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Abstract

The aim of this paper study the impact of class-based storage policy based
on the optimal configuration of U-flow single command warehouses using a
on an ABC product classification. For that purpose, the authors propose
a non linear optimization model to minimize the expected travel distance
of the warehouse and use analytical methods to solve it.

The most important contribution is to provide a mathematical proof that
regardless of the storage policy (It does not matter the specifics of the
turnover pattern of the products), the optimal warehouse has a width that
is the double of its length, and the pick and deposit point should be located
in the middle of the width of the warehouse.

In addition, authors perform a sensitivity analysis that indicates that the
optimal solution is robust, meaning that a certain deviation from the op-
timum layout does not impose a significant penalty on the expected travel
distance of the warehouse.
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Analytical optimization for the warehouse sizing problem under class-based storage policy

Key words: warehouse layout; warehouse design; storage policy; ware-
house sizing problem; nonlinear programming.

Un modelo de optimización analítica para el diseño
de centros de distribución baja políticas de alama-
cenamiento basadas en clases

Resumen
Este artículo estudia el impacto de las políticas de alamacenamiento ba-
sadas en clases en el diseño de centros de distribución . Se asume una
operación con una sola entrada y salida para los montacargas, los monta-
cargas pueden transportar una unidad de carga al tiempo, y la política de
almacenamiento es basada en la clasificación ABC de los productos.

Se presenta un modelo de optimización no lineal para minimizar el valor es-
perado de la distancia por viaje del montacargas — un estimativo del costo
de manejo de materiales — y se resuelve utilizando métodos analíticos. La
contribución mas revelevante de este artículo es una demonstración mate-
mática de que no independiente de la curva de distribución de la rotación
de inventario de los productos, el diseño óptimo del centro de distribución
es el mismo. Finalmente, el análisis de sensibilidad muestra que peque-
ñas desviaciones del desiño óptimo no afecta significativamente el costo de
manejo de materiales.

Palabras clave: distribución de bodegas; diseño de almacenes; políticas

de almacenamiento; optimización no lineal.

1 Introduction

The warehouse layout problem studies the design of storage or order pick-
ing areas of the warehouse [1]. We focus on unit load warehouses with
single command operations and U-flow configuration with parallel picking
aisles. This means a unit-load warehouse with one pick and deposit (P&D)
point [2]. The warehouse layout problem in this context deals with finding
the best position for the P&D point [3], determining the storage capacity
location [4], designing the internal structure [5], sizing and dimensioning
storage areas [6], establish aisle configuration [7],[8] and storage assignment
policies [9].

We propose an optimization model to decide length and width of the
warehouse and the location of the P&D to minimize the expected travel
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distance of picking or put-away operations. To this end, we use non-linear
analytical models, as opposed to heuristics or simulation approaches com-
monly found in the literature. First, we develop a model assuming a random
storage policy. Then, we extend the problem to consider a class-storage
policy based on an ABC product classification.

In this paper, we gain insight into the warehouse dimensioning problem
[6] under the most common storage assignment policy, the ABC classifica-
tion [10] . Francis [3] developed the first attempt in warehouse dimensioning
in a very simplified context and concluded for this context that a rectan-
gular warehouse with one P&D should position it in the middle of its lower
side. Bassan et al. [5] extends this work considering the detailed internal
structure of the warehouse. On their model they do not propose a general
conclusion about the length and width of the warehouse, the only consider
specific situations. Also, they only faced the warehouse layout problem
assuming a random storage policy which limits its application.

Afterwards, several papers work on that basis and integrate results
with simulation approaches, heuristics [11] and metaheuristics as genetic
algorithms and path relinking [12]. According to Ballou [13], results sug-
gests that warehouses should have a central P&D point and the warehouse
should have a square shape. But this suggestions apply with very specific
assumptions and those papers that study robust contexts use simulation
and other non-optimal methods that do not allow to generate general con-
clusions. This is why, Gu at al. [6] state a need for research in the field
that validates these models and extends their results.

