M-SAL) and 

6-0-Methyl•SAL ( 6M-SAL) . 
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r. Acute ICV Administration of Catecholic Isoqunino­

lines for Studies on Effects on Endogenous SHT 

and Acid Metabolites of Biogenic Amines 

Male Sprague-Dawley rats were anesthetized with 

Na+ pentabarbital (50 Mg/Kg, i.p.) and stereotaxically 

injected ICV bilaterally with 50 ~g (25 ~g/ventricle; 

free base; 12.5 ~g/~1) of SAL, 4,6,7-(0H) 3THIQ, 1-CSAL, 

3-CSAL 1-Me-6,7-DHIQ, orDAin isotonic saline [rats 

given DA were pretreated with 50 mg/Kg pargyline (i.p.) 

2 hr earlier]. Control animals were given equal vol­

umes of isotonic saline ICV. 50 min after central 

administration the animals were sacrificed by decapi­

tation and the hippocampus, hypothalamus, and corpus 

striatum were removed, weighed, homogenized in 75% 

aqueous ethanol (containing 200 ng of DHBA as internal 

standard), and centrifuged at 30,000 X g, 4°C, for 

20 min. The supernatant volumes were diluted with 

an equal volume of dH 2o, decanted onto Bio Rex-70 

cation exchange columns and differentially eluted 

for acid and amines constituents. The acid fractions 

were lyophilized to dryness, taken up in 0.5 ml of 

0.01 N HCl and analyzed for DOPAC, SHIAA, and HVA in 

the corpus striatum and hypothalamus, and for SHIAA 

in the hippocampus utilizing paired-ion, reverse 

phase HPLC with electrochemical detection. Amine 



fractions were lyophilized to dryness. Hippocampal 

samples were analyzed for SHT as above. Hypothalamus 

and corpus striatum samples were derivatized with 

HFBA/ACN and analyzed for further verification of 

stereoselective a-methylation of amine isoquinolines, 

possible decarboxylated products of carboxylated 

isoquinolines, and DA levels. However, due to con­

taminated derivatizing reagents from Pierce Chemical 

co., these samples were lost. 

J. Procedure for Study of the Half-Life of 7 M-SAL 

In the Rat CNS 

Male Sprague-Dawley rats were anesthetized with 

Na+ pentobarbital and stereotaxically injected ICV as 

described with 5 vg/ventricle (5 vg/vl) bilaterally 

with 7M-SAL (HCl salt). Control rats were given equi­

valent volumes of isotonic saline. 1, 3, 6, 12, 24, 
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and 48 hr after central administration, rats were sacri­

ficed by decapitation and the hippocampus, hypothalamus 

and corpus striatum were removed and weighed. They 

were homogenized in 75% aqueous EtOH containing 200 ng 

DHBA as internal standard and centrifuged at 30,000 X 

g, 4°C for 20 min. The supernatant volumes were 

doubled with dH 2o. AJ iquots of the hypothalamus and 

corpus striatum were placed on Bio Rex-70 weak cation 

exchange columns and differentially eluted for amine 
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and acid constituents. The amine fraction was lyophi­

lized to dryness, derivatized with HFBA/ACN, and analyzed 

for the presence of 7M-SAL. The remainder of the 

supernatants were lyophilized and the dried residues 

were taken up in 0.5 ml of 0.01 N HCl and analyzed by 

reverse phase HPLC with electrochemical detection. 

Utilizing the ionic suppression buffer, simultaneous 

separations and quantitations of DA, DOPAC, 5HT, 5HIAA, 

HVA, and 7M-SAL were performed. 

K. Procedure for Study of Peripheral 1-CSAL 

Metabolites 

Male Sprague-Dawley rats were injected with 

1-CSAL (100 mg/Kg, i.p.) daily for 6 days. On the 

7th day, the single dose was increased to 300 mg/Kg 

i.p. Control rats were given equal i.p. volumes of 

isotonic saline. Rats were sacrificed by decapita­

tion 3 hr after the last injection. Livers, hippo­

campi, hypothalami and corpus striata were removed , 

weighed, homogenized in 0.4N HCl04 containing 200 ng 

of DHBA as internal standard, and centrifuged at 

30,000 X g, 4°C, for 20 minutes. The supernatants 

were adjusted to pH 5.5 with NaOH and decanted onto 

Bio Rex-70 weak cation exchange columns. The columns 

were differentially eluted for acid and amine con­

stituents. All fractions were frozen on dry ice and 



lyophilized to dryness. The residue was taken up in 

o.Ol N HCl and an aliquot was analyzed by reverse phase 

HPLC with electrochemical detection for the presence 

of 1-Me-6,7-DHIQ, SAL and their respective 6- or 7-

o-methylated metabolites. Two different HPLC condi­

tions were utilized. A mobile phase consisting of 

0.1 M Na 2HP0 4 , 1 mM Na 2EDTA titrated to pH 7.4 with 

0.1 M citric acid, followed by dilution with MeOH 

(10% V/V), was employed for DHIQ analysis. Samples 

were analyzed for SAL and its 0-methyl metabolites 

with the mobile phase consisting of 0.1 M NaH2Po 4 , 

1 mM Na 2EDTA pH 5.5, with 5% (V/V) methanol. pH 

adjustments on the mobile phases were made prior to 

the addition of methanol to avoid organic solvent­

induced pertuberations in pH. 

The remainder of the O.OlN HCl-suspended sample 

was lyophilized to dryness. HFB-derivatives were pre­

pared and analyzed by capillary GC with EC detection 

for the presence of SAL, 1-Me-6,7-DHIQ and their 

respective 0-methylated metabolites. 

L. Spectrophotometric Studies of a Series of 1-

Methyl-6,7-Substituted 3,4-Dihydroisoquinolines 

1-Me-6,7-DHIQ, 1-methyl-6-hydroxy-7-methoxy 

3,4 dihydroisoquinoline (l-Me-7M-DHIQ}, l-Me-6M-DHIQ, 

and 1-Me-6,7-DMDHIQ (HCl salts) were prepared by 
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dissolving the appropriate compound (1.0 mg/ml) in dH2o 

and storing it at -20°C. u.v. absorption spectra were 

obtained on a Perkin-Elmer model 320 spectrophotometer 

between 220 and 500 nm~ Excitation and emission spec­

tra were determined at pH 7.0 utilizing and Aminico­

Bowman scanning Spectrophotofluorometer. The spectra 

were examined in O.lN HCl, 0.01 N NaOH, O.lN NaOH and 

0.1 M buffers (acetic acid-acetate, pH 3.0 - 5.0; Na+ 

phosphate, pH 6.0 - 8.0; glycine-NaOH, pH 9.0 - 11.0) 

over a pH range of 2 - 13. All substances studied 

exhibited significant fluorescence quenching above 

1 ~g/ml. Therefore, the solutions examined were at 

concentrations of 1 ~g/ml or less where fluorescence 

intensity was proportional to concentration. Solu­

tions were examined for fluorescence and absorption 

immediately after they had been prepared, and fluores­

cence intensity was always determined at ~o within 

10 - 20 seconds after exposure to exciting light, 

to avoid possible photodecomposition and temperature 

effects. 

M. Cyclic Voltammetry of DHIQs 

Cyclic voltammetry was performed on a direct 

current voltammetry instrument (B.A.S.) utilizing 

a three electrode linear sweep between +1.2 and -1.2 

volts. The reaction cell was constructed in our 
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laboratory from a 20 ml screw top vial. A teflon-lined, 

screw-top cap was modified to accommodate a carbon paste 

working electrode, reference electrode (B.A.S.) and 

auxillary electrode. Cyclic voltammograms were re­

corded on an x-y recorder at pH 3.0, 5.0, and 7.4 uti­

lizing a Na+-phosphate-citrate buffer. The change in 

voltage was monitored by use of a voltmeter (Westronics). 

All voltammetric studies were done with concentrations 

of between 2.0 and 5.0 ~g/ml (free base), scan speed 

200 mv/sec at a sensitivity of 2 ~A/em. Scans were 

repeated and verified by Dr. Peter Kissinger at the 

Bio-Analytical Systems (B.A.S.) Laboratories in West 

Layafette, Indiana. 

N. Attempted Synthesis of Glutathione-DHIQ Adducts 

Two different DHIQs, 1 Me-6,7-DHIQ HBr (250 mg, 

0.95 mMoles) or l-Me-7M-DHIQ HCl (250 mg, 1.17 mMoles) 

were each dissolved in 10 ml of dH 2o containing gluta­

thione (GSH; 921 mg, 3.00 rnMoles). The pH was ad­

justed to 7.4 with 1.0 M NH40H. The reaction mix­

tures were placed into a warm water bath (37°C) and 

gently shaken. After 10 hr the solutions were frozen 

on dry ice and lyophilized to dryness. 5 ~g/~1 samples 

of the reaction mixture was spotted on an 4 em X 10 em 

silica gel plate along with standards of GSH and appro­

priate DHIQs. The plates were developed in a butanol/ 



HOAc/dH 2o, 4/1/1 (V/V/V) and visualized by irradiation 

under fluorescent light for DHIQs, and ninhydrin (pep­

tide reagent) for GSH. NMR spectra of the reaction 

mixtures were performed in D2o on a varian 360 NMR 

spectrophotometer (courtesy of Dr. Dr. D. Crumrin, 

Loyola University, Dept. of Chemistry). HPLC analysis 

of the reaction mixture was performed utilizing a .1M 

Na
2

HP0 4 buffer titrated to pH 7.4 with O.lM citric 

acid in 20% (V/V) MeOH. Combinations of electro­

chemical/U V or electrochemical/fluorescence detec­

tion were utilized to attempt detection of a reaction 

product. 

o. Gas Chromatographic Analysis of Ethanol and AcA 

EtOH and AcA were analyzed on a Varian 2400 

gas chromatograph equipped with a flame ionization 

detector. The column utilized was a 1/8 in X 6 ft 

coiled glass column packed in our laboratory with 

Porapak QS, 80/100 mesh (Alltech Assoc.). Empty 

glass columns were cleaned by successively drawing 

through hot soapy water, acetone, and methanol under 

vacuum. Columns were then dried with N2Ex. Deacti­

vation of glass surfaces was accomplished by treat­

ment with Glass-Treet (Alltech Assoc.). Excess rea­

gent was removed by rinsing with anhydrous MeOH 

(25 ml). Columns were stoppered at one end with a 
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glass wool plug and were packed under vacuum by injec­

tion of Porapak QS into the open end. They were vi­

brated during the packing procedure with an engraving 

gun. The columns were then conditioned for 48 hr at 

200°C. 

P. Procedure for the Determination of AcA and EtOH 

in Human Blood During Alcohol Detoxification 

Blood samples (3 - 5) ml were drawn from con­

senting male adults (ages 37 - 54) admitted to the 

Alcohol Detoxification Unit at Hines Veterans Admin­

istration Hospital. Non-alcoholic controls were in 

the same age range and were psychiatric in-patients 

at the hospital. Both groups were on the same daily 

diet and between-meal consumption of foods was re­

stricted. The blood samples were stored in citrated 

tubes in a freezer (-20°C) until preparation for 

analysis (6 - 48 hr). Aliquots (0.2 ml) of blood 

were added to 15 ml vacutainers containing 0.5N 

HClo 4 (1.0 ml) with 25 rnM thiourea and 50 mg/dl 

N-propanol as an internal standard. Prior to use, 

the vacutainers were washed with hot soapy water, 

treated with chromerge (S/P), treated further with 

hydrogen fluoride (5% solution), rinsed well with 

dH2o and dried under vacuum at 100°C. The blood 

mixtures (0.2 ml) were immediately mixed and frozen 
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over liquid N2 , blown for -15 sec with N2Ex, capped, and 

equilibrated at 37°C for 20 min. Head space samples 

(1 - 2 ml) were taken with a gas-tight syringe (Hamilton) 

and analyzed for EtOH, AcA and N-propanol on a PoraPak 

QS column (prepared as described in section 0.; Tc = 

125°C). Standard curves were prepared with AcA, EtOH, 

and N-propanol added to normal bloods. Control bloods 

showed negligible formation of AcA during work up pro­

cedure. Standard curves were expressed as concentration 

of EtOH or AcA versus the ratio of peak areas of EtOH or 

AcA/N-propanol. 



CHAPTER III 

RESULTS 

.. A. Synthesis of THIQs 

Selective physical data for synthesized compounds 

is summarized in Table 1. NMR and IR spectra were con­

sistent with expected structures. GC and HPLC analysis 

determined purity of all synthesized compounds to be 

greater than 99%. TLCs of reaction mixtures verified 

that the reactions had gone to completion. 

B. Extraction and Recovery Studies of Biogenic 

Amines, THIQs and Their Acid Metabolites 

Dihydroxybenzlamine (DHBA) proved to be a good 

internal standard, consistently reflecting the recovery 

of a variety of compounds. This verifies the utility 

of this compound as an HPLC (203) and GC internal 

standard. Recoveries of all compounds of interest 

correlated within 5 - 7% of DHBA recovery. The ex­

ception was 5HT, whose recovery varied greatly with 

the isolation tech~ique employed. 

Acid extraction utilizing 0.4 N HClo 4 followed 

by lyophilization caused almost total loss of isolated 

compounds as determined by HPLC analysis. This loss 

could be avoided if the supernatant was adjusted to 
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pH 5.5 prior to lyophilization. When 1.0 N HCl was uti­

lized as the homogenizing medium, no neutralization was 

necessary; however, 5HT recovery was only 50% of DHBA 

recovery. When the 1.0 N HCL was adjusted to pH 5.5, 

the recovery of DHBA directly reflected 5HT recovery. 

overall recovery as determined by HPLC of THIQs, bio­

genic amines, and their metabolites for the neutralized 

acid (1.0 N HCl) extraction technique ranged from 80 -

85%. Recoveries were calculated from known standards 

added to cerebellar homogenates, which were then carried 

through the extraction procedures and compared to iden­

tical neat standards by HPLC. 

EtOH extraction of tissue samples had the added 

advantage of not having to adjust the pH prior to lyo­

philization or addition to weak cation-exchange columns. 

Doubling the volume of the EtCH-extracted supernatant 

with dH2o yielded a solution of pH 5.5. Utilization of 

this technique gave 5HT recoveries by HPLC which were 

directly reflected by the recovery of DHBA. Overall 

recoveries of THIQs, biogenic amines and their metabo­

lites after EtOH extraction, lyophilization and direct 

HPLC analysis ranged between 85 - 89%. Recoveries 

were calculated, as above, from addition of known 

standards to cerebellar homogenates. 

The aforementioned extraction techniques 
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utilizing HCl, HCl04 , or EtOH, homogenization, pH or 

volume adjustment and lyophilization provided reasonable 

HPLC chromatograms (see section D). However, GC anal­

yses utilizing these abbreviated isolation techniques 

were unsuccessful. Attempts to chromatograph the lyo­

philized residues (following derivatization of samples 

isolated utilizing any of the three simple extraction 

techniques) yielded chromatograms with solvent peaks 

exceeding 25 min. Therefore, a rapid sample "clean-

up" technique using ion-exchange columns was sought. 

The use of a strong cation-exchange resin, 

Dowex-50, for the separation of amines, acids, and 

amphoteric constituents from acid or EtOH extracted 

tissue samples had limited success. The 4N HCl/MeOH 

which was necessary for the removal of bound amines 

apparently caused significant destruction of the bio­

genic arnines prior to analysis, as indicated by low 

recoveries after (and discoloration during) sample 

lyophilization. In order to increase recoveries, 

lower concentrations of acid could be utilized. How­

ever, this would become impractical due to the large 

volume necessary for elution. Overall recoveries of 

THIQs, biogenic amines and their a-methylated metabo­

lites after Dowex, ranged between 25 and 40%, as de­

termined by both HPLC and GC analysis. These low 
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recoveries and the wide range discouraged the use of this 

oowex ion-exchange technique. 

