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Abstrakt

Möbius cube je zaj́ımavou topologíı, která vznikla z topologie hypercube.
Největš́ı výhoda oproti hypercube je v přibližně polovičńım pr̊uměru Möbius
cube. V této práci je popsán algoritmus nejkratš́ıho routováńı a jsou popsány
i jeho klady a zápory. Velkou nevýhodou je možnost pádu do stavu uzamknut́ı
(deadlock). Proto je v práci představen nový deadlock-free algoritmus a
porovnán s předchoźım algoritmem. Dále je v práci popsána možnost použit́ı
hypercubického multicast 1-portového wormhole algoritmu na Möbius cube.

Kĺıčová slova Möbius cube, routing algoritmus, shortest path routing, deadlock-
free routing, multicast

Abstract

The Möbius cube is an interesting topology created from the hypercube. Its
main advantage is the which that is around one half of the diameter of the
hypercube. In this thesis, the shortest path algorithm is described as well
as its properties and drawbacks. One major drawback is the possibility of a
deadlock. Therefore, a new deadlock-free routing algorithm is introduced and
compared to the previous algorithm. Later, usage of hypercube’s multicast
1-port wormhole algorithm on the Möbius cube is described.
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Introduction

Motivation and objectives

In the field of multiprocessor machines, one of the most debated topics are
the interconnection networks. There are many uncountable topologies that
can be used as a graph of a connections between processors. The research
of these topologies has gone in many different directions as there are many
requirements for these topology. Furthermore, some requirements are not
possible to attain whe regarded with other requirements. For example, there
is research (and also existing computers) based on the easiest and most basic
topologies such as meshes and tori, while more complicated mathematically
describable topologies or irregular (sometimes even fully random) graphs.

Among the most common structures is the hypercube. It was one of the
first topologies to be used in the supercomputers, but later it completely
disappeared, being overrun by more effective topologies. It disappeared from
use in actual computers, but not from the theory and there is a lot of research
with the goal to improve some of the attributes of the hypercube and hold
qualities of the others.

One of the attributes that is possible to improve is the diameter of the
hypercube. The theory is simple: in the cube, for each node, there is always
just one node that is further than all other nodes. Thus, it amy be possible
to modify a few edges to reach that node faster. That is the simplified theory
behind the topology called the Twisted 3-cube.

The Möbius cube is very similar to the Twisted 3-cube. It takes the
original design of the 3-dimensional cube and expands it into the recursively
defined topology. This topology was introduced in ”The Möbius cubes” article
in 1995 by doctors Cull and Larson. It also introduces the shortest path
routing algorithm for the Möbius cube and since the algorithm is relatively
complicated, the first goal of this thesis will be to clarify why and how the
algorithm work.

For any topology it is necessary to have a deadlock-free routing algorithm.
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Introduction

To establish multiple communications between nodes, we must be sure that
the messages does not fall into a situation where all messages are waiting for
another in such way that they will stay stuck forever. The next goal of this
thesis is to analyze if a deadlock-free routing is possible and to introduce such
an algorithm.

Another communication problem is the multicast. We have situation where
one node needs to send message to a group of other nodes that are scattered
across the whole graph. That is a common situation if we use a master &
slaves system. The hypercube has very effective and easy algorithm for this
problem, we will see if the same or a similar algorithm exist also for The
Möbius cube.

Goals

This thesis has following goals:

• Perform a survey of the Möbius cube theory.

• Analyze the routing algorithm proposed in [1] and describe its properties
and drawbacks.

• Design a routing algorithm with focus on a deadlock-free routing and
describe its properties and drawbacks.

• Design a round-optimal multicast algorithm for 1-port Möbius cube us-
ing a wormhole routing.

Structure

All the necessary and useful definitions are in the chapter 1. The thesis then
continues with description of the shortest path routing algorithm in the chap-
ter 2. It starts with explaining the minimal expansion algorithm and then
follows with the actual routing. At the end of the chapter there is a mathemat-
ical evaluation of the distances in the Möbius cube. The following chapter 3
focuses on another new routing that is deadlock-free. Finally the algorithm
for the multicast is described in the final chapter 4.

2



Chapter 1

Interconncetion networks

1.1 Basic Notions and terminology

In this section we first define the basic terms of the graph theory. Later, we
describe the characteristics of both hypercube and the Möbius cube and define
the deadlock-freeness and multicast algorithm.

1.1.1 Letters, alphabets and strings

For integer d ≥ 2, let Zd ={0, 1, .., d − 1} be an alphabet of d letters and
Zn
d = {xn−1...x0;xi ∈ Zd}, n ≥ 1, be the set of all d-ary strings of n letters.

The i-th letter xi of a string x is also written x[i], 0 ≤ i ≤ n–1. The length
of a string x is denoted by len(x). For integer i ≥ 1, the i-fold concatenation
of a string x is denoted by xi. For example, a string of i ≥ 1 letters a ∈ Zd

is written ai. The binary alphabet Z = {0, 1} is simply denoted by β. If
b = bn−1..bi+1bibi−1..b0 ∈ βn, then the string bn−1..bi+1bibi−1..b0, where bi is
the inversion of bi, is denoted by negi(b). The complement of string b, denoted
b = bn−1...b1b0.

1.1.2 Hamming distance

Let the operation + between two binnary strings be defined as operation XOR.
The hamming distance of two given binary strings, b, c ∈ βn, is the number of
bits in which b and c differs. %(b, c) =

∑n
i=0 ybi + ci.

1.1.3 Graphs and subgraphs

Let G = (V (G), E(G)) be an undirected graph consisting of nodes V (G) and
edges E(G). An edge incident on nodes u and v is said to be incident with the
edge 〈u, v〉. Vice versa, nodes u and v are said to be incident with the edge
〈u, v〉. The Edge 〈u, v〉 is also said to connect nodes u and v and nodes u and
v are then said to be adjacent (or neighbors). We also say that u and v are

3



1. Interconncetion networks

end-nodes of 〈u, v〉. Similarly, edges 〈u, v〉 and 〈v, w〉 are adjacent. A graph
H is the induced subgraph of G if it is the maximal possible subgraph of G
with nodes V (H). If V (H) = V (G) and E(H) ⊂ E(G), then H is a spanning
subgraph of G. If H is a subgraph of G, we write simply H ⊂ G. A walk in
graph is any sequence of adjacent distinct edges. A path is a walk with all
nodes distinct. A cycle is a walk wit all nodes distinct except for the first and
last.

1.1.4 Node degree and regularity

The degree of a node u ∈ V (G), degG(u), is the number of edges incident
on u. The set of degrees of all nodes of a graph G, {degG(u);u ∈ V (G)},
is denoted by deg(G). The (maximal) degree of G is ∆(G) = max(deg(G))
and analogously, the minimal degree of G is δ(G) = min(deg(G)). If ∆(G) =
δ(G) = k, then G is said to be k-regular graph. A graph G is sparse if
|E(G)| = O|V (G)|, i.e., ∆(G) is constant , and it is dense otherwise.

1.1.5 Isomorphism and automorphism

G1 is isomorphic to G2, G1 ≡ G2, if there exist a 1-1 mapping f : V (G1) ↔
V (G2) preserving the adjecency, i.e., f : V1 7→ V2 such that 〈u, v〉 ∈ E(G1)⇔
〈f(u), f(v)〉 ∈ E(G2). A permutation of nodes of G preserving the adjacency
is called an automorphism. Since an isomorphism f preserves adjacency, any
path P1 ⊂ G1 is mapped to a path f(P1) in G2. More importantly, any cycle
is preserved.

1.1.6 Union and cartesian product

Graphs are mathematical objects for which we can define operations and al-
gebras. For our purposes, we will need only 2 operations on our graphs.
The union of G1 and G2, G1 ∪ G2, is a graph with nodes V (G1) ∪ V (G2)
and edges E(G1) ∪ E(G2). The Cartesian product of 2 distinct graphs G1

and G2 is a graph G = G1 × G2 such that V (G1), y ∈ V (G2)} and E(G) =
{〈[x1, y], [x2, y]〉; 〈x1, x2〉 ∈ E(G1)} ∪ {〈[x, y1], [x, y2]〉; 〈y1, y2〉 ∈ E(G2)}. The
Cartesian product is commutative and associative operation: G1 × G2 ≡
G2 ×G1 and (G1 ×G2)×G3 ≡ G1 × (G2 ×G3).

1.1.7 Node and edge symmetry

G is node symmetric if ∀u1, u2 ∈ V (G)∃ automorphism f such that f(u1) = u2.
G is edge symmetric if ∀e1, e2 ∈ E(G)∃ automorphism f such that f(e1) = e2.

4



1.2. The Hypercube

1.1.8 Paths, distances and diameters

The length of a path P (u, v) between nodes u and v, len(P (u, v)), is the
number of its edges. The distance between u and v, distG(u, v), is the length
of a shortest path P (u, v). The average distance in an G, |E(G)| = N , is

dist(G) =
1

N(N − 1)

∑
u,v,u6=v

distG(u, v).

Given u ∈ V (G), the eccentricity of u is exc(u) = maxv∈V (G)distG(u, v). The
diameter ofG is the greatest possible distance: �(G) = maxu,v∈V (G)distG(u, v) =
maxu∈V (G)exc(u). 2 paths are node disjoint if they share at most of the end
nodes: V (P (u, v)) ∩ V (P (x, y)) = {u, v} ∩ {x, y}. 2 paths are edge disjoint if
they share no edge: E(P (u, v)) ∩ E(P (x, y)) = ∅.

1.2 The Hypercube

The hypercube of dimension n, denoted as Qn, is a strictly orthogonal topol-
ogy defined as a Cartesian product of two hypercubes of dimension n−1, where
Q0 is 1 node. The nodes of Qn are all n-bit strings xn−1...x1x0, corresponding
to points in n-dimensional Boolean space: V (Qn) = βn. |V (Qn)| = 2n. 2
nodes of hypercube are neighbors if they differ in one single bit: E(Qn) =
{〈x, negi(x)〉;x ∈ V (Qn), 0 ≤ i < n} and |E(Qn)| = n2n−1. Each node of
Qn has n neighbors, and so, Qn is regular with deg(Qn) = {n}. Qn is hier-
archically recursive topology. It consists of subcubes that can be specified by
strings S = sn−1...s1s0, where si is {0, 1, ∗} and ∗ is the don’t care symbol.

0000 0001

00110010

0110 0111

01010100

1000 1001

10111010

1110 1111

11011100

Figure 1.1: Q4.

Any n-bit string can be produced from any other n-bit string by at most
n inversions. So, the diameter of Qn is logarithmic: �(Qn) = n. The distance

5



1. Interconncetion networks

between 2 nodes (x, y ∈ V (Qn)) is the Hamming distance %(x, y) between the
strings. The number of nodes in distance i from a given node is the number
of ways to select i bits from n, which is

(n
i

)
. Since

(n
i

)
=
( n
n−i
)
, It follows that

the average distance is dist(Qn) = dn2 e. 2 nodes differ in k bits and there
are k! permutations of these bits, so the number of different shortest paths
between x and y is k!. The standard greedy routing algorithm is called e-cube
routing. It checks the bits in fixed order, typically from the least significant
bit to the most significant bit. Because the hypercube grpah is edge and node
symmetric, any selected order will provide routing with the same abilities: it
is the shortest possible and deadlock-free.

e−cube (x, y, dim)

{
i f (x != y )
{

i f (x+ y & 2dim )
{
x = negdim(x) ;
p r i n t (x ) ;

}
ecube (x, y, dim+ 1 ) ;

}
}

Figure 1.2: Routing algorithm in Qn from LSB to MSB. The variable dim is
equal to 0 on start.

Hypercube has proven to be very popular in parallel computation due
to its abilities. It has relatively small diameter and it has a small number
of connections per node (processor). An optimal algorithm exists for col-
lective communication operations in almost all communication models. Also
the hypercube can simulate efficiently almost any other topology. Thanks to
those reasons, the hypercube is commonly considered to be the best topology
from an algorithmic and communication viewpoint, however there also exists
drawbacks that have lead to no commercial hypercube multiprocessors being
produced nowadays. One such drawback is the logarithmic degree of every
node (other topologies have a constant degree) and consequently high number
of communication channels and poor scalability.

