
Diploma Thesis

Coverage Path Planning in Non-Convex
Polygon Areas for Orthophotomap Creation

Using UAVs

Bc. Jan Bulušek

January 2017

Thesis supervisor: Ing. Milan Rollo, PhD

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Jan B u l u š e k

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Coverage Path Planning in Non-Convex Polygon Areas
 for Orthophotomap Creation Using UAVs

Guidelines:
1. Study the theory of remote sensing and orthophotomap creation.
2. Study existing coverage path planning methods in non-convex polygon areas.
3. Choose the most convenient methods and modify them for deployment on unmanned
 fixed-wing aircraft.
4. Implement the methods and compare their performance on various polygons.
5. Integrate the methods into a framework for UAV command & control.
6. Verify the results in simulation with unmanned fixed-wing aircraft dynamics.

Bibliography/Sources:
[1] Franco, Carmelo Di, and Giorgio Buttazzo. "Energy-Aware Coverage Path Planning of
 UAVs." Autonomous Robot Systems and Competitions (ICARSC), 2015 IEEE International
 Conference on. IEEE, (2015): 111-117.
[2] Li, Yan, et al. "Coverage path planning for UAVs based on enhanced exact cellular
 decomposition method." Mechatronics 21.5 (2011): 876-885.
[3] Schenk, T. "Introduction to photogrammetry." The Ohio State University, Columbus (2005).

Diploma Thesis Supervisor: Ing. Milan Rollo, Ph.D.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 5, 2016

Acknowledgement
I would like to thank all the people who helped me with my diploma thesis in any
way. I thank my thesis supervisor Milan Rollo for valuable comments and remarks
he had given me during the creation of this thesis. My thanks also goes to members
of the Artificial Intelligence Center from the department of Computer Science, Czech
Technical University, for all the help and patience they provided me during my work.
Special thanks goes to my family and friends for supporting and encouraging me.

Declaration
I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, date January 8, 2017 ..

iii

Abstract
Cílem této práce je implementace algoritmů pro pokrývání nekonvexních oblastí s vy-
užitím UAV (Unmanned Aerial Vehicle) a jejich experimentální ověření (jak v simula-
cích, tak na reálném bezpilotním prostředku). Z existujících algoritmů pro plánování
příslušné letové trajektorie byly vybrány tři offline algoritmy využívající exaktní de-
kompozici oblasti – naivní, Enhanced Exact Cellular Decomposition planner a Energy-
Aware planner. Zmíněné plánovací algoritmy byly dále upraveny tak, aby respektovaly
kinematická omezení letounu a aby byly schopny plánovat i nad oblastí s přítomnými
bezletovými zónami. Algoritmy byly včleněny do řídícího systému pro UAV a otesto-
vány na sérii polygonálních oblastí se stupňující se složitostí. Algoritmy jsou následně
na základě svého výkonu porovnány a dále analyzovány.

Klíčová slova
UAV; plánování trajektorií; plánování pokrývacích trajektorií; pokrývání nekonvexních
oblastí

iv

Abstract
The goal of this work is to implement coverage path planning algorithms over non-
complex areas using UAVs (Unmanned Aerial vehicle) and their experimental verifi-
cation (in a simulated environment as well as in the real one). Three coverage path
planning algorithms employing the offline exact decomposition approach were chosen
– the Naive planner, the Enhanced Exact Cellular Decomposition planner and the
Energy-Aware planner. These planners were further modified to take into account
UAV’s kinematic constraints and to be able to plan over areas with no-flight zones
present. These algorithms were integrated into a framework for UAV command & con-
trol and tested on a series of polygonal areas with increasing complexity. The selected
algorithms are further analyzed and compared according to their performances.

Keywords
UAV; trajectory planning; coverage path planning; non-convex area coverage

v

Contents

1. Introduction 1
1.1. Orthophotomaps . 1
1.2. UAV . 2
1.3. Tactical AGENTFLY framework . 3

2. Basic concepts 4
2.1. Coverage path planning . 4
2.2. Aerial remote sensing . 4

3. Aerial coverage algorithms 7
3.1. Previous work . 7
3.2. Selected approaches . 9

3.2.1. Naive exact decomposition . 9
3.2.2. Enhanced exact cellular decomposition 10
3.2.3. Energy-aware path planner . 13

4. Algorithm implementation and modifications 17
4.1. Common parts of algorithms . 17

4.1.1. Polygon area storing . 17
4.1.2. Convex area coverage . 19
4.1.3. Stripe computation . 20

4.2. Naive exact decomposition planner . 21
4.3. Enhanced exact cellular decomposition planner 21

4.3.1. Polygon width computation . 21
4.3.2. Visiting order determination . 22

4.4. Energy-aware planner . 22
4.4.1. Concave parts separation . 23
4.4.2. Multiple paths problem . 29

5. Algorithm enhancements 30
5.1. Kinematic constraints application . 30
5.2. No-flight zones implementation . 36
5.3. Limited-range planner . 39