When the samples were passed through columns con­

taining a weak cation-exchange resin (BioRex-70) which 

allowed for selective isolation of amines, acids, and 

amphoteric constituents, GC analyses of these fractions 

were possible. The use of BioRex-70 for these isola­

tions was adapted from procedures by Holman (201) and 

Barchas (204). Eightyfive% of·the~carboxylated THIQs and 

and acid metabolites (HVA,5HIAA,DOPAC) of biogenic amines 

were detec.ted in the ·primary eluate. An additional 2 ml 

of 0.02 M sodium phosphate buffer eluted an additional 

10% of the carboxylated compounds with no detectable 

cross contamination from amine constituents. Non-car­

boxylated THIQs, 5HT, the CAs, and their a-methylated 

amine metabolites remained bound to the columns until 

elution with 1.0 N HCL. Overall recoveries of non­

carboxylated THIQs, CAs, and their a-methylated metabo­

lites, directly reflected by the HPLC or GC recovery 

of DHBA, were within 83 - 85%. 5HT recovery (HPLC 

analysis) was consistently 75%. A suitable internal 

standard was not found for the acid fraction. The 

recoveries for all acid constituents, which were ob­

tained by addition of standards to cerebellar tissue 

homogenates and carried through the column procedure, 



were consistently high, ranging from 93 to 95%. 

c. Gas Chromatography of CAs, THIQs, and Their 

Metabolites: Results of Studies on Derivative 

Formation and GC Separation Conditions 

In general, the HFB-derivatives of non-carboxyl­

ated THIQs, CAs, and their respective a-methylated me­

tabolites yielded the higher responses, more symmetri­

cal peaks and better isomer separations, when compared 

with the TFA-derivatives. PFP-derivatives actually 

gave EC responses equivalent to HFB-derivatives, but 

GC separation of the structural amine isomers (a-me­

thylated metabolites of SAL, 4,6,7,-(aH) 3 THIQ, and 

DA} was not achieved following PFPA derivatization. 

The a-methylated isomers of carboxylated THIQs were 

separable, however, when PFPA was used in combination 

with HFIP. 
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It was found absolutely necessary to wash the de­

rivatives, taken up in toluene, with an aqueous buffer 

solution just prior to capillary GC analysis. The 

aqueous washing apparently removed residue fluoro­

anhydrides and other derivatized volatile compounds 

which were contributing significantly to a large 

tailing solvent front. This novel step was accom­

plished with a 1M NH 4 H2 P0 4/(NH 4 ) 2 HPa 4 buffer, 

pH 5.8 - 5.9. The aqueous buffer presumably 



hydrolyzed any unreacted fluoroanhydride, and fluoro­

acids were extracted by the aqueous ammonia. The 

fluoroacyl esters of phenols are reportedly stable 

in H20 at pH~6.0 (205), and the results with THIQs 

and CAs indicated this to be true (vide infra) . 

+ The use of aqueous NH 4 phosphate to wash the 

toluene samples is demonstrated in Figure 22. Recovery 

experiments, in which derivatized standards were washed 

up to 5 times with the aqueous buffer and injected im-

mediately afterward, showed no significant change in 

peak heights, areas, symmetries or retention times. 

However, extended storage (72 hrs) of toluene solutions 

of derivatized THIQs or CAs in the presence of the 

aqueous NH4 phosphate resulted in a 90 - 100% decrease 

in derivative peak heights. 

A comparison of capillary versus conventional 

column separation of a standard mixture of DHBA, DA, 

SAL, 3M-DA, 4M-DA, 6:r-~-SAL, and 7M-SAL can be seen in 

Figure 23. The conventional 6 foot X 1/4 inch i.d. 

packed column was unable to resolve the isomers of 

3-M- and 4-M-DA and 6-M and 7-M SAL, despite 

various combinations of temperature, pressure, and 

liquid phase. Packed columns of longer length tended 

to lose efficiency, as demonstrated by excessive 

peak widths of long retention time compounds, and 
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required temperatures which neared or exceeded maximum 

operating temperatures of the columns. Capillary col­

umns were found to separate easily. the 6- and 7..0-Hethyl 

isomers of DA, SAL (Fig. 24), 4,6,7,(0H) 3 THIQ (Fig. 25), 

l~AL (Fig. 26), 3-CSAL (Fig. 27) and 1-Me-6,7-DHIQ 

(Fig. 28). A summary of capillary chromatographic con­

ditions, retention times, and minimum detectable quan­

tities is shown in Table 2. 

D. High Performance Liquid Chromatography (HPLC) 

of Biogenic Amines, THIQs, and Their Metabo­

lites 

The use of paired-ion HPLC permitted simultan­

eous quantitation of either the acid components or 

their corresponding amines in a single injection, but 

separation of amines and acids in the same mixture 

was not achieved in these studies. Separation of a 

standard mixture of DOPAC, SHIAA and HVA by paired 

ion chromatography is seen in Figure 29. Figure 30 

shows the separation of NE, DHBA, DA, SAL, and SHT. 

Although paired-ion HPLC was able to separate the 

6- and 7-C-Methyl. isomers of I'HIQ~. the separations 

were not adequate enough for precise quantitation. 

Small adjustments in paired-ion content, % MeOH and 

flow rate were necessary to accommodate the column 

degeneration associated with repeated usage. 



The use of the 0.1 M Na 2Pa4-l mM Ha2 EDTA buffer 

(ionic-suppression buffer) allowed for the simultaneous 

separation and quantitation of the biogenic amines and 

their acid metabolites. The pH, now an important pa-

rameter, was manipulated to achieve the best separa-

tions. Because ionic-suppression buffers have pHs of 

between 4 and 7, electrochemical oxidation of most bio-

logical molecules is easily achieved. Figure 31 demon-

strates the simultaneous separation of NE, DHBA, DA, 

oaPAC, 5HT, 5HIAA, and HVA utilizing the ionic-sup-

pression buffer system. Utilization of this buffer 

18 system in combination with a C reverse phase (25 em) 

column easily separated the following catechol THIQs 

and their respective 6-0- and 7-0-methylated isomers: 

SAL (Fig. 32), 467-(aH) 3THIQ (Fig. 33), 1-CSAL (Fig. 

34), and 3-CSAL (Fig. 35). With a slight modification, 

1-Me-6,7-DHIQ and its two a-methylated derivatives 

were also separated (Fig. 36). A summary of reten-

tion times and selected HPLC parameters is found in 

Table 3. 

E. In Vivo Studies of the Stereoselective Brain 

a-Methylation of a Variety of catechol Iso-

quinolines and DA 

Electron capture responses for HFB-derivatized 

samples of SAL, 467-(aH) 3THIQ, 1-CSAL, 3-CSAL, 
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1-Me-6,7 DHIQ, DA and their a-methylated isomers were 

all excellent. Minimum detectable quantities were in 

the range of 2 - 10 picomoles~l. GC recoveries of 

all compounds of interest, after EtaH extraction, 

Bio Rex-70 isolation, derivatization, and sample clean­

up with NH 4+ phosphate buffer, ranged from 80 - 85%. 

Representative chromatograms of HPLC and GC separa­

tions of SAL/DA (Fig. 37), 4,6,7-(aH) 3 THIQ (Fig. 

38), 1-CSAL (Fig. 39), 3-CSAL (Fig. 40), and their 

respective a-methyl-metabolites are actual tissue­

extracted results. Regional brain chromatograms of 

saline-injected controls showed no interfering com­

ponents at the retention times of any compounds of 

interest. 

As can be observed in chromatograms, Figures 

37 and 39, SAL and 1-CSAL were almost exclusively 

0-methylated on the para -7- hydroxyl. Figures 38 

and 40 qualitatively show that 4,6,7-(aH) 3 THIQ and 

3-CSAL had mixed stereospecificity to a-methylation 

with peaks for both "meta" -6- and "para" -1- a-me­

thyl products. 1-Me-6,7-DHIQ was not a-methylated 

to any detectable extent in the 50 minute period fol­

lowing central injection. DA, injected ICV into 

six pargyline-pretreated rats, was apparently a-me­

thylated exclusively in brain on the meta -3-
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hydroxyl (Fig. 37}; if 4M-DA was present, levels were less 

than 4 - 5 ng/g striatum. This result insured that the 

7-a-methylation seen with catecholic isoquinolines was 

not an artifact of administration. The quantitative 

distribution of brain isoquinoline a-methylation can be 

seen in Figure 41. 

Tables 4, 5, and 6 show the % stereoselective 

a-methylation, % of a-methylation and levels of cate­

chol isoquinoline precursors present in the corpus 

striatum, hypothalamus, and hippocampus, respectively. 

In the corpus striatum (Table 4} the levels of all ca­

techol isoquinoline presursors were statistically the 

same (P>.05}. However, the% a-methylated [=total 

a-methylated products/catechol isoquinoline presursor 

(+} total a-methylated products] are significantly 

different. SAL and 4,6,7-(aH} 3THIQ are statistically 

a-methylated to the same extent, while 1-CSAL and 3-CSAL 

are a-methylated 67% (P<.Ol} and 33% (P<.Ol} of SAL, 

respectively. 

In the hypothalamus (Table 5) the levels of'the 

carboxylated THIQs were 2 to 3 fold as high as SAL and 

4,6,7-(aH) 3THIQ. The% a-methylation for 4,6,7-(aH) 3 

THIQ, 1-CSAL, and 3-CSAL are statistically the same 

being an average of 70% of the % SAL a-methylation. 

In the hippocampus (Table 6) the levels of SAL, 



4,6,~(aH) 3THIQ and 3-CSAL (1-CSAL was not assayed in 

this brain part) were statistically the same as were 

the% a-methylation for 4,6,~aH) 3THIQ and SAL. How­

ever, the % a-methylation for the carboxylated THIQ 

3-CSAL was 36% (P<.Ol) of SAL % a-methylation. 

F. Survey of Salsolinol Uptake into the Rat CNS 

After Intraperitoneal Administration 

This experiment was undertaken to determine 

whether the levels of THIQs found in the CNS after 

EtaH administration could have originated in part 

from a peripheral source such as liver, heart, or 

adrenals, via the cerebral circulation. GC/EC pro­

vided a means by which the presence of picomole quan­

tities of SAL and a-methylated SALs could be detected 

in brain (minimum detectable quantities, 15 - 30 

pmoles/g tissue). The results indicate that at SAL 

doses between 5 and 20 mg/kg i.p. SAL and a-methy­

lated SALs were not detectable in the corpus stria­

tum, hypothalamus or hippocampus (data summarized 

in Table 7). The efficacy of GC/EC assay was checked 

by the measurements of endogenous DA, which fell 

within literature values. Dopamine levels in the 

hypothalamus and corpus striatum were not signifi­

cantly changed at any SAL dose or at any time point 

(not shown). These results indicate that at doses 
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of 20 mg/Kg or less (assumed possible physiological 

range), SAL, a representative, simple catechol THIQ, 

does not significantly cross the blood/brain barrier. 

G. Effects of Acute ICV Administration of Cate­

chol-Isoquinolines on the Levels of 5HT and 

Acid Metabolites in Various Rat Brain Regions 

In Tables 9, 10, and 11, the actual values for 

5HT, 5HIAA, DOPAC, and HVA in the hypothalamus, hip­

pocampus and corpus striatum in control and isoquino­

line (or pargyline/DA) treated animals are tabulated. 

In the hippocampus (Table 9, summary Table 8 

and Figure 42) where only 5HT and 5HIAA were assayed, 

only 1-CSAL failed to significantly increase the 

levels of 5HT. The three THIQs, SAL, 3-CSAL, and 

4,6,7-(0H) THIQ, and the DHIQ all increased the 

hippocampal levels of 5HT to 145 - 185% of control 

(P<.Ol); 5HIAA levels were altered (increased 27%; 

P<.Ol) only by 4,6,7-(0H) 3 THIQ. Pargyline/DAde­

creased 5HIAA to 26% (P<.Ol) of control as expected. 

In the striatum (Table 10, summary Table 8 and 

Figure 42), where DOPAC, HVA, and 5HIAA levels were 

assayed, 1-CSAL significantly increased both DOPAC 

(P<.Ol) and HVA (P<.Ol) 160 and 116% respectively. 

3-CSAL significantly lowered 5HIAA levels to 83% of 

control (P<.Ol) but did not effect the levels of 
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DOPAC or HVA. Likewise, 4,6,7-(0H) 3THIQ significantly 

lowered SHIAA to 82% of control (P<.OS), but had no effect 

on the other acid metabolite levels. On the other hand, 

sAL did not alter the steady-state levels of any of 

the acid metabolites in the corpus striatum. 

In the hypothalamic tissue (Table 11, summary 

Table 8 and Figure 42) DOPAC, HVA, and 5 HIAA were as­

sayed. A number of significant changes occurred due 

to the isoquinolines. First, levels of the SHT metabo­

lite, SHIAA, were observed to be increased 127% - 178% 

(P<.Ol) of control by four of the five isoquinolines, 

the exception was SAL. The levels of the catechol 

acid, DOPAC, were lowered to 67% - 79% (P<.Ol) of con­

trol values by each of the four THIQs, and additionally, 

3-CSAL also decreased HVA levels to 63% of control 

(P<.Ol). Finally, 1-Me-6,7-DHIQ significantly reduced 

HVA levels by 26% (P<.Ol). 

Thus, it appears that diverse neurochemical 

changes occur after large (50 ~g) ICV injections of 

catechol isoquinolines, depending on the brain area 

examined. For example, SHIAA levels were changed 

(increased) almost exclusively in the hypothalamus 

but not in the other two brain areas [slight signi-

ficant decrease in corpus striatum by 3-CSAL and 

4,6,7-(0H) 3THIQ] by all the isoquinolines except SAL. 
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Hypothalamic DOPAC levels are decreased by all four 

THIQs, but in the striatum, only 1-CSAL affected DOPAC 

levels, and this was a 60% increase above control levels. 

HVA was only affected by one THIQ in the hypothalamus 

(a 37% decrease in its levels by 3-CSAL), and by 1-CSAL 

(16% increase) in the striatum. The DHIQ, l-Me,6,7-

DHIQ had a consistent effect on HVA, decreasing it 

20% - 25% in both regions measured. 

H. Half-Life and Effects of 7-Methoxy-Salsolinol 

Following Acute ICV Injection 

The half life (T 1/2) of ICV administered 7M-SAL 

was determined by following its disappearance from se­

lected brain parts. Analysis by HPLC and GC showed 

its T 1/2 to be 133 minutes. This was calculated from 

T 1/2 = 0.693/R; R is equal to the slope of the line 

generated from the plot of log 7MSAL (~g/g tissue) 

versus time (hr) (Fig. 43). 

In tables 12 and 13 the actual values for DA, 

SHT, DOPAC, HVA and SHIAA in the hypothalamus, hippo­

campus and corpus striatum in control and 7M-SAL 

treated rats were tabulated. 

In the hypothalamus (Table 13A summarized 

Figure 44) there is no observed significant change 

in SHT levels over the 48 hr period assayed. How­

ever, SHIAA levels were increased significantly at 



12 hr (P<.OS), 24 hr and 48 hr (P<.Ol). The increases 

in SHIAA were 120% 137% of control values. The 

initial reciprocal changes (1 hr - 6 hr) seen in the 

SHT and SHIAA levels were not significant. 

In the hippocampus (Table 13B, summarized in 

Figure 44), SHT and SHIAA levels were assayed. 7~1-SAL 

significantly increased SHIAA levels 130% - 143% from 

6 hr to 48 hr (P<.Ol) while initially (1 hr) lowering 

SHIAA 19% (P<.OS). SHT levels were significantly 

affected at 3, 6, 12, and 48 hr after ICV injection. 

At 3 hr and 48 hr SHT levels were increased 17% and 

29% over control values, respectively (P<.Ol), while 

at 6 hr and 12 hr the SHT levels are decreased 17% 

and 11% respectively (P<.02) 

In the corpus striatum (Table 12, summarized 

in Figure 44) DA, DOPAC, HVA, SHT, and SHIAA were 

assayed. Striatal SHIAA was significantly increased 

3, 6, and 12 hr (114% - 139%; P<.OS) post ICV injec­

tion, while 5HT levels were significantly decreased 

only at the 12 hr time point (23%; P<.02). On the 

other hand, Striatal HVA was significantly increased 

133% - 192% over central at 1, 3, 12 hr (P<.OS). DA 

levels were decreased 24% at the 48 hr time point 

(P<.02) and DOPAC levels were increased 25% at the 

3 hr time point (P<.OS). 
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Thus, it appears that consistent neurochemical 

changes occur after moderate (10 ~g) ICV injections of 

7M-SAL in all three brain parts assayed. For example, 

SHIAA was observed to be· increased as was HVA and to 

some extent DOPAC in the hypothalamus, hippocampus, 

and corpus striatum. The biogenic amines, SHT and DA, 

have scattered changes with the hippocampus having the 

most significant SHT alterations. Examination of the 

graphed results (Fig. 44) indicates that the general 

trend is an increase in the acid metabolites of the 

biogenic amines (DOPAC, HVA, and SHIAA) over time 

with no concomitant, consistent changes in DA or SHT 

steady-state levels over time. 
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I. Results of Chronic Intraperitoneal Administration 

of 1-Carboxy-Salsolinol for Determination of In 

Vivo Formation of Dihydroisoquinolines froma 

Simple 1-Carboxylated THIQ 

After chronic 1-CSAL administration, the acid 

eluates of Bio Rex-70 isolation columns (amine fraction) 

of liver, corpus striatum, hypothalamus and hippocam­

pus were examined for the presence of 1-Me-6,7,-DHIQ, 

6- and 7-0-Methy~l-Me-DHIQ, SAL and the two a-methy­

lated SALs. There was no chromatographic evidence for 

the presence of these compounds which could, in theory, 

form from the (oxidative) decarboxylation and/or 



a-methylation of 1-CSAL. Minimum detectable quantities 

for DHIQs were 12 - 24 ng/g. Excellent recovery (85 -

87%) of the internal standard and biogenic amines in-

sured the integrity of the assay. Addition of 1-Me-

6,7 DHIQ and its 6- and 7-0-methylated isomers to cere­

bellar tissue passed through the BioRex-70 column pro-

cedure showed that they were exclusively eluted in 

the amine fraction. Qualitative examination of the 

+ primary elution plus 2 ml of .02M Na phosphate (acid 

and amphoteric fraction) confirmed the presence of 

1-CSAL and its 7-0-methylated (carboxylated) metabo-

lite in all regions examined. No endogenous amines 

were found in this fraction. These results indicate 

no substantial formation of DHIQs from 1-carboxy-SAL 

in these rat tissues in vivo after chronic i.p. admin-

istration of the THIQ. 