6



1.3. The Twisted 3-cube

1.3 The Twisted 3-cube

There exist many topologies that try to improve some of the abilities of the
hypercube and keep the good results of the other abilities. In some literature
such topologies are called the enhanced cubes. Most of them generalize the
idea of the twisted 3-cube. The diameter of the hypercube is good but for its
resources, it is not the best possible. The twisted 3-cube is almost identical
to Q3, it uses the same number of nodes and same number of edges as Q3

but it changes just two edges so the diameter is reduced from 3 to 2. Note
that with the same number of nodes and edges as the hypercube, there is no
chance to improve the degree, the number of communication channels or the
scalability. The twisted 3-cube exists only in the form of 8-nodes graph so
there have been many attempts to generalize this idea of the twisted 3-cube
into recursive topology such as the Twisted Cube, the Twisted N-cube, the
Crossed Cube, the Flip MCube, the Generalized Twisted Cube, or the Möbius
cube.

000 001

011010

111

110

101

100

Figure 1.3: The twisted 3-cube.

1.4 The Möbius cubes

Out of many enhanced cube topologies, the Möbius cube, introduced in [1]
is the one that is the most conceptually simple with very good results. The
Möbius cube of dimension n, denoted as MCn, has a topology where nodes of
MCn are all n-bit strings xn−1...x1x0, corresponding to points in n-dimensional
Boolean space: V (Qn) = βn. |V (Qn)| = 2n, just like the hypercube. The ad-
dress of the node y which is the neighbor node of the node x in i-th dimension
is defined as:

y = xn−1...xi+1 xi xi−1...x0 if xi+1 = 0,

y = xn−1...xi+1 xi xi−1...x0 if xi+1 = 1.

7



1. Interconncetion networks

We say that the edge that is created by the first case (where routing changes
1 single bit) is a “hypercubic” edge, denoted as ei. And we say that the edge
that is created by the other case (where routing changes all bits with index
≤ i) is a “twisted” edge, denoted as Ei. Furthermore, we define these edges
as binary strings, where x+edge= y. Than, ei = 0n−1...0i+1 1i 0i−1...00 and
Ei = 0n−1...0i+1 1i 1i−1...10.

As every edge depends on a bit in a dimension one higher than the dimen-
sion of the edge, the highest dimension edges depends on bits that are not
included in the address of the node (xn). Normally we would assume that
xn = 0 and we define that such topology that has 0 in front of address of
nodes is denoted 0-MCn. However, because of the recursive point of view we
also need to define the topology where we assume that xn = 1, we say that
such topology is denoted as 1-MCn. Because of the new imaginary highest
bit, 1-MCn contains “twisted” edges in its highest dimension where 0-MCn

has “hypercubic” edges so these two topologies are different. Once we have
defined both Möbius cubes, we can see that recursively, any MCn is made by
connecting 0-MCn−1 with 1-MCn−1. The highest dimension edges will be all
“hypercubic” edges for 0-MCn and all “twisted” edges for 1-MCn.

0000 0001

00110010

0110 0111

0100 0101

0000 0001

00110010

0100 0101

0110 0111

Figure 1.4: 0-MC3 on the left and 1-MC3 on the right.

1.4.1 Efficiency of the Möbius cubes

There are many requirements on any topology when it is meant to be successful
in the field of multiprocessor computers. We will see how the Möbius cubes
stands in every category.

Node degree. It is a technological requirement to have a small and fixed
node degree. A small number of a communication links per procesing nodes
makes the construction of a communication network simpler and cheaper. The

8



1.4. The Möbius cubes

0000 0001

00110010

0110 0111

0100 0101

1000 1001

10111010

1100 1101

1110 1111

Figure 1.5: 0-MC4.

0000 0001

00110010

0110 0111

0100 0101

1000 1001

10111010

1100 1101

1110 1111

Figure 1.6: 1-MC4

.

Möbius cube has the same degree as the hypercube and both are sparse graphs
which is optimal. Also for the length of wires, MCn and Qn makes a small
difference, around one half of the wires in MCn are

√
2 times longer then their

hypercubic counterparts.

Diameter and average distance. It is an algorithmic requirement to have
as small of a diameter on topology as possible. The closer the nodes are to each
other, the faster they can communicate and communication latency will be
smaller. We already introduced the Möbius cubes as topology that is lowering
the diameter and the average distance of the hypercube. Later in Chapter 2,
after we introduce the shortest path routing algorithm, we will be also be
able to count the exact value of both diameters and average distances of the
Möbius cubes.
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Figure 1.7: 1-MC4. Notice different positioning of nodes in right subcube.

Symmetry. Both node and edge symmetry are important for designing or
analyzing parallel algorithms, since it does not matter where the computation
starts. Unfortunately, because of the non-equal number of “hypercubic” and
“twisted” edges in any two subcubes of MCn, the Möbius cubes have lost
the perfect symmetry of the hypercube. On the other hand, there exists
some partial symmetry that allows us to design some algorithms for all nodes
universally.

Hierarchical recursivity. To have a topology that is nicely recursive is
helpful for designing and manufacturing of interconnection networks. We know
that we have recursive operations that create MCn but it is not so nicely
hierarchically recursive commpared to Qn that can divide into any subcubes
by selecting any dimensions. On the other hand, a hierarchical recursivity is
contradictory to scalability.

Scalability. Ideally, we wish to have incrementally and efficiently scalable
topologies. There are only very few such topologies. Most topologies are
partially scalable and only part of them is efficiently scalable. Unfortunately,
similarly to the hypercube, the Möbius cubes are very poorly scalable, as we
can only double the number of nodes with the set shape.

High connectivity and fault tolerance. High connectivity leads to the
existence of many parallel disjoint paths between pairs of nodes, moreover if
the fault average distance is small, these redundant paths are short. We know
that Qn has k! different shortest paths for two nodes in distance k. That is
not true for the Möbius cubes, but we have to mind that the diameter is lower
and MCn is not symmetric. So for two nodes with distance k in Qnm we will
be able to find k! different paths, but they will be shorter, longer or equal to

10
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k with sum of lenghts ≈ k ·k!. For the fault tolerant algorithms in the Möbius
cubes, they are mostly yet to be introduced and measured.

Embedding. With many existing topologies and multiprocessor computers
based on them, it is important to be able to embed the topologies of one into
another with good embedding measures. As the Möbius cube computer is
very unlikely to be built, it would be very interesting to see how well it can
be MCn embedded into another topology such as mesh or tori.

1.5 Deadlock

The existence of a deadlock-free routing algorithm is another important re-
quirement for parallel networks. Deadlock occurs mainly while using wormhole
routing. The following text of this section is taken from [9].

1.5.1 Wormhole routing

The simplicity, low cost, and distance-insensitivity of wormhole switching are
the main reasons behind its wide acceptance by manufacturers of commercial
parallel machines. The packets are split to flits, which are snaked along the
route. The routers do not have input and output buffers for whole packets, but
only small buffers for 1 or several flits. Hence, the routers are small and cheap,
but the price we must pay for that is blocking. If a header cannot proceed
due to busy output channels, the whole chain of flits gets stalled and the flit
buffers in routers along the path get blocked, see fig. Anyway, WH switching
has been and still is a very popular switching technique used in commercial
machines. One consequence of this solution is that packets do not have to be
of same length, which of course, is an advantage. But the WH switching also
has a great disadvantage. Due to the blocking feature, it is deadlock prone:
One frozen chain of flits may block other chains and the snow-ball effect may
lead to the collapse of the whole network or some its component.

1.5.2 Deadlocks

Deadlocks are a serious problem in WH networks. Hence, we will show some
basic methods how to deal with them. Consider 4 packets Pi and 4 destination
nodes A,B,C,D. Consider that these packets have chosen the destinations as
follows.

P0 → C P0 → C P0 → C P0 → C

Figure 1.9 shows a typical deadlocked situation. Each packet has acquired
some buffers in the attempt to cut-through to the destination, but it is blocked

11
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(a)

(b)

(c)

(d)

Figure 1.8: Wormhole switching. (a) The header flit is stored in the output
buffer. (b) The chain of flits moves one step further. (c) The chain of flits
has been blocked since the output channel is busy. (d) A conflict free pipeline
of flits occupying all buffers of all routers on the path between source and
destination nodes.

since the nest channel it needs is busy, and its further progress depends on
a release of the next buffer. The trouble is that these dependencies form a
cycle. In fact, each pocket waits for itself, and therefore, will wait forever.

D

A

C

D

P0

P3

P1

P2

Figure 1.9: Deadlock in WH network with 4 packets Pi.
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1.5.3 How to solve the deadlock problem

The communication deadlock, described above, is equivalent to deadlock prob-
lems in any system with shared resources. Typically, these problems appear in
multitasking operating systems. The methods of how to deal with deadlocks
here are the same as in any operating systems.

Deadlock prevention. It consists in the most conservative allocation of
resources. A given resource is allocated only if it is able to be proved to be
free. If we need more resources, first we reserve them and then allocate them
all at once. A disadvantage is that it can cause low utilization of resources.

Deadlock detection and recovering. This is the other extreme. It is the
least careful approach. We do not care about possible cyclic dependencies. If
some appear, we must be able to detect them and recover from them, i.e., to
interrupt somewhere the dependence cycle. This approach is useful only in
systems with rare deadlocks, since the deadlock detection is a costly operation.
Hence, it may give great gains in some systems, but also incur huge overhead
in other systems.

Deadlock avoidance This is the middle way. We assign resources in a
smart way so that a cycle cannot appear.

1.5.4 Channel dependence graph

We consider deterministic routing only.

Routing function. For a given node e ∈ V (G), for its input channel c1, and
for a given destination node d, a routing function R determines the output
channel c2 = R(u, c1, d).

The basic tool for intelligent channel allocation in a given network with a
given routing function is a graph hich shows all possible assigments of chan-
nels.

Channel dependence graph (CDG). Given a connected graph and rout-
ing function R, then CDG(G,R) is a graph whose nodes are the channels ci
of network G and 2 such nodes are adjacent, i.e., 〈c1, c2〉 ∈ E(CDG(G,R)),
if and only if the routing function R can route in network G a packet from
input channel c1 to output channel c2, i.e., R(u, c1, d) = c2 for some 2 nodes
u and d.

Theorem 1. A deterministic routing function R on a graph G is deadlock
free if and only if CDG(G,R) is acyclic.
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[4] [3] [2] [1] [0]

c4 c3 c2 c1
c0 c4 c3 c2 c1 c0

Figure 1.10: Torus K(5) and its channel dependence graph

Proof. Suppose D = CDG(G,R) has a cycle S. It follows from our assump-
tions that D has no loops. Hence, S must be of length l(S) ≥ 2. If S
consists of two channels c1 and c2, then a pair of requests R(c1, w1) = c2 and
R(c2, w2) = c1, where w1 and w2 are in distance at least 2 ahead from the
packets, will deadlock. If l(S) ≥ 3, then a deadlock configuration is even easier
to construct, just by submitting l(S) packets simultaneously, each injected in
one node of S and destined to the node in G in distance two ahead following
the channels is S.

Suppose D is acyclic. Then we can assign a total order to channels of G
(= nodes of D) such that ci > cj if and only if 〈ci, cj〉 ∈ E(D). Let cm be
the least channel in this order with a full buffer. Every channel cn that is fed
from cm by the routing algorithm, must be less than cm, i.e., cn < cm, and
so it cannot be full. Therefore no flit waiting in the buffer of cm is blocked
and must eventually proceed further and the buffer of cm will be freed. The
argument is by induction on the length of any sequence of full channels.

This gives us a tool. For a given G and R, we construct CDG(G,R) and
see if it is accyclic, If so, we are done, since no deadlock can appear. The
question is what to do otherwise. There are 3 possibilities.

1.5.5 Deadlock avoidance by routing restrictions

The first method can be shortly defined as follows: Restrict the routing func-
tion R to R′ so that CDG(G,R′) becomes acyclic and G remains (strongly)
connected with respect to the restricted routing function R′.

