
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague March 7, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: CMS for the CTU navigator

 Student: Jan Kodera

 Supervisor: Ing. Jiří Chludil

 Study Programme: Informatics

 Study Branch: Information Systems and Management

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2017/18

Instructions

The goal of the thesis is the implementation of a Content Management System (CMS) for the CTU
Navigator based on open-source ModX. The primary goal is to provide administration of map schemes,
routes, waypoints, and panoramatic views.
1. Analyze
- the conversion of walls, rooms, and suggested waypoints from bitmap formats (jpg, png) to the vector
format (svg) and extraction of map schemes,
- filtering useless curves in extracted schemes,
- creating use case spec., domain/class diagram, FURPS.
2. Design
- a data structure and API for mobile clients,
- a GUI for defined user roles - system admin., content admin.,
- an API for mobile clients (clients work offline),
- an adaptor for 3-side services (Google Cal., OpenStreetMaps),
- an administration GUI of buildings (floors, routes, walls, points).
3. Implement
 - the API for mobile clients,
 - the GUI for map administration,
 - the GUI for sending push notifications.
4. Perform appropriate tests - GUI, system performance, etc.

References

Will be provided by the supervisor.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital Library of the Czech Technical University in Prague

https://core.ac.uk/display/81647804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

CTU Navigator III - Backend

Jan Kodera

Supervisor: Ing. Jǐŕı Chludil

3rd January 2017

Acknowledgements

I would like to thank my supervisor Jǐŕı Chludil for advice and guidance
when writing my thesis and my consultant Michal Maněna for help during
its implementation and for mediation of team meetings. I would also like
to thank the rest of the team around the CTU Navigator project, Stanislav
Mikeš, Jakub Homolka, Peter Janička and Jevheniy Horvát for making this
project happen. Finally I would like to thank my family for their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on 3rd January 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Jan Kodera. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kodera, Jan. CTU Navigator III - Backend. Bachelor’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2017.

Abstrakt

Tato bakalářská práce je zaměřena na problematiku návrhu a implementace
serverové části informačńıho systému ČVUT Navigator. Systém je navržen
pro podporu navigace uvnitř budov a uzavřených kampus̊u, s ćılem prvotńıho
nasazeńı v rámci ČVUT pro usnadněńı nalezeńı učeben ČVUT studenty pouze
základě kódových označeńı těchto mı́stnost́ı. Součást́ı práce jsou metody
a nástroje pro převedeńı plán̊u budov do mapových formát̊u, tvorba nav-
igačńıch graf̊u nad nimi a předáńı baĺıčku těchto dat mobilńım aplikaćım v
rámci dokumentovaného API. Systém také podporuje kontrolu př́ıstupových
práv k úpravám dat. Celé řešeńı je integrováno za použit́ı PHP frameworku
MODX.

Kĺıčová slova Indoor navigace, Konverze obrázk̊u do mapových formát̊u,
Navigačńı graf, Správa př́ıstupových práv, Informačńı systém

ix

Abstract

This bachelors thesis deals with server side of CTU Navigator information
system. The system is designed for navigation inside buildings and closed
campuses. It primarily aims at helping CTU students locating classrooms
while having only the classroom ID. The thesis consists of methods and tools
for converting building floor plans into map formats, using them for building
navigation graphs and transferring these data packages to mobile applications
via a documented API, as well as integrating data administration and user
and access control. The whole solution builds on the MODX PHP framework.

Keywords Indoor navigation, Conversion of images into map formats, Nav-
igation graph, Access rights management, Information system

x

Contents

Introduction 1

1 State-of-the-art 3
1.1 Indoor navigation . 3
1.2 Old CTU Navigator problems 4

2 Analysis and design 7
2.1 Map data and client needs . 7
2.2 MODX CMS . 8
2.3 Navigation graph . 11
2.4 Images to map . 13
2.5 Third-party integration . 23
2.6 Licensing . 26
2.7 MODX structure design . 28
2.8 Workflows and diagrams . 30
2.9 FURPS . 31

3 Realization 35
3.1 Development environment . 35
3.2 wayEdit navigation graph editor 35
3.3 svgGeo conversion applet . 37
3.4 Push notifications . 38
3.5 Testing . 40
3.6 Documentation . 42

Conclusion 43

Bibliography 45

A Glossary 49

xi

B Contents of enclosed CD 51

xii

List of Figures

2.1 Example: Navigation graph, internal form. 12
2.2 Transformations . 20
2.3 Structure of the data update package 30
2.4 Workflow diagram: preparing map for production 31
2.5 Workflow diagram: Client update 32
2.6 Class diagram: JavaScript applets 33

3.1 wayEdit integrated into MODX Manager 37
3.2 svgGeo applet appearance . 38
3.3 svgGeo testing scenario . 40
3.4 wayEdit testing scenario . 40
3.5 One of API functional tests written in Go 41

xiii

Introduction

Every one of us has once found themselves in unfamiliar surroundings, trying
to find a place they have never been to before. This task was traditionally
solved using paper maps and other “mechanical” tools but with the rise of
electronic devices and software solutions another set of helping gadgets, called
navigators and later smartphones, emerged. These greatly eased the men-
tioned navigation problem, yet almost all of them deal only with outdoor
spaces, urban streets and country areas. Very few tools help with navigation
in larger indoor complexes of closed buildings and/or whole campuses, such as
hospitals, schools, government or corporate. This already not too simple effort
is made even harder by the fact that most localization technologies, on which
all but a few electronic devices for outdoor navigation are built on, such as
GPS, do not work in closed spaces, corridors and rooms. New CTU students
often reach the conundrum of being provided a room code of a classroom in
which their next lesson will take place and have to reach it in relatively short
amount of time. Even with older students’ assistance it is often difficult to
find the target room due to the sheer amount of buildings, floors, and rooms
split in several locations which are often designated just by their building and
room numbers. This complexity makes them nearly impossible to navigate
without a lot of guesswork, luck or inside knowledge. Solving this problem
was a goal of team assembled around the CTU Navigator project, an informa-
tion system designed to provide path tracing and navigation in both indoor
and outdoor locations of the school campus. Within this thesis I had worked
on the project’s backend, which handles conversion of floor plans into map file
formats, supports creation of navigation graph on top of them and provides
several types of other helper metadata to the mobile apps. Other members
of the team were Stanislav Mikeš performing project management and build-
ing Windows 10 Mobile app, Jakub Homolka analyzing the problem domain,
Peter Janička working on pathing algorithms and Android mobile app and
Jevhenij Horvat handling the corresponding web client.

1

Chapter 1
State-of-the-art

1.1 Indoor navigation

Navigation systems, as we know them today, started in military setting [1]. In
1973, during the bloom of the Cold War between the USA and Soviet Union,
US military needed a new way to navigate military units and technologies
across foreign spaces. Concurrent navigation methods were lacking in several
aspects, for instance they were not very precise and relied on good weather.
This and the nuclear threat race provided justification to fund new and fairly
costly pioneer technologies based on determining receiver location using a
radio signal received from a set of space satellites. This is how the Global
Positioning System, which is mostly known by its acronym GPS, was born.
This system, later released for civilians use, works using a set of 33 satellites
orbiting Earth and transmitting radio signal at high frequencies. The sig-
nal, carrying digitally coded transmission time and satellite position at the
moment of dispatch, is used to calculate the receiver’s location on Earth’s
surface. This localization system is fairly reliable and is being successfully
used in many areas ranging from military applications through outdoor nav-
igation and clock synchronization (with error in magnitude of hundreds of
nanoseconds [2]) all the way to radio occultation [3] and tectonics [4] and was
built upon and improved in several other next generation navigation systems,
such as Russian GLONAS or European Galileo [1]. The two microwave radio
frequencies used by GPS at 1.57542 GHz and 1.2276 GHz have however one
very important disadvantage: they require fairly clear view of the sky, since
they absorb very well onto a lot substances and materials, which means the
technology cannot be used very well indoors. Prototypes of other localization
technologies exist but a lot of them either have the same problem as GPS, re-
quire hardware support being integrated into the building, are not precise, or
are currently in early stages of development. Another fact that must be taken
into consideration is that logically most indoor spaces are fairly small and
trying to use navigation tools in them may be somewhat counterproductive

3

1. State-of-the-art

as opposed to a bit of deduction and/or brute force search. These two reasons
lead to the fact that there are very few systems available for navigation in
indoor locations. However, some places, like the CTU Dejvice complex, can
cause a lot of headache due to their maze-like architecture and their visitors
may welcome tools that would help them finding their destination located in-
side. Some pioneering indoor navigation systems might be deployed for such
use, however during my research I have found only commercial solutions that
are targeted at large deployments and may require significant investment to
implement; none of them open solutions readily usable in public places such
as schools and hospitals.

1.2 Old CTU Navigator problems

Inside CTU, a long-running project is being worked on that aims to fill this
vacant spot. This project, called the CTU Navigator, has already had two
previous versions. The first version is based on dissertation of student Ondřej
Čermák [5], who designed its client-server architecture. The second version
was subsequently developed by an entire team of students who built upon
the first version. These previous versions were designed to trace paths to
desired rooms and were prepared for extensions that would make traversing
these paths easier, however all ran into various fundamental roadblocks which
averted their production use. The second version of CTU Navigator for exam-
ple ran into problems with non-working server part and our team consultant
Michal Maněna has also pointed out that it used raster images for its map grid,
which introduced severe problems during its deployment. Raster images have
the unfavorable disadvantage of having relatively large size when to be used
in smartphone software. This combined with the design decision to support
offline mode on mobile client apps integrated within the system meant that
the target smartphones would have to download and keep packs of around 300
megabytes of various data and images, making the whole solution unsuitable
for any practical use.