In this paper, we focus on the most common case of class-based storage,
the ABC product classification For ABC class-based storage, the optimal
storage assignment policy is guaranteed and simple [14]. It consists in lo-
cating the most important location in the most preferable position. Pohl et
al. [15] label it as distance-based slotting strategy. In this way, class-based
storage policies have a lower expected travel time to pick and retrieve loads
when compared to randomize policies. Yu et al. [10] showed that even if
the storage classes decrease the expected travel time, a small number of
classes is optimal when a discrete number of items for each class is consid-
ered. Their results are robust to different kinds of ABC-demand profiles
and warehouse shape. Guo et al. [16] extends this result by considering
that each storage class introduced, also increases the space requirements
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of the warehouse. Storage locations are shared among less items. They
found that the best design depends on the skewness of the demand profile
and it effects the warehouse shape (relation between its width and length).
Their analysis included the comparison of random, full turnover-based and
class-based storage policies.

Thomas et al. [17] developed analytical expression to model the op-
erations of put-away and order picking for the study of the warehouse
configuration problem, which they defined as the warehouse shape and
docks location. With this mathematical framework, Thomas et al. [18]
proposed design guidelines for order picking warehouse including the ware-
house shape, forward area size, and warehouse ceiling height. Authors
validated their methods by means of industry data focusing on recommen-
dations to decide if all docks of the warehouse should be located in one side,
or there should be docks in both sides. Roodbergen et al. [19] propose a
design method to simultaneously determine the routing policy, warehouse
layout, and storage policy. The model demonstrates the impact of these
control policies on the best configuration through a case study; however,
no general guidelines were provided regarding the warehouse shape.

In the literature, there are some papers closely related with ours in the
sense that they consider the warehouse layout problem jointly with stor-
age assignment policies [15],[20],[21],[22]. These studies approach the inte-
grated problem using heuristics and simulation techniques and concluded
that in general the best warehouse design under random storage policies
also has a good performance for other storage assignments. The aim of this
paper is to formalize, using an analytical point of view, this intuition that
heuristics and simulation procedures suggest.

The paper is organized as follows: Section 2 presents an optimization
model to minimize the expected travel time considering a class-based stor-
age with an ABC product classification. Section 3 presents a robustness
analysis. Finally, Section 4 presents possible applications of this analytical
methodology and other findings of the paper for future research opportu-
nities.
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2 U-flow single command operations under class-based stor-

age policy

A common way to assign storage positions to products is to organize the
available space following a class-based policy. In this paper we use an ABC
product classification and a distance-based slotting strategy [15], locating
the products with highest turnovers nearest to the P&D point (Figure 1).
This section is devoted to find the best location for the P&D point and the
optimal geometry for such a warehouse in order to minimize the Expected
Value of the travel distance.

Figure 1: Warehouse under class-based storage policy with an ABC product
classification

In Figure 1, we see that the A-products are located in the region nearest
to the P&D point, as they are going to be the products with the highest
probability to be selected. Farther away from the P&D point, we find the B-
products that have medium turnovers. Finally, the C-products are located
in the region farthest away from the P&D point. A-products region and B-
products region have “triangular" shapes, because we are using a rectilinear
distance [15].

The optimization process in this section is presented in two sections.
First, in Section 2.1, we present a simplified model with the P&D point
fixed to the lower left corner to find the optimal shape (a∗). Afterwards,
in Section 2.2, we extend the model to include the position of the P&D
point as a variable, p, and optimize it to find the optimal shape (a∗) and
the optimal position of the P&D point (p∗).
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2.1 Simplified model with the P&D point fixed on the corner

2.1.1 E(D) function We define the expected travel distance of the ware-
house as the weighted average of the expected travel distance of the regions
of the products.

The general equation of E(D) is

E(D) = PAEA(D) + PBEB(D) + PCEC(D), (1)

where PA is the probability of selecting an item of A-products for a
picking operation. The same definition applies for PB and PC . These
probabilities are defined by the ABC product classification and depend
on the demand of the products represented by tA, tB and tA, which is
expressed in Equation (2a).

EA(D) is the expected travel distance for the region of A-products.
The same definition applies for EB(D) and EC(D). Note that once we have
established that an item belongs to a specific region, the probability of each
point within the region is equal. Hence, we calculate the expected travel
distance of each region (Equation (2b)) assuming a uniform probability
within the region.