The requirement of string connectedness is the key here. We cannot restrict
the routing function to R′ so that some nodes become unreachable if we use
R′. Hence, this solution can be used only in some cases.

1.5.5.1 Dimension-ordered routing

This method is useful for meshes and hypercubes. The restricted routing R′

is called the dimension-order routing. The dimension-ordered routing means
that all routers use the dimension in the same fixed order and once a packet
has used a channel in dimension i on its path to the destination, it cannot
use channels of dimensions j < i in the rest of the path. These routing
functions have special names: XY-routing in 2-D meshes and e-cube routing
in the hypercube. Figure 1.11 documents that if the underlying topology is

14



1.6. Muticast

the hypercube, then the same situation that caused a deadlock in Figure 1.9
produces no deadlock if all routers use e-cube routing.

D

A

C

D

P0

P3

P1

P2

Figure 1.11: The request of 4 packets does not produce a cycle if e-cube routing
is used.

1.5.6 Deadlock avoidance based on virtual channels

The restriction to dimension ordered routing does not work in 1-D tori (de-
noted K(n)). Each 1-D torus has trivially a cyclic CDG and any restriction
on the routing function would disconnect a torus into a mesh. However, there
exists a solution, based on the so-called virtual channels. The resources of
a physical channel (buffers plus link controllers plus a physical communica-
tion medium) are split: buffers are installed in more copies, link controllers
multiplex among them, and the physical medium is shared using the time mul-
tiplex. The WH implementing virtual channels must distinguish among data
flits (remember that they are anonymous, they have no routing information
nor sequencing numbers) of different packets that share the physical channel.

1.6 Muticast

The multicast is an extremely important one-to-many communication pattern
that can be defined as a broadcast from the source node s to an arbitrary
subset M of the nodes of a network (equivalently, it is a broadcast with the
set M ∪{s}). The standard One-to-All broadcast algorithm is very inefficient
for small M , especially in WH networks. The lower bounds are similar to
those for the OAB. Since M can be located anywhere in the given topology,
the optimal MC algorithms are substantially more complicated than OAB
algorithms.
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Chapter 2

Shortest path routing algorithms

The shortest path routing algorithm was proposed in [1]. And we will de-
scribe it in this chapter. Notations, definitions and proofs are recast with
following changes: the address of nodes in the original text are vectors in the
n-dimensional vector space over (0, 1) with addition and scalar multiplication
mod 2, denoted Zn

2 . In this text they are strings of βn. The other change is
the change of direction in ordering dimensions of MCn, while the most signif-
icant bit in the original text has index 0, we use index n− 1. And oppositely,
the least significant bit has index n− 1 in the original text and in this text it
has index 0.

2.1 Minimal expansion

Minimal expansion is an algorithm that creates a set of edges that combines
into a binary string. Minimal expansion will be later used to provide set of
edges that leads from one node to another so it is a crucial part of routing
algorithm introduced in [1].

Definition 1. A set S consisting of terms t, where every t is edge ei or Ei,

0 ≤ i < n is called expansion of string b ∈ β iff
∑|S|

i=1 ti = b.

We have described the edges ei and Ei in section 1.4. We know that adding
an edge with a node address will create the address of neighbor node. We can
also combine edges together to create a new strings. The expansion of node
x is then a set of edges from node with the address 0n to node x.

Definition 2. For a string b, the weight of an expansion S of b is the cardi-
nality of set S, denoted |S|.

There is at least one expansion for any string. For example just by using
every ei where i is an index of every 1 in the string.

17



2. Shortest path routing algorithms

Lemma 1. Any string b ∈ βn has an expansion, where no two terms has same
index.

Proof. The possible operations with edges of same index are:

ei + Ei = Ei−1.

ei + ei = Ei + Ei = 0.

That shows that by using any edges ei, Ej , we can not make string bk where
k > i ∧ k > j. It is also clear that using two edges with same index is useless
as it can be substituted with just one or no edge.

Definition 3. For any string b ∈ βn, let a minimal expansion of b be an
expansion with the least weight. The minimal expansion set is denoted Sx.

We are able to a find finite number of expansions of b and some of them will
be smaller sets than others. Some strings have only one minimal expansion,
while others can have more minimal expansions. For example E2 + e1 =
e2 + E0 = 101.

Lemma 2. If string b has its highest bit containing 1 on index j, there will
be no ei or Ei in the minimal expansion of b for any i > j.

Proof. Making expansion of string b is the same as adding strings ei or Ei

to ab empty string 0...0. By adding ei we will revert just the bit with index
i and by adding Ei we are reverting bit i and all bits with smaller indices.
Neither of them has an effect on bits indexed higher than i. Therefore, using
any edges with index i > j in the expansion would cause the expansion to
have at least one more edge than is necessary and thus will not minimal.

Only the bits with an index lower or equal than the index of the highest
bit containing 1 are important to determine the number of edges in minimal
expansion. The bits higher that the highest bit containing 1 can be skipped
by any algorithm generating the minimal expansion.

Lemma 3. For any string x, |Sx| ≤ 1 + |Sx|.

Proof. The string x with the highest bit on index i can be written as

x = Ei + Ei + x = Ei + x.

A minimal expansion of x cannot have more edges than one for Ei plus the
number of edges of the minimal expansion of x.
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2.1.1 Greedy minimal expansion algorithm

Now, we describe the greedy minimal algorithm from Figure 2.1. We will
proof that it generates exactly the smallest possible number of edges. In the
algorithm, we use the denotation x = ∗x′, where ∗ is a binary string, and
x′ stands for a string that contains the remaining bits of the string x. The
algorithm is divided into 5 cases by content of string x and is recursively
proceeding from the most significant bit.

Case 1 The first case is trivial. If the string x has length 0, the algorithm
will stop.

Case 2 In the second case, the string x is containing only string 1. The
algorithm will add edge E0 to the minimal expansion of x. Note that it would
be also possible to produce edge e0.

Case 3 The third case skips bits containing 0. If the first bit is 0, the
algorithm calls recursively itself on string x without its most significant bit.

Case 4 In this case, there is ”10” string in the beginning of string x. Then,
the algorithm will add the edge ei to the minimal expansion of x and call
recursively itself on x without first two bits.

Case 5 In the last case, there is ”11” string in the beginning of string x.
Then, the algorithm will add the edge Ei to the minimal expansion of x
and call recursively itself on complement of x without the first two bits. The
complement is used because using ”twisted” edges reverts all bits with smaller
indexes.

Proof. We will prove the algorithm by the induction of the length of x. If
x = (), then no terms are necessary in the expansion and the algorithm cor-
rectly returns nothing. If vector x = 1, then one term E0, or e0, is necessary
and is sufficient in the expansion of x, and the algorithm correctly returns E0.

Now assume that string x has its highest bit on index i and for any
x′ = xj , xj−1...x0, j < i, ME(x′, j) produces a minimal expansion of x′.

There can be 0 or 1 on the highest indexed bit of x. If x = 0x′ there can
be no minimal expansion containing Ei or ei by Lemma 2. Therefore, the
algorithm is correctly skipping 0 on the highest indexed bit in case 3.

If x = 1x′, the algorithm has to include Ei or ei into the mnimal expan-
sion. There is no other option if the bit on index i is the most significant bit.
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ME(x, i)
{

i f (x == ””)
return {} ;

i f (x == 1)
return {E0 } ;

i f (x == 0x′ )
return ME(x′, i− 1 ) ;

i f (x == 10x′ )
return {ei} ∪ ME(x′, i− 2 ) ;

i f (x == 11x′ )
return {Ei } ∪ ME(x ’ , i− 2 ) ;

}

Figure 2.1: Greedy minimal expansion algorithm of string x of length i.

To decide which edge is correct to use, the algorithm must read one more bit.

For x = 10x′, if Ei is used, the remaining string would be 1x′. Otherwise,
if ei is used, the remaining string would be 0x′. Then we can easily calculate
the weight of minimal expansion of x:

|Sx| = min{1 + |S0x′ |, 1 + |S1x′ |}.

Where |S0x′ | will remove 0 with case 3. And |S1x′ | would need ei−1 or Ei−1
leading into two different sums. Then we are choosing from 3 options:

|Sx| = 1 +min{|Sx′ |, 1 + |Sx′ |, 1 + |Sx′ |}.

Hence, by lemma 3 we know that |Sx′ | ≤ 1 + |Sx′ |. The equation shows that
using ei is always leading to the minimal expansion. Using Ei would lead to
the minimal expansion only in some cases. The algorithm is correctly adding
ei to the minimal expansion, skipping following 0 and recursively finds the
rest of minimal expansion.

The last possible case is x = 11x′. Again, both Ei or ei is possible to use.
Similarly as in the previous case, we calculate the weight of minimal expansion
of x:

|Sx| = min{1 + |S1x′ |, 1 + |S0x′ |}.

And we expand the first part:

|Sx| = 1 +min{1 + |Sx′ |, 1 + |Sx′ |, |Sx′ |}.

Since x′ is a complement of x′, we know that by lemma 3, |Sx′ | ≤ 1+|Sx′ |. The
equation shows that using Ei always leads to the minimal expansion. Using
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ei would lead to the minimal expansion only in some cases. The algorithm
is correctly adding Ei to the minimal expansion, skipping following 0 and
recursively finds the rest of the minimal expansion.

ME(0000) = {} ME(0100)=e2 ME(1000)=e3 ME(1100)=E3E1

ME(0001)= E0 ME(0101)=e2E0 ME(1001)=e3E0 ME(1101)=E3e1
ME(0010)= e1 ME(0110)=E2E0 ME(1010)=e3e1 ME(1110)=E3E0

ME(0011)= E1 ME(0111)=E2 ME(1011)=e3E1 ME(1111)=E3

Figure 2.2: Example of results of algorithm ME for nodes of MC4.

Now we have defined a tool to create a minimal expansion for a node. In
figure are examples of minimal expansions of different nodes. We can see that
every node of MC4 has no more than 2 edges in its minimal expansion.

The operation of finding minimal expansion is important not only when
input is one node x but also in the combination of two: x + y. Note that if
x, y ∈ MCn, then x + y ∈ MCn. So any combination of two nodes will have
same minimal expansion like one of the nodes in the same subcube. If we look
closely at the operation x + y, it shows which bits are different in x than in
y. In the hypercube it would show which dimensions are needed to be routed
at, to reach the other node. In Möbius cubes the distance between nodes are
smaller, which that is exactly what ME(x + y) says. If there is a substring
consisting only of 1 in x+y, it is useful to take a ”twisted” edge to solve them
all.

The same rules for generating ME(x+ y) as for ME(x) apply, so the max-
imum number of edges gives us the lower bound on the diameter of MCn,
�(MCn) = Ω(dn2 e).

Just from looking at the graphs of the Möbius cubes of small dimensions,
we can tell that for some of them, this lower bound is unreachable. For most
of the nodes (and the combination of two nodes) there exists more than 1
minimal expansion and the ME algorithm does not control for it if the gen-
erated edges are present in the MCn. For example, if there is E3 in minimal
expansion for routing in 0-MC4, there is no such edge in the whole graph. The
minimal expansion is not generating a route between two edges, it is just a
tool to generate an approximate direction.
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2.2 Approximate shortest path routing algorithm

The shortest path routing algorithm will use the minimal expansion as input
to generate routing between two nodes. First we will describe the approxi-
mate algorithm, which is easier to understand but is missing one operation to
generate a correct route every time.

The algorithm, when routing from x to y already received the minimal
expansion of x+y but we now that this is the exact routing in only few cases.
The algorithm has to determine if the edge proposed by ME(x + y) really
exists and if it does not, the algorithm has to substitute it. The approximate
routing algorithm is in Figure 2.3.