There are two immediately obvious solutions to this problematic design.
One is to make the applications always on and continuously download map
tiles similarly to how outdoor navigation systems like Google Maps work [6],
or reduce the images in size in some way, such as converting these map im-
ages into vector formats that are usually smaller in size and then even further
compressing them. The first way of continuous connection has two problems.
First, it results into strain on potential user’s mobile data plan, which may
deter certain target audience from using the system. Second, mobile data con-
nection may not be available in some deployments, especially inside concrete
complexes without accessible WiFi connection. These two problems make the
second approach to solving mentioned problem by reducing size of the map
images a more viable solution.

4

1.2. Old CTU Navigator problems

All these circumstances led to the development of third version of the
CTU Navigator project, on which I participate as a member responsible for
the backend part and which my thesis is focused on.

5

Chapter 2
Analysis and design

2.1 Map data and client needs

As mentioned in previous chapter, preceding versions of the project already
tried few unsuccessful design approaches. These undeployable prototypes have
however led to formulating several new requirements for the next version, two
of them being

(a) the client must have access to full offline data pack containing all nec-
essary files required for full navigation function,

(b) map data must be supplied in compressed or vector map format, such
as GeoJSON, to reduce their size.

The required map file format types are governed by available software on client
platforms and were laid out by responsible team members.

Windows Phone and web For Windows Phone and web clients, Stanislav
Mikeš and Jevhenij Horvat have in tandem chosen the OpenLayers v.3 library
[7] [8]. This library can handle number of map file formats, from which we have
decided to use the GeoJSON format known for its simplicity and widespread
use.

Android Peter Janička has based the Android app client on a library called
MapsForge, which mandates that the maps are provided in its own specific
format. I have tried to locate available methods to convert data into this
format, however there seems to be only one way to do that (apart from writing
my own utility): OpenStreetMap project’s Osmosis tool (hereinafter referred
to as OSM Osmosis) in conjunction with the MapsForge Map Writer plugin.
OSM Osmosis is a command-line utility developed under the OpenStreetMap
project designed for processing various types of the project’s data, mostly
maps and databases. It has modular and pluggable architecture, into which

7

2. Analysis and design

the MapsForge Map Writer plugin is integrated. The plugin is part of the
MapsForge library, benefiting from OSM Osmosis map handling routines to
convert various map file formats into the MapsForge project’s own map format.

Osmosis being a command-line java utility precludes any easy integration
with the MODX framework due to different types of their underlying tech-
nologies. One way to run the conversion would require outside calls from
MODX (and thus PHP) to the operating system shell, which has traditionally
been a dangerous endeavor from security standpoint. Another way would be
running it from within an operating system-specific time-based job scheduler
or filesystem watcher, such as Cron on Unix-like operating systems. Since
both methods are equivalent in their result and since this is a decision that
a system administrator deploying the software would be more competent to
answer, I have left it unresolved.

Due to mentioned problems I have decided to convert all input map images
into GeoJSON first and base all of my following work on this format.

2.2 MODX CMS

One of my tasks was to build the server backend part upon the Content
Management System (CMS) software called MODX [9]. This CMS contains
variety of features focusing but not limited to administration of content, user
management, access control and others. It consists of two parts, runtime part
handling presentation of stored data to potential users and administration GUI
part called the Manager designed for management of most of its features and
content. The whole CMS is designed mainly for deployment and management
of semi-static web pages and web portals, less so for development of HTTP
APIs, which was a large part of my work on the CTU Navigator backend.

2.2.1 Data structure

Resources The CMS uses fragments of text, called Resources, which are
intended to contain most of dynamic content and which can be made public
and directly accessible by clients via the HTTP protocol. The contained text
may be anything but most of it is expected to be HTML as the prepared
wrapping template for injecting standard HTML header and footer suggest.
When a page is requested via HTTP request, a process is started which injects
various fragments of data into the Resource’s text based on markup annota-
tions placed inside. These fragments of data are split into several types, called
Template Variables, Snippets and Chunks.

Template Variables The Template Variables are basically fragments of
data specific for given Resource. Each Template Variable has two selectable
display methods which govern how their content is rendered on different oc-
casions. The first one is Input, which defines how the data is displayed and

8

2.2. MODX CMS

edited in MODX administration interface and is, on the lowest level, just col-
lection of some HTML, CSS and JavaScript code. Second is Output that
consists of fragments of PHP code and defines how the data is rendered for
injecting into the generated Resource content. These Template Variables are
divided into categories called Templates and each Resource has exactly one
Template assigned.

Snippets The Resource content may be further augmented by Snippets,
which are actual PHP code fragments that are run during the content genera-
tion and produce most of the dynamic parts, for example current date or user
login name. Most of my API design and development is linked to working
with these Snippets.

Chunks Third type of injectable data are Chunks. Chunks are just strings
of plain text and mainly serve to produce different text versions for different
languages.

Plugins Last content entity built into MODX are Plugins. Plugins are
another chunks of PHP code but they do not interact with the content directly.
They are rather run using several system hooks that are triggered on various
system events such as saving a Resource definition, changing a Template,
clicking on one of the Manager’s administration menus, and many other.

Contexts To isolate logically different sets of its entities, MODX introduces
Contexts. Each Context is basically a separate tree containing any of the
previously mentioned MODX entities. Access rights may be also managed on
the Context level, making them ideal to create categories based on languages,
content versus API, site structure versus articles and so on.

Extras A completely separate MODX feature are Extras. These are collec-
tions of PHP, HTML, CSS, JavaScript and various other types of files that
have one purpose: to extend core MODX functionality. They usually do not
directly define content but rather help with its creation and transformations
and are deeply integrated into MODX architecture. Various Snippet, Chunk
and Plugin text editors, special input/output data formatters etc. fall into
this category.

Documentation The MODX website contains quite a lot of tutorials rang-
ing from simple introduction to administration to quite complex directions
targeted at helping with implementation of new Extras. These tutorials are
well organized but since the CMS developers seem to often change their parts
during its evolution, some of them are already outdated at the time of writing
this thesis and lead to non-working code. Extensive class reference can also be

9

2. Analysis and design

found but since it is automatically generated and a lot of the public routines
are not documented, it is severely limited and the routines still require quite
a lot of reverse engineering to find out what they actually do. Many of them
also seem to have no effect, making me speculate that they were deprecated
yet not removed.

Internal structure Internal MODX structure, how it preserves the data
and files and how it handles them is quite complicated in my opinion. Because
the main CMS’ goal is to ease management of content, all of the described
objects are kept in the database (including code Snippets), which is accessed
via an ORM mapper and which may be of one of several supported database
types. The ORM mapper is not very well documented and to circumvent it
is quite difficult due to inaccessible database connection parameters, which
makes storing data in MODX possible only via one of the described content
objects. These objects are stored into the database with a lot of extraneous
data, such as creation and modification timestamps, the object hierarchy and
others, causing a massive overhead when storing simple entities.

The CMS design does not seem to follow the Separation of mechanism and
policy principle. While this principle originates from development of operating
systems [10], it is easily applicable to almost any software development. It
states that support routines in software that are used to provide certain aspect
of its function, or mechanisms, should not directly dictate the process of how
they should be used, or policy. I quickly ran afoul of this during experiments
with implementation of my extensions to the CMS, when I tried to add code
for uploading maps from one of my applets onto the server. I found out that
to use MODX’ authentication and authorization routines, I had to define a lot
of new support classes sprinkled around several files. This is not a common
pattern as in a lot of other frameworks and libraries one usually only has to
add 2-3 lines of code to implement it. After the eighth implemented class, I
had to ditch that attempt due to lack of time and instead leave the upload up
to the user via default upload box in the Manager.

The Manager frontend is built upon a JavaScript framework designed for
creating responsive GUIs called Ext JS, which is quite massive in itself and has
steep learning curve. Integration of this framework into MODX violates the
separation principle as well, making creation of any new HTTP API endpoints
for use in the Manager very difficult and basically forcing any new developer
without enough time to reverse engineer the solution to instead make use
of the existing routines, accessible via the Ext JS. As mentioned above, the
framework has steep learning curve, so the whole process is not an easy task.

This, combined with lacking documentation, makes any development be-
yond simple use of MODX content entities quite a laborious chore.

10

2.3. Navigation graph

2.3 Navigation graph

2.3.1 Introduction

To facilitate navigation, providing only map data would be insufficient be-
cause they contain mostly entity data, such as placement of buildings etc.,
but seldom add information that can be used to actually plan walking route
and when they do, it tends to be incomplete.

Navigation thus requires an additional structure called the navigation
graph. For the backend part, I have named the graph’s vertices waypoints
and edges routes. I also needed a way to link positions of actual topograph-
ical entities, such as buildings, to the graph so when a user of one of the
system client applications searches for a way from his original point to a point
named “CTU FIT Elevator” the system can find out which waypoint is ac-
tually named as such. For this purpose I introduced a third entity type into
the graph to solve this problem. I have named it PoI, shorthand for Point
of Interest. The PoI is directly tied to a single waypoint and extends it with
additional information, such as identification name and foreign routes. The
graph must be split into several parts for administration reasons. Each part
usually represents a building floor or an outdoor campus area and the foreign
routes serve to sew them together by referencing two remote PoIs, each in a
different map.