J. Spectrophotometric Studies on a Series of 

1-Methyl-6,7-Substituted 3,4-Dihydroisoquino-

lines 

The proposed neurotoxicity of dihydroisoquino-

lines is dependent on the structural similarities be-

tween the quinoidamine conformation of the DHIQs and 

that of the oxidized quinones of 60HDA and of other 

related compounds (i.e. 6-amino-dopamine, acetamino-

phen) . pH dependency of DHIQs was studied to determine 
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the tautomeric form of the DHIQs under physiological 

conditions (Fig. 45). 

1. 1-Methyl-6,7 Dihydroxy-3,4-Dihydroisoquinoline 

(I) and 1-Methyl-6-Hydroxy-7-Methoxy-3,4-Dihydro 

Isoquinoline (II) 

The UV absorption spectra of (I) and (II) were 

practically identical throughout the entire pH range 

tested (Fig. 46). Between pH 2 and 4 the spectra were 

unchanged; however above pH 5.0 they went through 

characteristic and similar changes for both substances. 

The most prominent change was the appearance of an ab­

sorption peak at 384 .nm which reached a maximum of 

about pH 9.0. With a further increase of pH up to 
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13, the absorption at 384 nrn was considerably diminished. 

Compound (I) had very weak fluorescence in the Ph 

range of 1 to 5. However, above pH 5.0 a fluorescence 

maximum at 455 appeared which gradually increased with 

increasing pH. The maximum activation peak was at 

380 nrn. The fluor~:scence intensity reached a maximum 

at approximately pH 8.0; above this pH, the emission 

intensity weakened, falling to a small value at higher 

pH's (Figures 47 and 48). Even at pHs 1 to 5, corn­

pound (II) exhibited a fairly strong fluorescence 

with a main excitation maximum at 380 nrn and an emis­

sion peak at 465 nrn. Maximum fluorescence intensity 
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was attained at about pH 8.0. The fluorescence decreased 

with increasing pH above pH 8.0 (Figures 47 and 48). 

2. 1-Methyl-6,7-Dimethoxy-3,4-Dihydroisoquinoline 

(III) and 1-Methyl-6-Methoxy-7-Hydroxy-3,4-Di­

hydroisoquinoline IV 

Compounds III and IV had almost identical U V 

spectra at all pHs tested (1 to 13). The spectra 

were practically identical between pHs 1 to 7 and 

in this range they also resembled the spectra of com­

pounds I and II between pHs 1 and 5 (Fig. 49). Above 

pH 8.0 they underwent reversible and typical changes. 

The absorption peak at 350 nm gradually decreased and 

disappeared (Fig. 49). 

Compound III showed a high fluorescence inten­

sity from pH 1.0 to pH 7.0 with these spectral charac­

teristics: the main fluorescence excitation peak was 

at 350 nm and the main emission maximum was at 450 nm 

(Fig. 50). Above pH 7.5 the fluorescence intensity 

decreased, disappearing at higher pH values (Fig. 51). 

Compound IV exhibited very weak fluorescence 

compared to the other DHIQs tested. In order to ob­

tain accurate readings the concentrations had to be 

increased 10-fold. 



K. Cyclic Voltarnmetry Studies on a Series of 1-Me­

thyl-6,7-Substituted-3,4-Dihydroisoquinolines 

Cyclic vol tarnmograms were generated from 1-Me-

6,7-DHIQ, l-Me-7M-DHIQ, and l-Me-6M-DHIQ at pHs of 

3.0, 5.0, and 7.4. The results of the cyclic voltam­

metry for these three dihydroisoquinolines can be seen 

in Figures 52, 53, and 54, respectively. The voltam­

mograms are strikingly dissimilar from those generated 

from CAs, THIQs and 60HDA-like compounds. The DHIQs 

exhibit no reversible reduction peak. The voltammo~ 

grams generated do exhibit characteristic shifts in 

oxidation potentials from higher oxidation potentials 

to lower oxidation potentials as the pH is increased 

from 3.0 to 7.4. These shifts indicated an increase 

in the ease of oxidation as the pH increased. The 

lack of the reversible reduction peak would indicate 

electrochemical oxidation to a compound which is sta­

bilized against reduction. Further interpretation 

of these results are reserved for the discussion sec­

tion of this dissertation. A summary of pH versus 

oxidation potential is shown in Table 14. 

L. Attempted Synthesis of Glutathione-Dihydroiso­

quinoline Adducts 

TLC analysis of the reaction mixtures of the 

dihydroisoquinolines and glutathione indicated that 
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no adduct formation had occurred. Silica Gel TLC plates, 

developed with butanol/HOAc/dH20(4/l/l), showed only 

one fluorescence spot whose RF (= distance compound 

from origin/distance solvent front from origin) was 

identical to the respective DHIQ utilized as starting 

material. Staining of the plates with ninhydrin (pri­

mary amine)-reagent to visualize the location of the 

glutathione demonstrated one spot whose RF was iden­

tical to that of GSH and was substantially different 

from that of the respective DHIQs. No spot appeared 

having both fluorescence and ninhydrin staining which 

would indicate adduct formation. The NMR spectra of 

the two lyophilized reaction mixtures indicated no 

loss of the 5 or 7 position aromatic protons [as seen 

in 60HDA-glutathione adduct formation (206)] which 

are the expected sites of sulfhydryl addition. HPLC 

analysis of the reaction mixture utilizing combina-

tions of electrochemical/ UV and electrochemical/ 

fluorescence detection also indicated no adduct forma­

tion. 

M. GC Analysis of Acetaldehyde (AcA) ana Ethanol 

(EtOH) in Human Blood 

Routine separation of the compounds of in­

terest, AcA, EtOH, and the internal standard N-pro­

panol can be seen in Figure 55. Standard curves 



prepared with AcA and EtOH were linear for both corn­

pounds through their physiological ranges, (EtOH, 2.0 

to 500 rng/dl, AcA, 0.04 to 1.0 rng/dl). Recoveries 

ranged from 60 - 70%. Blood AcA and EtOH levels in 

blood samples were not changed by storage at -20°C 

for at least 72 hours. 

Table 15 shows mean concentrations of EtOH and 

AcA in the blood of thirteen male subjects ages 37 -

54, on admission (day 0) and days 1 - 4. Blood EtOH 

concentrations ranged from 110 to 420 rng/dl in these 

subjects, with a mean of 229.7 rng/dl. The mean EtOH 

concentration dropped to 5.0 rng/dl one day after ad­

mission and was undetectable on successive days. Our 

subjects' blood AcA concentrations on admission had a 

range of 0.06 to 0.70 rng/dl and averaged 0.350 rng/dl. 

Blood AcA in our studies were somewhat lower than 

those previously reported by Magrinat et al. (207), 

but our subjects' average EtOH concentrations were 

also less. 
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CHAPTER IV 

DISCUSSION 

A. Introduction -
These studies have been concerned with several 

related aspects of THIQ metabolism. The metabolic 

aspects were studied in vivo to determine in situ 

involvement of THIQs with the important CA-rnetabo-

lizing enzymes, COMT and MAO. First, the cerebral 

a-methylation pattern of several 1-alkyl catechol-

isoquinolines related to the CAs and their effects 

on DA, SHT and the acid metabolites of biogenic arnines 

were studied. Since 7M-SAL was the predominant O-rne-

thylated product of SAL in those studies, and since 

both of these THIQs form in vivo during alcoholism, 

the half-life and effects of 7M-SAL (ICV) ,on endogen-

ous DA, SHT, DOPAC, HVA and 5HIAA levels in various 

rat brain regions were determined. Third, prelirni-

nary investigations on a possible, novel, oxidative 

pathway for brain THIQs were initiated. Analytical 

characterization of the possible oxidative products 

of this pathway was undertaken. Simple but highly 

sensitive and specific analytical techniques were 

developed in order to pursue the above neurochemical 
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studies. The technical achievements in this disserta­

tion include improved GC/EC and HPLC/ED methods for 

the simultaneous separation and quantitation of bio­

genic amines, THIQs and their respective metabolites. 

Lastly, a procedure for the analysis of EtOH and AcA 

in human blood was modified and endogenous AcA levels 

were quantitated in alcoholics during detoxification 

at Hines V.A. Hospital. 

The discussion that follows is organized into 

sections headed by a statement of principle which des-

cribes the results to be discussed in that section. 

B. Improved Methods 

1. Direct Ass~y of Tissue Supernatants by HPLC 

with Electrochemical Detection Proves to Be 

a Rapid, Facile, and Versatile Way to Measure 

Biogenic Amines and Acids in Small Brain Samples 

Simultaneous separation and quantitation of DA, 

DOPAC, HVA, SHT and SHIAA in small brain parts allows 

for direct assessment of the neurochemical consequences 

of administered agents. Comparing control values of 

the biogenic amines and acid metabolites obtained by 

the HPLC techniques developed in this dissertation 

with literature values obtained by a variety of ana­

lytical methods, the efficacy of our rapid HPLC assay 

system can be seen (Table 16). All results fall well 
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within established literature values. The ability to 

do simple EtOH or HCl extraction and direct analysis 

of the supernatant allows for a rapid profile of brain 

regions and constitutes a useful and inexpensive ad­

dition to the neurochemists' repertoire of analytical 

tools. 

Reverse phase (RP) is a special case of parti­

tion chromatography. In the case of RP-HPLC, the or­

ganic phase is a permanently bond non-polar stationary 

phase. For our purposes we utilized a 18-carbon alkyl 

side chain covalently attached to silica beads. The 

aqueous phase is represented by the buffer system uti­

lized to make the mobile phase. 

The separations using this system are achieved 

because of the different degrees of interaction of a 

compound with both the non-polar stationary phase 

and the polar mobile phase. Compounds with a charged 

ionic moiety partition preferentially in the aqueous 

phase and move through the column quickly. Compounds 

which are neutral (uncharged) tend to interact with 

the hydrophobic phase of the column and to be re­

tained. 
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The biogenic amines and their acid metabolites 

represent a group of ionic compounds whose charge 

species are the amine and carboxylic acid, respectively. 
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For these ionic species the following equilibrium 

. - + ~ + exists; RCOOH~RCOO +H ; RNH 3~RNH 2+H . By adjusting 

the pH of the buffer system in the mobile phase, 

the equilibrium can be driven to favor a particular 

species. This technique is called ionic-supression 

HPLC chromatography. 

Paired ion chromatography (PIC) utilizes a 

large organic counter-ion added to the mobile phase 

which forms a reversible ion-pair complex with the 

ionized sample; this complex behaves as an electroni-

cally neutral, non-polar compound. The use of octane 

sulfonic acid (OSA) or heptane sulfonic acid (HSA) 

as the paired-ion adds a high degree of hydrophobic 

character to the sample through the paired-ion com-

plex. 

In order to assure a high paired-ion sample 

interaction, the pH of the mobile phase must be 

such that the sample is present in its ionic form. 

The extent to which the ionized sample and the 

counter-ion form an ion-pair complex affects the 

degree of retention on the column. 

In the separation of biogenic amines by PIC 

with alkyl sulfonates, the pH of the mobile phase 

should be around 3.5 for best ionic interactions. 

Maintaining a pH of around 3.5 ensures that both 



strong and weak bases will be in their ionic forms and 

any weak acids will be primarily in the non-ionic 

species. 

With the use of the electrochemical detection 

a second important pH-dependent reaction must be con­

sidered. The oxidations of the phenolic hydroxyls 

of the biogenic amines and their metabolites are 

also pH dependent. The lower the pH the higher the 

oxidation potential which must be applied. While 

the CAs and catechol isoquinolines and acid metabo­

lites are sufficiently detectable at low pHs (-3.5) 

using moderate(+.5-+.8 DC Volts) oxidation potentials, 

their a-methylated metabolites have a poor response 

at these potentials. Raising the applied potential 

to a value which would allow for detection of a-me­

thylated compounds results in increased oxidation 

of buffer components and a general loss in oxidative 

specificity. Increasing the pH of a strong paired­

ion mobile phase to above pH 4.5 results in a low 

efficiency of paired-ion-complex formation, thereby 

frustrating separations. 

For our investigations a HPLC system was de­

veloped which utilized a combination of ion-sup­

pression/ion-paired chromatography for the simul­

taneous separations of DA, DaPAC, 5HT, 5HIAA, HVA, 
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a number of THIQs, and their a-methylated metabolites 

(208). The buffer system of 0.1 M Na H2Pa4 utilized 

1 mM Na 2EDTA as the weak complexing paired-ion. EDTA 

is an unusual paired-ion because of its four ionizable 

carboxylates with PKa's of 2.0, 2.67, 6.16, and 10.26 

(209). The wide range of PKa's allows for this mole­

cule to be utilized as a paired-ion over a broad 

spectrum of pHs. 

In our studies, the pH which gave maximum 

separation and detection within the shortest time 

period was determined by titration with concentrated 

nitric acid (HNa 3) and found to be between 4.7 and 5.2. 

Between these pHs the ability to detect the whole 

spectrum of biogenic amine NT components was excellent. 

Separation of these compounds were dependent on pH ad­

justments as little as 1/10 of a pH unit. pH adjust­

ments were made to accommodate column deterioration 

and THIQs and their a-methylated metabolites which 

were present. 

Therefore, several significant advantages of 

the system developed in this research can be noted: 

1) with small change in pH a wide variety of sample 

mixtures could be routinely separated and quantitated; 

2) the moderate pHs allowed for quantitation of a­

methylated compounds; 3) the expense of costly 
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paired-ion reagents was eliminated; buffer systems can 

be made from conventional laboratory reagents. 

2. Capillary GC with EC Detection: A Very Selec­

tive and Extremely Sensitive Approach to the 

Estimation of Biogenic Amines and THIQ Stereo-

isomers in Discrete Brain Regions 

The use of a 10 M, WCOT column in combination 

with EC detection yielded the separation of geometri-

cal isomers with sensitivity as low as 3ng/g tissue. 

These results are comparable, in terms of sensitivity, 

with those generated by GC/MS. The use of short 

glass capillary columns allowed for unequivocal de­

termination of isolated compounds. The quantitation 

of endogenous brain DA levels and the assessment of 

in vivo THIQ metabolism had never been exploited by 

glass capillary GC/EC before this work was initiated. 

The development, therefore, represents the breaking 

of new ground in the field of analytical neurochem­

istry. The DA values generated by this technique 

compare favorably with established literature values 

(Table 16). Conversion of a conventional EC/GC to 

a capillary system is a relatively inexpensive in­

vestment (·$380). However, the result of this modi­

fication is the addition of a highly versatile and 

sensitive instrument, without prohibitive cost, to 
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the average neurochemistry laboratory. 

c. A Peripherally-Circulating DA-Related THIQ, SAL, 

Does Not Enter the Rat CNS 

Utilizing the highly sensitive (minimal detec-

table quantity for SAL and a-methylated products, 3 -

5 ng/g) GC/EC assay developed in this dissertation, 

it was found that low peripheral doses (5 - 20 mg/Kg) 

of SAL were not taken up into the CNS. This is not 

surprising, considering various CAs, including DA, 

the SAL precursor, also do not readily cross the 

BBB (217). The results here are additional support 

that SAL (11) and a-methylated-SAL (13), detected in 

the CNS of experimental animals after EtaH adminis-

tration, were derived in situ and were not the result 

of peripheral formation followed by uptake. 

SAL can be rapidly a-methylated by caMT with 

a Km equal to such accepted physiological substrates 

as DA and NE (151 - 153). The greatest activity for 

caMT is found in the liver (218) with activity also 

found in the spleen, intestines, adrenal gland (219) 

and blood (220 - 221) as well as other peripheral 

tissues. Peripherally formed SAL therefore would be 

rapidly a-methylated. Neither of the a-methylated 

SAL geometric isomers, Meta-6- or para-7- , were 

found in the CNS tissue assayed. 
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Peripheral metabolism of SAL could be envisioned 

as analogous to that of the THIQ trimetoquinol which 

like the sympathomimetic isoproterenol, is metabolized 

by a combination of a-methylation and conjugation with 

glucuronic acid (222). Because of these results, our 

general approach was to study the interactions of ca­

techol-isoquinolines on the biogenic amine systems 

after ICV administration. 