PA = tA
PB = tB
PC = tC

(2a)

EA(D) = 1
w1ab

∫∫

RA

D(x, y) dy dx

EB(D) = 1
w2ab

∫∫

RB

D(x, y) dy dx

EC(D) = 1
w3ab

∫∫

RC

D(x, y) dy dx

(2b)

where wi is the proportion of the area that each region occupies.

Replacing Equations (2a)-(2b) into Equation (1), we have

E(D) = tA
w1ab

∫∫

RA

D(x, y) dy dx+ tB
w2ab

∫∫

RB

D(x, y) dy dx+ tC
w3ab

∫∫

RC

D(x, y) dy dx.

(3)
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Before we continue working on the expected travel distance, we are
going to explain how to calculate tA, tB , tC , w1, w2 and w3. Also, we
define when an item located in position (x, y) belongs to the region RA,
RB or RC .

Parameter ti, i = A,B,C, is the probability that the item of a picking
operation j belongs to the i-th product group. And parameter wi, i =
A,B,C, is the proportion of the area that i-th product group occupies.

Figure 2: Definition of regions for ABC products in the warehouse

We define that an item located in position (x, y) belongs to the region Ri

for i = A,B,C, by establishing the boundaries of the regions and verifying
if the item position belongs to the area defined by those boundaries.

On the basis of Rao et al. [23], for the warehouse of Figure 2, we define
the limits of the regions by means of two lines, y = l1 − x, delimiting RA,
and y = l2−x delimiting RB . RC is the region of the warehouse located in
upper-side of y = l2−x. We define the functions of these limits as straight
lines with slopes equal to one, because those are the “circles functions" in
the rectilinear metric. That is, all points (x, y) > 0 that belong to the line
y = l1 − x are at the same distance to the P&D point.

We find l1 and l2 values setting up the area of RA to be equal to w1ab,
the area of RB to be equal to w2ab and the area of RC to be equal to w3ab.

Therefore, we define the regions of the warehouse of Figure 2 by means
of the polygons that enclose them in the following way.
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RA = {(x, y) ∈ RA : 0 ≤ x ≤ l1 ∧ 0 ≤ y ≤ l1 − x}

RB = {(x, y) ∈ RB : (0 ≤ x ≤ l1 ∧ l1 − x < y ≤ l2 − x) ∨

... (l1 < x ≤ a ∧ 0 ≤ y ≤ l2 − x)}

RC = {(x, y) ∈ RC : 0 ≤ x ≤ a ∧ l2 − x < y ≤ b}

Then, we use these limits in conjunction with Equation (3) to define
an explicit expression for the expected travel distance of the warehouse of
Figure 2.

E(D) =
tA

w1ab

l1
∫

0

l1−x
∫

0

D(x, y) dy dx+
tB

w2ab

l1
∫

0

l2−x
∫

l1−x

D(x, y) dy dx

+
tB

w2ab

a
∫

l1

l2−x
∫

0

D(x, y) dy dx+
tC

w3ab

a
∫

0

b
∫

l2−x

D(x, y) dy dx (4)

Equation (4) can not be used as the expected travel distance in general,
because the polygons that enclose regions A, B and C vary depending on
the values of a, b, l1 and l2.

The boundary between two regions can start in two different sides (left
and upper side) and finish in two others (right or lower side), giving rise to
the four alternatives of Figure 3.

(a) Alternative 1 (b) Alternative 2 (c) Alternative 3 (d) Alternative 4

Figure 3: Possible alternatives for the polygon that enclose the regions of the
product groups

We need two boundaries for an ABC product classification, so all the
combinations of the four alternatives need to be considered. It is left to the
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reader to verify that out of the sixteen theoretically possible combinations,
there are three that are not feasible and four more that are redundant,
leaving us with the nine cases presented in Figure 4.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

Figure 4: Possible cases for the definition of the warehouse

In summary, in order to establish a general function of the expected
travel distance, we define E(D) by means of the following function of nine
pieces, one for each case of Figure 4
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E(D) =







































































G1(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 1

G2(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 2

G3(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 3

G4(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 4

G5(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 5

G6(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 6

G7(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 7

G8(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 8

G9(a, b, l1, l2, tA, tB , tC , w1, w2, w3), if Case 9

, (5)

where each Gi function is defined in appendix 5, and it is an expression
similar to Equation (4).