When building the graph, one has to define all of the waypoints, routes
and PoIs. These are usually quite numerous for each graph part and doing it
in MODX is not an option as it would very quickly become unmanageable due
the sheer number of required entities. I have not found any existing solutions
that would help with this task, so I have after discussion with my consultant
decided to create a separate JavaScript applet for it that would store the
resulting graph as a JSON-encoded blob using MODX’ Template Variables.
The resulting graph would be then connected to other parts, actual buildings
and other geographical entities by its PoIs and foreign routes. I have named
this applet wayEdit for easy differentiation from other applications created
within this thesis.

2.3.2 Graph structure

As said, the navigation graph is to be stored and transferred in JSON format.
The graph has two forms: an internal form, in which it is split into sections
each bound to a specific map, and an external form, which consists of several
files each containing one entity type of the complete graph. These files are
packed into a zip archive and provided to a client upon a request. The internal
form is described below, the external form in chapter 2.7.5.

11

2. Analysis and design

{
"waypoints": [
[
14.394224882125854,
50.100796739834735

],
[
14.393130540847778,
50.10203546464578

],
[
14.388796091079712,
50.10416874895715

]
],
"routes": [
{
"points": [
1,
0

]
},
{
"points": [
2,
1

]
}

],
"pois": [
{
"point": 0,
"name": "Metro: Vı́tězné náměstı́",
"foreign": [
{
"map": "karlak",
"poi": "Metro: Karlovo náměstı́",
"cost": "3000"

}
]

},
{
"point": 2,
"name": "Stavebnı́ fakulta",
"foreign": []

}
]

}

Figure 2.1: Example: Navigation graph, internal form.
12

2.4. Images to map

2.3.2.1 Internal form

JSON file containing internal form of the navigation graph is shown in figure
2.1. All its entities are described below.

Waypoints The waypoints element contains a list of geographical coordi-
nates each defining a single waypoint.

Routes All routes between two waypoints both contained in the same graph
section are listed within the routes list. The routes have up to two children:
points containing two indices into the waypoints list and optionally cost giv-
ing the route cost in meters. If cost is absent, the route cost is automatically
calculated as Euclidean distance between its waypoints.

PoIs Finally the pois element contains list of Points of Interest. Each such
point contains several children:

point an index into the waypoints list
name a human readable name of the point
foreign a list of foreign routes

Each foreign route object has several children:

map an identifier of the other foreign route map
poi a name of Point of Interest identifying waypoint in map
cost route cost (mandatory for foreign routes)

2.4 Images to map

Most of the clients of the CTU Navigator project use various libraries that
allow them to load maps in one or more geo-related formats. As we need to
work not only with outdoor areas but also with indoor ones such as building
floors, we need to convert the related source materials at hand into these geo
formats. Sources currently at my disposal are digital architectural plans in
the PDF format. The conversion process consists of several steps:

1. Convert sources into digital images.

2. Convert these images into a predefined intermediate vector image for-
mat, such as SVG.

3. Perform cleanup to remove extraneous lines and other graphical arte-
facts.

13

2. Analysis and design

4. Find out the geographical coordinates of several reference points in the
image.

5. Convert the SVG image into desired geo-related format, such as GeoJ-
SON, using the reference points from previous step.

6. Post-convert the map from GeoJSON into several other needed map
formats as mandated by the client software.

The following sections focus on each of these steps separately.

2.4.1 Converting vector images

The input images may be supplied in any of number of formats that generally
fall into one of two categories: vector images and raster images. Translating
vector images into another intermediate vector format is fairly easy and there
are number of tools at hand that can be used for this task. I have for example
used the convert command of the ImageMagick project, which is a quite
versatile image conversion tool capable of handling several different formats.
Another tool I found suitable for this task is the Inkscape editor, which is
directly targeted at editing SVG images and is capable of importing handful
of other formats. These two are by no means an exhaustive list, there are many
more ways to convert vector images but since these cover most commonly used
formats, I leave it at that.

2.4.2 Converting raster images

Converting raster images into a vector format is way more difficult than con-
verting vector-to-vector or vector-to-raster due to their fundamental concep-
tual difference. The vector images define lines, rectangles, circles and other
geometrical objects by sets of mathematical equations that, when plotted onto
a two-dimensional plane, translate into the shape of these objects. Raster im-
ages on the other hand work directly with this resulting plane, by using a two-
dimensional matrix sample which they just compress in some implementation
defined way to reduce its size. This leads to the fact that vector-to-vector
conversion is fairly easy as it usually means just rewriting the mathematical
equations from one notation to another or approximating them by another
equation system native to the other format if that cannot accommodate the
original. Vector-to-raster is also fairly straightforward, as it is just plotting the
equations onto the two-dimensional point matrix. Raster-to-vector is however
an entirely different story.

As vector images comprise of mathematical equations that define various
geometrical objects, to convert raster images into vector one has to find equa-
tions that, when plotted, give at least similar look to the original. This is a
complex and difficult task that has fortunately been researched before. Several

14

2.4. Images to map

methods to trace edges in the raster image have been developed, one of them
is for example the Sobel filter [11], that when incorporated into an conversion
algorithm results in an vector image that resembles the raster original.

There are various tools that incorporate the Sobel filter or similar tech-
niques to convert raster images into vector formats. Most of them are, unfor-
tunately, either paid or online and those I have left out, paid tools because of
their price, online tools due to their unreliability: an offline utility will work
indefinitely but an online tool is dependent on its author’s or host’s support,
should they decide to take them down, they become unavailable to the general
public.

There are still several open tools for raster-to-vector conversion. First
notable one is the ImageTracer utility [12], available in Java or JavaScript
implementations. Another tool usable for this goal is Potrace [13], which
has been directly integrated into the aforementioned Inkscape editor in its
Path->TraceBitmap... command. The last free tool I found is WinTopo, a
paid tool that at the time of writing this thesis has a freely available freeware
version. All of these tools can convert into the SVG vector format.

An entirely outstanding approach to the conversion consists of using the
Inkscape editor to import the raster image as a reference, manually drawing
the vector representation over it and deleting the raster image afterwards.
This is a time consuming process and a live user has to perform this task but
it has at least two advantages. First, it also eliminates image cleanup. Second,
one can draw straight lines. This results in much better vector images than
most of the mentioned conversion tools produce as they smooth the traced
edges and may create curvy walls and similar problems. Converting the image
this way may be the most favourable approach for images of relatively simple
structures with a lot of background noise and extraneous objects.

2.4.3 Image cleanup

After the image has been converted to intermediary SVG, an image cleanup is
in order. Architectural plans depict many more objects than just walls, doors
and the like, they often include fire barriers, measurements, legends and other
unwanted items that clutter the image and often drastically increase size of
the resulting vector image. Raster-to-vector conversion methods often add up
to this by producing unwanted tracing artifacts. To clean these up, I have
thought of two methods.

First cleanup method automatically filters tags of the SVG format using
a script to find artifacts matching certain pattern and removes them. This
method is imperfect as it usually recognizes only certain artefact types defined
by the script author and their effectivity heavily depends on the conversion
tool used beforehand.

Second cleanup method consists of plain manual cleanup using an SVG
editor. I have tried this approach with the Inkscape editor and it provided

15

2. Analysis and design

good results, albeit taking a lot of time up to about two hours for larger and
more complex plans.

Most fruitful approach would probably be combining both methods by first
filtering the most common and most easily machine-recognizable artefacts and
automatically removing them and erasing less systematic artefacts manually
afterwards. When trying it out on architectural plan of the ground floor of
CTU New building, I was able to reduce its footprint from about 5 Mb to
about 200 Kb, a considerable decrease.

2.4.4 Fixing reference points geographically

Basically all image formats use coordinate systems arbitrarily defined dur-
ing the format conception. This is in direct contrast with most geo-related
formats, which usually use one of the well defined geographic coordinate sys-
tems, most commonly latitude, longitude and elevation. To convert from our
intermediary SVG into GeoJSON, we need to find out how their coordinate
systems compare and the translation, rotation, scaling, and skew parameters
needed to transform between them. To find these out, we need to set out
several reference points on the image and find out corresponding geographical
coordinates. The number of reference points depends on the used algorithm
and therefore by proxy on used software. I have not found any tool appro-
priate for this purpose that would be sufficient for my needs and so I had to
write my own. The resulting version uses exactly three reference points.

The three needed reference points may be located anywhere on the image
but they must not lie on a straight line and lines drawn between any two of
them should form as big an angle as possible to reduce conversion distortion.
To find out their geographic location, it is usually sufficient to place an accu-
rate GPS receiver at the place they depict. For this purpose one should choose
features that stand out both on the image and physically. Building corners
are usually good choice and they also commonly form an orthogonal grid.

2.4.5 Converting SVG to GeoJSON

I have found several utilities that already handle conversion from SVG to
GeoJSON, unfortunately each of them displays various deficiencies making
them unfit for my purpose. First such tool is the ogr2ogr command of the
GDAL library, however this command can convert only specially formed SVG
that has the geospatial data ingrained in its structure and thus cannot be used
for my needs. Another one I looked into is the dxf2kml online application,
which I had discarded because of its online nature (the reasons are the same
as mentioned in chapter 2.4.2). Last library I found for this task is aptly
named svg-to-geojson, however it uses only two reference points, meaning
it cannot handle skew properly and also these two points are fixed at upper-
left and lower-right corners of the image, which is not really convenient and

16

2.4. Images to map

may require recalculation using more suitably chosen ones, meaning it would
not significantly reduce the amount of needed work.