D. Centrally-Administered Isoquinolines Signifi­

cantly Affect the Levels and Turnover of Re­

gional Brain Arnines and Acid Metabolites to 

Differing Degrees, Depending on the Isoquino­

line 

1. Hippocampal SHT is Increased with Little Change 

in SHIAA Levels 

The results of this dissertation indicate that 

hippocampal SHT levels are increased significantly when 

measured 50 min following ICV administration of a ca­

techol isoquinoline (with the exception of 1-CSAL) , 

but SHIAA levels are unchanged (Fig. 42). These find­

ings agree with those of Hannigan and Collins (166) and 

Patel and Collins (223) that acutely administered THIQs 

cause increases in SHT with no increase in SHIAA in 

rat brain. 

The experiments in this dissertation show 
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that a variety of THIQs have this effect indicating 

that as a class catechol-isoquinolines can interact 

with SHT-systems. One plausible explanation for in-

creases in SHT without immediate and concomitant 

changes in SHIAA would be inhibition of SHT-specific 

MAO. In light of this, these results can be compared 

to the in vitro work by Meyerson et al. (161), who 

demonstrated that MAO type A, the SHT specific en-

zyrne, was more sensitive to inhibition by isoquino-

lines that MAO type B. 
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A second possible interpretation of these results 

could be blockade of SHT postsynaptic receptors, thereby 

increasing steady-state levels of SHT through in-

creased SHT reuptake and storage. Evidence for THIQ 

interactions with SHT receptors was found by Hamilton 

et al. (146) who demonstrated that SAL antagonized 

the effects of SHT on smooth muscle. 

It is quite possible that catechol-isoquino-

lines exert their effects at both the level of re-

ceptor and as a metabolic inhibitor. These effects 

would be synergistic and could account for increases 

in SHT with little or no changes in levels of SHIAA. 

What is apparent, is that the catechol-iso-

quinolines interact with SHT neurons. It is parti-

cularly relevant and interesting that catechol 



derived isoquinolines can influence SHT-systems. The 

isoquinolines could thus serve as a neuro-modulatory 

bridge between CA-systems and SHT systems. The fact 

that isoquinolines have effects on SHT steady-state 

levels and are known to inhibit SHT uptake (124) 

would reflect their ability to be taken up into SHT 

neurons in vivo. Once taken up, they could act as 

"false" SHT-NTs. The presence of isoquinolines in 

SHT-neurons, possible release and receptor interac-

tions and the potential to inhibit SHT deamination, 

could lead to aberrant SHT metabolism. 

Abnormal SHT metabolism was proposed long ago 

by Mcisaac (224) as an etiological factor in some 

forms of mental disease. One feasible hypothetical 

situation could occur during chronic EtOH intoxica-

tion, where the formation of the THIQ, SAL, within 

the CNS has been documented. THIQ interactions with 

SHT-systems would lead to elevated intracellular SHT 

levels. This in turn would lead to increased SHT 

and tryptophan condensations with free aldehydes 

(AcA) , resulting in the formation of harmaline-like 

tetrahydro-S-carboline (THBC)-alkaloids. THBCs are 

themselves potent SHT antagonists and MAO A inhib­

itors (225) as well as benzodiazepine receptor 

blockers (226). Such harmaline compounds have 
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recently been reported in vivo in untreated and alcohol 

treated rats (227). Therefore, the initial formation 

of catechol-isoquinolines within CA neurons specula-

tively could result in a self-perpetuating stimula-

tion of SHT dynamics. In this way, small quantities 

of THIQs generated during chronic EtOH ingestion could 

augment their pharmacodynamic effect by generating a 

second {possibly more potent) psycho-active agent. 

This situation could be described very well by 

Thudichum, a pioneer in brain chemistry, who wrote 

with foresight in 1884, "many forms of insanity are 

unquestionably the external manifestations of the 

effects upon brain substance of poisons fermented 

within the body" {228). 

2. A 6-Hydroxy-Dihydroisoquinoline Quinoidamine 

Significantly Decreases Hypothalamic and Stri­

atal HVA Levels Without Changes in DOPAC 

1-Me-6,7-DHIQ lowered HVA levels with no con-

comitant changes in DOPAC in both the corpus stria-

tum and hypothalamus (Fig. 42). These results may 

be due to in vivo inhibition of COMT which was seen 

only with 1-Me-6,7-DHIQ. The unique aspect of this 

molecule which may be responsible for this possible 

action is its quinoidamine tautomer {vide supra, 

section G) which appears to be the predominant 
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conformation at physiological pH (Fig. 45). In the 

quinoidamine conformation the catechol moiety no longer 

exists; it is an aromatic keto-enol substituent and 

closely resembles compounds such as tropolones, 

the tropolone-like pyrones, and pyridones, which are 

regarded as isosteric with catechol (Fig. 56). 1-Me-

6,7-DHIQ would appear to be isosteric with these in­

hibitory compounds. The tropolones, pyrones and pyri­

dones represent a class of short lived, but highly 

potent COMT inhibitors. In vivo, the tropolones ex­

hibit more potency of inhibition than do any catechol 

or catechol-derivative inhibitors (229). It is then 

reasonable to assume that the specific affect of 1-

Me-6,7-DHIQ on the levels of HVA are due to its tro­

polone-like activity (230). Further support of this 

suggestion is presented in section E of this dis­

cussion. 

3. SHIAA Levels Are Increased and DOPAC Levels Are 

Decreased in the Hypothalamus by Four of the 

Five Catechol Isoquinolines Examined 

The decreased hypothalamic DOPAC with increased 

5HIAA, which was potentiated by all the isoquinolines 

tested with the exception of SAL, reflects differing 

effects of catechol isoquinolines within SHT- and DA­

neurons (Fig. 42). The increase in SHIAA could be 
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explained by displacement of SHT from binding vesicles, 

again with an increase in SHT turnover (therefore, no 

change in SHT levels). Either case would require that 

the catecholic THIQ would be taken up into SHT neurons. 

This is further evidence of a structure-activity re-

lationship between SHT and isoquinolines. 

DOPAC levels in the hypothalamus were decreased 

by all of the THIQs (but not the DHIQ) examined, with 

generally no change in HVA levels, the exception being 

3-CSAL, which also decreased hypothalamic HVA. One 

would suspect that these decreases reflect inhibition 

of DA turnover. Inhibition of TH, the rate limiting 

step in CA synthesis, by isoquinolines have been demon-

strated both in vitro and in vivo (171 - 173). If MAO ---
inhibition were responsible for DOPAC decrease, one 

would expect to see a concomitant decrease in HVA as 

seen in the case of pargyline pretreatment (Table 8) . 

4. Carboxylated Isoguinolines Cause Opposite Ef­

fects on DOPAC and HVA in the Hypothalamus and 

Corpus Striatum 

1-CSAL, .causes a corpus striatum-specific (23) 

increase in DOPAC and HVA. These concomitant in-

creases may reflect an increase in DA turnover. 

3-CSAL on the other hand causes significantdecreases 

in both DOPAC and HVA in the hypothalamus. This, as 
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stated above, could reasonably be due to inhibition of 

MAO or a decrease in DA turnover in the hypothalamus. 

5. Summary 

This study shows that various isoquinolines 

have remarkably different effects on the levels of 

SHIAA,DOPAC and HVA. Moreover, the isoquinolines in­

duce different changes in the three brain regions 

studied. Further studies of isoquinoline interac­

tions with biogenic amine systems will help to in­

terpret the mechanisms by which these interactions 

occur. 

E. The Brain 0-Methylation Patterns of Catechol­

Isoquinolines Are Remarkably Different from 

Those of Their Parent Amines 

The in vivo stereoselective a-methylation of 

the catechol isoquinolines differed dramatically 

frpm their parent amines, demonstrating significant 

( para) 7-0~ethylation. These studies on the ster­

eoselective enzymatic a-methylation of simple cate­

chol isoquinolines by brain COMT are particularly 

relevant, because they were performed in vivo. In 

vitro experimental studies seldom permit the liberty 

to quantitatively relate the actions of an extracted 

enzyme to its activity in the intact system. To 

date, methods used to study the stereoselective 



a-methylation of THIQs by caMT have usually involved 

the enzyme being isolated from cell extracts, "puri-

fied," and studied in an artifical medium. 

Among the many problems associated with extra-

polating in vitro results back to in vivo systems are 

the differences seen between in vitro and in vivo 

stereoselective a-methylation patterns of physiologi­

cal substrates of CaMT (DOPA,Epi, NE, DA, D~PAC, 

DHPG, etc.) (229, 231). In vivo results have demon-

strated almost exclusive formation of the meta (3-0CH 3) 

derivative (232) while conversely, in vitro results 

have shown meta/para ratios that varied significantly 

. h . h . ++ . d w1t m1nor c anges 1n pH, Mg concentrat1ons, an SAM 

cofactor concentrations (231- 236). 

The reasons for the anomaly between different 

isomeric ring substitutions in vivo and in vitro are 

not known. It has been suggested that the differences 

could be due to the cellular disruption which could 

alter the native conformation of COMT. The direct 

in vivo investigations in this dissertation circum-

vent these complications by allowing substrate-en-

zyme interactions to occur while maintaining the mi-

croenvironment of the biological system under inves-

tigation. 

The catecholic THIQs have been shown to interact 
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with CaMT as competitive inhibitors in vitro (151 - 153) 

and in vivo (153, 237), and, furthermore, undergo a-me­

thylation (148, 151, 153). However, the elucidation of 

the a-methylated products in vivo had not been accom­

plished. In vitro studies, utilizing purified rat 

liver CaMT to determine the stereoselective a-methy­

lation of 6,7-dihydroxy THIQ, N-Methyl 6,7 dihydroxy 

THIQ (154}, THP and THPB (156}, demonstrated signifi-

cant para (7-aca3 ) a-methylation. In light of the 

known lack of agreement between in vivo and in vitro 

CA results, these findings with THIQs have to be 

viewed with caution in regard to their physiological 

relevance. 

To date, the only studies on in vivo a-methyla­

tion of THIQs in tissues, particularly brain, was for­

warded by Bail et al. (155). Their studies presented 

chromatographic evidence indicating that the a-methy­

lation of (+) SAL and (+) 6,7(aH) 2 THIQ in the rat CNS 

were predominantly on the "para" (?-position) hydroxyl. 

These results were unexpected because, as reviewed, 

endogenous CAs are primarily or exclusively a-methy­

lated in vivo on the meta (3-aH) hydroxyl. Bail 

et al. were unable to definitively separate and 

quantitate the two a-methylated SAL and 6,7-(aH) 2 

THIQ products due to lack of chromatographic 



resolution. 

Our results unequivocably demonstrate that the 

a-methylation of THIQs in vivo follows discrete pat­

terns that are very different from the CAs. In fact, 

no catechol substrates have ever shown the high de­

gree of p-a-methylation like SAL and 1-CSAL. DA a­

methylation was observed to occur exclusively on the 

meta (3} hydroxyl, thus confirming literature indi­

cations and insuring that the "variant" a-methyla-
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tion of the THIQs was not an artifact of administration. 

The reasons for the observed differences in the 

stereoselective site for a-methylation between precur­

sor CAs and product THIQs in vivo are worth consider­

ing at this point. Much evidence suggests that a 

single enzyme catalyzes the formation of both a-methy­

lated products from catechols (229}. Extensive purifi­

cation of CaMT did not affect the meta/para ratio of a 

variety of substrates, providing further evidence that 

only one enzyme is involved in both meta and para a­

methylation of catechols (238}. 

The ratio of meta and para a-methylated products 

in vitro was found to be strongly dependent on the na­

ture of the aromatic substrate and the pH of the reac­

tion medium. Meta-(3}-0-methylated isomers predomi­

nated with substrates which contained highly polar 



substituents [as is the case with physiological sub­

strates (154)], while substrates with non-polar sub­

stituents had ratios close to unity. 

There are at least two possible explanations for 

the negative effects of polar substituents on p-0-me­

thylation by COMT (231): a) Catechols containing sub­

stituents with highly polar moieties are bound by means 

of this highly polar substituent in an orientation that 

favors transfer of the methyl group to the meta (3) po­

sition, or, b) A hydrophobic region is present in the 

active site of COMT which prevents random binding of 

polar substrates by repulsive interactions so that 

binding occurs primarily (as is the case of physiolog­

ical substrates) in a conformation which favors meta 

a-methylation. Since the apparent affinity of polar 

substrates for COMT does not differ markedly from 

those of non-polar compounds, and since both anonic 

and cationic polar substituents have the same effect 

on p-methylation, the latter explanation is favored. 

The presence of a non-polar region in the ca­

techol binding site of COMT would then militate the 

orientation of binding, directly influencing 

meta/para ratios. The meta/para ratios obtained 

with amine substrates would be due to the presence 

of the ionized ammonium function in the side chain 
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being oriented away from this non-polar region. Simi­

larly, studies utilizing analogues of DA and NE sug­

gest meta/para ratios as a function of side chain in­

teractions with hydrophobic centers on COMT (239). 

charged species on the substrate molecules would be 

steered away from the hydrophobic centers, resulting 

in binding orientations which would result in a stere­

ospecific a-methylation reaction. 

Application of these in vitro findings to the 

in vivo results on THIQ stereoselective 0-methylation 

can help to provide an explanation for the patterns 

observed. The THIQs, although structurally very 

similar to CAs (having several structure-activity 

relationships~ have one major structural dissimi­

larity. The amine substituent is not flexible but 

is fixed within a heterocyclic ring in the THIQ. 

This limits the freedom of rotation of the amino 

functional group (as well as other side chain sub­

stituents) and restricts the number of orientations 

which the side chain can accommodate. This restricted 

movement of ionizable groups adds another parameter 

to the binding orientation of THIQs to COMT. 

Figure 57A illustrates the manner in which a 

hydrophobic region adjacent to the active site of 

COMT could influence binding orientation of 
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physiological substrates. The hydrophobic area orients 

the ionized side chain such that binding of substrate 

best accommodates the charge species outside of the 

hydrophobic area. Binding such that the para hydroxyl 

is a-methylated is possible but involves overcoming 

hydrophobic forces. The THIQs would be particularly 

susceptible to hydrophobic steering of their ionizable 

substituents because of the additional loss of rota­

tional freedom due to the heterocyclic ring. The 

most favored orientation would, as in the case of CAs, 

place charged substituents outside this hydrophobic 

area (Fig. 57b). 

Utilizing the above rationale, the observed 

stereoselective binding of the THIQs assayed in this 

dissertation can be understood. 

R2=cH 3), which was a-methylated to a major (95%) ex­

tent on the para-7- hydroxyl, had to bind in an up­

side-down orientation in relation to CA binding. 

Thus, the charged amine was positioned away from the 

hydrophobic center while the hydrophobic region of SAL's 

ring was oriented into the hydrophobic center. The 

5% meta binding observed may be due to R1 (cH 3) being 

able to interact with the hydrophobic region thus 

deferring some of the hydrophobic repulsion forces. 

This is a tenable explanation in light of 

107 



the results with (+} 1-CSAL (R1=COOH, R2=CH3 , R3-R4=H}. 

The presence of carboxylic acid moiety on the R1 sub­

stituent eliminates a "meta-wobble" and militates 
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strict (100%} "para" (7-0H) 0-methylation. Binding 

orientation places both the charge amine and carboxylic 

acid away from the hydrophobic center, thereby position­

ing the para-hydroxyl for methylation. 

4,6,7-(0H)
3 

THIQ (R1=R2=R
3

=H, R4=0H) has polar 

substituents located in a meta orientation to one 

another and may therefore represent a class of THIQ 

substrates with intermediate binding specificity. 

Binding in either the meta or para orientation posi­

tions places a polar moiety within the hydrophobic 

region. This is reflected in the observed (55% meta/ 

45% para) randomized product ratio. Similarly, (-) 

3-CSAL (R1-cH 3 ,R2R4=H R3=COOH) has two (2) polar 

moieties (located ortho to one another). Binding of 

the substrate in the para orientation brings the car­

boxylic moiety in close proximity to the hydrophobic 

region. Binding in the meta position would bring 

the amine within proximity of the hydrophobic region 

but also positions the R1 methyl group in a favorable 

position for overlap with the hydrophobic center. The 

binding is randomized but favors the accommodation of 

the methyl group overlap and yields 60% meta/40% para 



results. 

