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ABSTRACT 

This article describes the implementation of a novel method for detection and continuation of bifurcations in non- 
smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of associated phe- 
nomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov 
and first derivative discontinuities and multiple discontinuous boundaries). The topology of cycles in non-smooth sys- 
tems is determined by a group of ordered segments and points of different regions and their boundaries. In this article, 
we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns. To 
achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order 
that they appear during the integration process. The characterization discriminates: a) types of points and segments; b) 
direction of sliding segments; and c) regions or discontinuity boundaries to which each element belongs. When a 
change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topo- 
logical changes and hence bifurcations and associated phenomena. This comparison has been tested in systems with 
discontinuities of three types: 1) impact; 2) Filippov and 3) first derivative discontinuities. By coding well-known cy- 
cles as sequences of elements, an initial comparison database was built. Our comparison method offers a convenient ap- 
proach for large systems with more than two regions and more than two sliding segments. 
 
Keywords: Bifurcation Sequences; Non-Smooth Systems; Limit Cycles; Dynamic Systems 

1. Introduction 

Physical systems can often operate in different modes, 
and as the time of the transition from one mode to an- 
other mode is small, the transition is considered as in- 
stantaneous [1]. Events such as impact, dry friction, back- 
lash, hysteresis, saturation and commutation carry a dis- 
continuity or sudden change. Therefore, they can be mod- 
eled declaring at least two modes. Each mode is repre- 
sented by differential equation or mixes of differential 
and difference equations. The mathematical modeling of 
these systems switches between different modes and they 
are classified as piecewise-smooth or non-smooth system. 

Piecewise-smooth systems may be classified according 
to the degree of discontinuity that the orbits and vector 
fields present [1]. An updated classification by [2] dis- 
cusses systems with three degrees of smoothness. In the 
zero level, one has jumps in the state variables. They are 
typically systems with impact, where the phenomenon is 
modeled assuming no deformation and a negligible im- 

pact time [3]. In the first degree of smoothness, we have 
systems described by differential equations with discon- 
tinuous right hand terms (Filippov systems) [4]. In these 
cases the vector field is discontinuous in the switching 
Boundary, as usual in mechanical systems with dry fric- 
tion [5]. The second degree of smoothness, includes sys- 
tems with continuous vector fields but discontinuities in 
the first derivative of the vector field. As an example for 
second degree, we might consider a mechanical system 
with a single mass, spring, damping element and limiting 
elastic support [6]. In general, a discontinuity in the i-th 
derivative implies that the system is classified as being i 
+ 1 degree of smoothness. 

Non-standard bifurcations in non-smooth systems have 
been intensively studied [6-9]. But, there are only mathe- 
matical tools to analyze phenomena in 2D or 3D systems 
with two vector fields and one discontinuity boundary 
[10,11]. The names assigned to the bifurcations vary ac- 
cording to the researcher. For example, [2] is used Graz- 
ing, Switching, Crossing and Multisliding. For the same 
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bifurcations, in [12] is used Touching, Bucking, Crossing 
and Adding. Other sliding bifurcation types, recently re- 
ported in [8], have been characterized in systems with 
two DBs. Those bifurcations have been called Exchang- 
ing, Sticking Disappearance and Non-smooth Fold. 

Article Outline. This article is organized as follows. 
Section 2 explains the notation and symbols used. Sec- 
tion 3 summarizes the solutions for the types of non-smooth 
systems. Section 4 describes the well-known bifurcations 
as sequences of elements. Section 5 analyzes the proce- 
dure of identification and comparison of the elements of 
the cycles versus the elements of an integration. Section 
6 concludes the article. 

2. Notation and Symbology for Points in the 
DB 

The study of Non-smooth systems includes more infor- 
mation than a smooth system. The proposed method is 
based on the information of each element of the cycle. 
Therefore, we had to introduce a notation to see all the 
information of the points, segments and orbits. The in- 
formation should be fully contained inside the textual or 
graphical symbols assigned to each element. Some distin- 
guished symbols follow. 

x: State variable vector, with ( )1 2, , , nx x x x=  .  
Zi: -th smooth region of the space state.  i
α: Parameter of the physical system .  ( )α ∈

( ),i αF x :  Vector field on region iZ .  
DB: Discontinuity Boundary.  
Σij: Discontinuity Boundary between regions iZ  and 

jZ . ( ){ }: ,n
ij i j ijZ Z x H αΣ = = ∈ =x  0

:

:

.  
( ),ij αx

( ,ijH αx x

H  Smooth scalar function defining the  
between regions  and . .  