Because of described deficiencies and on account of relative simplicity of
SVG and GeoJSON, I have decided to implement another JavaScript applet for
this purpose. The applet would allow specifying three reference points needed
to calculate required translation, rotation, scaling, and skew matrices and
would directly perform the conversion. The JavaScript language was selected
for convenience, firstly because it simplifies GUI design and implementation
as several libraries exist that handle display of maps, secondly using the same
language as for wayEdit would allow me to share some code between the two
applets, thirdly all major browsers already have SVG parsers integrated and
fourthly they also contain parser and serializer for handling JSON.

I have named this SVG-to-GeoJSON converter svgGeo. The conversion
process is a multistep algorithm using fair amount of linear algebra, which is
described below in following section.

2.4.5.1 Structural differences

Both the SVG [14] and GeoJSON [15] are well standardized and widely used
formats. Both are structured into a tree of elements which makes conversion
from one to another fairly straightforward. There are only two significant
differences in what they can graphically and topographically represent. First
difference lies in the fact that GeoJSON does not work with color, while
SVG does. GeoJSON-formatted maps are usually after-colored by the display
software using additional property data embedded in its structure. These
additional properties are however not standardized and thus the coloring is
very specific to the rendering software and may differ from one map to another
or may be completely missing for some of them. SVG on the other hand
has full color support. The second difference is that GeoJSON works only
with straight lines, while SVG supports definition of circles and Bézier curves,
which are curves described by Bernstein polynomials [16]. Third notable point,
more a SVG specialty than a difference, is that the SVG can contain post-
processing spatial transformations which can successively transform parts of
or even whole image. The first structural difference does not matter much as
we can use the whole embedded source-specific property data to color outdoor
maps while indoor maps are so small that they do not need varied coloring to
make them readable, the second difference means that the circles and curves
must be approximated by implementation-defined count of straight lines. The
third SVG quirk in being able to post-transform the image meant more work to
implement these necessary features but having to analyze this feature proved
advantageous for me later on.

17

2. Analysis and design

2.4.5.2 Coordinate system differences

As has been hinted previously, the coordinate systems used by SVG and Geo-
JSON differ in several ways. First difference is in how their origin point is
defined. The origin point of SVG is more or less arbitrary and does not set
any strict boundaries since SVG coordinates can be negative and the whole
image can be post-transformed as mentioned in the previous section. On the
other hand GeoJSON does not have any such capabilities, so all of the SVG
coordinates must be processed to yield absolute values and those have to be
precisely translated afterwards. Second notable difference lies in the fact that
the GeoJSON coordinate axes are finitely bound with the same limits as lat-
itude and longitude, meaning that corresponding coordinates must fall into
[−90,+90] and [−180,+180] intervals respectively. Because SVG axes scale
infinitely, this leads to a necessity of also having to scale the coordinates by
some image-specific scalar value to make them fit into those bounds. Moreover
SVG Y and GeoJSON latitude axes have opposite orientation, so the sign of
all Y coordinates must be flipped during conversion.

Last important fact that should be noted is that the coordinates funda-
mentally differ in what they map onto. The SVG coordinate system is planar,
while GeoJSON coordinates naturally map onto an ellipsoid. Precisely con-
verting from one format to another would thus require a map projection and
fairly complex mathematical calculations that go hand in hand with it. Still,
the CTU Navigator system works with maps of fairly small areas, a single kilo-
meter in any direction at most. Maps of so small areas would suffer negligible
distortion if the conversion was greatly simplified into just linear transforma-
tions that would ignore the Earth’s ellipsoid nature, as between two planar
coordinate systems. This insignificant distortion cost finally led me to using
linear transformations as the basis of my conversion design.

2.4.5.3 Conversion steps

The conversion process from SVG to GeoJSON consists of several steps per-
formed in an order given partly logically and partly by chosen technologies.
The steps go as follows.

1. Parse input SVG file to yield structural elements.

2. Traverse the resulting tree, converting each element into a GeoJSON
feature with coordinates transformed to fit in GeoJSON’ geographic co-
ordinate system.

3. Render the resulting map in GUI and allow setup of the reference points.

4. Retrieve the reference points’ values and use them to calculate a matrix
representing necessary translate, rotate, scale, and skew operations.

18

2.4. Images to map

5. Multiply all GeoJSON coordinates acquired in step 2 with the transfor-
mation matrix.

6. Serialize the GeoJSON feature tree into output GeoJSON file.

2.4.5.4 The math

When analyzing and preparing the mathematical groundwork needed for cal-
culation of the transformation matrix, I have greatly benefited from analyzing
SVG transform operations beforehand. As I mentioned, the SVG specifica-
tion defines a series of transformation operations used to alter its image parts
before rendering. These operations, their matrices, and variables in order are:

Translation 1 0 x
0 1 y
0 0 1

Translation shifts all image point coordinates by fixed amount for each

axis. x represents shift distance along the X axis and y distance along the Y
axis.

Scaling x 0 0
0 y 0
0 0 1

When scaling, all coordinates are translated by progressive amount de-

pendent on their distance from the pivot point at (0, 0) and on two scaling
factors. Here x represents X coordinate scaling factor and y Y coordinate
scaling factor.

Rotation cosα − sinα 0
sinα cosα 0

0 0 1

Rotation uses the same pivot as scaling, rotating the image around it with

α representing the rotation angle.

Skew 1 tanα 0
0 1 0
0 0 1

 and

 1 0 0
tan β 1 0

0 0 1

Finally skew represents a skew operation along a specified axis. The shift

distance in given direction is dependent both on absolute value of the relevant

19

2. Analysis and design

coordinate and on skew angle. In the matrices above, α represents skewing
angle for skews along the X axis and β angle for skews along the Y axis.

Figure 2.2: Transformations

Depictions of all of the described transformation types may be found in
figure 2.2.

Transformation matrix calculation algorithm To produce the final
transformation matrix, we calculate each of the four operations using dif-
ferences of the reference points and their geographical positions. The three
reference points each play a strictly set role for the duration of the conversion,
yet they may be given those roles fairly arbitrarily at the start as long as the
conditions linked to their selection hold. The roles in question are that of
a pivot point, a scaling point and a skewing point, hereinafter referenced by
symbols A, B and C. Each point actually comprises of two, separate, posi-
tions, one in the image, one geographical. The image ones will have subscript i

and the geographical ones g. So all in all we will be working with six symbols:
Ai, Bi, Ci, Ag, Bg, Cg.

The algorithm based on analytic geometry that moves the image coordi-
nates to their geographical position is composed of following steps.

20

2.4. Images to map

1. Translate the image so that Ai = (0
0), or that the pivot point really

becomes the pivot for following transformations.

2. Rotate the image so that Bi = (n
0), n 6= 0, or that vector from the pivot

point to the scaling point lies on the X axis.

3. Skew the image along the X axis so that Ci and Bi form the same angle
as their geographical counterparts.

4. Scale X coordinates of the image so that X coordinate of Bi equals to
|Bg − Ag|, or that the vector from the pivot point to the scaling point
has same length as its geographical counterpart.

5. Scale Y coordinates of the image so that Y coordinate of Ci equals to
|Cg −Ag|, or that the skewing point has same distance from the X axis
as its geographical counterpart.

6. Rotate the image back so that the Bi and Bg have the same direction,
or that the image is rotated into its final geographical angle.

7. Translate the image so that Ai lies at Ag, or that it lies where it should
lie.

Translating this algorithm to a set of mathematical equations to produce
the transformation matrix yields

Ai =
(xai

yai
1

)
, Bi =

(xbi
ybi
1

)
, Ci =

(xci
yci
1

)

Ag =
(xag

yag

1

)
, Bg =

(
xbg
ybg

1

)
, Cg =

(xcg
ycg

1

)

Vstab =
(0

0
1

)
Vbai =

(xvbai
yvbai

1

)
= Bi −Ai + Vstab

Vbag =
(

xvbag
yvbag

1

)
= Bg −Ag + Vstab

αvbai = arctan(yvbai

xvbai
)

αvbag = arctan(yvbag

xvbag
)

These are vectors from pivot point to scaling points and their directions.
They can now be used to produce inverse rotation matrices that in turn can

21

2. Analysis and design

be used to rotate similarly produced skewing to pivot vectors. This has to be
done to get scaling factors so one can produce the scaling matrix.

MimgInvRotate =

cos(−αbai) − sin(−αbai) 0
sin(−αbai) cos(−αbai) 0

0 0 1

MgeoInvRotate =

cos(−αbag) − sin(−αbag) 0
sin(−αbag) cos(−αbag) 0

0 0 1

MgeoRotate =

cosαbag − sinαbag 0
sinαbag cosαbag 0

0 0 1

This produced the rotation matrices, the first two will be used to rotate

skewing vectors, the first and last one will be used to rotate the image to its
proper orientation.