6. Algorithm analysis and results 44
6.1. Tactical AGENTFLY interface overview 44

6.1.1. UAV properties . 45
6.1.2. Measurement tools . 45

6.2. Software tests . 46
6.2.1. Convex polygon coverage test . 46
6.2.2. Simple concave polygon coverage test 50
6.2.3. Complex concave polygon coverage test 53
6.2.4. Polygon with no-flight zones coverage test 56

6.3. Field experiments . 59
6.3.1. Convex polygon coverage . 60
6.3.2. Concave polygon coverage . 62

6.4. Test conclusions . 64

vi

7. Conclusion 65
7.1. Thesis summary . 65
7.2. Future work . 66

Appendices

A. Contents of the enclosed CD 67

Bibliography 70

vii

1. Introduction

Even though we live in a world where there are no entirely unmapped places left, the
process of mapping an area still holds its relevance. For various reasons, such as agricul-
ture crop surveillance, aerial archeology, photogrammetry or orthophotomap creation, it
is desirable to update or to create more accurate map of certain area for further analysis.

One of the possible approaches is to take a series of aerial images of an area of inter-
est. This process, being rather expensive in the past because of the need for manned
aircraft (or even satellite imagery), got easier with the emergence of unmanned aerial
vehicles (UAVs), which allowed to perform terrain mapping in reasonable time at rel-
atively small cost. Also, with the possibility of flying in lower altitudes the mapping
quality has increased. With the current rise of automated drones there is now a possi-
bility to automate this process and thus to further reduce the cost of mapping.

Because the operation time of UAVs is limited, the effectiveness of path planning
coverage algorithm is vital since it decreases the time necessary to perform the desired
sweep. The motivation of this thesis is to contribute to this effort by comparing several
coverage algorithms for fixed-wing UAVs on the Tactical AGENTFLY framework in
order to choose the most efficient one for further usage.

In this chapter, I am going to briefly introduce objects of this thesis. Chapter 2 ex-
plains additional concepts that are needed for further discussions. Chapter 3 describes
and explains the previous work made in this field along with the selected algorithms
which are to be implemented. Chapter 4 describes the modifications made on the men-
tioned algorithms. Chapter 5 shows the improvements made to these algorithms beyond
the original specifications. Chapter 6 presents the experimental results and their fur-
ther analysis. Chapter 7 contains the thesis conclusion and future work suggestions.

1.1. Orthophotomaps

Orthophoto is an aerial image geometrically corrected (orthorectified) such that the
scale is uniform, i.e. the image has the same lack of distortion as a map. This cor-
rection consists of adjusting to terrain relief, camera lens distortion and camera tilt.
Unlike the perspective (oblique) images, it can be used for measuring real distances
between objects due to the mentioned lack of distortion.

Ortophotomap or ortophotomosaic is a map created by merging orthophotos into one
complex image. An example of such a mosaic is the Google Earth virtual globe surface.

According to [1], there is a five-step process of creating a digital orthophotos:
∙ Aerial photography for acquiring the imagery;
∙ Ground control in order to precisely match the images to sets of coordinates;

1

1. Introduction

∙ Image scanning resulting in a continuous-tone image;

∙ Digital elevation model production (determining the ground elevation);

∙ Image rectification (correcting images for the aforementioned ground elevation).

The quality of the orthophoto depends, among other factors, on the recorder param-
eters. The resolution of the final orthophoto imagery is dependent on that quality as
well as density of scanned images.

In this thesis, we are primarily focusing on the image acquisition combined with
ground control. The latter image processing is out of the scope of this work.

1.2. UAV

As was already mentioned, the UAV abbreviation stands for Unmanned aerial vehicle.
As the name suggests, it is an aircraft remotely controlled by human or with a certain
autonomy.

As is presented in [2], UAVs can be of various forms and construction. There are two
dominant categories nowadays, fixed wing and rotory wing. Each of these categories
could be further subdivided according to their flight characteristics, but for our pur-
poses it is sufficient to distinguish between these two.

A fixed-wing UAV consists of a rigid wing that generates lift by its forward move-
ment. The forward movement is generated usually by a propeller attached. The overall
movement is controlled by control surfaces built into the wing itself, such as ailerons,
elevator and/or rudder. Example of such an aircraft can be found in Figure 1.

Figure 1. Fixed-wing UAV (Trimble UX5).