Before we describe the algorithm, let us define some functions and labels
used in the algorithm. Let’s assume that S is a set of edges generated by
ME(x+ y) and it is always sorted from the highest to the lowest index. Then,
S.top returns its highest indexed edge, S.next returns the second highest edge,
S.index returns an index of its highest indexed edge, S.remove(ei) removes the
edge from the set and S.add(ei) adds the edge. The function isEdge(node x,
edge ei) returns true if edge ei is incident with node x and ei is actual edge ex-
isting in context of considered MCn, otherwise it returns false. This function
depends on bit i+1 in address of x as it is decribed in definition of neighbors in
the Möbius cubes. This routing algorithm works for both 0-MCn and 1-MCn,
which contains different types of edges in the highest dimensions. We assume
that the algorithm and all other functions knows which MCn is currently being
used. In case 2 of algorithm, tj denotes any ej or Ej with index smaller than i.

There are 4 cases in the algorithm, some divided into two parts. We keep
the same order for labeling the cases as in [1]. But while describing them one
by one, we will begin from case 4 to case 1 because this order is going from
the easiest to the most difficult part to understand.

Case 4 This case happens if the edge with highest index i is Ei and such
edge incident on node x does not exist. Therefore we need to find substitution
for this edge:

1. Remove Ei from set S.

2. Add edges ei and Ei−1 to set S.

3. Apply the algorithm recursively on new set S.

There is an edge incident on x in every dimension so if Ei does not exist,
there must be an existing ei edge instead. So it is possible to add ei to S
and because we wanted to route to where Ei would have led and we know
that Ei − ei = Ei + ei = Ei−1, we also add Ei−1 into S. If this would have
happened during generation of minimal expansion, the generated set would
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approxSpr (x, y, S )
{

int i = S . index ;
case 0 : (x == y )

break ;
case 1 : ( isEdge (x , S . top ) && S . top == ei )

i f (S . next . index == i + 1 && isEdge (x , S . next ) )
{

S . remove (ei ) ;
approxSpr (x , getNeighbor (y , ei ) , S ) ;
p r i n t (y ) ;

} else
{

x = getNeighbor (x, ei ) ;
p r i n t (x ) ;
S . remove (ei ) ;
approxSpr (x, y, S ) ;

}
case 2 : ( isEdge (x, S . top ) && S . top == Ei )

i f (∃ tj ∈ S && isEdge (x, tj ) )
{

x = getNeighbor (x, tj ) ;
p r i n t (x ) ;
S . remove (tj ) ;
approxSpr (x, y, S ) ;

} else
{

x = getNeighbor (x,Ei ) ;
p r i n t ( x ) ;
S . remove (Ei ) ;
approxSpr (x, y, S ) ;

}
case 3 : ( ! isEdge (x, S . top ) && S . top == ei )

S . remove (ei ) ;
S . add (Ei , Ei−1 ) ;
approxSpr (x, y, S ) ;

case 4 : ( ! isEdge (x, S . top ) && S . top == Ei )
S . remove (Ei ) ;
S . add (ei , Ei−1 ) ;
approxSpr (x, y, S ) ;

}

Figure 2.3: The approximate shortest path routing algorithm.

have been different just at position i, which would have change from E to e,
and at position i − 1, which was vacant before because the ME generates an
edge for at most every two bits, the rest of set S would have been unchanged.
Then, |S| would have been larger by 1. In the same way, if the algorithm uses
case 4, the final path will be 1 node longer than was the size of original input
set S.

Case 3 Another case is used when the edge with highest index i is ei and it is
not existing edge incident on node x. Therefore we need to find a substitution
for this edge. This case is the same as case 4 just with switched ei and Ei:

1. Remove ei from set S.

2. Add edges Ei and Ei−1 to set S.

3. Apply the algorithm recursively on new set S.
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There is an edge incident on x in every dimension so if ei does not exist,
there must be an existing Ei edge instead. So it is possible to add Ei to S
and because we wanted to route to where Ei would have lead and we know
that ei − Ei = ei + Ei = Ei−1, we also add Ei−1 into S. If this would have
happen during generating minimal expansion, the generated set would have
been different just at positions i - which would have changed from e to E,
and at position i − 1 which was vacant before because the ME generates an
edge for at most every two bits, the rest of set S would have been unchanged.
Then, |S| would have been larger by 1. In the same way, if the algorithm uses
case 3, the final path will be 1 node longer than was the size of original input
set S.

Case 2 This case is used only if the edge with the highest index i is an exist-
ing ”twisted” edge from node x to node u where u can (but does not have to
be) y. The algorithm is using a ”twisted” edge so u = negi(negi−1(...neg0(x))).
Case two is divided into two parts depending on set S.

Case 2 part 1 The first part of case two is used when any ej or Ej exists
in set S (denoted as tj , j < i), which is an existing edge incident on x. The
algorithm proceeds by following steps:

1. Find the neighbor of node x that is connected with x by edge tj .

2. Rewrite x by this new node.

3. Add new x into resulting routing path.

4. Remove edge tj from set S.

5. Apply the algorithm recursively on new set S and new node x.

The first part is the most time consuming part of the algorithm. The algorithm
needs to check if there exists any ej or Ej in set S, in algorithm denoted as
tj , j < i, which is existing edge incident on x. If it does exists, algorithm
will first route along that edge and then recursively call a routing algorithm
again (which will fall into case 2 with same Ei again). The reason why the
algorithm CAN use tj instead of Ei is that using tj does not affect the bits
above j. Using tj and then Ei is same as first using Ei and then tj : Ei +Ej =
Ej +Ei ∧Ei + ej = ej +Ei;∀i, j; i > j. The reason why algorithm DOES use
tj instead of Ei first is that by using Ei it would leave the subcube MCi and
by using any tj , j < i it stays at the same subcube MCi. It does not matter if
x is at 0-MCi or 1-MCi but by taking Ei, the algorithm will route to the node
u on position which is opposite (all bits reversed) to the position of x in the
first subcube. Because of that, for any j, 0 < j < i if there is ej incident on
x, there is Ej incident on u and otherwise if there is Ej incident on x there is
ej incident on u with the exception of dimension 0 where E0 = e0. Therefore
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by using the Ei first, the algorithm would have to substitute tj later (by case
3 or 4) for 2 different edges and that would add unnecessary nodes to route.

Case 2 part 2 The second part of case two is used when part 1 con not
be used. Only Ei is existing an edge incident on x. The algorithm proceeds
similarly as in part 1:

1. Find neighbor of node x that is connected with x by edge Ei.

2. Rewrite x by this new node.

3. Add new x into resulting routing path.

4. Remove edge Ei from set S.

5. Apply the algorithm recursively on new set S and new node x.

In the second part of case 2, there is only one existing edge in set S that is
incident on x. So the algorithm will simply use it. By using just case 2 every
time, the algorithm would take the same number of steps as is size of input
set S.

Case 1 Case 1 happens only if the edge with highest index i is existing
”hypercubic” edge from node x to node u where u can but does not have to
be y. We are using ”hypercubic” edge so u = negi(x). This case has two
separate parts:

Case 1 part 1 In the first part, there is ei−1 or Ei−1 in set S and this
edge is an existing edge incident on x. Note that in such a scenario it is not
possible to have been created by algorithm ME which adds only edges with
index distant at least by 2. The algorithm proceeds in these steps:

1. Find neighbor of node y that is connected with y by edge ei.

2. Rewrite y by this new node.

3. Remove edge ei from set S.

4. Apply the algorithm recursively on new set S and new node y.

5. Add original y into resulting routing path.

In this part the algorithm does not use the edge with he lower index like
similar part 1 of case 2, instead it routes from y, which is the end node, to
node v along edge ei so it takes parallel edge to edge ei incident on x. We
know that this edge ei incident on y exists because x and y must be in different
subcube MCi which are connected only by edges ei (otherwise case 1 wouldn’t
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2. Shortest path routing algorithms

be happening). This routing is written into the resulting routing after the
recursive step is called so the edge ei is taken last. That is not a problem
because ei is reverting only bit i which cannot. be reverted by any further
edges (they have lower index). The reason why the algorithm does not do an
operation similar to case 2 is that if we first route in dimension i− 1 and call
case 1 on ei again, we are sure that first part of the algorithm will never be
done again because edge i − 1 will be already in use. But in some cases we
need to first use more than one edges before ei to reach correct route. This
cannot be done by the same way as in case 2 because edge ei leads from x
to u and x and u are both in different subcube MCi but the types of edges
they incident with in the same dimension j, 0 ≤ j < i− 1 are both ”twisted”
or both ”hypecubic”. Only in dimension i − 1, x and u are incidents with
different edge type. This is because we are in 0-MCi+1(otherwise there would
not be edge ei) that is created by joining 0-MCi and 1-MCi. To use more
edges before ei it is needed to call the recursive algorithm again for cases 1 or
2 to decide which edge to prefer. And then we are sure to use ei in the end.

Case 1 part 2 If there is no edge ei−1 or Ei−1 in set S that would be an
existing edge incident on x. The algorithm takes the following steps:

1. Find neighbor of node x that is connected with x by edge ei.

2. Rewrite x by this new node.

3. Add new x into resulting routing path.

4. Remove edge ei from set S.

5. Apply the algorithm recursively on new set S and new node x.

The second part of case 1 is that there is no ei−1 or Ei−1 existing edge incident
on x and the rest of edges of S are incident on both x and u, so the algorithm
uses the edge with highest index which is ei. By taking just case 1 every time,
the algorithm would take same number of steps as is size of input set S.

Case 0 If x = y, the algorithm will end recursion and start returning on the
recursive tree.

2.2.1 Examples of routing

In this section, we provide examples of routing for each case of the algorithm.
Showing how the set S and nodes x and y are changing. The approximate
algorithm does not always generate the shortest possible routing. In the last
example, the reason why that is, can be seen.
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Example 1 Example 1 can be found in Figure 2.4.

approxSpr on 0-MC4:
x = 1110
y = 0001
ME(1111) = {E3}

1. case 4: S = {e3, E2}

2. case 1: y = 1001, S = {E2}

3. case 1: x = 1001, print(1001), S = {}

4. case 0: x = y

5. finalize step 2: print(0001)

Result: 1110→ 1001→ 0001

In this example, the minimal expansion is only one edge. Note that if it
would have been routing in 1-MC4, this edge would be sufficient. But in 0-
MC0 it does not exists so in the first step of the algorithm case 4 is used to
substitute E3 for e3 and E2. In the second step algorithm can take both e3
or E2. Note that if it takes e3 into 0110, there would be no use for E2. The
algorithm leaves e3 for the last step and uses E2 into 1001. The reason why it
is important to leave the edge ei for the very last step is made clear in example
3.

0000 0001

00110010

0110 0111

0100 0101

1000 1001

10111010

1100 1101

1110 1111

Figure 2.4: Routing from example 1 from 1110 to 0001.

Example 2 Example 2 can be found in Figure 2.5.
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approxSpr on 1-MC4:
x = 0010
y = 1111
ME(1101) = {E3, e1}

1. case 2: x = 0000, print(0000), S = {E3}

2. case 2: x = 1111, print(1111), S = {}

3. case 0: x = y

Result: 0010→ 0000→ 1111

In example 2, the input from ME would be correct if the routing would have
been from y to x. In our case, the algorithm in step 1 must decide to use e1
to 0000, according to first part of case 2. Otherwise it would end up in 1101,
where is no straight connection to 1111. From 0000 the algorithm routes to
1111 again by case 2, this time its second part.

0000 0001

00110010

0110 0111

0100 0101

1000 1001

10111010

1100 1101

1110 1111

Figure 2.5: Routing from example 2 from 0010 to 1111.

Example 3 Example 3 can be found in Figure 2.6.

approxSpr on 0-MC4:
x = 1000
y = 0101
ME(1101) = {E3, e1}

1. case 4: S = {e3, E2, e1}

2. case 1: y = 1101, S = {E2, e1}

3. case 2: x = 1010, print(1010), S = {E2}
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4. case 2: x = 1101, print(1101), S = {}

5. case 0: x = y

6. finalize step 2: print(0101)

Result: 1000→ 1010→ 1101→ 0101

This is example of the most complicated routing in 0-MC4, it is a showcase
of the difference between first the part of case 1 and the first part of case 2.
Step 2 where the algorithm leaves edge e3, is important for the last step and
then step 3 can be called to decide if it is necessary to take E2 or if e1 and e1
is selected. If case 1 was programmed the same way as case 2 (if there is edge
i − 1 take this edge first and then call recursive step for ei again), it would
take E2 into 1111 first, then e3 to 0111 and then 0100 and 0101 which is one
node longer than the correct routing.