DB
i j ( ) 1, : n n

ijH α + →x  
),()  Gradient of αxHij .  

( ) ( ) ( )
1

, ,H Hα α∂ ∂x x
, , ,ij ij

ij
n

H
x x

α
 

=   ∂ ∂ 
x x  . 

:Ii
−Ω  -th component of i x  before impact. 

:Ii
+Ω  -th component of i x  after impact. 

γ: Impact restitution coefficient I Iγ − += Ω Ω  . 
:ix

G
 Point at the end of -th integration step. i

( ),ij αx
i

:  Vector field that acts on the DB between 
regions  and , for sliding. j

Cycle equations include indicators, separators and ele- 
ments (for cycles: points or segments). Cycles are identi- 
fied with a letter C accompanied by a subscript number 
(e.g. 4 : 4-th cycle). If the cycle contains sliding seg- 
ments they appear as  superscript preceding the C 
letter (e.g. 5 : cycle 5 has sliding segments). In the 
equations, the symbol Φ  is used to represent a com- 
posed segment, determined by a sequence of points of a 
common type (e.g. 5 : a composed segment in region 
5). The points are identified with the letter  with 
super-indices (− or +) indicating whether the point is an  

C
S

S C

Φ
Ω

initial (−) or endpoint (+) of a sliding segment S. The 
symbol/notes a separator between consecutive elements. 

The indicator  shows that the elements of the equa- 
tion in an evolution are continuously repeated (e.g. : 
segment i  in region  is continuously repeated). 
Equations that describe the elements of Bifurcations (cy- 
cles) are identified by the symbol 

Ò
ÒiΦ ∕

Φ i

β . Sliding bifurca- 
tions are identified with a super-script  that precedes 
the 

S
β  symbol and an alphabetic sub-script that indi- 

cates the bifurcation type (e.g. S
cβ  is a sliding crossing 

bifurcation). 

3. Background of the Non-Smooth Solution 

Typically, Non-smooth systems are modeled as piece- 
wise-smooth systems (PWS) where the state space 
contains four kinds of spaces: Smooth Zones, undefined 
Zones associated to regions behind of impact boundaries, 
Discontinuity Boundaries with dynamics represented by 
convex combinations of the solution of the ODEs of each 
vector field and Impact boundaries with dynamic repre- 
sented by algebraic equations. Equation (1) shows the 
state-space representation of the simplest non-smooth 
system with the three types of dynamics. 

( ) ( ){ }
( ) { }

( ) ( ){ }
( ) ( ) ( ){ }

1

1
, ,

, if : , 0

, if : ( , ) 0

, if : , 0

, if : ,

n
i i

n
j j

n
ij

n
Ii j k

Z H

Z H

H

H

α α

α α

α α

α α

−

−

 ∈ = ∈ >

 ∈ = ∈ <= 

∈ Σ = ∈ =


∈ Σ = ∈ =










F x x x x

F x x x x
x

G x x x x

I x x x x 0

 

(1) 

In Equation (1), iF  and jF  are smooth vector fields; 

iZ  and jZ  are the corresponding regions and  
is a parameter. The state space regions are determined by 
the smooth scalar function  and the boundary 
of impact of 

1α ∈

( ,αx )H

iZ  or jZ  regions is determined by the 
scalar function . ( )α,xIH

3.1. Zero Degree of Smoothness Systems 

In electro-mechanical Non-smooth systems the impact phe- 
nomena is highly dynamical, then can be declared using 
an algebraic relation due to the impact time is negligible 
in relation with the time constant of mechanical systems. 
In this relation, γ  is the restitution coefficient and 

( )
I
−Ω , ( )

I
+Ω  are respectively the approximation and bounce 

speed. 