2.1.2 Minimization of E(D) The optimization process of this section
will find the best values for the main characteristics (a, b, l1, l2) of a U-
flow warehouse of area A, under class-based storage policy with an ABC
product classification.

Model (6) will minimize function (5) under three constraint with vari-
ables (a, b, l1, l2) and (A, w1, w2, w3, tA, tB, tC) as parameters. The
first constraint guarantees that the area of the warehouse be the desired
area. The second constraint sets the area of the region of A-products to be
equal to the corresponding portion of the total area. The third constraint
sets the area of the region of B-products to be equal to the corresponding
portion of the total area.

min E(D) = fA,w1,w2,w3,tA,tB ,tC (a, b, l1, l2)
s.t.

ab = A
∫∫

RA

dy dx = w1A

∫∫

RB

dy dx = w2A

a, b, l1, l2 ≥ 0

(6)

This optimization problem has a non-linear objective function and three
non-linear constraints. We simplify model (6) to obtain a model with only
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one variable and boundary constraints. This is achieved by means of the
equality constraints. From each of the three constraints, we create a func-
tion of a that defines the variables b, l1 and l2.

Equation (7a) is directly derived from the first constraint. Equation (7b)
defines li depending on the values of w1, w2, A and a. This function is based
on the polygons used to delimit a region in Figure 3. The final outcome is
that b = A/a, l1 = g(w1, A, a) and l2 = g(w1 + w2, A, a).

b =
A

a
(7a)

g(w,A, a)















































(2wA)1/2, if 2Aw ≤ a2 ≤
A

2w
1

2a
(2wA+ a2), if a2 < 2Aw ∧ a2 ≤ 2A(1 − w)

aw +
A

2a
, if a2 >

A

2w
∧ a2 ≥

A

2(1 −w)

1 +A

a
− (2A(1 − w))1/2, if 2(1− w)A < a2 <

A

2(1 −w)
(7b)

In this way, E(D) becomes a function depending exclusively on a.

min E(D) = fA,w1,w2,w3,tA,tB ,tC (a,A/a, g(w1, A, a), g(w1 + w2, A, a))
s.t.

a > 0
(8)

The objective function of the simplified model is a convex function.
Figure 5 presents the plot of the objective function of model (8) for three
warehouses with different values of w1 and w2. Each plot has two series,
the first series, on the left axis, plots E(D) as a function of a. The second
series on the right axis indicates the case of E(D) function (5) where it was
evaluated. The optimal value of a in Figure 5(a) is achieved in Case 1, in
Figure 5(b) is achieved in Case 4 and Figure 5(c) is achieved in Case 9.
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(a) w1 = 0.1, w2 = 0.35 (b) w1 = 0.18, w2 = 0.4

(c) w1 = 0.55, w2 = 0.20

Figure 5: Expected value considering a class based storage policy

E(D)

da
=



























































































































dG1

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 1

dG2

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 2

dG3

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 3

dG4

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 4

dG5

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 5

dG6

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 6

dG7

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 7

dG8

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 8

dG9

da
(a, b, l1, l2, tA, tB, tC , w1, w2, w3), if Case 9

(9)
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Now, we use the derivative of E(D) presented in Equation (9) to find
the optimal value for a given the values of the parameters A, w1, w2, w3,
tA, tB and tC . Each piece of Equation (9) is defined in appendix 6. Now,
we are going to find a function a∗ = h(A,w1, w2, w3, tA, tB , tC) such that
the derivative of E(D) (Equation (9)) evaluated in a∗ be equal to zero.

In Figure 5, we show that the optimal value is not always achieved in the
same case. Hence, we create the function K(w1, w2) (10) that establishes
in which case the global minimum of E(D) is achieved given the value of
the parameters A, w1, w2, w3, tA, tB and tC .

From Equation (7b), we deduce that the case depends only on the values
of A, w1, w2 and a. A is a constant that does not affect the optimization
process and a is evaluated only in its optimal value, therefore the case only
depends on w1 and w2. In Figure 6, we identify three regions: one in which
the optimal value for a is achieved in Case 1, one in which the optimal
value for a is achieved in Case 4, and one in which the optimal value for a
is achieved in Case 9.