Vcai =
(xvcai

yvcai
1

)
= (Ci −Ai + Vstab) ∗MimgInvRotate

Vcag =
(xvcag

yvcag

1

)
= (Cg −Ag + Vstab) ∗MimgInvRotate

Now the scaling and skewing vectors can be used to calculate the scaling
matrix.

sx = |Vbag|
|Vbai|

, sy = yvcag

yvcai

Mscale =

sx 0 0
0 sy 0
0 0 1

That is for the scaling matrix. We have to use it to scale the image skew

vector and then use difference of the image and geographic skew vectors to
give the image proper skew.

Vcai = Vcai ∗Mscale

fskew = xvcag − xvcag

yvcag

Mskew =

1 fskew 0
0 1 0
0 0 1

At this point the only thing that is missing are translation matrices, which

are pretty straightforward to create.

22

2.5. Third-party integration

MimgInvT ranslate =

1 0 −xai

0 1 −yai

0 0 1

MgeoT ranslate =

1 0 −xag

0 1 −yag

0 0 1

And now to put it together.

Mf = MgeoT ranslate∗MgeoRotate∗Mskew∗Mscale∗MimgInvRotate∗MimgInvT ranslate

Transformation The transformation matrix is used on the image simply
by multiplying all of the image points with it.

A =

x1
y1
1

B =

x2
y2
1

 = A ∗Mf

where A is the original point, B is the transformed point and Mf is the
previously calculated transformation matrix.

2.5 Third-party integration

I was also tasked with designing adaptors for integrating two third-party
projects into my code, namely the OpenStreetMap project and Google Calen-
dar. While the OpenStreetMap project integration was fairly straightforward,
integrating the Google Calendar was quite harder due to its completely dif-
ferent nature. Each project is analyzed in its own following section.

2.5.1 OpenStreetMap

2.5.1.1 Introduction

The OpenStreetMap project, accessible at url http://openstreetmap.org at
the time, is an open internet project shielded by the OpenStreetMap Founda-
tion that aims to create and maintain up-to-date world-wide map data acces-
sible under a free license. It is a fairly unique project since all other available
mapping projects are usually maintained for commercial purposes and pro-
vide their map data freely usually only for personal use. The project’s data is

23

http://openstreetmap.org

2. Analysis and design

kept and made accessible in several vector map formats including GeoJSON,
making the project ideal for integrating into the CTU Navigator project as
to provide for outdoor areas. The OpenStreetMap format also collects a lot
of different metadata about objects stored in its database. For example the
project discerns between highways, motorways, cycleways, pedestrian paths,
which motorways have sidewalks for pedestrians, etc. This also gives maps
coming from this project bonus value in that these metadata can be used
to automatically build segments of the navigation graph for supplied outdoor
areas, which only need minor finishing touches to be usable for full navigation.

2.5.1.2 Use cases

The project understandably only provides map data of outdoor areas due to
variety reasons. The outdoor maps managed by the CTU Navigator project
are expected to be comparatively few as opposed to interior ones, where every
building and every floor will probably have to have its own separate map
due to slight differences. The outdoor maps will however be mostly way
bigger, as can be glimpsed upon just by looking at the CTU Dejvice campus
in the OpenStreetMap website online viewer. The maps will be cached locally,
making retrievals from the OpenStreetMap few and far between as the outdoor
areas they depict usually seldom change.

2.5.1.3 Integration

The project does sport several APIs that allow access to the project’s data in
several ways depending on the intended use.

Editing API The lowest-level of these APIs is named OpenStreetMap Edit-
ing API. This RESTful API allows for fetching and saving raw data and is
intended to be used, as its name suggests, mainly for editing existing data or
loading new to the project. The map data is provided wrapped in an XML-
based format and is not suitable for use with most of existing map rendering
libraries or utilities without some serious reprocessing, making it unsuitable
for integration into the CTU Navigator backend.

Overpass API Another interface to the project is the Overpass API. This
is a read-only API built on a query language specific to it. The query language
is designed to allow fetching specific subset of OpenStreetMap data based on
several restricting criteria, such as location, object type, tag properties etc.

Third-party interfaces The project website also keeps track of quite a few
software libraries and utilities developed in various programming languages
and for various environments that cater for easy retrieval of the map data,

24

2.5. Third-party integration

either split into tiles or raw, and reprocessing them into a form suitable for
viewing.

Manual export Finally the project website allows for simple manual export
of small areas in GeoJSON format via its online viewer. These exported files
may then be directly loaded into the CMS and used.

Resolution After considering all of these options and intended usage, I have
decided not to create any bridge between the two projects and instead leave
it up to the user to export map segments via the OpenStreetMap website
online viewer and manually upload them as files via MODX Manager. This
should not represent any significant amount of work as the outdoor maps are
expected to be few and the need to update them should rarely arise due to
their nature. The maps are to be uploaded in the GeoJSON file format to a
specific folder in designated for them. This is the same folder into which the
indoor maps are to be uploaded and both types are afterwards handled in the
same way.

2.5.2 Events and Google Calendar

2.5.2.1 Introduction

The Google Calendar, available at https://calendar.google.com, is built to
aggregate descriptions of user-defined and third-party events, organize them
into weeks and months and serve them in a variety of ways to several types of
devices. It is for example directly embedded into the Android OS, with other
mobile platforms having glue code and/or applications to access its data and
incorporate it into their own time management applications.

2.5.2.2 Project’s purpose

What was not instantly clear was how to integrate the project with the CTU
Navigator backend, after all, the backend’s purpose is to provide navigation
and mapping data and serve them to its clients, a goal the Google Calendar
does not really fit into. However after a quick discussion with my consultant it
became clear that the backend was to become an all-around data aggregator
in the future and this project was to be the first step in this direction. The
school has all kinds of events going on, including promotion events, open
days, student organized events, public talks, and other. Several methods
used to keep a record of these are to be integrated into the backend and
their aggregated collection is to be provided to its users. Integrating Google
Calendar is a first step in this direction.

25

https://calendar.google.com

2. Analysis and design

2.5.2.3 Integration

The Calendar provides an API using HTTP and JSON to access its contents
via an authorization and access point token first retrieved using its web GUI.
Since the backend is supposed to provide the aggregated events data in an
iCal format as we agreed during one of our team meetings, it makes sense to
retrieve the events via the API and immediately compile and store it as an
iCal file, which can then be simply filtered and concatenated with other such
files to provide desired output. The internal mechanism to do so is described
in the section MODX structure design2.7.

2.6 Licensing

I use several third-party software libraries, tools and data in my work and
these are provided under variety of open and free licenses. These licenses
may preclude the use of resulting work or its parts from certain uses and/or
without special approach to its use. The libraries and tools and their licenses
in question are

1. MODX Framework, published under GNU General Public License ver-
sion 2.0 (GNU GPL 2.0) [17]

2. OSM Osmosis tool, placed in public domain

3. MapsForge Map Writer plugin for Osmosis, published under GNU Lesser
General Public License version 3.0 (LGPL 3.0) [18]

4. Leaflet JavaScript library, published under BSD 2-clause license [19]

5. OpenStreetMap project’s map data, available under Open Data Com-
mons Open Database License v1.0 [20]

Most of these licenses were analyzed under Czech Law by Matěj Myška et al.
under patronage of Masaryk University in Brno [21].

2.6.1 GNU General Public License 2.0

The GNU GPL 2.0 is a widespread license which allows software in question
to be used for any purpose, provided any modifications or anything that uses
parts of such software must be made available to public under the same license.
This is a fairly aggressive licensing that makes almost any linked work unsuit-
able for use in proprietary commercial solutions. In my case, I had to integrate
my WayEdit plugin into the MODX framework. While the plugin itself is an
applet written in HTML and JavaScript and does not integrate MODX code
in any way and thus may be licensed under any license compatible with the
BSD 2-clause license used by its Leaflet library base, the intermediary code

26

2.6. Licensing

integrating it to the framework does and as such I believe this code has to be
made public under the GPL 2.0 license if it is to be distributed.

2.6.2 GNU Lesser General Public License 3.0

From the same organization as the GNU GPL license comes its version specif-
ically targeted for use with libraries, called GNU Lesser General Public Li-
cense 3.0. It contains explicit clauses to allow such libraries to be used in
any project without enforcing the copyleft principle on its other parts as long
as that project does not modify or copy code of the LGPL licensed part in
any way. Since I employ the MapsForge Map Writer plugin, published under
this license, as is without any modifications, I believe this license would only
affect distribution outside school, in which case a documented way to find the
MapsForge Map Writer source and to replace it with another version would
have to be provided.

2.6.3 BSD 2-clause License

The BSD 2-clause license is a derived work of an ancient license devised by the
Computer Systems Research Group for use with their variation of Unix oper-
ating system, the Berkeley Software Distribution (BSD). It explicitly waives
all rights to the software as well as any accompanied responsibility. It only
requires the derived software to be supplied with this waiver. This makes it
suitable for use in almost any kind of commercial or free software and allows it
to be distributed under any kind of license, giving me a free hand to distribute
the wayEdit and svgGeo applets under almost any license I would choose.

2.6.4 Open Database License v1.0

Tailored specifically for openly shared databases, the Open Database License
aims to allow anybody to use any database licensed under it for any purpose,
be it non-commercial or commercial, as long as they adhere to several princi-
ples. These principles have in mind a goal similar for data as the GPL license
does for software, that is, any adapted version of such database that is pub-
licly used must be made available under the same license and if such original
or adapted database is to be redistributed, access to such redistribution may
be restricted as long as the same version is also made openly available with-
out any restrictions. Any public use of such licensed data must be attributed
as the license specifies and must retain any accompanied notices. What this
means is that the OpenStreetMap data provided under this license may be
freely used in the CTU Navigator project, as long as they are clearly marked
that they come from the OpenStreetMap project.