1-Me-6,7-DHIQ represents a novel finding in that 

it appears not to undergo a-methylation to any de-

tectable extent. As described (vide supra in section 

D2) this compound resides in a quinoidamine con­

formation and resembles the tropolone-like inhibitors 

of COMT. The tropolone-like inhibitors compete with 

CAs for the active site of caMT, but are not metabo­

lized (233, 240) (Fig. 56). The lack of a catechol 

moiety at physiological pH is no doubt responsible 

for the inert nature of these compounds toward enzyma­

tic a-methylation. 

An additional set of interesting observations 

can be gleaned from these results. In Tables 4, 5, 

and 6 the % a-methylation and the levels of catechol 

isoquinolines (~g/g brain region) are given 

as found in the corpus striatum, hypothalamus and hip­

pocampus, respectively. The levels of the catechol 

isoquinolines appear to be similar in both the corpus 

striatum and hippocampus. However, the % a-methyla­

tion for the carboxylated-THIQs is consistently 

lower. In the corpus striatum (Table 4) 1-CSAL is 

66% of SAL while 3-CSAL is 33% of SAL. In the hypo­

thalamus (Table 5) the levels of carboxylated THIQs 

are 2 - 2.5 fold that of the noncarboxylated THIQs 
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and the % a-methylation is found to be approximately the 

same. In the hippocampus (Table 6) the levels of 3-CSAL, 

sAL, and 4,6,7-(0H) 3 THIQ are similar. However, the% 

a-methylation for the carboxylated THIQ is 37% of the 

non-carboxylated THIQs. These results may reflect a dif­

ference in the Km's between the carboxylated and non­

carboxylated THIQs. These results again reflect signi­

ficant differences between the THIQs and the open chain 

catecholic substrates which bear acidic, neutral, and 

basic constituents whose Km's are not markedly differ-

ent (231). If this is the case, the presence of a car­

boxylic acid moiety on the side of a THIQ would result 

in an extended T 1/2. The consequence of this increase 

in T 1/2 would be a similar increase in the duration 

of the pharmacological effect. 

F. a-Methylation of a Catechol Isoquinoline In­

creases Its Half-Life in Brain Over 10-Fold 

and Alters Its Effects on Biogenic Amine Systems 

1. Centrally Administered 7M-SAL Significantly 

Affected the Levels and Turnover of Regional 

Brain Biogenic Amines and Acid Metabolites 

The phenolic isoquinoline 7M-SAL tended to in­

crease SHIAA without increasing SHT in hypothalamus 

and hippocampus over the entire 48 hr period assayed 

(Fig. 44). Striatal increases in SHIAA, HVA, and 
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oOPAC levels were restricted to the first 24 hr. These re­

sults, increased acid metabolites with no concomitant in­

creases in biogenic amine levels, indicates that 7M-SAL 

increased biogenic amine turnover in all three tissues 

assayed. This represents an obvious change in the pharma­

codynamics of SAL upon a-methylation. The most signifi­

cant effect is on striatal HVA levels within the first 

12 hrs after ICV administration. In contrast to SAL 

whose main effect is on 5HT neurons, 7M-SAL appears to 

effect both 5HT and DA neurons, not as inhibitor of bio­

genic amine metabolism, but as an activating agent. 

These effects indicate that the production of endogenous 

catechol isoquinolines, followed by metabolism to their 

phenolic "metabolites," would result in a complex array 

of metabolic consequences. 

2. 0-Methylation of a Catechol Isoquinoline In­

creases Its T 1/2 in Brain Over 10-Fold 

ICV administered 7M-SAL had a calculated T 1/2 

of 133 minutes as measured from its disappearance from 

the corpus striatum and hypothalamus. This repre­

sents a 10.6 fold increase in the T 1/2 of SAL in 

the rat CNS. SAL rapidly disappears from the CNS 

with aT 1/2 of 12.5 min (150). The T 1/2 was doubled 

when pyrogallol, a known inhibitor of COMT, was ad­

ministered, indicating that the disappearance of SAL 



is the result of conversion to an a-methylated metabo­

lite. Hamilton et al. (13) provided the chromato­

graphic evidence for a-methylated SAL (isomer unknown) 

in the CNS of mice treated with chronic EtOH. In light 

of the relative inertness of SAL to enzymatic oxida­

tive degradation, a-methylation appears to be a major 

metabolic pathway. The consequences of a-methylation 

in the case of SAL do not appear to be deactivation. 

In fact, a growing body of evidence is challenging 

the initial premise that a-methylation is totally 

a deactivation process. Recent findings have demon­

strated that 3M-DA, the primary in vivo product of DA 

a-methylation by COMT, is not pharmacologically­

inactive compound. Rats treated with 3M-DA exhibited 

psychomotor effects which mimic those of DA treatment 

in combination with MAO inhibitors, conditions re­

sulting in increased 3M-DA formation (241). 

G. Catecholic and Phenolic 1-Me-DHIQs: Spectro­

photometric, Fluorescence and Voltarnrnetric 

Investigations Provide Interesting Results 

1. Spectrophotometric and Fluorescence Assays In­

dicate that 6-0H-DHIQs Are in the Quinoid­

amine Conformation at Physiological PH 

At physiological pH (7.4), 1-Me-6,7-DHIQ and 

l-Me-7M-DHIQ are totally in the quinoldamine 
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conformation. The interpretation of U V and fluores­

cence results on 1-Me-DHIQs obtained in this disserta­

tion were based to a large extent on the work of G. 

Jonsson with HCHO generated DHIQs (lacking the 1-Me­

thyl group) (242, 243). 

Jonsson's U V and fluorescence results utiliz­

ing 6-hydroxy-DHIQ are identical to those generated 

in this dissertation for 1-Me-6,7-DHIQ and l-Me-7M­

DHIQ. Jonsson found that at pH 2.0, 6-hydroxy-3,4-

DHIQ showed two absorption peaks, one at 236 nm and 

the other at 323 nm (242). Above pH 6.0 - 6.5 the 

spectra showed typical drastic changes with an appear­

ance of a strong absorption peak at 365 nm. This peak 

increased with increasing pH, reaching a maximum at pH 

8.0 - 9.0. Above pH 9.0 the absorption gradually 

decreased and at pH 13 the absorption characteristics 

were similar to those of pH 2.0. The 6-hydroxy-3,4-

DHIQ exhibited only weak fluorescence at low pH's 

but fluorescence increased with increasing pH, reach­

ing a maximum at around pH 8.0. Above pH 8.0, the 

fluorescence intensity fell, becoming very weak above 

pH 12.0. 

The 6-hydroxyl-3,4-DHIQ, lacking a 7-position 

hydroxyl, by default, must form a tautomeric quinone 
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whose structure resembles form B (Fig. 45). l-Me-7M-DHIQ, 
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with a blocked 7-hydroxyl, behaves like its dihydroxy 

derivative, which in turn behaves like 6-hydroxy-3,4-

DHIQ. All three compounds show identical pH dependent 

spectral changes. The disappearance of long wavelength 

absorption above pH 8.0 is probably due to the ioniza­

tion of the hydroxyl group in the 6 position (Fig. 58A). 

1-Me-6,7-DM DHIQ and l-Me-6M-DHIQ both have the 

6-hydroxyl group blocked and behave almost identically. 

Their typical spectral changes prevalent above pH 7.5 

are probably due to addition of water across the imine 

double band to form a carbinolamine (Fig. 58b) (244). 

Therefore, these results demonstrate that 1-Me-

6,7-DHIQ and l-Me-7M-DHIQ at physiological pH and am­

bient temperature exist in a quinoidamine conforma­

tion which bears structural similarities to the oxi­

dized (apparent neurotoxic) form of 60HDA (Fig. 19). 

Previous results (section E) indicate that 1-Me-

6,7-DHIQ does not undergo a-methylation and that its 

possible THIQ precursors (SAL and 1-CSAL) are both 

0-methylated predominantly on the 7-position hy­

droxyl. Therefore, even if the dihydroisoquinolines 

were to be formed after a-methylation of the precur­

sor THIQs, quinoidamine formation would not be blocked 

by a-methylation. 



2. Cyclic Voltammetry of 1-Me-6,7-DHIQ l-Me-7M-DHIQ 

and l-Me-6M-DHIQ Indicate that They Are Irrever­

sible Oxidized 
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Cyclic voltammograms of the DHIQs, 1-Me-6,7-DHIQ, 

l-Me-7M-DHIQ and l-Me-6M-DHIQ demonstrated irreversible 

oxidation throughout a range of pHs. This is strik­

ingly different from the cyclic voltammetry of CAs, 

THIQs, or 60HDA-like compounds, and suggests that the 

electrochemical oxidation of DHIQ leads to the forma­

tion of an "atypical" product. In order to facilitate 

the interpretation of the results of the cyclic volt­

ammetry of the compounds of interest, a brief discus­

sion of cyclic voltammetry follows. 

In voltammetry, a varying potential (Eapp) is 

applied between a working electrode and a reference 

electrode immersed in a quiet (non-stirred) solution 

containing an electroactive component suspended in 

a buffer. The buffer, a supporting (background) 

electrolyte is simply one which can provide overall 

high conductance, while not being electroactive in 

the region of interest. The cut-off potential for 

any voltammetric analysis is that potential where 

general electrolysis of solvent begins to occur. 

The working electrode is an inert surface which 

serves as a source or sink of electrons. As Eapp 



varied, molecules near the electrode surface can either 

gain electrons from the source (cathodic reduction) or 

loose them to the sink (anodic oxidation) . Diffusion 

occurs as a result of the concentration difference de­

veloped between the electrode surface and the bulk of 

the solution as soon as electrolysis is initiated. 

Diffusion is the predominant form of mass-transport 

in quiet (standing) solution voltammetry. 

When a working electrode is placed in a quiet 

solution and Eapp is varied in a linear fashion (a 

linear potential sweep) the response is a peak voltam­

mogram (Fig. 59a) . Figure 59a represents a model com­

pound whose oxidation occurs at Ep of 0.42 volts and 

the magnitude of Ip is directly proportional to the 

concentration of the compound in solution. By con­

vention, oxidation currents are plotted downward 

from the zero current line and the potential, E, is 

increasing anodic or oxidizing, from right to left. 

Potentials in voltammetry are usually referred di­

rectly to the experimental reference electrode, in 

the case of our work, an Ag-AgCl electrode. 

When a peak voltammetry is seen and the poten­

tial sweep is rapidly and reproducibly reversed, a 

cyclic voltammogram is generated (Fig. 59b). Since 

the solution is quiet and the time interval between 
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sweep reversals is short, the products generated in the 

oxidation are available near the electrode for reduc-

tion as the potential sweep reverses. In a simple, 

rapid electron transfer, with no chemical complica-

tions, one obtains oxidation and reduction peaks whose 

potentials are separated by a small increment as de-

fined by equation: 

- E 
Pred 

= 0 · 57 volts (245} 
N 

(Eq. 1} 

The reversibility of any electron transfer can 

be qualitatively judged by the separation of the oxida­

tion and reduction peaks (Fig. 60}. Figure 60a illus-

trates a fast (reversible} electron transfer; B, a less 

reversible (quasi-reversible} transfer; while C, a slow 

electron (irreversible} transfer. 

In Figure 59b, the theoretical voltammogram for 

a pure reduced species in solution is shown. As can 

be observed, it represents a reversible electron trans-

fer system. The potential sweep is initiated in an 

anodic (oxidizing} direction at some arbitrary point. 

During the time interval of peak b, the originally 

fully reduced compound is oxidized. At an arbitrarily 

chosen point, the potential is reversed and peak a is 

generated and represents the re-reduction of the com-

pound. With no intervening chemical reactions, the 
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properly measure ratio of a/b currents is unity (246). 

All the adrenergic NTs and their metabolites 

(247), as well as the THIQ alkaloids, SAL and 0-Me-SAL 

(248), possess electrochemical activity with their 

voltammograms showing that they are quasi-reversible 

systems. 60HDA, on the other hand, is a model com­

pound for cyclic voltammetry and displays near per­

fect reversibility (246). It was unexpected to dis­

cover that the cyclic voltammograms of 1-Me-6,7-sub­

sti tuted- 3, 4·-DHIQs resembled neither the THIQs nor 

CAs, their purported precursors, or 60HDA, to which 

they bear some structural resemblance, at any of the 

pHs tested. Rather, the cyclic voltarnmograms of the 

DHIQs demonstrated an irreversible electron transfer 

system which could only undergo oxidation. (The re­

duction peak is so negative and flat it could not be 

distinguished over the reduction of the support sol­

vent.) The interpretation of these results possibly 

would constitute detailed information regarding the 

possible reactions and metabolic degradation of DHIQs 

at the molecular level. 

Aside from the pH-dependent decrease in oxida­

tion potential (Table 14}, the cyclic voltammograms 

were idential for all three DHIQs tested. This would 

indicate that upon electrochemical oxidation they are 
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all being converted to the same product. The primary 

step of the oxidation was probably conversion to the 

ortho-quinone similar to what is seen with CA oxida­

tion. One possible explanation is that the orthoquin­

one is an unstable intermediate which undergoes spon­

taneous intramolecular oxidation/reduction to yield 

a fully aromatic, heteroaromatic molecule (Fig. 61}. 

This would be similar to the internal oxidation re­

duction of cyclized 60HDA to form 5,6-dihydroxy-

indole (249}. Attempts to reduce the fully aro-

matic molecule would be futile, owing to its internal 

reduction upon aromatization. Any attempts to reoxi­

dize the "fully aromatic" heteroQaromatic species 

would probably require very high electrochemical oxi­

dation potentials to overcome the loss of aromaticity 

upon oxidation. This would account for the lack of 

a new oxidation peak when repetitive sweeps were run 
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at applied potentials between (+} 1.2 and (-) 1.2 volts. 

H. Oxidative Decarboxylation of 1-CSAL to a DHIQ 

or THIQ Appears to be Insignificant in the Normal 

Intact Rat 

As reported in the Results, detectable levels of 

1-methyl-DHIQs were not observed after chronic i.p. 

administration of 1-CSAL. However, recently it has 

been demonstrated that 1-carboxylated THIQs can be 



decarboxylated to their corresponding 3,4-DHIQs by 

anodic oxidation at a low potential (184), prolonged 

aerial oxidation in basic media (183), and exposure 

to plant laccases and peroxidases (78). In all the 

oxidative decarboxylations a free'phenolic group at 

position 6 or 7 of the isoquinoline system is essen­

tial. These reactions are considered to be decar­

boxylations induced by oxidation of the phenolic hy­

droxyl group. To date, no in vivo or in vitro decar­

boxylations of 1-carboxylated THIQs have been reported 

using animal tissue, and initial experiments presented 

here were unsuccessful. This may be due in part to 

rapid a-methylation and conjugation which is known 

to occur with other THIQs. 

a-methylation of 1-CSAL, as reported earlier 

in this work was found to be predominantly on the 

7-hydroxyl in brain (4-hydroxyl of the precursor 

moiety) and was qualitatively observed on the 7-hy­

droxyl in liver. These results imply that a signi­

ficant metabolic route for 1-CSAL is a-methylation. 

Studies utilizing trimetoquinol (TMQ), a cate­

chol THIQ having potent bronchodilating action, demon­

strated that 61% of the excreted TMQ was conjugated 

to glucuronide, 11.5% the free base, and 27.5% as a­

methylated-conjugated TMQ (222). Further studies 
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determined that sulfate conjugation of biogenic amines 

and their acid and a-methylated metabolites is an im-

portant metabolic pathway in their metabolism in the 

eNS {250 - 251). These reactions would tieup the 

free phenolic hydroxyls of THIQs {necessary for oxi-

dative decarboxylation) thereby deactivating the 

THIQs toward oxidative decarboxylation. 

Alternatively, the optimum situation for the 

formation of DHIQs from THIQs in the rat in vivo may 

be after chronic EtOH or barbiturates when microsomal 

oxidizing systems are "induced." In an analogous 

situation, Dajani and Saheb (252) , studying the metabo-

lism of 6-hydroxy- and 6-methoxy-1,2,3,4-tetrahydro-

S-carbolines (THBCs), found that varying metabolic 

conditions favored the formation of a number of oxi-

dized S-carbolines both in vivo and in vitro. These 

findings give rise to yet another alternative explan-

ation, that is, formation of other oxidative products 

such as N-oxides and fully aromatic isoquinolines 
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(Fig. 62). Hamilton and Gause (253) have indicated possi­

ble formation of N-oxides from SAL and 6,7-(0H) 2-THIQ 

after incubation in mild aqueous alkaline conditions. 