Figure 6: Identification of cases for optimal values of a

This means that if 0 ≤ w1 ≤ 0.5 ∧ 0 ≤ w2 ≤ 0.5 − w1, E(D) will
have its global minimum in Case 1 for all values of tA, tB, tC , a and A.
The same applies for regions of Case 4 and Case 9. Therefore, this region
definition is not for a specific example. These regions are defined in general
and formally expressed as
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K(w1, w2) =











Case 1, 0 ≤ w1 ≤ 0,5 ∧ 0 ≤ w2 ≤ 0,5−w1

Case 4, 0 ≤ w1 ≤ 0,5 ∧ 0,5− w1 < w2 ≤ 1− w1

Case 9, 0.5 < w1 ≤ 1 ∧ 0 ≤ w2 ≤ 1− w1

.

(10)

Additionally, function (10) implies that regardless of the values of w1,
w2, w3, tA, tB, tC , a and A, the global optimum of E(D) never is going
to be achieved in Case 2, Case 3, Case 5, Case 6, Case 7 or Case 8. In
consequences, we can ignore those cases in the optimization process.

Using K(w1, w2), we create H(w1, w2) = γ, a function with the deriva-
tive of E(D) in the cases where it reaches its global minimum.

γ =



































−
(A−a2) (tA+tB−1)

2 a2 (w1+w2−1)
, if Case 1

(A−a2) (tB+2w2(tA−1)−2 tB w1)

2 a2 w2

, if Case 4

(tA−2w1) (A−a2)
2 a2 w1

, if Case 9

(11)

In Equation (11), we see that a∗ = A1/2 is the solution of H(w1, w2) = 0
for any values of w1 and w2. Hence, a = A1/2 is the value that minimize
E(D) and this value is independent of the values of the parameters w1, w2,
w3, tA, tB and tC .

Figure 7: Optimal U-flow warehouse layout for the simplified model with an
ABC product classification

Figure 7 shows the optimal U-flow warehouse layout when the ware-
house has a class-based storage policy based on ABC product classification
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and the P&D point is fixed to the lower left corner. The most important

result of this section is that shape of the optimal warehouse in this con-

ditions is always a square, and it does not depend on the ABC product

classification.

This is consistent with the cases that can be optimal (Cases 1, 4 and
9), which are the only cases with square shapes.

2.2 Model with an arbitrary position of the P&D point

Once we have developed a model with a fixed P&D point, in this section,
we are going to extend that model to determine simultaneously the shape
of the warehouse and the position of the P&D point that minimize the
expected travel distance in a warehouse with an ABC product classification
(Figure 1).

Next, we find the function of the expected travel distance of the ware-
house in terms of the shape of the warehouse and the position of the P&D
point. Then, we minimize the expected travel distance.

2.2.1 E(D) function In Figure 8, we represent a warehouse as the union
of two split-warehouses obtained by a vertical cut in the position of the
P&D point. This representation is useful because each split-warehouse has
the P&D point on the corner, so we can use the E(D) function found in Sec-
tion 2.1 to describe the expected travel distance of these split-warehouses.
We

Figure 8: Representation of the warehouse as the union of two split-warehouses

We define the expected travel distance of the total warehouse, ET (D),
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by the weighted average of the expected travel distance of its two split-
warehouses as

ET (D) = PEl(D) + (1− P)Er(D), (12)

where El(D) is the expected travel distance of the left split-warehouse,
Er(D) is the expected travel distance of the right split-warehouse and P is
the proportion of travels that pickup or deposit an item on the left split-
warehouse.

It is worth to mention that, in this section, labels a, p, A, tA, tB, tC ,
w1, w2, and w3 have the same meaning as in Section 2.1.

The proportion P is defined as

P = pAltA + pBltB + pCltC , (13)

where pAl is the proportion of area of A-products region that is in the
left split-warehouse. The same definition applies for pBl and pCl.