( )
( ) ( )

( ) ( )
, I I

I I

I α
γ

+ −

+

 Ω = Ω= 
Ω = Ω

x
  −

              (2) 

The first row of Equation (2) expresses that the posi- 
tion before and after the impact are identical. The second 
one expresses that the rebound velocity (+) equals the 
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impact velocity (−) multiplied by the restitution coeffi- 
cient γ . 

3.2. First Degree of Smoothness Systems 

Filippov systems, a set of first-order ordinary differential 
equations with a discontinuous right-hand side are a sub- 
class of discontinuous dynamical systems. The trajectory 
of a sliding orbit remaining partially inside the disconti- 
nuity boundary may be calculated by the Filippov convex 
method as in [4]. Systems with multiple regions and DBs 
are treated in [13], where an extended equation for 
Filippov systems is described in order to deal with the 
intersection of several discontinuity surfaces. 

In Filippov systems, between iZ  and jZ  in the dis- 
continuity boundary, we assume that there is a region 

ij , which are a vector field of  dimension con- 
formed by three types of points: crossing C , sliding 

 and singular ( , and each one with subtypes. 
The scalar function  is used to determine the 
point type, according to the geometric condition of the 
vectors in the  point of analysis. Equation (3) de- 
scribes the geometric conditions of an sliding point. 
Equation (4) helps to determine which is the nature of the 
point, according to the value of  and the neighbor- 
ing vector fields at . 

Σ

( SΩ

1n−

)



(σ x

(Ω )
) )SOΩ

(σ x

x

)

x

( ) ( ) ( ) ( ) ( ){ }, , , ,x i x jH F H Fσ α=x x x x x α   (3) 

( )
( )( ) ( ) ( ) ( )( )

( )

, :

0

0 , 0

0

i j

C

SO x j i

S

H F F

σ

σ

σ

∈ Σ

Ω  >
Ω  = ∧ − =


Ω  <

x

x

x x x x

x

)

)

(4) 

Crossing points ( C , characterized by , 
are points which the evolution of the trajectory will not 
remain in the . Instead, it crosses from the region in 
which has been previously evolving to the other. 

Ω ( ) 0σ >x

DB

Singular sliding points , characterized by σ (x) 
= 0, are points having the associated vectors with the 
normal component 

( SOΩ

( ) ,x iH Fx  equal to 0. This is 
because the vectors are tangential to the DB or vanishes. 
At such points: a) i  and F jF  are tangent to the DB; b) 
either i  or F jF

F
 vanishes while the other is tangent to 

the DB; or c) i  and jF  vanish. To avoid the lack of 
definition of the Filippov solution for these points, in the 
examples, we adopt the methods presented in [14] which 
coincide with the topology of the normal forms VV, VI 
and II presented in [12]. 

Sliding points  are characterized by . 
When a sliding motion is presented in the discontinuity 
boundary, the Filippov method gives as a solution a tan- 
gent vector to the DB which is a convex combination 

, of the vector fields  and 

( SΩ

,i j∈ Σx  (Equation (5)). 

( ) ( ) ( ) (, , 1iG F Fα λ α λ α= + −x x x ),j        (5) 

( ) ( )
( ) ( ) ( )

, ,

, , ,

x j

x j i

H F

H F F

α
λ

α α
=

−

x x

x x x
         (6) 

λ  is a scalar function defined through the projections of 
the vector fields in the direction of the normal vector 

 to the discontinuity boundary. According to 
the direction of the normal components of the vectors, 
the sliding points are stable (or attractor) , or 
unstable (or repulsive) (Equation (7)). 

( )( x x )

)
)

H

( SSΩ
( SUΩ

( )( ) ( )( )
( )( ) ( )( ),

, 0 ,
:

, 0 ,

SS x i x j

i j

SU x i x j

H H
x

H H

Ω  > ∧ <∈ Σ 
Ω  < ∧ >

x F x F

x F x F

0

0

(7) 

From Equation (4) the crossing set is open but the 
sliding set is closed, it is the union of the sliding seg- 
ments, singular points and isolated or special sliding 
points. In this paper, the terms special points or isolated 
points refer to points whose neighbor points belong to a 
different class. 