27

2. Analysis and design

2.6.5 Software in public domain

Last but not least placing software in public domain means waive of all rights
and responsibility to the software, without any conditions and, and this is
important, without giving any kind of license to its users. This is problematic
under the law of Czech Republic, since it does recognize such approach to the
rights to a work, translated in Czech language as ”volné d́ılo”, only under a
set of specific conditions, such as 70 years after the author’s death. To reach
similar effect the authors of the Osmosis tool would have to publish a special
type of license called ”free license for any use” to the general public, which
they did not do, meaning they still retain all their rights and responsibilities
to the software and could possibly try enforce those against any potential user
in court under Czech law or vice versa. This is however highly improbable,
since it would go directly against their original intent. I as a user of the
Osmosis tool benefit from the academic nature of this thesis, since the Czech
Copyright Act [22, article 35, point (3)] directly states that “Copyright is not
infringed by a school or school-related or educational establishment if they use
for teaching purposes or to meet their own internal needs a work created by
a pupil or student as a part of his school or educational assignments ensuing
from his legal relationship to his school or the school-related or educational
establishment (school work), provided that this is not done for the purpose of
any direct or indirect economic or commercial advantage.”. This gives me an
exception allowing me to use it for purposes of this work but in the case of
further distribution outside of academic grounds this factor should be taken
into consideration.

2.6.6 Making thesis’ code public

All code written by myself that requires special handling due to copyleft li-
censing of integrated code was accounted for in previous chapters. I am as
per our agreement handing all my ownership rights to the rest of the code to
my alma mater, Czech Technical University in Prague. There is however one
part that deserves special attention, the svgGeo conversion applet. Since I
have not found any sufficient alternative that could handle its tasks and since
I believe its purpose is generic enough to come handy outside of the CTU
Navigator project, I have after consultation it with my supervisor decided to
release it for public use under the BSD 2-clause license.

2.7 MODX structure design

2.7.1 Entities

Large amount of content managed in the backend requires careful planning of
its structure. I have decided to separate the content types into several Con-

28

2.7. MODX structure design

texts. First Context called API contains all of the dynamic API code, which
is closely described in a chapter below. Structural data, such as entities con-
taining parts of the navigation graph are held in Context named Structure.
Lastly all of the textual data, such as building and PoI descriptions, informa-
tion about school and others can be found in the Content Context.

2.7.2 API

The API Context holds all of the HTTP entry points via which clients retrieve
data from the backend. The entire API was designed by the team to allow
for differential updates. Its general outline of callable URL paths show in the
table below.

/version Data package version used to skip updates.
/info Initial information with list of languages.
/data-list List of files + fingerprints for incremental updates.
/update Data package serving a zip archive with requested files.

In-depth API documentation is stored on the enclosed CD.

2.7.3 Structure

Structure Context holds parts of the navigation graph and other necessary
data used to provide navigation. At its heart is a folder named Planes.
This folder contains MODX Resources expectably having a Template named
Plane. These resources each provide for various outdoor campus areas and
building floors and hold corresponding navigation graph parts. These parts
are stored in Template Variables bound to the Plane Template and Planes are
then referenced by the Content Context entities via another set of Template
Variables.

2.7.4 Content

In the Content Context lies a tree holding all textual information presented
to the user. This tree is split into separate directories each corresponding to
one provided language. When clients request data packages, they provide a
language URL query option which is used to select relevant directory.

2.7.5 Content zip

At client’s request a current or cached snapshot of all of the aforementioned
Contexts is melded into one big zip archive. This archive contains several
strictly defined files containing structural data and a variable file tree con-
taining the “Content” Context. Layout of the archive can be seen in figure
2.3.

29

2. Analysis and design

version.json..........package data version (same as /version API call)
info.json.....................basic information, contains language list
data-list.json.......................list of files and their fingerprints
buildings.json ... buildings list
planes.json outdoor area or building floor objects
waypoints.json..................... list of navigation graph waypoints
routes.json list of navigation graph routes
pois.json.................................list of navigation graph pois
assets..........................directory containing assorted data files

maps directory containing plane maps
..

images directory containing images
icons directory containing menu icons

..

Figure 2.3: Structure of the data update package

2.8 Workflows and diagrams

Handling the CTU Navigator backend is linked to several software and user
processes. This section describes some of them and provides few diagrams,
both for these workflows and a class diagram.

2.8.1 Workflows

Making a map usable Figure 2.4 illustrates the process of getting a map
from variety of expected input formats into production. It shows that im-
ages are much harder to put in any usable stable state, since they require
conversion, filtering and more.

Data package retrieval Client application has to perform several steps to
get or update its data package. This process is illustrated in figure 2.5. The
process allows for skipping if no relevant data have changed, both on package
and on file level. It also shows how each API entry point fits into this process.

2.8.2 Class diagram

There are two areas of code that would normally warrant class diagrams within
this thesis. One of them are the two JavaScript applets, wayEdit and svgGeo,
whose class diagram is shown in figure 2.6. They share a single one since they
also share fairly large amount of code. The other area that one would normally
expect would be structured in object oriented way and as such should have
a class diagram made for it would be the server HTTP API part, done in
MODX. This is however not true, since MODX Snippets are pasted into other

30

2.9. FURPS

Figure 2.4: Workflow diagram: preparing map for production

MODX Snippets and into background MODX code in unspecified ways and
PHP allows class and function definitions to be placed only at global scope.
What this means is for the Snippets not to be fragile they have to refrain
from using these two constructs and any complex code has to be structured
by using just the Snippets. Thus there are no classes to create class diagram
for in the HTTP API part.

2.9 FURPS

FURPS is an acronym that stands for Functionality, Usability, Reliability,
Performance and Supportability. It is a model used to classify functional
and non-functional requirements for a project. Since this thesis deals with
a software project, a lot of categories, mostly non-functional, are moot since
they are set out by used hardware and/or core technology, both of which are
out of my control or set out in the assignment. The functional requirements
were laid out by the thesis assignment and during team meetings by client
needs, which I described in previous chapters. To reiterate them:

31

2. Analysis and design

Figure 2.5: Workflow diagram: Client update

1. A way to convert images, such as building construction plans, into valid
maps in requested map formats, namely GeoJSON and MapsForge .map,
must be devised.

2. Administration GUI to handle content and navigation graph must be
designed.

3. The GUI must allow to control access to administration activities.

4. Google Calendar and OpenStreetMap projects have to be integrated into
the work.

5. Push notification support must be implemented.

32

2.9. FURPS

Figure 2.6: Class diagram: JavaScript applets

The only non-functional requirement that can be influenced by me in any
way is system performance. No hard requirement was given, the goal is for
the client applications to receive answers to queries in matter of seconds (sans
round trip time) to be responsive to the user. This is already fairly offset by
MODX, which is quite heavy-duty in this regard and consumes a lot of CPU
time on its own.

33

Chapter 3
Realization

3.1 Development environment

3.1.1 Developing JavaScript applets

For development of JavaScript-based and partly PHP-based code I have used
my standard development environment. This environment constitutes of the
Linux operating system with the Vim editor adapted for my editing needs, a
Git version control system for a separate repository set up for each component,
Python with a module called SimpleHTTPServer for testing JavaScript applets
during development and the Firefox browser for accessing remote MODX
development instance to which I was given access.

My only entry point allowing me to administer the remote MODX instance
it was the Manager, MODX’ own inbuilt administration interface. This proved
quite problematic as I did not have access to the PHP execution logs and other
operating system-specific debugging tools. My only source of debugging data
was MODX’ own Error Log, which contains very limited amount of informa-
tion mostly dealing with MODX specific exceptions and warnings and which
proved quite useless for any practical use.

3.2 wayEdit navigation graph editor

To implement the wayEdit applet I had to provide adequate environment in
which the user could see the navigation graph part and edit it on top of the map
it is tied to. I researched available solutions and found a number of libraries
for displaying maps. These libraries would require various amount of support
code to serve my needs. I have pinpointed two that were most readily available
for use named Leaflet and OpenLayers. They were most usable since they are
written in JavaScript and are thus integrable into MODX. The OpenLayers
library was later used by team members to cater for web client and Windows
Phone platform, I have however decided to use the Leaflet library since it was

35

3. Realization

used by the OpenStreetMap project for its web map display and was thus
guaranteed to work perfectly with outdoor maps as this project is integrated
into the backend to provide them.

3.2.1 The Leaflet library

The basic Leaflet library architecture is based on a single display HTML el-
ement which allows adding a number of objects that define their rendering
characteristics and the library uses them to display maps. These objects in-
clude paths, which are basically strings of straight lines, polygons, markers
(points in map suitable for marking Points of Interest) and other items. The
library also has routines for importing maps in the GeoJSON format, which
were perfect for my needs. Another notable feature is ability to add various
controls, such as buttons, menus and other.

3.2.2 Implementation

I extended two Leaflet objects, the polyline and the marker, to display two
main navigation graph entities, routes and waypoints. To allow editing, I
had to implement actions for selecting, creating, deleting, and drag-and-drop.
Adding the objects to the graph is done via two toggle buttons, which, when
on, cause mouse clicks to add the relevant objects to the map. All controls are
both accessible by buttons and key shortcuts. The toggle method is fairly non-
standard and is primarily designed with productivity and efficiency in mind
rather than ease of use, which in retrospect might not be the best approach
as it requires a bit of learning the controls to be able to efficiently use the
applet. Nonetheless, once the user passes this phase, creation of graphs on
larger maps should be a fairly short affair.