0000 0001

00110010

0110 0111

0100 0101

1000 1001

10111010

1100 1101

1110 1111

Figure 2.6: Routing from example 3 from 1000 to 0101. Blue is the correct
routing, red is the wrong routing - for example if case 1 is programmed same
way as case 2.

Example 4 Example 4 can be found in Figure 2.7.

approxSpr on 0-MC4:
x = 0000
y = 1100
ME(1100) = {E3, E1}

1. case 4: S = {e3, E2, E1}

2. case 1: x = 1000, print(1000), S = {E2, E1}

3. case 2: x = 1111, print(1111), S = {E1}
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4. case 2: x = 1100, print(1100), S = {}

5. case 0: x = y

Result: 0000→ 1000→ 1111→ 1100

This is example of routing where approximate algorithm does not produce
the shortest possible routing. Instead it produces routing that is one node
longer, but it is still routing between node 0000 and 1100. The mistake that
is done is in step 1. Here instead of e3, E2, E1 we could use e3, e2, which
would route to 0100 and then to 1100. This showcases the only case (together
with same problem in case 3) where approximate routing does not produce the
shortest path. So if we fix this, we will get the correct shortest path routing.

0000 0001

00110010

0110 0111

0100 0101

1000 1001

10111010

1100 1101

1110 1111

Figure 2.7: Routing from examples 4 and 5 from 0000 to 1100. Blue is routing
of approximate algorithm and green is routing of spr algorithm.

2.3 Shortest path routing algorithm

To improve the approximate algorithm into the shortest path routing algo-
rithm we need to discover only one thing - how and when it is possible to
substitute minimal expansion with another equal minimal expansion. We will
always want to substitute the edge with highest index i. First, we will begin
with changing Ei into ei.

We assume that we have minimal expansion created by ME algorithm so
there is no space between indexes of edges less than 2. Then if we want to
change Ei we have to keep changing all e edges behind until we find E edge
in distance i− 2k where k is any constant.

Lemma 4. If a minimal expansion of string x produced by the ME algorithm
has a highest indexed term Ei, then another minimal expansion with highest
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indexed term ei, exists iff:

Sx = Ei ei−2 ... ei−2k+2Ei−2k + Sx′

Where k > 0 and Sx′ has no edge indexed higher than i − 2k − 4. Then the
substitution is :

Ei ei−2 ... ei−2k+2Ei−2k = ei ei−1 ei−3 ... ei−2k+1.

Proof. Since the routing algorithms are working primarily with edges with
the highest index, we need to always change the highest indexed edge into the
edge of the other type (here it is ”twisted” into ”hypercubic”). Therefore we
assume that any considered substitution must start with ei.

The greedy minimal expansion algorithm ME produces ”twisted” edge in
cases there is 11 string in the beginning of input string x. Then, if we have
changed Ei into ei, we need to deal with 1 on position i − 1. There are two
options: Ei−1 or ei−1.

We also know there was ei−2 in the original minimal expansion, therefore
if we use Ei−1, we would have to use ei−2 as well.

Ei ei−2 = eiEi−1 ei−2.

Clearly the rest of the minimal expansion would remain the same as in the
original outcome. Therefore expansion with Ei−1 would have weight |Sx|+ 1.

If we use ei−1 instead, the outcome is different. Let us demonstrate it
on the string x where x + Sx = 00...00. Then the string for the original
minimal expansion must be x = 11(01)∗00. Then x + Ei = 00(10)∗11 and
x + ei + ei+1 = 00(01)∗00. We then only need ei−3 + ... + ei−2k+1 to get
string 00..00. It does not matter what bits are behind position i − 2k since
the original expansion used two ”twisted” edges and the new one does not use
any ”twisted” edges. The weight of Sx remains unchanged.

11010100101 E10 e8 e6E4 e2E0 → e10 e9 e7 e5 e2E0

10101011001 e10 e8 e6E4E2E0 → E10 e9 e7 e5E2E0

Figure 2.8: Two examples of substitution of Ei into ei and otherwise while
keeping the minimal number of edges.

Same way edge ei can be transformed into Ei.
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Lemma 5. If a minimal expansion of string x produced by the ME algorithm
has a highest indexed term ei, then another minimal expansion with highest
indexed term Ei, exists iff:

Sx = eiei−2 ... ei−2k+2Ei−2kSx′

Where k > 0 and Sx′ has no edge indexed higher than i − 2k − 4. Then the
substitution is :

ei ei−2 ... ei−2k+2Ei−2k = Ei ei−1 ei−3 ... ei−2k+1.

Proof. The proof is very similar to the previous lemma. We want to change
the highest indexed edge ei into Ei.

The greedy minimal expansion algorithm ME produces ”hypercubic” edge
in cases there is 10 string in the beginning of input string x. Then, if we have
changed ei into Ei, we need to deal with 1 on position i − 1 (10 + Ei = 01).
There are two options: Ei−1 or ei−1.

We also know there was ei−2 in the original minimal expansion, therefore
if we use Ei−1, we would have to use ei−2 as well.

ei ei−2 = EiEi−1 ei−2.

Clearly the rest of the minimal expansion would remain the same as in the
original outcome. Therefore expansion with Ei−1 would have weight |Sx|+ 1.

If we use ei−1 instead, the outcome is different. Let us demonstrate it on
the string x where x + Sx = 00...00. Then the string for the original min-
imal expansion must be x = 10(10)∗11. Then x + ei = 00(10)∗11 and
x + Ei + ei+1 = 00(01)∗00. We then only need ei−3 + ... + ei−2k+1 to get
string 00..00. It does not matter what bits are behind position i − 2k since
the original expansion used one ”twisted” edge and the new one also uses one
”twisted” edge. The weight of Sx remains unchanged.

When we have defined the operation of substitution of minimal expansion,
we can use it in the shortest path routing. In example 4 in the previous sec-
tion we saw, that this substitution is needed in cases 3 and 4 of the routing
algorithm. In fact, it is important to do this substitution every time such
substitution is possible. In the approximate algorithm, cases 3 and 4 were
substitutions of one edge by two. Now if it is possible to make substitutions
that do not add unnecessary edges, it will be done. The new shortest path
algorithm is described in figure 2.9. The only change from the approximate
algorithm is in cases 3 and 4.
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There are 4 cases in the algorithm, with every part being divided into
two parts. We keep the same order of labeling the cases as in [1]. The same
operations as in the approximate shortest path routing algorithm are needed.

Case 0, Case 1 and Case 2 remains unchanged from the approximate
shortest path routing algorithm from section 2.2.

Case 3 This case is used when the edge with highest index i is ei and it is not
an existing edge incident on node x. Therefore we need to find a substitution
for this edge. There are two parts of this case, depending on if it is possible
to substitute it with an equal minimal dimension:

Case 3 part 1 If there are edges ei, ei−2, ..., ei−2k+2, Ei−2k in set S, we
substitute this part of S by lemma 5.

1. Remove ei, ei−2, ..., ei−2k+2, Ei−2k from set S.

2. Add edges Ei, ei−1, ei−3..., ei−2k+1 to set S.

3. Apply the algorithm recursively on new set S.

The substituted sequence of edges can have any possible weight. The smallest
possible substitution is ei, Ei−2 → Ei, ei−1.

Case 3 part 2 Otherwise, a substitution which adds one edge is applied.

1. Remove ei from set S.

2. Add edges Ei and Ei−1 to set S.

3. Apply the algorithm recursively on new set S.

There is an edge incident on x in every dimension so if ei does not exist,
there must be existing Ei edge instead. So it is possible to add Ei to S and
because we wanted to route to where Ei would have lead and we know that
ei −Ei = ei +Ei = Ei−1, we also add Ei−1 into S. If this would have happen
during the generation of minimal expansion, the generated set would have
been different just at positions i - which would have changed from e to E, and
at position i− 1 which was vacant before because the ME generates edge for
at most every two bits, the rest of set S would have been unchanged. Then,
|S| would have been larger by 1.

Case 4 This case is similar to case 3. It happens if the edge with highest
index i is Ei and it is not existing edge incident on node x. Therefore we need
to find substitution for this edge. There are two parts of this case, depending
if it is possible to substitute with equal minimal dimension:
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Case 4 part 1 If there are edges Ei, ei−2, ..., ei−2k+2, Ei−2k in set S, we
substitute this part of S by lemma 4.

1. Remove Ei, ei−2, ..., ei−2k+2, Ei−2k from set S.

2. Add edges ei, ei−1, ei−3..., ei−2k+1 to set S.

3. Apply the algorithm recursively on new set S.

The substituted sequence of edges can have any possible weight. The smallest
possible substitution is Ei, Ei−2 → ei, ei−1.

Case 4 part 2 Otherwise, substitution which adds one edge is applied.

1. Remove Ei from set S.

2. Add edges ei and Ei−1 to set S.

3. Apply the algorithm recursively on new set S.

There is an edge incident on x in every dimension so if Ei is not existing,
there must exist ei edge instead. So it is possible to add ei to S and because
we wanted to route to where Ei would have led and we know that Ei − ei =
Ei + ei = Ei−1, we also add Ei−1 into S. If this would have happened during
generating minimal expansion, the generated set would have been different
just at position i, which would have changed from E to e, and at position
i − 1, which was vacant before because the ME generates edge for at most
every two bits, the rest of set S would have been unchanged. Then, |S| would
have been larger by 1.

Theorem 2. The shortest path routing algorithm correctly routes in a minimal
number of steps from source node x to destination node y, given input set S
containing “greedy” minimal expansion of x+ y.

Proof. We prove that the number of steps used is necessary and sufficient by
inductive proof.
Base step. |S| = 0. Zero routing steps are necessary and sufficient, because
x = y, and the algorithm correctly terminates after doing nothing.

Inductive step. |S| = 0. Assume that the theorem is true for |S| = 1, ..., k−1.
Consider the lowest indexed edge in S. Let this edge have index i. Routing
along any edge with index j, j < i doesn’t affect bit i in the address of X.
Routing along any edge j, j > i doesn’t lead to a minimal path from x to y,
by Lemma 2. So the algorithm must eventually route along only one of the
edges z + ei or z + Ei for some node z on the path between x and y.

Each of the four cases in the algorithm examines a possible condition for
the edge at position i:
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spr (x , y , S)
{

int i = S . index ;
case 0 : (x == y )

break ;
case 1 : ( isEdge (x , S . top ) && S . top == ei )

i f (S . next . index == i + 1 && isEdge (x , S . next ) )
{

S . remove (ei ) ;
approxSpr (x , getNeighbor (y , ei ) , S ) ;
p r i n t (y ) ;

} else
{

x = getNeighbor (x, ei ) ;
p r i n t (x ) ;
S . remove (ei ) ;
approxSpr (x, y, S ) ;

}
case 2 : ( isEdge (x, S . top ) && S . top == Ei )

i f (∃ tj ∈ S && isEdge (x, tj ) )
{

x = getNeighbor (x, tj ) ;
p r i n t (x ) ;
S . remove (tj ) ;
approxSpr (x, y, S ) ;

} else
{

x = getNeighbor (x,Ei ) ;
p r i n t ( x ) ;
S . remove (Ei ) ;
approxSpr (x, y, S ) ;

}
case 3 : ( ! isEdge (x, S . top ) && S . top == ei )

i f (ei , ei−2 , . . . , ei−2k+2 , Ei−2k ∈ S ){
S . remove (ei , ei−2 , . . . , ei−2k+2 , Ei−2k ) ;
S . add (Ei , ei−1 , . . . , ei−2k+1 ) ) ;

} else {
S . remove (ei ) ;
S . add (Ei , Ei−1 ) ;

}
spr (x, y, S ) ;

case 4 : ( ! isEdge (x, S . top ) && S . top == Ei )
i f (Ei , ei−2 , . . . , ei−2k+2 , Ei−2k ∈ S ){

S . remove (Ei , ei−2 , . . . , ei−2k+2 , Ei−2k ) ;
S . add (ei , ei−1 , . . . , ei−2k+1 ) ) ;

} else {
S . remove (Ei ) ;
S . add (ei , Ei−1 ) ;

}
spr (x, y, S ) ;

}

Figure 2.9: The shortest path routing algorithm.