We use Equation (4) to define El(D) and Er(D) as

El(D) = fw1l,w2l,w3l,tAl,tBl,tCl
(al, bl, l1, l2)

Er(D) = fw1r,w2r ,w3r,tAr ,tBr ,tCr
(ar, br, r1, r2). (14)

where bl = Al/al, l1 = g(w1l, Al, al), l2 = g(w1l + w2l, Al, al), br = Ar/ar,
r1 = g(w1r, Ar, ar), and r2 = g(w1r + w2r, Ar, ar).

Note that, the parameters of w1l, w2l, w3l, tAl, tBl and tCl, are not the
same as those of the total warehouse w1, w2, w3, tA, tB and tC . The fol-
lowing equation shows how to calculate these parameters for both split-
warehouses

w1l =
w1pAl

p
w1r =

w1(1− pAl)

1− p

w2l =
w2pBl

p
w2r =

w2(1− pBl)

1− p

w3l =
w3pCl

p
w3r =

w3(1− pCl)

1− p

tAl =
tApAl

P
tAr =

tA(1− pAl)

1− P
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tBl =
tBpBl

P
tBr =

tB(1− pBl)

1− P

tCl =
tCpCl

P
tCr =

tC(1− pCl)

1− P
.

We label zl(a, p) to fA,w1l,w2l,w3l,tAl,tBl,tCl
(pa, A/a, g(w1l, pA, pa), g(w1l+

w2l, pA, pa)) and zr(a, p) to fA,w1r,w2r,w3r,tAr ,tBr ,tCr
(pa, A/a, g(w1r , pA, pa),

g(w1r + w2r, pA, pa)). Afterwards, we rewrite Equation (14) in terms
of zl(a, p) and zr(a, 1 − p). Therefore, El(D) = zl(a, p) and Er(D) =
zr(a, 1− p). By replacing those functions in Equation (12), we obtain

ET (D) = Pzl(a, p) + (1− P)zr(a, 1 − p). (15)

Note that in the definition of the proportion P of Equation (13), the
parameters pAl, pBl and pCl depends on the width and area of the left
split-warehouse. In general, we define P as ̺A,w1,w2,w3,tA,tB ,tC (a, p). We
label φ(a, p) to ̺A,w1,w2,w3,tA,tB ,tC (a, p) and obtain P = φ(a, p).

Finally, we replace P = φ(a, p) in Equation (15) and have

ET (D) = φ(a, p)zl(a, p) + (1− φ(a, p))zr(a, 1− p). (16)

2.2.2 Minimization of E(D) In Section 2.1.2, we showed that the best
shape for a warehouse with the P&D point in the corner is a square, re-
gardless of the ABC classification of the products. Using this fact, in this
section, we show that the P&D point should be located in the middle of
the width of the warehouse (p = 1/2) and the best shape for the warehouse
is a = 2b, without regard to the ABC product classification.

The global minimum of ET (D) (Equation (16)) is the solution of the
following system of Equations

∂ET (D)

∂a
=

∂φ(a, p)

∂a
zl(a, p)−

∂φ(a, p)

∂a
zr(a, 1 − p)

+ φ(a, p)
∂zl(a, p)

∂a
− φ(a, p)

∂zr(a, 1 − p)

∂a
+

∂zr(a, 1 − p)

∂a
= 0

(17a)

∂ET (D)

∂p
=

∂φ(a, p)

∂p
zl(a, p)−

∂φ(a, p)

∂p
zr(a, 1 − p)
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+ φ(a, p)
∂zl(a, p)

∂p
+ φ(a, p)

∂zr(a, 1− p)

∂p
−

∂zr(a, 1− p)

∂p
= 0

(17b)

In the following, we solve the system of equations (17) to obtain the
solution p∗ = 1/2 and a∗ = (2A)1/2.

Note that in Section 2.1, we prove that the best shape of a warehouse
with a fixed P&D point is a square and in this context that means that

∂zl((A/p)
1/2, p)

∂a
= 0 (18)

∂zr((A/p)
1/2, p)

∂a
= 0.

Furthermore, when p∗ = 1/2 and a∗ = (2A)1/2 the warehouse is sym-
metric and that means two things. First, the proportion of total travels
that goes to the left split-warehouse is 1/2. Second, the expected travel
distance for both split-warehouses is the same. Therefore,

φ((2A)1/2, 1/2) = 1/2

zl((2A)
1/2, 1/2) = zr((2A)

1/2, 1/2). (19)

In the following equations, we use Equations (18)-(19) to show how

p = 1/2 and a = (2A)1/2 make that ∂ET (D)
∂a = 0 and ∂ET (D)

∂p = 0.