Special points define important dynamics in the sliding 
segments of 2d systems or areas in 3D systems. These 
points are: a) Equilibria points, in which both vectors iF  
and jF  are attractive, transversal to the  and are at 
the end of two sliding segments pointing each other. b) 
Quasi-equilibria points with both vectors i  and 

DB

F jF  
attractive transversal or anti collinear and which are at 
the start of two sliding segments pointing away each 
other. The contrary case have also quasi equilibria points: 
repulsive, transversal points which are at the end of two 
sliding segments pointing each other. c) Boundary equi- 
libria points, in which one of the vector iF  or jF  
vanishes. d) Tangent points, in which one of the vectors 

iF  or jF  is tangent to the DB. [15] is done a more 
strict classification giving the characterization of 42 
types of points with the objective of differentiate topo- 
logies in order to detect bifurcations. 

3.3. Second Degree of Smoothness Systems 

The second degree of smoothness systems are represent- 
ed as variable structure systems having different dynam- 
ics in each zone or region. The dynamics of the system 
does not allow sliding or stops on the boundary zone, all 
points are crossing and hence, there is not a particular 
dynamics defined in the limit zone, instead there is a 
change of the region equations set. 

)

)

( ) 0σ <x

( ,G αx iF jF  at a point  

4. Sequences of Well Known Bifurcations 

In this and the following sections, we will present the 
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)

( ) (1 2 3
s s

G C C Cβ  =   )s            (11) cycles of the most referenced sliding bifurcations as se- 
quences of elements. In each cycle are presented the con- 
stituent elements assuming that its presence was detected, 
in the same order, in the evolution of a dynamical system. 
In next equations the symbol  is used to represent 
segments composed by the same type of point. Arrows 
indicate the direction of the sliding segments related to 
the DB. 

Φ

Impact systems also present grazing bifurcations. An 
orbit that is evolving in a region, due to a change in a 
parameter, makes contact with a boundary in only one 
point. This point has approximation speed equal to zero. 
Consequently, the bouncing speed is also zero. If the 
physical parameter continues changing, the approxima- 
tion and rebound points separate. The corresponding cy- 
cles are: 4.1. Grazing Bifurcation 

The Grazing Bifurcation ( s
Gβ  occurs in the following 

sequence of changes. First, there is an orbit of a limit 
cycle 1  evolving in only one of the regions  or , 
without hitting the boundary, as shown in Figure 1(a). 

C i j
( )

( ) ( )

1

2

3

Ò

Ò

Ò

i

i
i I

i
i I I

C

C

C

+−

+ −

= Φ

= Φ Ω

= Φ Ω Ω

         (12) 

1 ÒiC = Φ                  (8) 
4.2. Switching Bifurcation 

Then, when the parameter  changes, for example, 
from 1  to 2 , the cycle grows or moves toward the 
discontinuity and has a tangent contact with the last point 
of a sliding segment 

α
α α

( )
s
+Ω . The structure presented cor- 

responds to a  type cycle. 2
s C

The sequence of changes for a Switching Bifurcation 
( s

S )β  is as follows: the sliding piece of a limit cycle of 
type 3  grows until it reaches the first point  of 
the sliding segment. See Figure 1(d). The type of struc- 
ture presented, corresponds to a cycle 4 . In general, 
the second cycle always characterizes the bifurcation 
type and it is only presented for one value of the para- 
meter or a very narrow range in the numerical calculation 
terms. 

S C ( )
S
−Ω

s C( )
2 Òs

i sC += Φ Ω              (9) 

Subsequently, as the parameter is moved further, the 
limit cycle changes again as is depicted in Figure 1(c). 
The structure presented corresponds to a  type cycle. 3

s C
( ) ( )

4 Òs
i s s sC − →= Φ Ω Φ Ω( )

3 Òs
i s sC +→= Φ Φ Ω           (10) 

+        (13) 

With a further change in the parameter, the orbit has 
now three segments: two of them, i  and Φ jΦ  are in 
two different regions separated by the discontinuity bound- 
ary, and the third piece is on the sliding region moving to 
the right. See Figure 1(e). The structure presented cor- 
responds to a  type cycle. 5

s C

The orbit of the limit cycle 3  has now two differ- 
ent pieces: one without touching the discontinuity bound- 
ary and the other one, corresponding to a sliding segment 

s C

s
→Φ  that starts in any intermediate point of the discon- 

tinuity and ends at a tangent point ( )
s
+Ω . The equation 

describing the sequence of cycles is: 
 