Case 1. The highest indexed edge in S is ei that is adjacent to node x.
In the first part of this case, the algorithm routes recursively from x to y− ei,
then along edge ei to y in one necessary and sufficient step. If all edges in S
are correct edges with respect to route between x y − ei, by the assumption
the routing from x to y − ei takes |S| − 1 steps, so the routing from x to y
takes |S| steps. Otherwise, by the assumption the routing from x to y − ei
takes |S| − 1 or |S| steps, thus the routing from x to y takes |S| or |S| + 1
steps.

In the second part of this case, the algorithm routes along edge from x to
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x + ei in one necessary and sufficient step, then recursively from x + ei to y.
By the same arguments as above, the hypothesis holds.

Case 2. The highest indexed edge in S is Ei that is adjacent to node x.
In the first part of this case, the algorithm routes along an edge x+ tj , j < i.
Because S − tj then contains edge Ei adjacent to x+ tj (as it is explained in
description of algorithm), by induction, the sufficient and necessary number
of steps is |S| − tj + 1 = |S|.

In the second part of this case, the algorithm routes along the edge from
x to x+Ei in one necessary and sufficient step. Because S−Ei then contains
only correct edges with respect from x+Ei to y, by induction, the necessary
and sufficient number of steps is |S| − Ei + 1 = |S|.

Case 3. Highest indexed edge in S is ei that is NOT adjacent to node x.
Because ei is not existing edge in MCn with respect to x, Ei is adjacent to x,
and the algorithm must eventually route along some edge from z to z + Ei.

If by Lemma 5 there is an alternate minimal expansion for S that begins
with Ei, then the algorithm can replace S with that expansion. Then by Case
2 above, |S| steps are necessary and sufficient.

If no alternate expansion exists for S that begins with Ei, then |S| + 1
steps are necessary. The algorithm replaces ei in S with Ei and Ei+1, so by
Case 2 above, |S|+ 1 steps are necessary and sufficient.

Case 4. Highest indexed edge in S is Ei that is NOT adjacent to node
x.
Because Ei is not existing edge in MCn with respect to x, ei is adjacent to x,
and the algorithm must eventually route along some edge from z to z + ei.

If by Lemma 4 there is an alternate minimal expansion for S that begins
with ei, then the algorithm can replace S with that expansion. Then by Case
1 above, |S| or |S|+ 1 steps are necessary and sufficient.

If no alternate expansion exists for S that begins with ei, then |S|+1 steps
are necessary. The algorithm replaces ei in S with ei and Ei+1, so by Case 2
above, |S|+ 1 steps are necessary and sufficient.

If |S| steps are used, then the algorithm is clearly minimal. Since |S| + 1
steps are used only when |S| steps are not sufficient, the routing algorithm is
minimal.

Now, on examples we will show, that the routing is correct where the
approximate routing was wrong and it remains same in cases where it was
correct.

Example 5 Example 5 can be found in Figure 2.7 on page 30.
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spr on 0-MC4:
x = 0000
y = 1100
ME(1100) = {E3, E1}

1. case 4: S = {e3, e2}

2. case 1: y = 0100, S = {e2}

3. case 1: x = 0100, print(0100), S = {}

4. case 0: x = y

5. finalize step 2: print(0100)

Result: 0000→ 0100→ 1100

This is the same example as example 4 where the approximate algorithm
made mistake in step 1. Now according to the rule: Eiei−2...ei−2k+2Ei−2k
= eiei−1ei−3 ...ei−2k+1 there are the E3 and E1 edges in S, which can be in-
terpreted as Ei and Ei−2k where k = 1, thus the substitution can be done. E3

is substituted to e3 and e2 is added and E1 is omitted. Then the algorithm
will find the shortest possible routing.

Example 6 Example 6 can be found in Figure 2.10.

spr on 0-MC4:
x = 1000
y = 0101
ME(1100) = {E3, e1}

1. case 4: S = {e3, E2, e1}

2. case 1: y = 1101, S = {E2, e1}

3. case 2: x = 1010, print(1010), S = {E2}

4. case 2: x = 1101, print(1101), S = {}

5. case 0: x = y

6. finalize step 2: print(0101)

Result: 1000→ 1010→ 1101→ 0101

This is the same example as example 3. It is showing that when the sub-
stitution of the same number of edges is not possible, the routing will remain
same as in the approximate algorithm. Also examples 1 and 2 would remain
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0000 0001

00110010

0110 0111

0100 0101

1000 1001

10111010

1100 1101

1110 1111

Figure 2.10: Routing from example 6 from 1000 to 0101.

unchanged.

We will show the diameter and average distance of 0-MCn and 1-MCn

in the next section, the runtime of the spr algorithm as it is introduced in
figure 2.9 is O(n2). That is caused by the sections 2, 3 and 4. But if we
implement the algorithm correctly the computation time can be lowered to
O(n). More of the implementation is in chapter 5.

2.4 Diameter and average distance

Because the spr algorithm is generating the shortest possible routings, the
average distance and the diameter are same as the values of the Möbius cubes.
Although the algorithm is identical for both topologies, it uses different cases
while routing from the same nodes in the different cube types. Therefore the
diameter and the average distance will be different too.

2.4.1 Diameter

Theorem 3. The diameter of 0-MCn:

�(0-MCn) =

⌈
n+ 2

2

⌉
, n ≥ 4.

Proof. The minimal expansion generates edges with the distance between in-
deces at least 2. The maximal number of edges in the minimal expansion is⌈
n
2

⌉
. That is the minimal number of steps the spr algorithm will take but by

cases 3 and 4, the number can rise. We know that the diameter of spr is same
as for the topology. We are looking for a string s which minimal expansion
leads to as long routing as possible. Such string is s = 11(01)(n/2)−1. This
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string has En−1 in its minimal expansion, which in 0-MCn does not exist. In
cubes with even n, minimal expansion of s will be En−1 en−3...e1, so En−1 can
be subtitued only by en−1En−2 that is adding one edge to the routing. In
cubes with odd n we also get E0 in the minimal expansion so it is possible
to substitute the minimal expansion of s into en−1 en−2en−4...e1 which does
not raise the total number of edges. Note that the routing is consisting only
of ”hypercubic” edges and there is 2n different pairs (one routing from each
nodes) with this minimal expansion. Some of them needs to route through a
”twisted” edges using case 3 and adding one more edge. The original number
of the edges in the minimal expansion was

⌈
n
2

⌉
, if we add one edge it becomes⌈

n
2 + 1

⌉
=
⌈
n+2
2

⌉
.

Theorem 4. The diameter of 1-MCn:

�(1-MCn) =

⌈
n+ 1

2

⌉
, n ≥ 1.

Proof. The proof is similar as for the 0-MCn. We know that the minimal
number of steps is

⌈
n
2

⌉
. Again we are looking for the worst possible scenario.

For even n, there is a string (10)n/2 which will cause only ”hypercubic” edges
to be in the minimal expansion anf one of them will be en−1 which is surely
a ”twisted” edge in 1-MCn. Therefore the substitution will happen and there
is no Ei so the number of steps will be raised by 1. On the other hand,
with odd n, there is no way to generate the minimal expansion of size

⌈
n
2

⌉
without having E0 in address. Therefore, every substitution will not change
the number of steps. The number of steps needed to reach any node in even
dimensioned cube is n

2 +1 and in odd dimensioned it is
⌈
n
2

⌉
. Combined together

it is
⌊
n+2
2

⌋
=
⌈
n−1
2

⌉
.

2.4.2 Average distance

Following text is taken from [1] with changes: average distance for expected
distance and βn for Zn

2 .
The asymmetries of the Möbius cubes makes their average distance difficult
to calculate exactly. However, it is possible to bound them within values
significantly below that of the hypercube’s average distance. We show the
bounds by computing D(n), the expected number of terms in the minimal
expansion of any two strings. If we choose a uniform distribution of source
and destination address strings, the sums of the source and destination will
be uniformly distributed over βn. Using the ”greedy” minimum expansion
algorithm the average weight of all elements of βn is:

D(n) =
1

2
D(n− 1) +

1

2
(1 +D(n− 2)), D(1) =

1

2
, D(2) =

3

4
.
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2. Shortest path routing algorithms

The solution of this recurrence relation is:

D(n) =
n

3
+

1

9

[
1−

(
− 1

2

)n]
.

which can easily be verified by substitution.
Since the number of terms in the minimal expansion is a lower bound

on the number of routing steps, and the spr routing algorithm uses at most
one more step than the number of terms in the expansion, we can bound the
average distance:

n

3
+

1

9

[
1−

(
− 1

2

)n]
≤ dist(MCn) ≤ n

3
+

1

9

[
1−

(
− 1

2

)n]
+ 1.

Although the Mobius cubes have a diameter approximately half that of the
hypercube, its average distance is approximately two thirds the hypercube’s
average distance.

2.5 Routing algorithm variants

One of the goals of this thesis was to introduce a different routing algorithm
in MCn. There are many possibilities how to route and keep distances at
the minimum. Because (as it is proven in next Chapter) no shortest possible
routing is deadlock-free, therefore none other routing was finished. In the
following figures, there is a routing table of spr algorithm and of another
different yet also minimal routing.

Figure 2.11: Routing table for the spr algorithm in 0-MC4. Address of the
node is changed into decimal value. Table says which node to route from left
column to top row. The colours determines dimensions of the edge.

40



2.5. Routing algorithm variants

Figure 2.12: Routing table for the spr algorithm in the 1-MC4.

Figure 2.13: Another possible routing table in the 0-MC4. It is visibly more
regular than the spr algorithm.
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2. Shortest path routing algorithms

Figure 2.14: Another possible routing table in the 1-MC4. It is visibly more
regular than the spr algorithm.
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Chapter 3

Deadlock freeness of the
Möbius cubes

For any multiprocessor network it is necessary to have a routing algorithm
that is deadlock-free. Otherwise we cannot establish a communication be-
tween a multiple nodes. We have already explained how the shortest path
routing algorithm works. Now it is time to evaluate its deadlock freeness and
eventually introduce another deadlock-free algorithm.

3.1 Deadlock on spr algorithm

If we compare the shortest path algorithm on MCn with the e-cube routing on
Qn we can see that the spr does not route on the edges in ordered dimensions.
The spr usually goes from the most significant bit to the least significant bit,
but for example if the algorithm uses the first part of case 1 or the first part
of case 2, it skips a higher dimension for lower. If such pattern is found, it is
the first sign that it is possible for the routing to contain cycles.

The problematic part, where the routing uses unsorted dimensions, is made
by the edges that does not have the parallel edges in opposite subcube. That
means that there is only one routing with the minimal length for any route
that goes through this edge. Then if we check a set of routings that goes for
every pair, source and destination node, from one subcube to another, using
one edge that has no parallel edge in the other subcube, we will find that
there is a deadlock cycle. Examples of such a routing for 0-MC3 and 1-MC3

are shown in the examples 1 and 2.

Example 1 Routing from the example 1 is described in Figure 3.1. This
example shows 8 routings, each of length 2, where each route goes through the
node where previous routing ends and next one starts. Together when started
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3. Deadlock freeness of the Möbius cubes

at one time, they will all route to the next node where they will be waiting
for the next edge to become vacant, which will never happen because they
fell into deadlock cycle. In this example, every second row is using different
dimension ordering.

0-MC3:
FROM 000 TO 111: 000→ 100→ 111
FROM 100 TO 011: 100→ 111→ 011
FROM 100 TO 001: 111→ 011→ 001
FROM 011 TO 101: 011→ 001→ 101
FROM 001 TO 110: 001→ 101→ 110
FROM 101 TO 010: 101→ 110→ 010
FROM 110 TO 000: 110→ 010→ 000
FROM 010 TO 100: 010→ 000→ 100

000 001

011010

110 111

100 101

Figure 3.1: Example of deadlock in 0-MC3. Red lines are edges with waiting
communication.

