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a p -adic solenoid and denoted by Σp (see [1]). As a set with a measure Σp
∼= [0, 1) × Zp.

It is a compact group and has a natural measure dx · dpu. Pontryagin’s dual group of the

p -adic solenoid is Σ̂p = Q(p) =
⋃

∞

n=0 p−nZ. That means any f ∈ L2(Σp) can be expanded
into a Fourier series

f(x, u) =
∑

α∈Q(p)

f̂(α)χα(x, u),

where χα(x, u) = exp(2πiα x) exp(−2πi{α u}p) are characters of Σp, {·}p is a fractional
part of a p -adic number {·}p and

f̂(α) =

1∫

0

∫

Zp

f(x, u)χα(x, u) dxdpu

are Fourier coefficients. Hence Dirichlet kernels for Σp are

Dm,n(x, u) =
∑

α∈(−m, m)∩p−nZ

χα(x, u), m, n ∈ N0.

We proved in [2] that the Lebesgue constants have the asymptotics

Lm,n := ‖Dm,n‖L1(Σp) =

1∫

0

∫

Zp

|Dm,n(x, u)|dxdpu ∼
2

π2
ln(m2pn),

when m → +∞, n → +∞. Consequently the Fourier series is divergent in L1(Σp) and
it is reasonable to consider Fejer kernels

Fm,n(x, u) =
∑

α∈(−m, m)∩p−nZ

(
1 −

|α|

m

)
χα(x, u), m, n ∈ N0

that will be discussed in our talk and I will prove
Theorem 1. For all nonnegative integers n,m ‖Fm,n‖L1(Σp) = 1.
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Let Km×m
0 be an algebra of matrix sequences with multiplication in the form of Laplace

convolution. For matrix X = [xij]
m

i,j=1 denote m̃n(X) = max
16i,j6m

∣∣xij
n

∣∣ .

Definition 1. The sequence m̃(X) = {m̃0(X), m̃1(X), . . . , m̃n(X), . . . } is called a
majorizing sequence for matrix X ∈ Km×m

0 .
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Definition 2. X ∈ ℓm×m
p , when ∀i, j = 1,m xij ∈ ℓp.

We define a norm of a matrix from ℓm×m
p by the following way ‖X‖ℓm×m

p

= ‖m̃(X)‖ℓp
.

ℓm×m
p is the Banach module under the Banach algebra ℓm×m

1 .

Consider matrix algebraic homogeneous differential equation

DX = GX, (1)

where D is the algebraic derivative operator (see [1]), G ∈ ℓm×m
1 . A solution of the

equation (1) is found in ℓm×m
1 with initial condition X0 = E. We use the method of

successive approximations for building a solution of (1). The successive approximations
are found from recursion relations

DX(n+1) = GX(n) (2)

with initial approximation X(0) = X0 = E. Integrating (2) obtain successively

X(0) =E, X(1) =E+

∫
G, . . . , X(k) =E+

∫
G+

∫
G

∫
G+ · · ·+

∫
G

∫
G · · ·

∫
G

︸ ︷︷ ︸
k

, . . .

Definition 3. The limit

ΩG = lim
k→∞

X(k) = E +

∫
G +

∫
G

∫
G + · · · +

∫
G

∫
G · · ·

∫
G + . . . ,

when it exists, is called an algebraic matriciant of the equation (1).
Consider difference matrix homogeneous the first order equation

(n + 1)Xn+1 + (nγ + δ)Xn = 0, (3)

where γ, δ ∈ Cm×m. A solution of the equation (3) is found in ℓm×m
1 with arbitrary

initial condition X0. The equation (3) is transformed to algebraic differential equation
(1), where G = (E−γh)−1(−δ), h = {0, 1, 0, . . . , 0, . . . }. We obtain conditions for matrix
γ under which ∀X0 there is a unique solution X = ΩGX0 of the equation (3), where
ΩG is an algebraic matriciant of the equation (1). Corresponding to (3) inhomogeneous
equation with arbitrary initial condition is investigated in a similar manner in the Banach
module ℓm×m

p . Evaluations for solutions norms are obtained.

Refrences

1. Васiльеў I.Л., Навiчкова Д.А. Матрычнае аднароднае рознаснае раўнанне першага парадку са
зменнымi каэфiцыентамi ў камутатыўным выпадку // Вестн. БГУ. Сер. 1. 2014. №1. С. 83–87.