3.2.3 Integration into MODX

Integration of this applet as a Resource Template Variable input filter in
MODX Manager proved quite challenging. MODX uses the Ext JS frame-
work and is tightly integrated with it. Both of these impose fairly complex
policies on integrating extensions into them. These policies are at least in
case of MODX not very well documented and made me attempt to circum-
vent them by copying most of the integrating code from one of the existing
inputs and bending it to suit my needs. To display the applet, I completely
evaded Ext JS display objects and used MODX to paste some HTML code
in place of the Template Variable and working on top of that. I am aware
of several problems this causes, for example the user editing the graph has
to save it twice, first in the applet to store the serialized data in an hidden
input HTML element and second in Manager to save contents of this hid-
den input element into its database. Another problem that appeared was in

36

3.3. svgGeo conversion applet

Ext JS’ method of separating elements in tabs and displaying one tab at a
time, which broke Leaflet initialization and made me provide a button for
completely reinitializing the applet. This would not be easy to fix even if the
applet was integrated properly as I suspect it stems from the display element
not having width or height since it is not located at the first tab which is
displayed on load. All of these issues are fairly serious, yet to fix them would
require studying the Ext JS leaflet in depth and reverse-engineering MODX
since its documentation is insufficient to devise a proper solution. In future I
would advise changing core technology of the backend from MODX to a more
suitable framework or library, because even though I understand the benefit
of MODX’ authentication routines, extending it is quite hard as compared to
alternative and more ubiquitous solutions.

Figure 3.1: wayEdit integrated into MODX Manager

An illustration of the applet integrated into MODX may be seen in figure
3.1.

3.3 svgGeo conversion applet

To implement the svgGeo applet I leveraged codebase of the wayEdit applet
and used its waypoints and menu for reference points and load/save actions
respectively. The code is fairly straightforward, with conversion from SVG
to GeoJSON happening early during load operation to allow loading by the
Leaflet library and translating the map to correct coordinates during save.
The algorithm after some amount of debugging works as expected for maps
of small enough areas, which goes in line with its intended use.

37

3. Realization

Only real problem during its implementation again arose during my at-
tempt to integrate it into MODX. I wanted to have a completely separate
page in MODX’ menu with save triggering an AJAX upload to the server. I
wrote a PHP script to accept it on server side, which was about 40 lines of
PHP code in its alpha stage before authentication and authorization. However
when trying to use authentication and authorization functionality of MODX,
I quickly discovered that I had to implement large amount of support classes
sprinkled over several files. This became problematic as I could not determine
which class is responsible for what, and the whole mass of boilerplate code
quickly became unmanageable. This indicates bad design from my point of
view, since it again defines policy one has to go through instead of just mech-
anism as could be expected and it also generates large amounts of confusing
code without adding any real value. In the end, I have rather just exposed
svgGeo as static HTML, JS and CSS files on a predefined URL and then
added a menu item to MODX opening it in a new tab, effectively making
it standalone and requiring the user to save the converted map to disk and
upload it manually. Again, I must advise on moving away from MODX if
another version of CTU Navigator was to be developed since the CMS, while
convenient for the user, is a nightmare for a developer.

Figure 3.2: svgGeo applet appearance

Appearance of the conversion applet is shown in figure 3.2.

3.4 Push notifications

I was also tasked with implementing support for push notifications. Push
notification is a method of notifying mobile platforms and other devices of

38

3.4. Push notifications

any kind of events happening on a remote machine. Since it is very hard to
maintain permanent Internet connection to these devices, which would also
have the downside of draining their battery, the simulated push-based strategy
made available by push notifications is quite convenient. The notification
process usually works by obtaining access key for one of the push notification
providers for these devices and pushing the events onto the provider servers,
which are then periodically checked by the devices. There were two platforms
to implement push notifications for, the first is the Android platform and the
other is the Windows Phone platform.

There are various providers that happen to aggregate multiple push no-
tification targets under one common API, however since these have various
conditions related to their uses and since the underlying mechanisms usually
boil down to Firebase Cloud Messaging (originally Google Cloud Messaging)
and Microsoft Push Notification Service, I have decided to use these directly.

3.4.1 Push notification algorithm

Both of the two push notification frameworks work similarly. The sending
side, hereinafter called the Server, can send arbitrary messages, both textual
and binary, to the receiver (called the Client from now on) by passing them
to servers handling the final delivery (called the Provider). The algorithm is
as follows:

1. The Client requests its identification token from the Provider and pro-
vides it to the Server.

2. The Server stores this token and reuses it for all later messages.

3. Once the Server needs to send a message, it sends it to the Provider
along with the device token.

4. The Client periodically checks the server for any new messages and re-
trieves them (this is transparent to the Client’s applications).

5. The Client receives and processes the message.

The steps 1 and 2 are usually performed once, while the rest are performed
for every message sent.

I have implemented one new API call, /store-token, to store the devices
identification tokens and a new MODX Manager menu item to send a message
notifying the devices of a update. This support has its problems, though, as
the Firebase Cloud Messaging requires implementation of exponential backoff
and resending, which is impossible to do correctly just in PHP and would need
operating system support.

39

3. Realization

3.5 Testing

3.5.1 User testing

Testing of the results uncovered several problems mainly in implementation
of the backend parts. User testing of the two applets, svgGeo and wayEdit
required testers with fair amount of technical knowledge because of the nature
of the applets. This requirement was satisfied by a team of three testers
working in the IT sector. They were given three testing scenarios. One testing

SVG to GeoJSON map conversion

1. Download one of the SVG maps from given address.

2. Open svgGeo conversion application.

3. Load the downloaded SVG map.

4. Set the locations of three shown reference points.

5. Find out and set GPS coordinates to the points.

6. Save the converted map.

7. Verify the result in online application available at http://
geojson.io.

Figure 3.3: svgGeo testing scenario

scenario focused on svgGeo with a simple set of tasks shown in figure 3.3.
Two other testing scenarios tested usage of wayEdit. First of them dealt with

Editing the navigation graph

1. Load one of available maps via the selection box.

2. Try adding, updating and deleting of waypoints and routes.

3. Save the map.

4. Verify that the navigation graph was saved via box below the editor.

Figure 3.4: wayEdit testing scenario

standard create, update and delete operations on waypoints and routes and is
shown in figure 3.4. Second scenario had just two tasks and tested automatic
navigation graph extraction from OSM metadata. During testing, it became

40

http://geojson.io
http://geojson.io

3.5. Testing

apparent that new users expect standard desktop GUI and corresponding type
of controls despite the browser nature of the applets, to the point that their
first action for solving most of the testing scenarios was a right click into the
map area expecting a menu of actions, which was not implemented as I did
not deem it necessary at first. On top of that it would also be challenging to
implement it due to lack of support by the applets’ underlying library Leaflet,
therefore I have to leave this unchanged due to lack of time. Also, several of the
testers requested that the svgGeo’s reference points display a visual indicator
showing that their geographical coordinates have been altered, which was easy
to add. Third notable issue concerned integration of the Leaflet library. The
JavaScript events, which were triggered for the applet detail dialog, seeped
through to this library and caused problems when editing values. This was
also easy to fix by merely disabling event propagation. I realized during testing
that a descriptive manual has to be provided to use these applets. I had written
it and included in the project documentation.

3.5.2 Unit testing

The rest of the backend, mainly the API part, was tested by a mock client
written in Go programming language. The Go language is designed with a

package ctunavi_backend_tests

import (
"testing"
util "koderja2/testutils"

)

const (
BackendURL = "http://localhost:4000"

)

func TestInfo(t *testing.T) {
body := util.GetAndDecodeJson(t, BackendURL + "/info")
util.Has(t, body, "default_language", "string")
util.Has(t, body, "language", "array")
util.Has(t, body, "language.0.key", "string")
util.Has(t, body, "language.0.title", "string")
util.Has(t, body, "language.0.icon", "string")

}

Figure 3.5: One of API functional tests written in Go

variety of packages for development of both server and client web applications.

41

3. Realization

It also comes with a testing framework specifically designed to write unit tests
and benchmarks. This testing framework is primarily targeted for integration
and testing of projects developed in Go, yet it is quite versatile and easily used
to perform functional tests on completely separate web applications. Due to
their nature, MODX Snippets are fairly badly testable via unit tests, white
box testing or any other type of tests designed for testing of isolated parts of
code. This makes functional testing a necessity. I have extensive experience
with Go testing framework therefore I have chosen it for this task as well. I
used it to prepare several tests, each querying and testing output of one of the
API entry points. These tests are heavily dependent on preparations made
beforehand on tested MODX instance as I have not found any easy way to
automate and repeat those preparations. Excerpt from one such test can be
seen in figure 3.5.

3.6 Documentation

I have created several support texts to accompany the backend to make it
easier to use. I could not use any standard PHP documentation tool as the
code is inaccessible. This is due to the code being stored in database and, as
far as I know, the only standard access route to is MODX’ Manager. This
made me provide all of the documentation manually in PDF format. The
documentation includes API documentation for all of the API entry points
and a user manual for the two applets as well as instructions for installation
of my extensions to MODX. Since a lot of the code is contained in MODX
Snippets, stored in the database and I am not aware of any documented way
to export and import it, the easiest way to install the results of my work may
be summed into simple “Clone the project’s MODX instance database and
files, migrate these to a new machine and tweak them to suit their new use”.