Example 2 This is very similar example to routing in the example 1, but
in this case, the routing is in 1-MC3. Thus, the spr routing is falling into
deadlock, no matter if 0-MCn or 1-MCn is used. The routing is described in
the figure 3.2.

In these two routings examples we have shown the smallest possible dead-
lock while using the spr algorithm. Same deadlocks can be found in any MCn,
n > 2. This deadlock is not possible to remove thanks to its occurrence on
the routings that have only one possible path to be shortest possible. In the
examples above, there is no routing pair, where routing can be altered with
a path of same length. Therefore, we need to search for an algorithm, that
will be deadlock-free and will be using not the shortest existing paths but the
shortest possible paths that does not cause deadlock. The other approach how
to solve this problem would be adding virtual channels to some of the edges
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3.2. Deadlock-free routing algorithm

1-MC3:
FROM 000 TO 100: 000→ 111→ 100
FROM 111 TO 011: 111→ 100→ 011
FROM 100 TO 001: 100→ 011→ 001
FROM 011 TO 110: 011→ 001→ 110
FROM 001 TO 101: 001→ 110→ 101
FROM 011 TO 010: 110→ 101→ 010
FROM 101 TO 000: 101→ 010→ 000
FROM 010 TO 111: 010→ 000→ 111

000 001

011010

110 111

100
101

Figure 3.2: Example of deadlock in 1-MC3. Red lines are edges with waiting
communication.

so no existing cycle can fall into the deadlock anymore. In this text, we will
focus on the first choice.

3.2 Deadlock-free routing algorithm

The theory of Mobius cube is coming from the Hypercube which has the ability
of choosing any fixed order of dimensions that give us both the shortest path
and the deadlock free routing. Such routing algorithm is called e-cube routing.
As we can see from the shortest path routing algorithm, in many cases it is
the fastest to use the most significant dimension first. We also know that
the changing of the order of dimensions would cause the shortest path routing
algorithm to fail. Therefore it is not possible to use any e-cube routing but only
the one that goes strictly from the most significant bit to the least significant.
Such routing will not be the shortest path possible in many cases, but will
give correct routing.

Theorem 5. The dfr algorithm is correct routing in MCn.

Proof. In each step of this algorithm, one bit of same dimension i in each
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3. Deadlock freeness of the Möbius cubes

d f r (x, y, dim)
{

i f (x != y )
{

i f (x+ y & 2dim )
{
x = negdim(x) ;
p r i n t (x ) ;

}
d f r (x, y, dim− 1 ) ;

}
}

Figure 3.3: Routing algorithm in MCn from the MSB to the LSB. The variable
dim is equal to n on start. Note this is the same algorithm as e-cube in Qn.

address is compared. If the result is 1, it means that nodes x and y resides
in different subcube MCi. It does not matters if MCi+1 is 0-MCi+1 or 1-
MCi+1 because both the ei and the Ei will change bit i in the address of x
so the the routing will get to the same subcube as is y. Taking edge in the
dimension i has no effect on bits in the higher dimensions, so by every routing
the algorithm is getting into the smaller subcube. After the maximum of n
steps the subcube will be MC0 and routing will be successfully finnised.

Also by taking any other ordering of the dimensions, the routing will never
be successful because if going up in the dimension order and the Ei edge is
used, it will change all the bits bellow, changing the bits that were already in
the correct state.

Theorem 6. The dfr algorithm is deadlock-free.

Proof. Proof by induction.

Base step. The 0-MC2 is the same topology as Q2, therefore the dfr algo-
rithm produces the same routing as the e-cube, which is deadlock-free. The
1-MC2 topology is also deadlock-free. It can be confirmed by seeing all possi-
ble routings (trivial cases where the nodes are neighbors are ommited):

FROM 00 TO 10: 00→ 11→ 10
FROM 01 TO 11: 01→ 10→ 11
FROM 10 TO 00: 10→ 01→ 00
FROM 11 TO 01: 11→ 00→ 01

Induction step. Every MCn is 0-MCn−1 connected with 1-MCn−1 by ”twisted”
or ”hypercubic” edges. In both cases, any routing (concider only the routings
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3.2. Deadlock-free routing algorithm

00 01

1110

00 01

1110

Figure 3.4: The dfr algorithm on 0-MC2 and 1-MC2.

that goes to the other MCn−1 subcube) will first use one of these highest in-
dexed edges and than continue as a routing in MCn−1. Then, if there was no
deadlocking set of the routings in MCn−1, there will not be any deadlocking
set in MCn.

Unfortunately usage of the dfr algorithm means to lose the main advantage
of the Möbius cubes - very good diameter.

Theorem 7. Routing by the dfr algorithm from one node to every other node
of MCn creates the binomial tree which is the subgraph of Qn. Therefore the
dfr routing has the same diameter and the average distance as the hypercube.

Proof. The equality of the e-cube and the dfr routing can be seen from the
figure 3.5 where the binomial trees of routing from the node 0 are compared.
Trees rooted in any other node will have the same shape.

The dfr routing routes to the subcube MCn−1 by only one edge so the
nuber of nodes connected to the source node through the edge in dimension
i is 2i. Even by using the ”twisted” edges it can never occur that two same
nodes are in the two different subtrees because every edge have effect only on
the bits below and routing goes strictly from the MSB to the LSB. There will
be always one node in distance n, the one where the algorithm has to change
dimension every single time. The number of the nodes in distance k will be(n
k

)
. This number comes from the the number of nodes connected to the root

by one edge. Each such edge connects the whole subcube of dimension i.
The source node has n neigbors so each this neighbor has in its subcube i
neighbors. Therefore, the source node will have n =

(n
1

)
nodes in distance 1,

n− 1 + n− 2 + ...1 + 0 =
(n
2

)
neighbors in distance 2, n− 1− 1 + n− 1− 2 +

...1 + 0 + n− 2− 1 + n− 2− 2 + ...1 + 0...+ 1− 1 =
(n
3

)
in distance 3 and so

on. These numbers are identical to the e-cube routing.

The dfr algorithm is not the shortest possible deadlock-free routing. It
would be possible to improve the dfr by a few routings from spr. But it
would have to be controlled in every detail for every routing that any deadlock
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3. Deadlock freeness of the Möbius cubes

situation cannot occur and the resulting impact on the diameter would be
minimal. Plus the algorithm would be changed into set of exceptions and lost
its generality.

0000

00010010

0011

0100

01010111

0110

1000

10011010

1011

1111

11101100

1101

dfr in 0-MC4:

0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

e-cube in Q4:

Figure 3.5: Routing trees of routing from node 0000 in 0-MC4 using dfr algo-
rithm and in Q4 using e-cube routing.

3.3 The diameter and average distance of dfr
algorithm

The dfr algorithm is using subgraph of the hypercube so the diameter and
average distance are the same as on hypercube. For both 0-MCn and 1-Mcn,
the diameter and the average distance are identical. These two topologies have
different edges in the highest dimension but the dfr algorithm use them for
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0000

00010010

00110110

0100

010101111100

1000

10011010

10111101

1111

1110

spr in 0-MC4:

0000

00010010

001101101101

1010

0100

010101111011

1111

1110

1001

11001000

spr in 1-MC4:

Figure 3.6: routing trees of routing from node 0000 in 0-MC4 and in 1-MC4

using spr algorithm.

the same purpose at same time - just to change the highest bit. The diameter
of dfr algorithm is n and the average distance is dist(dfr)

.
= dn2 e.

The comparament between the spr and the hypercube is in previous chap-
ter. Because the data of the hypercube and the dfr algorithm are identical,
there is no need to compare the diameters and the average distances of the
spr and the dfr.
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Chapter 4

Multicast algorithm

In this chapter, we will desrcibe a multicast algorithm for 1-port WH hyper-
cubes and proof that the same algorithm is working on the Möbius cubes and
it is a round-optimal algorithm.

4.1 ADOC - based MC algorithm on 1-port WH
hypercubes

Definition 4. Consider a WH hypercube Qn with the e-cube routing based on
checking the bits from the MSB to the LSB. Then an ascending dimension-
ordered chain (ADOC) is any sequence of nodes u1, ..., uk in Qn such that
ui < ui+1 for all i = 1, ...k− 1, where < is a standard lexicographical ordering
of binary strings.

For example, sequence 0100, 0101, 1000, 1011 is an ADOC in Q4.

Lemma 6. Let u, v, w, z be an ADOC in Qn Then (see figure)
1. paths u→ v and w → z are link-disjoint,
2. paths v → u and z → w are link-disjoint,
3. paths v → u and w → z are link-disjoint,
4. paths u→ v and u→ z are not link-disjoint, u→ z has priority,
5. paths u→ z and v → w are not link-disjoint, u→ z has priority.

Proof. We will proof every part of lemma 6 by showing every possible situa-
tion that can happen in ADOC routing. When talking about the subcubes, we
will consider only subcubes how they are visited by the MSB to LSB routing.
We consider only 2 subcubes of cube defined by the highest bit, 4 subcubes
defined by the 2 highest bits and so on. The node u′ is a neighbor of u in
some subcube. First we will describe all the situations:
a) u and v are in different subcube than w and z.
b) u, v and w are in the same subcube while z is in different one.

51



4. Multicast algorithm

u v w z u v w z u v w z
1) 2) 3)

u v w z u v w z
4) 5)

Figure 4.1: Five cases of paths joining lexicographically ordered hypercube
nodes.

c) u is in different subcube than other nodes but u′ and v are in different
smaller subcube(defined by more bits) than w and z.
d) u is in different subcube than other nodes and u′ is on the routing w → z.
e) u is in different subcube than other nodes and u′ = w.
f) v and w are on the route u→ z.

No other possibilities are possible because u < v < w < z. Now we will
discuss each situation in each part of lemma 6.
1) u→ v w → z
1-a) The paths are node and edge disjoint as no routing goes to the other
subcube if its destination node does not belongs to such subcube.
1-b) The paths are node and edge disjoint. The routing u → v does not in-
clude w because w > v and the routing from w goes directly to other subcube
where z is.
1-c) This situation is same as 1-a.
1-d) The paths are edge disjoint. In the worst case, the routing u′ → v will
route one edge to w and then to v while the routing w → z uses the same
edge but in the opposite direction, which is acceptable. This is proven by
v < w < z, therefore routing from w have to lead different direction than
u′ → v.
1-e) The paths are edge disjoint. The nodes v, u′ = w and z are in the same
subcube but v < z so for any smaller subcubes they are in a different subcube
so the routing from w will use a different edge for both nodes.
1-f) This is just special case of 1-c and therefore of 1-a as well.

2) u← v w ← z
2-a) Same as 1-a.
2-b) The paths are edge disjoint. In the worst case, the routing z′ → w will
route one edge to v and then to w while the routing v → u uses the same
edge but in the opposite direction, which is acceptable. This is proven by
u < v < w, therefore routing from v have to lead different direction than
z′ → w.
2-c) Same as 2-a.
2-d) The paths are edge disjoint. v → u will first use edge to different sub-
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4.2. ADOC algorithm on 1-port WH Möbius cubes

cube, leaving all edges of original subcube for z → w.
2-e) Same as 2-d.
2-f) Same as 2-a.

3) u← v w → z
3-a) Same as 1-a.
3-b) The paths are node and edge disjoint. w → z will first use edge to the
different subcube, leaving all edges of the original subcube for v → u which
will never route through w because u < v < w.
3-c) Same as 1-a.
3-d) The paths are node and edge disjoint. v → u will first use edge to the
different subcube, leaving all edges of the original subcube for w → z which
will never route through v because v < w < z.
3-e) Same as 3-d.
3-f) Same as 1-a.
Note that all routings in part 3 are both node and edge disjoint.

Part 4 will be contain a collision in each routing where v and z are in the
same subcube. Part 5 will contain a collision in 4-f, clearly from the descrip-
tion of the situation.