Results of the cyclic voltammograms generated in this 

dissertation indicate the possible formation of fully 

aromatic isoquinolines upon oxidation of DHIQs. These 
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alternative oxidation products may have formed but would 

not have been detected because those possible products 

were not available as standards. 

r. Simple 6-Hydroxy-DHIQs Do Not Apparently Form 

Glutathione Adducts 

CAs after oxidation to ortho-quinones as well 

as 60HDA, 6-amino-DA (6NH2DA) and their analogues, 

after oxidation to para-quinones, are known to undergo 

irreversible nucleophilic additions of sulfhydroryl 

compounds (190, 249, 254). The addition of thiol 

to carbon-carbon double bonds of a quinone constitutes 

a special case of nucleophilic addition to an ~-S-un­

saturated system (255). The nucleophile in these 

reactions is R-S-H. The reaction occurs rapidly 

when the electron density of the carbon-carbon double 

band is reduced by electron withdrawing substituents 

(256). Electron withdrawal can be either by induc-

tion or resonance, or both. 

We can conclude that simple 1-akyl-6-hydroxy-

7-alkoxy-substituted-3,4-DHIQs, which at physiologi­

cal pH reside as para quinoidamine tautomers, do 

not participate to any detectable extent in sulfhy­

dryl adduct formation. The plausible explanation 

for this lack of reactivity may lie in the low elec­

trophilic character of tautomeric double bands. 



unlike the para-quinones of 60HDA and 6NH2DA which can 

rely on the strong electron withdrawing capacities of 

two electron withdrawing substituents, the DHIQs tested 

have only the proximal catecholic oxygen which cannot 

sufficiently reduce the electron density of the double 

band participating in adduct formation. (The distal 

atom in the para-quinone being the 1-carbon; carbon 

atoms are poor electron withdrawing groups.) However, 

the electrophilicity of the DHIQ tautomers can be en­

hanced if the 1-methyl substituent would be replaced 

with an electron withdrawing group. This is the case 

when dealing with one of the DHIQ products of oxida­

tive decarboxylation of 1-carboxy-1-benzyl THIQs. 

These THIQ compounds, as noted in the introduction, 

are present in various pathological conditions (3, 7), 

and are known to undergo oxidative decarboxyla-

tions under a variety of conditions (78, 183, 184) 

to form ~-keto-'3,'4-substituted-1-benzyl-6,7-substi­

tuted DHIQs. These compounds may be electrophi-

lic enough to undergo adduct formation through the 

enhanced electron-withdrawing capabilities of the 

a-keto and 1-benzyl substituents. If these complex 

DHIQs share even a degree of the electrophilic 

character of 60HDA quinone, they should be capable 

of producing neuronal damage via covalent attachments 
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to cellular nucleophiles. 

J. Ethanol and Acetaldehyde in Human Blood 

GC methods for the determination of EtOH and AcA 

are specific, sensitive and rapid. However, an acknow­

ledged problem hindering the precise measurement of AcA 

and EtOH containing samples (blood and tissues) is ar­

tifactual (non-enzymatic) generation of the aldehyde 

(257). It has been reported that addition of 20- 40 

mM thiourea suppressed AcA production from EtOH in de­

proteinated rat blood which was incubated at 65°C, but 

that thiourea was only partially effective when human 

blood was used (258). We found, however, that arti­

factual AcA formation was essentially absent of human 

blood sample in perchloric acid and thiourea were in­

cubated at a lower temperature. As would be expected, 

incubation at a lower temperature lowered AcA and 

EtOH recoveries. However, the recoveries were ade­

quate to permit minimum detection of 0.04 mg/dl of 

AcA. 

The significant importance of this portion of 

the study is that mean blood AcA concentrations did 

not remain elevated throughout the four day detoxi­

fication period. An earlier report by Magrinat 

et al. (207) stated that blood AcA concentrations 

in patients admitted for alcohol detoxification 
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remained at admission day levels over four days as blood 

EtOH dropped to negligible values. Our findings show 

that blood AcA levels drop 70% within one day after ad­

mission and were undetectable on days 2 - 4. The pos­

sible differences in subject population, previous al­

cohol or drug consumption, or nutritional and hepatic 

status should not account for this large disparity 

with regard to blood AcA concentration on days 1 - 4 

of detoxification. A possible conclusion for the 

chronically elevated blood AcA levels reported earlier 

in detoxification is that the workers failed to account 

for artifactual AcA formation during analysis. 



CHAPTER V 

SUMMARY 

In this dissertation, relatively simple, highly 

sensitive, and specific techniques were developed or 

improved for use in neurochemical studies of tetrahy­

droisoquinoline metabolism. A direct assay of tissue 

supernatants by high performance liquid chromatography 

with electrochemical detection was used to measure 

tetrahydroisoquinolines, biogenic amines and acids in 

small brain samples. Capillary gas chromatography 

with electron capture detection proved to be a very 

selective and extremely sensitive approach to the es­

timation of biogenic amines and catechol isoquinoline 

stereoisomers in discrete brain regions. 

Utilizing the highly sensitive (minimal detec­

table quantity for salsolinol and 0-methylated products, 

3 - 5 ng/g) gas chromatography with electron capture 

detection assay developed in this dissertation, it was 

found that salsolinol in low peripheral doses (5 - 20 

mgjkg) was not taken up into the central nervous system. 

These results are additional support that sal­

solinol and 0-methylated-salsolinol, detected in the 

central nervous system of experimental animals after 
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ethanol administration, were derived in situ and were 

not the result of peripheral formation followed by 

uptake. 

Centrally administered catechol isoquinolines 

(10 - 50 ~g) were found to alter the steady state 

levels of biogenic amines and acid metabolites to dif-

fering degrees, depending on the isoquinoline and the 

brain region. Of particular interest was the effect of 

catechol isoquinolines on the serotonergic system. A 

variety of catechol isoquinolines raised the steady 

state levels of serotonin, indicating that as a class 

these compounds can interact, indirectly and/or di-

rectly, with serotonergic systems in vivo. The iso­

quinolines could thus serve as neuromodulating bridges 

between catecholaminergic systems and serotonergic 

systems. 

The a-methylation patterns of several cen-

trally-administered catechol isoquinolines were found 

to be different from those of their parent amines, as 

reflected by the extent of a-methylation on the 7-po-

sition hydroxyl (para position in the parent cate-

cholamine) . Such in vivo studies on the stereoselec-

tive enzymatic a-methylation of simple catechol iso-

quinolines are more relevant than in vitro approaches, 

because substrate-enzyme interactions occur in the 
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endogenous microenvironment of the biological system 

under investigation. 
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The endogenous half-life of centrally adminis­

tered 7-0-methyl-salsolinol (salsoline; the major me­

thylated metabolite of salsolinol in vivo) was deter­

mined to be 133 minutes in two brain regions, the 

striatum and the hypothalamus. This represents a 10.6 

fold increase over the reported half-life of the parent 

isoquinoline salsolinol. In addition, salsoline was 

found to effect the steady state levels of biogenic 

amines and acid metabolites over a 48 hour period. 

These effects, increase in half-life and pharmacological 

activity of an a-methylated metabolite, indicate that 

production of endogenous catechol isoquinolines fol­

lowed by metabolism to phenolic metabolites would re­

sult in a complex array of metabolic consequences. 

Spectrophotometric studies of 1-methyl-6,7-sub­

stituted 3,4-dihydroisoquinolines (potential products 

of tetrahydroisoquinoline oxidative metabolism) indi­

cated that, at physiological pH, those with 6-hydroxy­

substituents are nearly exclusively in the quinoid­

amine conformation (the conformation postulated for 

nucleophilic attack on cellular ligands) . The cyclic 

voltammetry of these dihydroisoquinolines showed that 

upon electrochemical oxidation they become irreversibly 



oxidized, suggesting transformation to a fully aromatic 

species. 1-methyl-6-hydroxy-7-alkoxy-substituted-di­

hydroisoquinolines apparently do not readily form glu­

tathione adducts as such. Also, in vivo synthesis of 

simple 1-methyl-dihydroisoquinoline~ from 1-carboxyl­

salsolinol (injected chronically) by oxidative decar­

boxylation,appeared to be insignificant in the normal 

intact rat. 

These findings represent advancements in our 

knowledge about the discrete metabolic consequences 

of catecholamine-related isoquinolines in mammalian 

systems, advancements which could aid in understanding 

the underlying meaning of condensation product in­

volvement in mammalian homeostasis and disease. 
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Table 1 

Selected Physical Data for Synthesized 

Compounds in Section II 

Compound M0 

Salsolinol HBr (SAL) 264 183 

1-Carboxy-Salsolinol (1-CSAL) 223 233 

7 -0-Hethyl-1-Carboxy-Salsolinol (7M-l-CSAL) 237 205 

6,7-Dihydroxytetrahydroisoquinoline (6, 7-(0H) 2THIQ) HB.r 250 268 

1-Methyl-6,7-dihydroxy-3,4-dihydroisoquinoline 263 230 
(1-Me-6,7-DHIQ HBr) 

"' r.~..WJ = Molecular weight (salt) • 

B o 1' . d . d MP C = me t1ng po1nt egrees centlgra e. 

c% Yield actual yield X lOO. 
theoret1cal y1eld 

MP°CB 

(lit. 182-184) 208 

(lit. 230-235) 208 

(lit. 205)210 

(lit. 267-268) 209 

(lit. 230)259 

% Yieldc 

85 

94 

85 

80 

90 

1-' 
w 
0 



Table 2 

Summary of GC Capillary Parameters for 

Selected Compounds of Interest 

Compound Column Temp 0 c Retention time (min) a Derivative MDQ (b) 

_(ng/m1) 

DHBA 130 4.00 HFBA 

DA 130 6.00 HFBA 0.25 

3M-DA 130 9.50 HFBA 0.45 

4M-DA 130 10.20 HFBA 0.45 

SAL 130 8.40 HFBA 0.25 

6H-SAL 130 21.55 HFBA 0.45 

7M-SAL 130 22.55 HFBA 0.45 

4,6,7(0H) 3THIQ 130 12.05 HFBA 2.00 

6M-4,7(0H) 2THIQ 130 17.64 HFBA 5.00 

7M-4,6(0H) 2THIQ 130 18.80 HFBA 7.00 

1-CSAL 125 6.45 PFPA/HFIP 1.00 

6M-l-CSAL 125 16.20 PFPA/HFIP 5.00 
t-' 

7M-l-CSAL 125 18.16 PFPA/HFIP 5.00 w 
I-' 



Compound 

3-CSAL 

6M-3-CSA.L 

7M-3-CSAL 

1-He-6,7 DHIQ 

l-Me-6M,70H-DHIQ 

l-Me-7M,60H-DHIQ 

Table 2 (Cont'd) 

Summary of GC Capillary Parameters for 

Selected Compounds of Interest 

Column Temp 0 c Retention time (min)a Derivative 

155 5.40 PFPA/HFIP 

155 16.70 PFPA/HFIP 

155 19.25 PFPA/HFIP 

145 4.55 HFBA 

145 7.10 HFBA 

145 8.50 HFBA 

MDQ (b) 
(ng/ml) 

1.00 

5.00 

5.00 

1. 00 

7.00 

2.00 

alOM X.25mm i.d. OV-17 glass NCOT capillary column N2°2F 0.8 kg/cm2 detector temperature 
340, injector temperature 250°C. 

b Minimum detectable quantity (equivalent to twice the baseline noise). 

1-' 
w 
N 



Co!" pound 

NE 

DHBA 

DA 

DOPAC 

5HT 

5HIAA 

HVA 

SAL 

6r1-ST•L 

7M-f.:AL 

4,6,7-(0H)
3

THIQ 

6M 4,7-(0H) 2THIQ 

7M 4,6-(0H) 2THIQ 

Table 3 

Summary of Retention Timesa and Selected HPLC Parameters 

Retention Times (min) 

6mM Heptane Sulfonic Acid, O.lM NaH 2Po4( l.OmM Na
2

EDTA 
10% MeOH, 9.7% HOAct pH 3.5 pH 5.0 

6.2 1.9 

8.1 3.9 

10.4 5.2 

4.9 6.8 

21.8 13.6 

8.1 17.6 

11.3 20.1 

12.0 (8.40)b 8.4 

(27.0)b 22.8 

(23.4)b 22.8 

4.0 

9.2 
f-' 

11.6 w 
w 



Compound 

1-CSAL 

6!11-l-CSAL 

7M-l-CSAL 

3-CSAL 

6H-3-CSAL 

7M-3-CSAL 

1-Me-6, 7-DHIQ 

l-Me-7M- DHIQ 

1-Me- 61',1- DH IQ 

Table 3 {Cont'd) 

Summary of Retention Timesa and Selected HPLC Parameters 

Retention Times (min) 

6ml'1 Heptane Sulfonic Acid, 
10% MeOH, 9.7% HOAc, PH 3.5 

(12.86)c 

(l8.60)c 

(39.60)c 

.1M _ NaH
2

Po 
4

; .lmM Na
2

EDTA, 

pH 5.0 

4.0 

12.8 

16.2 

4.4 

14.4 

16.0 

1--' 
w 
~ 



Table 3 (Cont'd) 

Summary of Retention Timesa and Selected HPLC Parameters 

Retention Times (min) 

aBiosil c18 reverse phase 25 em column, flow rate 1.0 ml/min. 

bChromatographed using a O.lUN&H2Po
4

,lmM Na~DTA buffer pH 5.5 with 5% MeOH. 

cChromatographed using a O.lMNa~Po4 ,lmM Na2EDTA buffer pH 7.4 with 10% MeOH. 

f-' 
w 
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Compound 

SAL 

4,6,7-(aH) 3THIQ 

1-CSALe 

3-CSAL 
e 

1-He-6,7-DHIQ 

DAd 

Table 4 

Stereoselective In Vivo a-methylation of Catechol 

Isoquinolines in Rat Corpus Striatuma 

% of Total Methylation 

+ S.E.M. (N = 6) 
Levels of %(b) 

6-a-methylation 7-a-methylation catechol isoquinoline a-methylation 
precursor (+ s.e.m.) 

(~g/g:!:. s.e.m.) -

5 + 1. 5 95 + 1. 5 18.0 + 0.98 18. 0 + 1. 30 

55 + 2.8 45 + 2.8 15.8 + 3.60 17.4 + 0.50 

N.d. (c) 
100 + o.o 19.7 + 3.90 12.0 + 1.60 

60 + 1. 3 40 + 1.3 28.3 + 4.80 6.0 + 0.70 

N.d. N.d. 

(3M-DA 100 ~ 0.0) (4M-DA N.d.) 

I-' 
w 
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a N = 6. 

b % a-methylated 

Table 4 (Cont'd) 

Stereoselective In Vivo a-methylation of Catechol 

Isoquinolines in Rat Corpus Striatuma 

Total a-methylated product X 100. = . "'I -- - - • • • .. - • • .. • ... -- - -

c N.d. = Not detectable. 

d Pretreated with pargyline. 

e N = 4 

....... 
w 
~ 



Compound 

SAL 

4,6,7-(aH) 3THIQ 

1-CSALa 

3-CSALa 

1-Me-6,7-DHIQ 

DAd 

Table 5 

Stereoselective In Vivo a-methylation of Catechol 

Isoquinolines in Rat Hypothalamus 

% of Total Methylation 

+ S.F.M. (N = 6) 

6-a-methylation ?-a-methylation Levels of 

6 + 1.1 

57 + 2.0 

N.d. 

61 + 2.0 

N.d. c 

(3M-DA 100 ± 0) 

94 + 1.2 

43 + 1.0 

100 + 0 

39 + 2.0 

N.d. 

(4H-DA N.d.) 

catechol isoquinoline 
precursor 

11g/g :t s.e.m. 

22 + 1.4 

34 + 1.8 

60 + 7.2 

69 + 12.2 

%b 
a-methylation 

<± s.e.m.) 

17 + 2.0 

13 + 3.0 

12 + 1.1 

9.8 + 2.5 

1--' 
w 
co 



Table 5 (Cont'd) 

Stereoselective In Vivo a-methylation of Catechol 

Isoquinolines in Rat Hypothalumas 

a N = 4. 

b ~ 
0 a-methylated Total 0-methylated pr?d~c~ _ _ _ X 100. - . . - - . . . - - . 

c N.o. = Not detectable. 

d Pretreated with pargyline. 

I-' 
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Compound 

SAL 

4,6,7-(0H)
3

THIQ 

3-CSALa 

1-Me-6,7 DHIQ 

DAd 

a N = 3. 

Table 6 

Stereoselective In Vivo a-methylation of Catechol 

Isoquinolines in Rat Hippocampus 

% of Total Methylation 

+ S.E.M. (N = n) 

6-0-methylation 7-0-methylation 

3 + .5 97 + . 5 

54 + 1. 7 46 + 1. 5 

60 + 1. 3 40 + 1.3 

N.d. c N.d. 

3M-DA 100 + 0 4M-DA N.d. 

Levels of 
catechol isoquinoline 

precursor 
JJg/g ± s.e.m. 

16 + 2.6 

19 + 2.6 

14.5 + 7.5 

%b 
a-methylation 

(+ s.e.m.) 