 

Figure 1. Grazing (a)-(c), Switching (c)-(e) and Crossing (e)-(g) bifurcations. 
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( )

,5 Ò
i j

s
i C j s sC +→= Φ Ω Φ Φ Ω        (14) 

The equation describing the sequence of cycles is: 

( ) (3 4 5
s s s s

S C C Cβ  =   )

)

           (15) 

4.3. Crossing Bifurcation 

A Crossing Bifurcation ( s
Cβ  occurs when the sliding 

piece of a cycle 5  gets smaller and smaller. At a 
parameter value 6 , the piece of trajectory 

S C
α jΦ  hits the 

sliding region just at the last point of the sliding segment 
( )
s
+Ω . See Figure 1(f). The structure presented corre- 

sponds to a  type cycle. 6
s C

( )
,6 Ò

i j

s
i C j sC += Φ Ω Φ Ω        (16) 

As the parameter further changes at some value 7 , 
the limit cycle has now two pieces without sliding. The 
structure presented corresponds to a  type cycle. 

α

7
s C

, ,7 Ò
i j j ii C j CC = Φ Ω Φ Ω        (17) 

The equation describing the sequence of cycles is: 

( ) (5 6 7
s s s s

C C C Cβ  =   )         (18) 

4.4. Adding or Multisliding Bifurcation 

The sequence of changes for the Adding or Multisliding 
bifurcation is related to the addition or destruction of a 
second sliding segment in the discontinuity boundary as 
is described in [12]. Other sliding bifurcations recently 
reported are those including more than two discontinuity 
boundaries that are moving due to variations of a para- 
meter. Those ones were introduced in [8] using an exam- 
ple. 

5. The Implementation of the Sequences as a 
Method of Comparison 

Next we will describe the tool which were developed to 
get the results obtained in the previous section. Addi- 
tional to the numerical integrator, there are some data- 
bases, procedures and methods running in parallel. They 
perform the evaluation of information collected previ- 
ously, and the information acquired in real time, when 
the system is evolving. These tools are: 

5.1. Collection of Points 

The collection of the values of the points is done in a 
vector, called vector of states. The new point includes the 
values of the states, the amount of time since the 
integration started and the data of the vector fields 
involved in the dynamics. As shown in Figure 2(a), after 
each iteration of the numerical integration, one point is 
added to the vector of states and the graphic of the space  

states. 

5.2. Database of Point Characteristics 

Each point, additional to the characterization given by 
the states is classified by the region or DB it belongs. The 
orientation of the two vector fields for points in the DB 
determines types as anticollinear, transversal, tangent, 
also the attractiveness or repulsiveness and the direction 
relative to the DB. The magnitude of the vectors might 
tend to zero. The Equation (4) determines if is a crossing 
or sliding point. Finally the Equation (1), that represents 
its dynamics indicates if is an impact point. All points 
and their characteristics are listed in a 2 × 2 array called 
matrix of points, where the first column is the list of 
points and each row are the list of attributes that each 
point should to fulfill [15]. Other points presenting them- 
selves in the evolution belonging only to one region, are 
the nodes and focus, stable and unstable. 

5.3. Recognition of Points 

From the states of the points and vector fields involved, 
secondary information is estimated. For a point in the DB 
it is evaluated if it is impacting or normal. Then it is 
evaluated if the point is crossing or sliding. If a point is 
crossing, it is evaluated to which vector field the evolu- 
tion will move. The evolution of sliding points has direc- 
tion tangent to the DB, spanning 42 possible subtypes 
[15]. Summarizing, each point should match all attributes 
listed in a row of the point matrix. The detected points 
are stored in vector of elements (Figure 3). 
• While the vector of elements is being filled out other 

functions are debugging the information. Each point 
in a cell of the vector of elements is compared with 
the point that was met immediately before. Data of 
points having equal identity are removed from the 
vector. Instead, the repetition of points turns the first 
point in the repetition into a piece of curve of the 
same type. This procedure is carried out with the 
objective of avoiding a situation in which the vector 
is filled or saturated with the same data. 

