Интегро-дифференциальные операторы и уравнения

a *p*-adic solenoid and denoted by Σ_p (see [1]). As a set with a measure $\Sigma_p \cong [0,1) \times \mathbb{Z}_p$. It is a compact group and has a natural measure $dx \cdot d_p u$. Pontryagin's dual group of the *p*-adic solenoid is $\widehat{\Sigma_p} = \mathbb{Q}^{(p)} = \bigcup_{n=0}^{\infty} p^{-n} \mathbb{Z}$. That means any $f \in L_2(\Sigma_p)$ can be expanded into a Fourier series

$$f(x,u) = \sum_{\alpha \in \mathbb{Q}^{(p)}} \widehat{f}(\alpha) \chi_{\alpha}(x,u),$$

where $\chi_{\alpha}(x, u) = \exp(2\pi i \alpha x) \exp(-2\pi i \{\alpha u\}_p)$ are characters of Σ_p , $\{\cdot\}_p$ is a fractional part of a p-adic number $\{\cdot\}_p$ and

$$\widehat{f}(\alpha) = \int_{0}^{1} \int_{\mathbb{Z}_p} f(x, u) \overline{\chi_{\alpha}(x, u)} \, dx d_p u$$

are Fourier coefficients. Hence Dirichlet kernels for Σ_p are

$$D_{m,n}(x,u) = \sum_{\alpha \in (-m, m) \cap p^{-n}\mathbb{Z}} \chi_{\alpha}(x,u), \quad m,n \in \mathbb{N}_0.$$

We proved in [2] that the Lebesgue constants have the asymptotics

$$L_{m,n} := \|D_{m,n}\|_{L_1(\Sigma_p)} = \int_0^1 \int_{\mathbb{Z}_p} |D_{m,n}(x,u)| dx d_p u \sim \frac{2}{\pi^2} \ln(m^2 p^n).$$

when $m \to +\infty$, $n \to +\infty$. Consequently the Fourier series is divergent in $L_1(\Sigma_p)$ and it is reasonable to consider Fejer kernels

$$F_{m,n}(x,u) = \sum_{\alpha \in (-m, m) \cap p^{-n}\mathbb{Z}} \left(1 - \frac{|\alpha|}{m}\right) \chi_{\alpha}(x,u), \quad m, n \in \mathbb{N}_0$$

that will be discussed in our talk and I will prove

Theorem 1. For all nonnegative integers $n, m ||F_{m,n}||_{L_1(\Sigma_p)} = 1$.

Refrences

1. Hewitt E., Ross K.A. Abstract harmonic analysis. Vol. 2. Berlin, Springer, 1970.

2. Radyna A. Ya., Karpovich N.I. The Lebesgue constants of p-adic solenoid // Vesnik Bielaruskaha Dziaržaŭnaha Universiteta. Ser. 1. Math. 2012. No. 3. P. 87–90 (in Russian).

SOLVING MATRIX DISCRETE THE FIRST ORDER EQUATIONS BY MEANS OF ALGEBRAIC MATRICIANT

I.L. Vasiliev, D.A. Navichkova

Belarusian State University, Minsk, Belarus navdasha@tut.by

Let $K_0^{m \times m}$ be an algebra of matrix sequences with multiplication in the form of Laplace convolution. For matrix $X = [x^{ij}]_{i,j=1}^m$ denote $\widetilde{m}_n(X) = \max_{1 \le i,j \le m} |x_n^{ij}|$. **Definition 1.** The sequence $\widetilde{m}(X) = \{\widetilde{m}_0(X), \widetilde{m}_1(X), \dots, \widetilde{m}_n(X), \dots\}$ is called a

majorizing sequence for matrix $X \in K_0^{m \times m}$.

CORE

Definition 2. $X \in \ell_p^{m \times m}$, when $\forall i, j = \overline{1, m}$ $x^{ij} \in \ell_p$. We define a norm of a matrix from $\ell_p^{m \times m}$ by the following way $\|X\|_{\ell_p^{m \times m}} = \|\widetilde{m}(X)\|_{\ell_p}$. $\ell_p^{m \times m}$ is the Banach module under the Banach algebra $\ell_1^{m \times m}$. Consider matrix algebraic homogeneous differential equation

$$DX = GX,\tag{1}$$

where D is the algebraic derivative operator (see [1]), $G \in \ell_1^{m \times m}$. A solution of the equation (1) is found in $\ell_1^{m \times m}$ with initial condition $X_0 = E$. We use the method of successive approximations for building a solution of (1). The successive approximations are found from recursion relations

$$DX^{(n+1)} = GX^{(n)} \tag{2}$$

with initial approximation $X^{(0)} = X_0 = E$. Integrating (2) obtain successively

$$X^{(0)} = E, \quad X^{(1)} = E + \int G, \quad \dots, \quad X^{(k)} = E + \int G + \int G \int G + \dots + \underbrace{\int G \int G \cdots \int G}_{k}, \quad \dots$$

Definition 3. The limit

Definition 3. The limit

$$\Omega^G = \lim_{k \to \infty} X^{(k)} = E + \int G + \int G \int G + \dots + \int G \int G \cdots \int G + \dots$$

when it exists, is called an algebraic matriciant of the equation (1).

Consider difference matrix homogeneous the first order equation

$$(n+1)X_{n+1} + (n\gamma + \delta)X_n = 0, (3)$$

where $\gamma, \delta \in \mathbb{C}^{m \times m}$. A solution of the equation (3) is found in $\ell_1^{m \times m}$ with arbitrary initial condition X_0 . The equation (3) is transformed to algebraic differential equation (1), where $G = (E - \gamma h)^{-1}(-\delta)$, $h = \{0, 1, 0, \dots, 0, \dots\}$. We obtain conditions for matrix γ under which $\forall X_0$ there is a unique solution $X = \Omega^G X_0$ of the equation (3), where Ω^G is an algebraic matriciant of the equation (1). Corresponding to (3) inhomogeneous equation with arbitrary initial condition is investigated in a similar manner in the Banach module $\ell_p^{m \times m}$. Evaluations for solutions norms are obtained.

Refrences

1. Васільеў І. Л., Навічкова Д. А. Матрычнае аднароднае рознаснае раўнанне першага парадку са зменнымі каэфіцыентамі ў камутатыўным выпадку // Вестн. БГУ. Сер. 1. 2014. № 1. С. 83–87.