∂ET (D)

∂a
=

∂φ(a, p)

∂a
zl(a, p) −

∂φ(a, p)

∂a
zr(a, 1− p)

+ φ(a, p)
∂zl(a, p)

∂a
− φ(a, p)

∂zr(a, 1− p)

∂a
+

∂zr(a, 1− p)

∂a

=
∂φ((2A)1/2, 1/2)

∂a

(

zl((2A)
1/2, 1/2) − zr((2A)

1/2, 1/2)
)

+ 1/2

(

∂zl((2A)
1/2, 1/2)

∂a
−

∂zr((2A)
1/2, 1/2)

∂a

)

+
∂zr((2A)

1/2, 1/2)

∂a
=

∂φ((2A)1/2, 1/2)

∂a
(0) + 1/2 (0) = 0
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∂ET (D)

∂p
=

∂φ(a, p)

∂p
zl(a, p)−

∂φ(a, p)

∂p
zr(a, 1− p)

+ φ(a, p)
∂zl(a, p)

∂p
+ φ(a, p)

∂zr(a, 1− p)

∂p
−

∂zr(a, 1− p)

∂p

=
∂φ((2A)1/2, 1/2)

∂p

(

zl((2A)
1/2, 1/2) − zr((2A)

1/2, 1/2)
)

+
∂zr((2A)

1/2, 1/2)

∂p
(1/2 + 1/2− 1)

=
∂φ((2A)1/2, 1/2)

∂p
(0) +

∂zr((2A)
1/2, 1/2)

∂p
(0) = 0

Finally, we find the optimal value of b from the fact that A = ab.
Hence, b = (A/2)1/2 and a = 2b, as it was proposed at the beginning of
this section.

This result is consistent with the one obtained in Section 2.1.2. We
proved that the best shape for a warehouse with the P&D point in the
corner is a square. And in this section, we show that the total warehouse
is composed by two split warehouses with square shape.

Figure 9: Warehouse design example

In conclusion, in U-flow single command warehouses under a class-based

storage policy with an ABC product classification, the width of the ware-

house should be twice its length regardless of the ABC product classification

and the P&D point should be in the middle of the width of the warehouse
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(Figure 9). It is worth to mentioning that these results are equal to the
ones obtained with a random storage policy.

3 Robustness analysis

In an industrial environment, it is not always possible to build a warehouse
with optimal characteristics. We want to provide a technical argument that
helps warehouse planners to decide how much deviation from the optimum
is acceptable.

With the optimal model of Section 2.2.2, we want to determine how
important it is to select the optimal values for a and p. That is, how
critical is a certain deviation from the optimum values of the warehouse
dimensions and location of the P&D point.

(a) ET (D) function with A = 100,
tA = 0.8, tB = 0.1, tC = 0.1, w1 =
0.1, w2 = 0.45, w3 = 0.45

(b) Robust region

Figure 10: Example of Robustness analysis for ET (D)

Figure 10(a) shows the plot of ET (D) as function of a and p for a
warehouse with fixed values of A, tA, tB, tC , w1, w2 and w3. From the
shape of ET (D), we see that it has a unique optimum point and a very flat
region around it. In Figure 10(b), we show the robust region in light colour
defined as the points (a, p) such that ET (D) is greater than the minimum
in at most five percent.

We see that having a∗ constant, we can increase or decrease p up to
50% from p∗ without making ET (D) increase more than five percent over
its minimum value.
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Moreover, we see that having p∗ constant, we can increase or decrease a
up to 20% from a∗ without making ET (D) increase more than five percent
over its minimum value.