42

Conclusion

In this thesis I have devised and implemented methods, processes and ap-
plications to transform images into vector-based maps, to create navigation
graph on top of them and supply them in combination with other text and
image-based content to several client applications developed under the CTU
Navigator project. I have designed an algorithm based on linear algebra meth-
ods used to project image map points and lines onto the latitude and longitude
coordinate system. The work done within this thesis forms a basis required
for making the CTU Navigator project work on the server side; during my
cooperation with the rest of the team we determined several ways to further
expand this project. One such way would be to use QR codes or other types
of image encodings to partially replace outdoor localization technologies, such
as GPS, and to allow users to find out where they currently are. Another way
would be to use other methods being devised by other students in parallel
to this work, such as localization by WiFi. Apart from these, it would be
possible to augment the navigation data by incorporating current blockades
such as renovations, area leases, elevator loads and other into the graph data.
Another types of content data may also be supplied to the backend clients,
allowing them to cover a lot more information about the university instead
of just pathing and events. The project is still in its infant stages and its
possibilities are enormous.

43

Bibliography

[1] National Research Council. The Global Positioning System: A Shared Na-
tional Asset. Washington, D.C.: National Academies Press, 1995, ISBN
978-0-309-05283-2.

[2] Allan, D. W.; Weiss, M. A. Accurate Time and Frequency Trans-
fer During Common-View of a GPS Satellite. May 1980, [Online; Ac-
cessed 23 November 2016]. Available from: http://tf.nist.gov/time/
commonviewgps.htm

[3] Anisetty, P. R.; Huang, C. Y.; et al. Using GPS to improve tropical
cyclone forecasts. August 2014, [Online; Posted 24 August 2014]. Avail-
able from: http://www2.ucar.edu/atmosnews/just-published/12183/
using-gps-improve-tropical-cyclone-forecasts

[4] Geology Department, Central Washington University. Real-Time GPS
Data Analysis. [Online; Accessed 23 November 2016]. Available from:
http://www.geodesy.cwu.edu/realtime/

[5] Čermák, O. ČVUT Navigátor. Phd dissertation, Czech Technical Univer-
sity in Prague, February 2012.

[6] Google Inc. Google Maps API. November 2016, [Online; Accessed
23 November 2016]. Available from: https://developers.google.com/
maps/

[7] Mikeš, S. ČVUT Navigátor III - ř́ızeńı vývoje multiplatformńıch aplikaćı.
Bachelor’s thesis, Czech Technical University in Prague, May 2016.

[8] Horvat, J. ČVUT Navigátor III - návrh a implementace multiplat-
formńıho klienta. Bachelor’s thesis, Czech Technical University in Prague,
May 2016.

45

http://tf.nist.gov/time/commonviewgps.htm
http://tf.nist.gov/time/commonviewgps.htm
http://www2.ucar.edu/atmosnews/just-published/12183/using-gps-improve-tropical-cyclone-forecasts
http://www2.ucar.edu/atmosnews/just-published/12183/using-gps-improve-tropical-cyclone-forecasts
http://www.geodesy.cwu.edu/realtime/
https://developers.google.com/maps/
https://developers.google.com/maps/

Bibliography

[9] MODX LLC. MODX CMS. 2004–2016. Available from: https://
modx.com

[10] Levin, R.; Cohen, R.; et al. Policy/mechanism separation in Hydra. SOSP
’75 Proceedings of the fifth ACM symposium on Operating systems princi-
ples, November 1975, online; Retrieved 9 December 2016. Available from:
http://dl.acm.org/citation.cfm?id=806531&dl=ACM&coll=

[11] Sobel, I. History and Definition of the so-called ”Sobel Operator”, more
appropriately named Sobel-Feldman Operator. February 2014. Avail-
able from: https://www.researchgate.net/publication/239398674_
An_Isotropic_3_3_Image_Gradient_Operator

[12] Jankovics, A. ImageTracer. 2015–2016. Available from: https://
github.com/jankovicsandras

[13] Selinger, P. Potrace. 2001–2016. Available from: http:
//potrace.sourceforge.net

[14] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1 (Sec-
ond Edition). August 2011. Available from: https://www.w3.org/TR/SVG

[15] Butler, H.; Daly, M.; et al. The GeoJSON Format. Internet Requests for
Comments, August 2016.

[16] Ivison, R. Bézier Curves. Honors thesis, Southern Con-
necticut State University, May 2011. Available from: http:
//webcache.googleusercontent.com/search?q=cache:PZ7GonDR5MsJ:
www.southernct.edu/mathematics/uploads/textWidget/wysiwyg/
documents/Rachael_Ivison_2011.pdf+&cd=2&hl=en&ct=clnk&gl=us

[17] GNU General Public License. June 1991. Available from: https://
www.gnu.org/licenses/gpl-2.0.html

[18] GNU Lesser General Public License. June 2007. Available from: https:
//www.gnu.org/licenses/lgpl-3.0.html

[19] FreeBSD License. Available from: https://github.com/Leaflet/
Leaflet/blob/master/LICENSE

[20] Open Knowledge International. Open Database License v1.0. September
2012. Available from: http://opendatacommons.org/licenses/odbl/
1.0

[21] Myška, M.; Polčák, R.; et al. Veřejné licence v České Republice, version
2.0. [Online; Accessed 26.11.2016]. Available from: http://is.muni.cz/
repo/1203341/Myska_et_al._-_Verejne_licence_2.0_-_online.pdf

46

https://modx.com
https://modx.com
http://dl.acm.org/citation.cfm?id=806531&dl=ACM&coll=
https://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient_Operator
https://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient_Operator
https://github.com/jankovicsandras
https://github.com/jankovicsandras
http://potrace.sourceforge.net
http://potrace.sourceforge.net
https://www.w3.org/TR/SVG
http://webcache.googleusercontent.com/search?q=cache:PZ7GonDR5MsJ:www.southernct.edu/mathematics/uploads/textWidget/wysiwyg/documents/Rachael_Ivison_2011.pdf+&cd=2&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:PZ7GonDR5MsJ:www.southernct.edu/mathematics/uploads/textWidget/wysiwyg/documents/Rachael_Ivison_2011.pdf+&cd=2&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:PZ7GonDR5MsJ:www.southernct.edu/mathematics/uploads/textWidget/wysiwyg/documents/Rachael_Ivison_2011.pdf+&cd=2&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:PZ7GonDR5MsJ:www.southernct.edu/mathematics/uploads/textWidget/wysiwyg/documents/Rachael_Ivison_2011.pdf+&cd=2&hl=en&ct=clnk&gl=us
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
http://opendatacommons.org/licenses/odbl/1.0
http://opendatacommons.org/licenses/odbl/1.0
http://is.muni.cz/repo/1203341/Myska_et_al._-_Verejne_licence_2.0_-_online.pdf
http://is.muni.cz/repo/1203341/Myska_et_al._-_Verejne_licence_2.0_-_online.pdf

Bibliography

[22] Consolidated text of Act No. 121/2000 on Copyright and Rights Re-
lated to Copyright and on Amendment to Certain Acts (the Copyright
Act), as amended by Act No. 81/2005, Act No. 61/2006 and Act No.
216/2006. 2000–2006. Available from: https://www.mkcr.cz/doc/cms_
library/12-az_2006_v_aj-2005.pdf

47

https://www.mkcr.cz/doc/cms_library/12-az_2006_v_aj-2005.pdf
https://www.mkcr.cz/doc/cms_library/12-az_2006_v_aj-2005.pdf

Appendix A
Glossary

API Application Programming Interface, an interface for two pro-
grams to communicate over

app Short for application, mostly used with mobile phones

applet Small utility application, usually with single function

BSD Berkeley Software Distribution, a Unix operating system deriva-
tive developed in Berkeley

CMS Content Management System, an application used to manage
digital content

CSS Cascading Style Sheets, a language used to describe presentation
for other markup languages

FURPS Functionality Usability Reliability Performance Supportability

GNU “GNU’s Not Unix !”, an extensive collection of free software
forming an operating system

GUI Graphical User Interface, a type of user interface

HTML HyperText Markup Language, a language used to create web
pages

HTTP HyperText Transfer Protocol, a type of protocol originally used
to transfer web pages

IT Information Technology, a field using computers to manipulate
information

JSON JavaScript Object Notation, a data formatting language

OS Operating System, base program running on a computer

49

A. Glossary

QR code Quick Response code, a type of two-dimensional barcode

SVG Scalable Vector Graphics, a vector image format

XML Extensible Markup Language, a data formatting language

WiFi Wireless Fidelity, a wireless communication standard

50

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
docs....directory with documentation for the practical part of the thesis
src directory containing all source code

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

51

	Introduction
	State-of-the-art
	Indoor navigation
	Old CTU Navigator problems

	Analysis and design
	Map data and client needs
	MODX CMS
	Navigation graph
	Images to map
	Third-party integration
	Licensing
	MODX structure design
	Workflows and diagrams
	FURPS

	Realization
	Development environment
	wayEdit navigation graph editor
	svgGeo conversion applet
	Push notifications
	Testing
	Documentation

	Conclusion
	Bibliography
	Glossary
	Contents of enclosed CD