19.6 + 2.0 

18.6 + 1.5 

7.0 + 0.42 

1-' 
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Table 6 (Cont'd) 

Stereoselective In Vivo a-methylation of Catechol 

Isoquinolines in Rat Hippocampus 

h ._ % a-methylation = Total 0-methylated 
rT"I I ... rY'IYT"T"" t I I ., - I, .. I ~ ............... - X 100. 

c N.d. = Not detectable. 

d Pargyline pretreated. 

1-' 
~ 
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Table 7 

Survey Study of SAL Uptake into the Corpus Striatum, 

Hypothalamus and Hippocampus after Intraperitoneal Administration (5-20mg/kg)a 

Brain Region Salsolinolb 

Corpus striatum N.d. e 

Hypothalamus N.d. 

Hippocampus N.d. 

a N = 12. 

b Minimum detectable quantity 3 ng/g 

c Minimum detectable quantity 5 ng/g 

d Minimum detectable quantity 5 ng/g 

e N.d. = Not detectable. 

6M-Salsolinolc 7M-Salsolinold 

N.d. N.d. 

N.d. N.d. 

N.d. N.d. 

(17.3 pmoles/g). 

(28.6 pmoles/g). 

(28.6 pmoles/g). 

Dopamine 
\.19/9 ± s.e.m. 

9.50+ 0.78 

1.90 + 0.31 

N.d. 

f-' 
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Table 8 

Levels of 5-HT and Acid Metabolites (Percent of Control) 

in Brain Areas of Rats 50 Min after (ICV) Treatment 

with Various Isoquinolines (50 llg) 

HIPPOCA.111PUS STRIATUM HYPOTHALM1US 

Compound 5-HT 5-HIAA 5-HIAA DOPAC HVA 5-HIAA DOPAC --
SAL 186* 110 97 99 93 111 73* 

4,6,7-TIQ 145* 127* 82* 91 94 178* 77* 

1-CSAL 112 94 103 160* 116* 150* 79* 

3-CSAL 160* 92 83* 98 93 127* 67* 

1-Me-6,7-DHIQ 176* 99 89 111 81* 148* 110 

Pargyline/DA -- 26* 18* 29* 55* 39* 39* 

* Significantly different from control (p<0.05) 

HVA 

94 

109 

103 

63* 

74* 

90 

1-' 
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Table 9 

Effects of Catechol Isoquinolines on the Levels of 5-HT and 5-HIAA in the Rat Hippocampus 

]Jg/g tissue + s.e.m. (N = 6) 

c 
Compound 5HT % ~ E. 5HIAA %C E. --

Control (saline) 0.352 + .040 -- -- 0. 2 30 + .020 

SAL 0.656 + .090 186 .01* {). 254 ± .040 110 NSD 

4,6,7-(0H} 3THIQ 0.510 + .020 145 . 01* 0.292 + .040 127 . 01* 

1-CSAL 0.359 + .060 112 NSDb 0.217 + .020 94 NSD 

3-CSAL 0. 569 + . 0 80 160 ,01* 0.211 + .020 92 NSD 

Pargyline/DA -- -- -- 0.061 + .010 26 .01* 

1-He-6,7-DHIQ 0.618 ± .080 176 .01* 0.229 + .020 99 NSD 

a t1ale Sprague-Dawley rats were given one dose of catechol isoquinol~ne o~ dopamine 
(50 ug/animal} bilaterally into the cerebral ventricles. All animalS were anesthetized 
with 50 mg/kg of pentabarbital i.p. 

b NSD = Not significantly different. 

c % c = % of control. 1-' 

"'" "'" 
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Table 10 

Effects of Catechol Isoquinolines on the Levels of Acid Metabolites ef the 

Biogenic Amines in Rat Striatum a 

~g/g tissue ± s.e.m. 

Compound DOPAC % c E 5HIAA %C E HVA %c E --
Control (saline) 1.62 + .15 -- -- 0.72 + .03 -- -- 0.85 + .05 

SAL 1.61 + .15 99 NSDb 0.70 + .06 97 NSD 0.79 + .07 93 NSD 

4,6,7-(0H) 3THIQ 1.48 + .18 91 NSD 0.59 + .07 82 .01* 0.80 + .07 94 NSD 

1-CSAL 2.59 + .13 160 .01* 0.74 + .04 103 NSD 0.99 + .04 116 . 01* 

3-CSAL 1.59 + .09 98 NSD 0.60 + .08 83 .02* 0.79 + .08 93 NSD 

Pargyline/DA 0.47 + .10 29 . 01* 0.13 + .02 18 . 01* 0.47 + .07 55 . 01* 

1-Me-6,7-DHIQ 1.81 + .36 111 NSD 0.64 + .09 89 NSD 0.69 + .12 81 .05* 

a Male Sprague-Dawley rats were given one dose of catechol isoquinoline or dopamine 
(50 ~g/animal) bilaterally into the cerebral ventricles. All animals anesthetized 
with 50 mg/kg of pentabarbital i.p. 

b NSD = Not significantly different. 

c ~ C = % control. 0 ~ 

"'" Ul 



Table 11 

Effects of Catechol Isoquinolines on the Levels of Acid Metabolites of 

the Biogenic Amine in Rat Hypothalamus 
a 

~g/g tissue ~ s.e.m. (N == 6) 

Compound DOPAC % cc 
E 5HIAA %C E HVA %C E -- -- -- --

Control (saline) 0.114 + • 009 -- -- 0.323 + .010 -- -- 0.305 + .020 

SAL 0. 083 + • 008 73 .01* a. 358 + • o3o 111 NSD ().287 ~ .006 94 NSD -
4,6,7-(0H)

3
THIQ 0.088 + .008 77 .01* o. 57 5 + • 0 4 0 1 7 8 .01* o. 333 + .020 109 NSD 

1-CSAL 0.090 + .004 79 .01* 0. 4 86 + • 0 30 150 • 01 'i• 0. 314 + .020 103 NSD - I 

3-CSAL o. 076 + .009 67 .01* o. 4 10 + • 0 10 12 7 .01* 0.192 + • 040 63 .01* 

Pargyline/DA o. 045 + • 007 39 .01* 0.121 + .010 37 .01* 0. 276 + • 050 90 NSD 

1-Me-6,7-DHIQ 0.125 + • 061 110 NSD 0. 4 71 + • 0 50 14 8 . 0 1 * 0. 2 2 6 + • 0 2 2 74 .01* 

a Male Spraque-Dawley rats were given one dose of catechol is~quinoline or dopamine 
(50 ~g;animal) bilaterally into the cerebral ventricles. All animals were anesthetized 
with 50 mg/kg of pentabarbital i.p. 

b NSD == Not significantly different 

c 
% c == % of control 1-' 

,j::>. 
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Table 12 

Effect of 7-0-Methyl-Salsolinol (lOug/rat) on the Levels of Biogenic 

Amines and Acid Metabolites in the Rat Striatum 

~g/g tissue ± s .. e.m. (N· = 4) 

Time of Sacrifice (hr) Dopamine 
a 

!._£__ P. DOPAC % c P. HVA %C E 

Control 

1 

3 

6 

12 

24 

48 

Time of Sacrifice (hr) 

Control 

1 

3 

8.45 + 1.04 -- NSDbl 1.30 + .20 -- --1 .626 + .036 

8.60 + 0.49 101 NSD I 1.43 + .17 109 NSDI1.202 + .032 192 .01* 

8.80 + 0.64 104 NSD 1.64 + .07 125 .05*11.016 + .088 162 .01* 

8. 40 + 1. 24 99 NSD 1.45 + .09 111 NSDI 0.814 + .172 130 NSD 

8.20 + 0.23 97 NSD 1.51 + .02 115 NSDI 0.836 + .058 133 .05* 

9.30 + 0.67 110 NSD 1.18 + .12 90 NSDI 0.640 + .134 102 NSD 

6.42 + 0.53 76 .02* I 1.17 + .08 90 NSDI 0.504 + .074 80 NSD 

5HT %C p_ 5HIAA %c P. 

0.518 + .052 0.366 + .027 

0.482 + .060 93 NSD 0.351 + .019 96 NSD 

0.544 + .048 105 NSD 0.509 + 0.25 139 .02* f-' 
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Table 12 (Cont'd) 

Effect of 7-0-Methyl-Salsolinol (10 ug/rat) on the Levels of Biogenic 

Amines and Acid Metabolites in the Rat Striatum 

Jlg/g tissue + s.e.m. ~N = 4) 

Time of Sacrifice (hr) 5HT % c E SHIAA % c E 

6 0.516 + .046 99 NSD 0.454 + .042 124 .05* 

12 0.400 + .034 77 .02* 0.418 + .017 114 .05* 

24 0.458 + .050 88 NSD 0.344 + .042 94 NSD 

48 0.454 + .032 88 NSD 0.344 + .046 91 NSD 

----------------------------------------------------------------------------------------

a % e· = % control. 

b NSD = Not significantly different 

1-' 
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Table 13 

Effect of 7-0-Methyl~alsolinol (10 ug/rat) on the Levels of 5-R~ 

and 5-HIAA in Rat Hypothalamus (A) and Hippocampus (B) 

ll gIg tissue + s . e . m . ( N .:. 4 ) 

Hypothalamus (A) 

Time of Sacrifice (hr) 5-HT 
G 

% c- p* 5-HIAA % c p* 

Control 0.606 + .034 0.448 + .024 

1 0.644 + .090 106 NSDb 0.444 + .027 99 NSD 

3 0.672 + .076 111 NSD 0.410 + .038 92 NSD 

6 0.548 + .054 90 NSD 0.416 + .028 94 NSD 

12 0.612 + .050 101 NSD 0.538 + 0.57 120 .05* 

24 0.634 + .036 105 NSD 0.613 + .007 137 .01* 

.48 0.584 + .058 96 NSD 0.561 + .035 125 .01* 

Hippocampus (B) 

Time of Sacrifice 5-HT % c p* 5-HIAA % c p* 

Control 0.295 + .011 0.299 + .025 
1-' 
ol:lo 
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Table 13 (Cont'd) 

Effect of 7-0-Methyl-Salsolinol (10 ug/rat) on the Levels of 5-HT 

and 5-HIAA in Rat Hypothalamus (A) and Hippocampus (B) 

]..lg/g tissue ± s .. e.m. (N = 4) 

Hippocampus (B) 

Time of Sacrifice (hr) 5-HT !.c._ p* 5-HIAA !_c_ p* --
1 0.277 + .045 94 NSD 0. 242 + • 017 81 NSD 

3 0.344 + .009 117 NSD* o. 375 + . 091 125 NSD 

6 0.245 + .006 83 .02* 0. 425 + . 045 142 .01* 

12 0.263+.005 89 NSD* 0.428 ± .018 143 .01* 

24 0.318 + .037 108 NSD o. 46 6 + . 04 3 156 .01* 

48 0.381 + .022 129 . 01 - o. 3 8 8 + . 0 2 5 130 . 01 

-----------------------------------------------------------------------------------------
a 

% c = % control. 

b NSD = Not significantly different. 

1-' 
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Table 14 

Summary of Oxidation Potential vs pH of Three 

1-Methyl-6,7-Substituted-3,4-Dihydroisoquinolines 

Compound pH Oxidation Potential E(+) 

1-Me-6,7-dihydroxy 3.0 +0.64 

3,4-dihydroisoquinoline 5.0 +0.49 

(l-.r.1e-6, 7-DHIQ) 7.4 +0.33 

1-Me-6-hydroxy-7-methoxy 3.0 +0.88 

3,4-dihydroisoquinoline 5.0 +0.65 

(l-Me-7H-DHIQ) 7.4 +0.50 

1-He-6-methoxy-7-hydroxy 3.0 +0.90 

3,4-dihydroisoquinoline 5.0 +0.79 

(l-Me-6M-DHIQ) 7.4 +0.62 

volts 

I-' 
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Table 15 

Blood Acetaldehyde and Ethanol Concentrations (mg/dl ± s.e.m.) 

in Alcoholic Patients on Admission (Day 0) and During Early Detoxification 

DAY 
0 1 2 3 

Acetaldehyde (13) 0.350 + .071 0.104 + 0.42 <0.04 <0.04 

Ethanol ( 13) 229.7 + 29.8 5.0 + 2.0 N.d. N.d. 

Number of individual subjects in parenthes~s. 

N.d. = Not detectable. 

4 

<0.04 

N.d. 
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Table 16 

Comparison of Regional Brain Levels of DA, 5HT and Acid 

Metabolites Obtained in These Studies with Published Values 

Compound Tissue llg/g ± s.e.m. Method Reference 

DA corpus striatum 8.45 + 1.04 (a) HPLC/EDd 

9.50 + 0.78 (c) GC/ED 

8.43 + 0.73 Fluoromett'ie 166 

7.93 + 0.73 Fluorometric 165 

8.78 + 0.89 Fluorometric 201 

DOPAC corpus striatum 1.30 + 0.20 (a) HPLC/ED 

1.62 + 0.15 (b) HPLC/ED 

0.79 + 0.45 Fluoromet ric 210 

0.90 + 0.21 GC/EC 211 

2.25 + 0.37 GC/EC 212 

1.95 + 0.13 HPLC/ED 213 

--------------------------------------------------------------------------------------~ 
Ln 
uv 



Table 16 (Cont'd) 

Comparison of Regional Brain Levels of DA, 5HT and Acid 

Hetabolites Obtained in These Studies with Published Values 

Compound Tissue 

HVA corpus striatum 

5HT hypothalamus 

]lg/g + s.e.m. 

0.63 + .03 (a) 

0.85 + .05 (b) 

0.45 + .01 

0.38 + 0.06 

0.69 + 0.06 

0.66 + 0.16 

0.58 + 0.06 

0.606 + .034 (a) 

o. 707 + • 050 

0.841 + .059 

0.786 + .049 

Hethod Reference -
HPLC/ED 

HPLC/ED 

Fluorometric 210 

Fluorometaic 165 

HPLC/ED 213 

GC/EC 211 

GC/EC 212 

HPLC/ED 

GC/EC 214 

HPLC/ED 215 

Fluoromet~ic 201 

I-' 
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Table 16 (Cont'd) 

Comparison of Regional Brain Levels of DA, 5HT and Acid 

Metabolites Obtained in These Studies with Published Values 

Compound Tissue 11g/g ± s.e.m. l'lethod Reference --
HIAA hypothalamus 0.448 + .024 (a) HPLC/ED 

0.323 + .010 (b) HPLC/ED 

0.771 + 0.35 Fluorometric 166 

0.514 + .057 HPLC/ED 215 

0.400 + .028 HPLC/ED 216 

a HPLC/ED combination paired-ion ionic suppression system developed in this dissertation. 

b HPLC/ED paired-ion system utilized in this dissertation. 

c GC/EC with capillary column developed in this system. 

d ED electrochemical detection. 