Having this robust region implies that warehouse planners have some
range of flexibility to choose a and p. Also, it states that it is more impor-
tant to be accurate with the value of a than with the value of p.
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(a) Impact over ET (D) for devia-
tions on p∗

0 20 40 60 80 100

20

40

60

80

M
ax

D
ev

ia
ti
on

ov
er

E
(D

)

Deviation over a (%)

(b) Impact over ET (D) for deviations on a∗

Figure 11: Impact over ET (D) for deviations on a∗ and p∗

In Figure 11, we present the robustness analysis over a simulation of
100.000 cases where we vary values of A, w1, w2 and w3. In Figure 11(a),
we show the maximum deviation over ET (D) for a deviation on p∗. We
can see that ET (D) increase at most 5% over its minimum for a deviation
of 40% around p∗. In Figure 11(b), we show the maximum deviation over
ET (D) for a deviation on a∗. We can see that ET (D) increase at most 12%
over its minimum for a deviation of 40% around a∗.

In conclusion, it is not critical to select the precisely optimal values. If
there is a technical reason that suggests to implement a non optimal shape
and position of the P&D point, there exists a neighborhood of solutions
for which the deviation from the optimal expected travel distance will be
relatively small.
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4 Conclusions and Future Research

In this paper, the authors analysed U-flow warehouses under class-based
storage policy with an ABC product classification.

We presented a model for U-flow warehouses under class-based storage
policy with an ABC product classification. With this model, we concluded
that in a warehouse under class-based storage policy with an ABC product
classification and a fixed P&D point located in a lower corner, the best
shape for the warehouse is a square.

When we treat the position of the P&D point as a variable, we obtain
the same results than when we assume a random distribution: the P&D
point should be located in the middle of the width of the warehouse and
the width of the warehouse should be twice its length. In Section 3, we
analysed the robustness of the function of the expected travel distance and,
as we obtained assuming a random distribution, the function is flat around
its optimal point (Figure 11).

The most important contribution of this paper is that we mathemati-
cally proved that it does not matter if the distribution of the products is
assumed to be random or represented by any ABC product classification,
the best shape for a U-flow single command warehouse under class-based
storage policy is a rectangle with a width twice its length and the P&D
point should be located in the middle of the width of the warehouse.

For future research, we recommend to extend this model to determine
if it is possible that in a rectangular warehouse with other storage policies,
the best position for the P&D point is always the middle of the width of
the warehouse. Also to establish when the distribution of the products will
change the optimal shape we found for the ABC product classification.

Finally, flow-through warehouses (such as pure cross-docking opera-
tions) can be studied using the analytical methodology presented here.
Aspects such as number of available docks, timing of arrivals and depar-
tures, number of resources available or required could be used to determine
the most efficient configurations of the warehouse and the temporary needs
for storage (if any) when operations are not perfectly synchronised due to
constraints in the use of resources.
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5 Apendix: Pieces of E(D) piecewise function

G1 =
tA

w1ab

l1
∫

0

l1−x
∫

0

D(x, y) dy dx+
tB

w2ab





l1
∫

0

l2−x
∫

l1−x

D(x, y) dy dx

+

l2
∫

l1

l2−x
∫

0

D(x, y) dy dx



 +
tC

w3ab





l2
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0

b
∫
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D(x, y) dy dx+

a
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l2

b
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0

D(x, y) dy dx
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6 Apendix: Pieces of the piecewise function of the deriva-

tive of E(D)
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a2 +A+Aw1 +Aw2

2 a2
+

a2

8A (w1 + w2 − 1)
− 1

)
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− tB

(

A (2w1 + w2)

2 a2
−

1

2

)

−
tA
(

2Aw1 − a2
)2

8Aa2 w1

dG6

da
=
tB
(

a2 − 2A+ 2Aw1

)2

8Aa2 w2
−

A (tAw1 − 2 tA + 2)

2 a2

−
a2 tA
8Aw1

−
tA
2

+ 1

dG7

da
=

w1

2
−

tB
2

−
tA
2

+
w2

2
−

tAw2

2
+

tB w1

2
−

A

2 a2

−
A2 (tA − w1 − tAw2 + tB w1)

8 a4 w1 (w1 + w2 − 1)
+

1

2

dG8

da
=

tAw1

2
− tA −

tB
(

A+ 2 a2 w1 − 2 a2
)2

8 a4 w2

+
A
(

AtA − 8 a2 w1 + 4 a2 tAw1

)

8 a4 w1
+ 1

dG9

da
=

(tA − 2w1)
(

A− a2
)

2 a2 w1
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