• While picking elements for the matrix, events with 
wrong result can be found and should be corrected. 
For example, it is impossible to accept the sequence 

i jΦ Φ∕  because implies a change of region iZ  to 

jZ . In the change, a crossing point must be found, 
and an admissible sequence would be i j . 
Thus, a function to correct the sequences of elements 
is necessary. In [16] are listed 51 rules to correct 
errors. 

ijΦ Ω Φ∕ ∕

5.4. Database of Cycle Elements 

Each cycle as presented in the previous section, has a set 
of elements which could be points or segments of points.  
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Figure 2. Implementation of Cycle Bifurcation. (a) Process of filling the vector with elements appearing in the numeric 
integration; (b) Searching process for a specific cycle; (c) Cycle tracking process for bifurcations detection; (d) Cycle 
continuation process. 

 
The order of the elements also determines the cycle. In 
order to have a wider data base all papers in the literature 
should be analyzed and the cycles presented must be 
converted in sequences of elements. The information is 
stored in a bidimensional array, called matrix of cycles, 
in which each row are the identities of the elements of a 
cycle. 

5.5. Comparison of Cycles 

In this step the comparison between the matrix of cycles 
and the vector of elements is performed. We wish to 
know whether inside the vector of elements there exists a 
sub-vector of consecutive and ordered elements that 
matches with some row of the matrix of cycles. The se- 
quence in the appearance of cycles (and other dynamics) 
in this step is recorded in a vector called vector of cycles. 
The result in the vector of cycles, for a given set of pa- 
rameters, admits the presence of a) equilibrium points, b) 
limit cycles, and c) chaotic behavior. For time-varying 
parameters, the system evolution might be a sequence 

of n cycle types, whose order is dictated by the system 
nature (Figures 2(b) and (c)). 

To prevent that a repetition of a cycle be mistaken as a 
single cycle, a function running in parallel with the inte- 
grator performs the evaluation and the correction. When 
a sub-sequence of the vector of elements, beginning in 
the position 1 , is equal to the sub-sequence beginning 
in the position 2 1

nb

jnb nb l= +  and jl  is the number of 
elements of the cycle, it is concluded that a cycle is 
repeating. A cycle is completed when a sequence of 
elements is continuously repeated and the time Γ  to 
repeat becomes constant. Let us assume, as illustration, a 
sequence with a grazing cycle s . After some 
time , the matrix of elements would contain a cycle 
with the sequence , which 
is not correct. 

( )+

Φ Ω ∕

iΦ Ω∕

( )
i s

+ +∕
3Γ

( )
i sΦ Ω∕ ∕ ( )

i sΦ Ω∕ +

If the search is for a specific cycle, the procedure is 
slightly different. In this case, the number of elements in 
the cycle under consideration is a date and then it is 
reserved the same amount of cells to store the elements 
during the integration process. When a new element  
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Figure 3. General method of comparison of sequences of cycles and bifurcations. 
 

appears, a comparison is carried out until all the elements 
of the stored cycle are identical to the elements that are 
picked up from the integration (Figure 2(b)). 

5.6. Change in Parameter and Storing of Cycles 

When a cycle is already stored in vector of cycles and it 
is continuously repeating, a programmed disturbance is 
introduced in a physical parameter, to continue searching 
the bifurcations. The previous processes are repeated, 
and recorded in vector of cycles. 

5.7. Database of Cycles Sequence 

Each bifurcation is constituted by three ordered cycles, 
the first and third are presented for a wide range of the 
parameter but the second is only presented for a value of 
the parameter. The information of the bifurcations is then 
stored in a bidimensional array, called matrix of bifur- 
cations, in which each row are the identities of the three 
cycles of the bifurcation. 

5.8. Comparison of Cycles Sequence 

The objective of the comparison is to identify if inside 
the vector of cycles there is a sub-vector of three con- 

secutive and ordered cycles which matches a row of the 
bifurcation matrix (Figure 2(c)). Here we are looking for 
a specific sequence that corresponds to a known bifurca- 
tion. To achieve this, a double comparison must be per- 
formed: the first part is the comparison of elements that 
forms cycles, and the other part is referred to the com- 
parison of the behavior of cycles in a specific sequence, 
until a full match is detected. When the phenomenon is 
poorly understood, the comparison could be used to iden- 
tify sequences of cycles which occur when a parameter is 
modified within a range. For this purpose, the integrator 
uses the vector of cycles to store information regarding 
the cycles which have been found during the time that 
the method has been active. Each time the integrator de- 
tects a repeated sequence of elements, stores the infor- 
mation of the cycle, and changes the parameter value in 
order to continue with the next identification. 