Since Qn is vertex-symmetric, we can assume that the multicast always
starts from source s = 0n. If not, we can apply a translation. The success of
the optional 1-port multicast is based on lemma 6. Simply, we take M ∪s and
transform it into an ADOC. This allows us to interpret it as 1-D mesh and
we can apply the recursive doubling for 1-port WH 1-D meshes. Hence,

MC(Qn,M, s) = 1-DMeshRDOAB(ADOC(M ∪ {s}), s).

This is clearly an optimal algorithm, since

rMC(Qn,M, s) = dlog(|M |+ 1)e = ρ(Qn,M, s).

4.2 ADOC algorithm on 1-port WH Möbius cubes

We will discuss using both the spr and the dfr routing algorithms with ADOC
algorithm on 1-port WH Möbius cubes.

4.2.1 Using spr algorithm with ADOC

The shortest path routing algorithm is generating the shortest possible rout-
ings but it is not deadlock free routing while using the wormhole switching.
That does not necessary means that it will be also blocking on ADOC. ADOC
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Figure 4.2: The examples of cases of the proof of lemma 6.

1-DMeshRDOAB(M(z), s):
Phase 1.1: Source s splits the mesh to 2 halves:

if z is odd, s keeps the smaller part.
Phase 1.2: Source s sends the packet to first node in the other half.
Phase 2: Repeat phase 1 recursively in both halves simultaneously.

Figure 4.3: 1-D mesh recursive doubling one-to-all broadcast algorithm on
M(z).

algorithm is based on using the MSB to LSB routing, but the spr contains
exceptions that allows changing the order of the dimensions. For example the
first part of case 2 of the spr algorithm in 1-MCn can cause that the routing
will use same edge as routing in the other half. We can describe this situation
with sorted ordered nodes u, v, w and x, where u and w has the message and
when w is routing to x, it is possible that it will use the edge to v. In some
case this can be the edge which u needs to route with. Such situation would
cause one of the routings to be blocked and wait for the other one.
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0000 0001
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Figure 4.4: An example of time-optimal multicast in 0-MC4

4.2.2 Using dfr algorithm with ADOC

The dfr algorithm is the same routing algorithm as the e-cube for the hyper-
cube. And the result of dfr routing will always be a subgraph of hypercube
but this subgraph is different from the hypercube by the labels of its nodes.
Ee need to check that this routing will be truly non-blocking.

Theorem 8. The ADOC algorithm with dfr algorithm is non-blocking routing
on the Möbius cubes. The same 5 rules from lemma 6 aplies.

Proof. We know that the ADOC with The e-cube routing is non-blocking
routing on the hypercube. In the Möbius cubes, around half of the edges is
”hypercubic”, which means that there is same edge between u and v in both
MCn and Qn. For these ”hypercubic” edges is the algorithm same as in the
hypercube. Hence, it is non-blocking.

For the ”twisted” edges, we will proof every part of the lemma 6 by show-
ing every possible situation that can happen in the ADOC routing. When
talking about the subcubes, we will consider only subcubes how they are vis-
ited by the MSB to LSB routing. So only 2 subcubes of cube defined of the
highest bit, 4 subcubes defined by the 2 highest bits and so on. The node u′

is a neighbor of u in some subcube. First we will describe all the situations:
a) u and v are in a different subcube than w and z.
b) u, v and w are in the same subcube while z is in different one.
c) u is in different subcube than other nodes but u′ and v are in a different
smaller subcube(defined by more bits) than w and z.
d) u is in different subcube than other nodes and u′ is on the routing w → z.
e) u is in different subcube than other nodes and u′ = w.
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f) v and w are on the route u→ z.

No other possibilities are possible because u < v < w < z. Now we will
discuss each situation in each part of lemma 6.
1) u→ v w → z
1-a) The paths are node and edge disjoint as no routing goes to the other
subcube if its destination node does not belongs to such subcube.
1-b) The paths are edge disjoint. w → z will first use edge to the different
subcube, leaving all edges of the original subcube for u→ v.
1-c) This situation is same as 1-a.
1-d) The paths are edge disjoint. In the worst case, the routing u′ → v will
route one edge to w and then to v while the routing w → z uses the same
edge but opposite direction, which is acceptable. This is proven by v < w < z,
therefore routing from w have to lead in the different direction than u′ → v.
1-e) The paths are edge disjoint. The nodes v, u′ = w and z are in the same
subcube but v < z so for any smaller subcubes they are in the different sub-
cube so the routing from w will use different edge for both nodes.
1-f) This is just special case of 1-c and therefore of 1-a as well.

2) u← v w ← z
2-a) Same as 1-a.
2-b) The paths are edge disjoint. In the worst case, the routing z′ → w will
route one edge to v and then to w while the routing v → u uses same edge but
in the opposite direction, which is acceptable. This is proven by u < v < w,
therefore routing from v have to lead in the different direction than z′ → w.
2-c)The paths are edge disjoint. v → u will first use edge to the different
subcube, leaving all edges of the original subcube for z → w.
2-d) Same as 2-c.
2-e) Same as 2-c.
2-f) Same as 2-a.

3) u← v w → z
3-a) Same as 1-a.
3-b) The paths are node and edge disjoint. w → z will first use edge to the
different subcube, leaving all edges of the original subcube for v → u which
will never route through w because u < v < w.
3-c) Same as 1-a.
3-d) The paths are node and edge disjoint. v → u will first use edge to the
different subcube, leaving all edges of the original subcube for w → z which
will never route through v because v < w < z.
3-e) Same as 3-d.
3-f) Same as 1-a.
Note that all routings in part 3 are both node and edge disjoint.
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Part 4 will be contain collision in each routing where v and z are in the
same subcube. Part 5 will contain collision in 4-f, clearly from the description
of the situation.
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Figure 4.5: The examples of cases of proof of theorem 8. The examples are
on cube with only ”twisted” edges to show the most difficult scenarios.

Note that the algorithm for the hypercube can use the node symmetry to
transform the source node into the node 0...0. That is not possible in MCn

but the algorithm is proven to send message to both directions - nodes with
smaller value and also greater value than the source node. So the source node
can be any node of MCn.

4.2.3 optimality of ADOC algorithm on the Möbius cubes

The ADOC algorithm is same efficient on the hypercube as on the Möbius
cubes. The nodes in both topologies are same denoted and same rules applies.
The number of the rounds complexity of the algorithm is:

rMC(MCn,M, s) = dlog(|M |+ 1)e.
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4. Multicast algorithm

Because every turn, the number of reached nodes is doubled. This is clearly an
optimal algorithm, rMC(MCn,M, s) = ρ(MCn,M, s). Thanks to the worm-
hole routing, it is not interesting how long are the routings, only important is
number of rounds to send message to all destination nodes.
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Chapter 5

Implementation

This chapter covers details of the implementation of the spr algorithm, the
dfr algorithm and the mctools library. The source code can be found on cd.

5.1 Used Tools

All programs were written in the C++ programming language. The programs
itself does not need much of the C++ features and C language could have
been used as well, the used features of C++ were just for the programmer
comfort.

For the programing, a simple IDE Geany on the Debian operating system
was used. The code was complied by GNU GCC.

5.2 Mctools library

The mctools library contains functions for confirming the correctness of the
algorithm as well as the functions for routing algorithms to make the routing
calculations easier. This library should be useful for implementation of various
other problems on the Möbius cubes such as one-to-many communication
algorithms. One part of the library are algorithms to confirm the correctness
of the routing - if the routing is existing path in the topology and if it is the
shortest possible routing.

To check the correctness of the routing is easy. We just need to check if
any two nodes are neighbours. The library uses isNeighbour() function for
this operation. The code is checking the differences in the addresses. It is
enough to find the highest different bit and then check if all or none lower bits
are reversed. So O(n) operations is needed for the nodes notated by n bits.

To check if the routing is the shortest routing possible is more complicated
operation as it need a algorithm that will count the minimal distance between
two nodes and is general - not based on the specifics of the topology. Such
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5. Implementation

general algorithm is the depth-first searching. This search is done by the
function getDistance(), which is called by the function isShortest(), which
also checks if the routing is correct by the function isRoute(). The function
isShortest() is sufficient tool to confirm that any routing is the shortest possible
routing and if it does not contains wrong nodes.

For future work, it would be valuable if the library also contained functions
for checking the deadlock freeness of algorithm. One of the variants would be
to have algorithm that constructs the CDG graph.

5.3 Routing algorithms

There are three different routing algorithms in the source files. The first on
is the spr algorithm. This is the original routing algorithm, programmed as
it was introduces in [1]. In its source file, there is also the greedy minimal
expansion algorithm, which is a necessary component of spr.

Second routing is the dfr algorithm. This routing algorithm is very trivial,
its easiest variant could be written in just 10 lines.

The last included source file is the experimental rsa algorithm. This al-
gorithm was meant to be a the new shortest possible routing algorithm, that
would be easier than spr. Unfortunately, the correct mathematical explana-
tion was not found and the algorithm grew into large set of exceptions and its
development ended and is not likely to continue due to rsa algorithm being
not deadlock-free. The routing table of rsa is in figure 2.13 and in figure 2.14.
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Conclusion

In this thesis we have performed a survey of the Möbius cube theory. We have
discussed the routing algorithm and introduced the new routing algorithm
with respect to the deadlock-freeness. Lastly, we have discussed the problem
of the round-optimal multicast and presented an optimal algorithm. Now we
will summarize each of the goals and see the results.

Routing in the Möbius cube

There is a routing algorithm that we call the shortest path routing - spr
algorithm and that was introduced together with the Möbius cubes in [1]. In
Chapter 2, we have analyzed the algorithm and described every part of this
difficult algorithm beginning with the input minimal expansion and following
with all cases and subcases of the actual code. Using this shortest possible
algorithm, the diameter of 0-MCn is:

�(0-MCn) =

⌈
n+ 2

2

⌉
, n ≥ 4.

And diameter of 1-MCn is:

�(1-MCn) =

⌈
n+ 1

2

⌉
, n ≥ 1.

Another important value is the average distance which, for any MCn, we can
bind:

n

3
+

1

9

[
1−

(
− 1

2

)n]
≤ dist(MCn) ≤ n

3
+

1

9

[
1−

(
− 1

2

)n]
+ 1.

All three values are excellent results of the Möbius cube theory, having the
diameter approximately half of the diameter of Qn and the average distance
approximately two-thirds of the average distance of Qn. In practical mea-
sures, for n = 10, the diameter is improved by 4 for both Möbius cubes and
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Conclusion

the average distance is reduced from 5 under 4.

Another requirement for the routing algorithm is deadlock-freeness. In
the chapter 3, we have proven that the spr algorithm is NOT deadlock-free
and therefore its use is very limited. We have introduced another routing
algorithm - dfr, which is deadlock-free but whose toll is very high. The di-
ameter and the average distance is reduced to the values of the hypercube.
Until a better deadlock-free algorithm is found, which is highly unexpected,
the Möbius cubes loses its only advantage and becomes just a hypercube with
a difficult edge ordering.

Multicast in the Möbius cube

While deadlock-free routing brings negative results, there are other new al-
gorithms being developed that do not need to have the deadlock-free routing
because the routing is restricted by other rules. Such an algorithm could be
the multicast in 1-port wormhole network. This problem has very nice solu-
tion in the hypercube and we have proven that the exact same algorithm can
be used in any Möbius cube. Also the number of rounds complexity of the
algorithm is same as for Qn:

rMC(MCn,M, s) = dlog(|M |+ 1)e.

Summary

We have successfully performed research of the Möbius cubes and we have
successfully introduced a deadlock-free routing algorithm, although the result
casts a negative light on the Möbius cubes. Any shortest possible routing
algorithm is deadlock-prone because it is not using fixed dimension ordering.
To repair the deadlock-freeness it is inevitable to bring down the diameter
back to the values of the hypercube. We have also successfully proven that
the hypercube’s multicast algorithm works efficiently in the Möbius cubes.
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Appendix A

Contents of CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

mctools............................the directory of McTools library
Makefile.................the makefile of McTools library (UNIX)

thesis..............the directory of LATEX source codes of the thesis
thesis.tex...............the LATEX source code files of the thesis

text..........................................the thesis text directory
thesis.pdf ...................... the Diploma thesis in PDF format
thesis.ps ......................... the Diploma thesis in PS format
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