I-' 
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Figure 1. CA condensing with a carbonyl to form a Schiff --
base intermediate followed by an irreversible intramolecular 

cyclization to form a THIQ alkaloid. 
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~gure 2. Condensation products of DA found in the urines 

of Parkinsonian patients undergoing L-Dopa treatment. 
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* 3 , 4 - Dihydroxyphenyl acetaldehyde 
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Figure 3. Suggested pathway for the formation of THPBs 

found in the urines of Parkinson's patients undergoing 

L-DOPA treatment. 
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Figure 4. Condensation products of DA and phenylpyruvic -
acids found in the urine of Parkinsonts patients undergoing 

L-DOPA treatment. 
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Figure 5. Phenylalanine and phenethylamine (PEA) condensation -
products found in the urines of PKU individuals and in the 

brain and urines of rats made "phenylketonuric". 
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figure 6. DA/phenylpyruvic acid condensation product found -in the urines of PKU children and in the brain and urine 

of rats with experimentally induced hyperphenylal~ninemia. 
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Figure 7. Simple THIQs found in the urines and lumbar 

spinal fluid of human patients during and after ethanol 

intoxication. 
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~gure 8. Representation of liver EtOH oxidation. 
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Figure 9. Possible relationship between EtOH consumption, -
altered AcA levels, and mitochondrial impairment. 
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~gure 10. Proposed pathway for the biosynthesis of THP 

during chronic EtOH ingestion. 
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Figure 11. Formation of simple 1-alkyl-THIQsfrom CAs 

and AcA. 
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Figure 12. Examples of naturally occurring plant THIQs. 
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figure 13. Proposed pathWa.y for the biosynthesis of THP 

and related THIQs in plants. 
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:Figure 14. Possible metabolic routes for the metabolism 

of NE. 
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Figure 15. Possible metabolic routes for the metabolism 

of DA. 
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!_igure 16. Possible metabolic routes for the metabolism 

of 5HT. 
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Figure 17. Structural similarities between the DA agonists, 

apomorphine and bulbocapnine, and the THIQ, THP. 
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Figure 18. Proposed pathways for the formation of DHIQs 

from THIQs. 
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Figure 19. Structural similarites between the quinoidamine 

tautomer of DHIQs and the oxidized form of 60HDA. 
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Figure 20. Schematic of 60HDA interacting with cellular 

nucleophiles. 
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Figure 21. Catechol isoquinolines studied for their 

stereoselective a-methylation in vivo. 
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Figure 22. GC results of washing toluene solutions of 

gFB-derivatives of NE, DA, SAL, DHBA, 3M-DA, 4M-DA with 

ammonium phosphate buffer, pH 5.9~ A, before treatment; 

B, after treatment. A 0.25 mm i.d. x 10M, OV-17, WCOT 

glass capillary column with electron-capture detector 

was utilized. GC conditions: Column temperature 130°C, 

detector temperature 340°C, injector temperature 250°C, 

N
2
°2F 0.8 kg/cm2 , splitter set at 10/1. 
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Figure 23. Comparison of (A) capillary vs (B) packed 

column GC separations of HFB-derivatives of DHBA, DA, 

SAL, 3M-DA, 4M-DA, 6M-SAL and 7M-SAL. A 0.25 mm i.d. 

x 10M, OV-17 WCOT glass capillary column with electron-

capture detection was utilized. Capillary GC conditions: 

o a 
Column temperature 130 C, detector temperature 340 C, 

injector temperature 250°C, N2°2F .8kg/cm2 , splitter 

" setting 10:1. The conventional packed column (1/4 x 

6 stainless steel, 3% OV-101 on Gas Chrom G-HP, 100/120 

0 mesh) conditions: Column temperature 165 C, detector 

temperature 340°C, injector temperature 250°C and N2°2F 

25 psi. 
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Figure 24. GC chromatogram of a standard mixture of HFB­

derivatives of DHBA, DA, SAL, 3H-DA, 4M-DA, 6~-1-SAL and 

7M-SAL. Analysis was performed on a 10M x 0.25 mm i.d. 

wcoT OV-17 glass capillary column with electron-capture 

detection. Chromatographic conditions: Column temperature 

130°C, detector temperature 340°C, injector temperature 

o 0 F 2 . 
250 C, N2 2 0.8 kg/em and spl1tter set at 10/1. 
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Figure 25. GC chromatogram of a standard mixture of 

HFB-derivatives of DHBA, 4,6,7-(0H) 3THIQ, 6M-4,7-(0H) 2THIQ 

and 7M-4,6-(0H) 2THIQ. Analysis was performed on a 

10M x 0.25 mm i.d., WCOT, OV-17, glass capillary column 

with electron-capture detection. Chromatographic 

conditions: Column temperature 130°C, detector temperature 

340°C, injector temperature 250°C, N 02F 0.8 kg/cm2 and 
2 

splitter set at 10/1. 
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Figure 26. GC chromatogram of a standard mixture of 

PFP/HFIP-derivatives of 1-CSAL, 6M-l-CSAL and 7M-l-CSAL . 

.Analysis was performed on a lOH x 0. 25 nun i .d. 1 WCOT 1 

OV-17, glass capillary column with electron capture 

detection. Chromatographic conditions: Column temperature 

125°C 1 detector temperature 340°C, injector temperature 

o 0 F 2 . 250 c, N2 2 0.8 kg/em and spl~tter set at 10/1. 
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Figure 27. GC chromatogram of a standard mixture of 

pFP/HFIP-derivatives of 3-CSAL, 6M-3-CSAL and 7M-3-CSAL. 

Analysis was performed on a 10M x 0.25 mm i.d., WCOT, 

ov-17, glass capillary column with electron-capture 

detection. Chromatographic conditions: Column temperature 

0 0 .. 
155 c, detector temperature 340C ~n]ector temperature 

o 0 F 2 . 
250 C, N2 2 0. 8 kg/em, sol~tter settina 10/1. 
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Figure 28. GC chromatogram of a standard mixture of 

HFB-derivatives of 1-He-6,7-DHIQ, l-Me-6M-DHIQ and 

l-Me-7r1-DHIQ. Analysis was performed on a 10r1 x 0. 25 mrn 

i.d., WCOT, OV-17, glass capillary column with electron­

capture detection. Chromatographic conditions: Column 

temperature 145°C, detector temperature 340°C, injector 

temperature 250°C, N2°2F 0.8 kg/cm
2 

and splitter setting 

10/1. 
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Figure 29. HPLC chromatogram of a standard mixture of 

DOPAC, 5HIAA and HVA. Analysis was performed on a Bio-Sil 

212 

c18 reverse-phase 25 em column with electrochemical detection. 

HPLC conditions: Paired-ion buffer {SmM HSA, 10% MeOH, 1% 

HOAc, pH 3.5) with a flow rate of 1.0 ml/min. 
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Figure 30. HPLC chromatogram of a standard mixture of 

NE, DHBA, DA, SAL, and 5HT. Analysis was performed on a 

· s·1 c 18 h 25 1 'th 1 h · 1 B~o- ~ reverse p ase em co umn w1 e ectroc em1ca 

detection. HPLC conditions: Paired-ion buffer (8mM HSA, 

10% MeOH, 1% ijOAc, pH 3.5) with a flow rate of 1.0 ml/min. 
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Figure 31. HPLC chromatogram of a standard mixture of 

NE, DHBA, DOPAC, 5HT, 5HIAA and HVA. Analysis was performed 

. s '1 18 h 25 1 . h on a B1o- 1 C reverse p ase em co umn w1t 

electrochemical detection. HPLC conditions: Ion-

suppression buffer (0.1 NaH2P04/lmM Na 2EDTA pH 5.0) 

with a flow rate of 1.0 ml/min. 
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Figure 32. HPLC chromatogram of a standard mixture of DA, 

DOPAC, SAL, 5HT, 5HIAA, HVA, 7H-SAL and 6M-SAL. Analysis 

f d . s '1 18 h 25 was per orme on a B~o- ~ C , reverse p ase, em 

column with electrochemical detection. HPLC conditions: 

Ion-suppression buffer (0 .1 M Na.H2Po 
4
/lwl Na

2
EDTA, pH 5. 0) 

with a flow rate of 1.0 ml/min. 
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Figure 33. HPLC chromatogram of a standard mixture of 

4,6,7-(0H)
3

-THIQ, 6M-4,7(0H)
2

THIQ and 7M-4,6(0H) 2THIQ. 

1 . f d . '1 18 h Ana ys~s was per orme on a B~o-s~ C , reverse p ase, 

25 em column with electrochemical detection. HPLC 

conditions: Ion-suppression buffer (0.1 M NaH2Po
4
/l roM 

Na
2

EDTA, pH 5.0) with a flow rate of 1.0 ml/min. 
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Figure 34. HPLC chromatogram of a standard mixture of 

1-CSAL, 6M-l-CSAL and 7M-l~CSAL. Analysis was performed 

· ·1 c18 h 25 1 · h on a B~o-s~ , reverse p ase, em co urnn w~t 

electrochemical detection. HPLC conditions: Ion-

suppression buffer (0.1 M NaH2Po4/l mM Na 2EDTA, pH 5.0) 

with a flow rate of 1.0 ml/min. 
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Figure 35. HPLC chromatogram of a standard mixture of 

3-CSAL, 6H-3-CSAL and 7M-3-CSAL. Analysis was performed 

. '1 18 h 25 1 . h on a B1o-S1 C , reverse p ase, em co umn w1t 

electrochemical detection. HPLC conditions: Ion 

suppression buffer (0.1 M NaH 2Po4/lmM Na2EDTA pH 5.0) 

with a flow rate of 1.0 ml/min. 
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Figure 36. HPLC chromatogram of a standard mixture of 

1-Me-6,7-DHIQ, l-Me-6M-DHIQ and l-Me-7M-DHIQ. Analysis 

was performed on a Bio-Sil c18
, reverse phase, 25 em 

column with electrochemical detection. HPLC conditions: 

226 

Ion-suppression buffer (0.1 M Na2HP04/l mM Na2 EDTA adjusted 

to pH 7.4 with 0.1 M citric acid, 10% MeOH) with a flow 

rate of 1.0 ml/min. 
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Figure 37. (A) Representat~ve GC chromatogram of a corpus 

striatum extracted with 70% aqueous EtOH and isolation on 

BioRex-70 from a rat injected ICV with SAL or DA (---). 

After Iyophflization. samples were derivatized with HFBA 

and analyzed on a 10M x 0.25 i.d., OV-17, WCOT, glass 

capillary column with electron-capture detection. GC 

conditions: Column temperature l30°C, detector tenperature 

340, injector temperature 250°C, N2°2F 0.8 kg/cm2 splitter 

set at 10/1. 

(B) Representative HPLC chromatogram of a 

corpus striatum from a rat injected ICV with SAL. Tissues 

228 

were extracted with 70% aqueous EtOH, isolated on BioRex-70 

lyophilized and taken up in 0 .. 1 N H.Cl. P..nalysis 'toTas 

f d . '1 18 h 25 1 per orme on a B1o-S1 C reverse p ase, em, co umn 

with electrochemical detection. HPLC conditions: Ion-

suppression buffer (0.1 M NaH 2Po4/1 ~1 Na2EDTA, pH 5.0) 

with a flow rate of 1.0 ml/min. 
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Figure 38. (A) Representative GC chromatogram of a corpus 

striatum from a rat injected ICV with 4,6,7-(0H)
3

THIQ. 

Tissues were extracted with 70% aqueous EtOH, isolated on 

BioRex-70, lyophilized and derivatized with HFBA. Analysis 

was performed a 10M x 0.25 ~m i.d. OV-17 WCOT glass 

capillary column with electron-capture detection. GC 

conditions column temperature 130°C, detector temperature 

340°C, injector temperature 250, N2°2F 0.8 kg/cm2 and splitter 

set at 10/1. 

(B) Representative HPLC chromatogram of a corpus 

striatum from a rat injected ICV with 4,6,7-(0H)
3

THIQ. 

~issues were extracted with 70% aqueous EtOH, isolated on 

BioRex-70, lyophilized and taken up in O.OlN HCL. Analysis 

was performed on a Bio-Sil c18 
reverse phase column with 

electrochemical detection. HPLC conditions: Ion-suppression 

buffer (0.1 M NaH 2Po4/l rnt-1 Na
2

EDTA pH 5.0) with a flow rate 

of 1. 0 ml/min. 
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Figure 39. (A) Representative GC chromatogram of a 

hypothalamus from a rat injected ICV with 1-CSAL. Tissues 

were extracted with 70% aqueous EtOH, isolated on BioRex-70 

lyophilized and derivatized with PFPA/HFIP. Analysis was 

performed on a 10M x 0.25 mm i.d. OV-17, WCOT, glass 

capillary column with electrochemical detection. GC 

conditions: Column temperature 125°C, detector temperature 

340°C, injector temperature 250°C, N °2F 0.8 kg/crn2 and 
2 

splitter set at 10/1. 

{B) Representative HPLC chromatogram of a 

hypothalamus from a rat injected ICV with 1-CSAL. Tissues 

were extracted with 70% aqueous EtOH, isolated on BioRex-70, 

lyophilized and taken up in 0 .rn N' HCl. ·Analysis was 

f d . '1 18 h 25 1 . per orme on a B1o-S1 C , reverse p ase em co umn w1th 

electrochemical detector. HPLC conditions: Ion-suppression 

buffer (0.1 M N'aH2Po4/l mM Na2EDTA, pH 5.0) with a flow rate 

of 1. 0 ml/min. 
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Figure 40. (A) Representative GC chromatogram of 

hypothalamus from a rat injected ICV with 3-CSAL. Tissues 

were extracted with 70% aqueous EtOH, isolated on BioRex-70 

lyophilized and derivatized with PFPA/HFIP. Analysis was 

performed on a 10M x 0.25 mm i.d., OV-17, 'NCOT, glass 

capillary column with electron-capture detection. GC 

conditions: Column temperature 155°C, detector temperature 

340°C, injector temperature 250°C, N
2
°2F 0.8 kg/cm

2 
and 

splitter set at 10/1. 

(B) Representative HPLC chromatogram of a 

hypothalamus from a rat injected ICV with 3-CSAL. Tissues 

were extracted with 70% aqueous EtOH, isolated on BioRex-70 

lyophilized and brought up in 0.5 ml of O.OlN HCL. Analysis 

was performed on a Bio-Sil c18 
reverse phase 25 em 

column with electrochemical detection. HPLC conditions: 

Ion-suppression buffer (0.1 M NaH2Po4;1 mM Na 2EDTA, pH 

5.0) with a flow rate of 1.0 ml/min. 
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Figure 41. Summary of the site-specific in vivo 

a-methylation of various catechol-isoquinolines in the 

rRt CNS, expressed a percent of total a-methylation. 
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Figure 42. Levels of 5HT, 5HIAA, HVA and DOPAC (percent 

of control) in three rat brain regions 50 min following 

ICV administration of catechol isoquinolines (50 ug/animal). 

* = p ~ .05; ** = p _> 02. . , *** = P ~ .01; corpus striatum 

bS ; hippocampusl ; hypothalamus II . 
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Figure 43. Log of the tissue levels of 7M-SAL at different 

time points after rev injection ( 5 ug/ventricle ) i • 

hypothalamusi e corpus striatum. 
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Figure 44. Central effects of 7M-SAL on the levels of 

biogenic amines and acids. * = P > .05. 
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Figure 45. Possible tautomeric forms of DHIQs which 

can exist under physiological conditions. 
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Figure 46. W absorption spectra of A, 1-Me-6,7 DHIQ and 

B, 1-Me-7M-DHIQ; pH 2-4----; pH 7.0-13----. 
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Figure 47. Excitation and emission spectra of A, l-Me-

6,7-DHIQ and B, l-Me-7M-DHIQ. 
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Figure 48. Variation of fluo~escence intensity with pH of 

1-He-6, 7-DHIQ (0) and l-~1e-7M-DHIQ (D) · 
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Figure 49. UV absorption spectra of A, 1-He-6, 7-m·1 DHIQ 

and B, 1-He-6M-DHIQ; pH 1-9----; pH 10-13--. 
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Figure 50. Excitation and emission spectra of 1-Me-6,7-

DH DHIQ. 
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Figure 51. Variation of fluoresc~nce intensity with pH 

of 1-Me-6,7-DM DHIQ. 

256 



>­ I
- .....
.. 

V
i 

:z
 

LL
J 

1
-

:z
 

.....
.. 

LL
J 

>
 .....
.. 

1
- c:x
: 

_
,J

 

LL
J 

ex
:: 

0 \ 

2
5

7
 

0 

0 



Figure 52. Cyclic voltanunograrns of 1-He-6, 7-DHIQ; A, pH 

3.0 (---); B, pH 5.0 (---); C, pH 7.4 <•-•); scan rate 

200 rnv/sec sensitivity 211A/crn. 
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Figure 53. Cyclic voltarnmograms of l-Me-7M-DHIQ; A, pH 

3.0 (---); B, pH 5.0 (---); C, pH 7.4 (A-~); scan speed 

200 mv/sec, sensitivity 2uA/cm. 
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Figure 54. Cyclic volta·mmograms of l-Me-6M-DHIQ; A, pH 

3.0 (---); B, pH 5.0 (--); C, pH 7.4 (•-•); scan speed 

200 rnv/sec, sensitivity 2~A/cm. 
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Figure 55. Representative GC chromatogram of head-space 

of control blood spiked with AcA, EtOH and N-propanol 

(internal standard) incubated at 37°C, using PoraPak 

QS column with flame ionization detection. 
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Figure 56. Comparison of structural similarities between 

DHIQs, pyrones, pyridones and tropolones. 
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Figure 57. (A) Proposed alternative binding orientations 

of CA substrates at the catechol binding site of COMT, C-) 

meta-binding orientation and para binding orientation (---). 

(B) Proposed alternative binding orientations 

of catechol-isoquinoline substrates at the catechol-binding 

site COHT, para (7) binding orientation (--) and meta (6) 

binding orientation (---). H = proposed hydrophobic center; CA= 

CA binding center; SAM = SN1 binding site. 
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Figure 58. (A) Transition of a 1-Me-6-hydroxy-DHIQ with pH. 

{B) Transition of 1-Me-6-substituted-DHIQ with 

pH. 
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Figure 59. (A) Theoretical single peak voltammogram of a 

model oxidizable compound. 

(B) Theoretical cyclic voltammogram of a model 

oxidizable/reducible compound. 
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Figure 60. Cyclic voltammograms of model compounds show 

redox reactions which are; A, fast (reversible); B, 

intermediate (guasi-reversible; C, slow (irreversible) . 
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Figure 61. Possible reaction pathways for the electrochemical 

oxidation of DHIQs. 
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Figure 62. Possible metabolic routes for 1-CSAL in vivo. 
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