5.9. Continuation 

To continue a bifurcation the parameters are adjusted 
corresponding to the central cycle of a previously de- 
tected bifurcation. Next, two additional parameters are 
slightly changed as per the rules of continuation. The 
first parameter is disturbed and the second changes ac- 
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cordingly, to keep the dynamics of the central cycle. This 
controlled disturbance of the two parameters is repeated, 
such that it determines a trajectory in a continuation-plot. 
The change of parameters could be done using methods 
like predictor-corrector described in [17] or [18]. In this 
cases, the predictive function is the cycle that generates 
the bifurcation, and the previous and posterior cycles to 
the bifurcation are used for correction. 

Figure 2(d) shows an example of how is used the 
method of comparison. The first step is a sensibility 
analysis that indicates to which cycle, the system evolves 
when the parameters are increased or decreased. For 
example, the bifurcation 2  has a sequence of cycles 

5 . Assume that a direct proportional 
sensibility exists for parameter 1 . This implies that a 
small increment in the parameter value tends to change 
the cycle into  and a small decrement tends to change 
the cycle into 3 . Changing 1 , the cycle 4  is 
obtained. Then, the second parameter 2  is decreased 
(in this case the initial point has a high value). After the 
change in parameter 2 , the cycle 4  changes to 

3  or to 5 . In the first case, the continuation algo- 
rithm increases 1  until the cycle type 4  is found 
again. In the second case, the algorithm acts conversely. 
The process is continuously iterated until the prescribed 
final value of parameter  is reached. 
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Two objectives of an application for automatic bifur- 
cation detection are: 1) to perform the detection task 
without a close supervision; and 2) to track bifurcations 
through continuation. The procedures developed here can 
be used to achieve these goals. 

6. Conclusions 

This article presents an alternative method for detecting 
bifurcations of limit cycles in non-smooth systems. We 
focused on complex systems, which defy boundary-value 
methods. The comparison method, reported in this article, 
is not intended to focus in the same achievements of 
other methods. Instead, it addresses open issues left by 
them, such as multiple sliding segments and discontinu- 
ity boundaries (DB). The comparison method differs 
from other approaches in the identification and manipu- 
lation of the system information. While the methods in 
[10,11] consider a system as one entity to be solved by a 
group of equations, the comparison method uses previ- 
ously collected information in a data base of points, cy- 
cles and bifurcations. This information allows compari- 
sons and decision making. To enable the method for 
non-smooth systems, the cases when the evolution 
crosses the DBs of systems having simultaneously the 
three degrees of smoothness (impact, Filippov and first 
derivative discontinuities) was analyzed. To achieve the 
goal was used the method that characterizes and records 

the elements comprising the cycles in the order they ap- 
pear in the integration process. The cycles were charac- 
terized as sequences of elements (points and segments). 
It must be noticed that the sequence of cycles has the 
topological changes (e.g. bifurcations) implicit. Some of 
the types of data considered as topological characteristic 
and collected during the evolution are: a) number of ele- 
ments of the cycle; b) order in which the cycle elements 
are generated; c) position of the sliding elements in the 
sequence of cycle generation; d) way (e.g. extreme or 
interior) in which the cycle reaches and leaves the sliding 
segment; e) discontinuity boundary to which the element 
belongs; f) direction (CW, CCW) in which the cycle 
evolves. In this article we also report a textual notation to 
describe the elements of the cycles. The comparison 
method is also able to handle continuation of sliding 
bifurcations. 

The method of comparison could be implemented us- 
ing tools of the sequence theory, suffix-trees and string- 
matching, which offer procedures to drive a large number 
of elements and allow us to discriminate subsets with low 
computing time investment. The procedure of compari- 
son fulfills the two tasks required by an application for 
automatic bifurcations detection: perform the detection 
task without a closed supervision and track bifurcations 
through continuation. 
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