Rotory wing UAV is an aircraft with lift generated by one or multiple rotors.
There is a variety of possible constructions depending on the number and positioning
of each rotor – there are helicopters, quadcopters, hexacopters etc. On the contrary to
fixed-wing UAVs, since the lift is generated by rotor movement, no forward movement
is necessary. Example of this aircraft type can be found in Figure 2.

2

1.3. Tactical AGENTFLY framework

Figure 2. Rotory wing UAV (Parrot AR.Drone 2.0).

The advantages and disadvantages of each class are dependent on their construction.
Simpler construction of the fixed-wing aircraft ensures less complicated maintenance
and, more importantly, more efficient aerodynamics that provides us with longer flight
duration and/or greater payload available on less power than the rotory wing UAVs.
The main rotory wing UAV advantage is its VTOL (vertical take-off and landing) ca-
pability as well as the ability to hover and greater maneuvering options in general.

1.3. Tactical AGENTFLY framework
According to [3], AGENTFLY is a multi-agent system being developed at department
of Computer Science at Czech Technical University, Faculty of Electrical Engineering.
It enables large-scale simulations of civilian and unmanned air traffic. The system in-
tegrates advanced flight path planning, decentralized collision avoidance with detailed
models of the airplanes and the environment.

Tactical AGENTFLY (or shortly TAF3) is an ongoing U.S. Army-sponsored research
project developing agent-based coordination and planning techniques for multi-UAV in-
formation collection missions with special emphasis on complex urban environments.

3

2. Basic concepts

In order to fully discuss the topic, there are several terms and principles that need to
be explained first.

2.1. Coverage path planning
In order to create an orthophotomap of an entire area, orthophotos have to be taken at
various locations in such a way that every part of the area is captured on at least one
photo. The coverage path planner needs to identify these locations and to determine
their visiting order.

While the location identification process is throughly studied and various approaches
are available (as seen in the Section 3.1), the effective visiting order determination is
much more complex task. The effectiveness requires visiting each of these locations once
while maintaining the shortest flight trajectory possible. This problem is often referred
to as The traveling salesman problem (TSP) and as stated in [4], it can be described as
a search for permutation 𝑃 = (1 𝑙2 𝑙3 . . . 𝑙𝑛) – i.e. the visiting order – that mini-
mizes the sum of a given set of real numbers

∑︀𝑛−1
1 𝑎𝑙𝑘𝑙𝑘+1 – distances between locations.

The traveling salesman problem is NP-hard. For a small amount of locations 𝑛, it can
be solved using brute-force algorithms, but this is not applicable for larger 𝑛. As such,
usually only approximate solutions are used (on the contrary to location identification).

2.2. Aerial remote sensing
The sensing apparatus necessary for this task consists of a positioning device such as
GPS and a camera capable of taking pictures of the desired properties.

As [5] suggests, the goal is to get detailed photos as sharp as possible. Blurry images
caused either by the motion or by shallow depth-of-field are not suitable for the task
since blurred details confuse the software. The blur is reduced by closing up the aper-
ture. The image sharpness is improved by using high-definition cameras and shooting in
RAW image format. The RAW file format is the full unprocessed output of the camera
sensor without any compression applied and as such provides more options regarding
the image processing. The camera should be able to take several photos in a continu-
ous shooting mode (at least 1 photo every 2 seconds). Also, because of the fact that
it is supposed to be carried by an UAV, the camera construction should be light-weight.

Examples of suitable cameras are listed below:
∙ Canon: S110, SX260
∙ Sony: QX1,DSC-RX100 A7R, A7, A7S, NEX-6, NEX-5R, NEX-5T, A5100
∙ Panasonic: GH3

4

2.2. Aerial remote sensing

The projection area is the term for an area that gets covered by a single photo
taken by a UAV. As is suggested in [6], the projection area shape differs with the orien-
tation of camera axis. In the most cases, such as in [7], the camera axis is assumed to
be vertical or near-vertical, creating the rectangular or close to rectangular projection
area. Certain authors, such as [8], presume the camera to be tilted towards the move-
ment direction, creating oblique photographs. This in effect shifts the rectangular area
into trapezoidal shape, but the wider part is omitted nonetheless due to the possibility
of deformations, accepting back the rectangular shape (see Figure 3).

a)

b)

Figure 3. Projection areas construction. Stereoscopic image of trapezoidal shape is obtained if
the camera is tilted towards the movement direction (a). The dimension 𝑤2 is taken as sweep
breadth, omitting the wider part of the trapezoid (corners C, D). In case of perpendicular
mounting of a camera the projection area computing is simpler (b). Images are taken from
[8] and [7] respectively.

Apart from the camera mounting on the UAV, the projection area is dependent

5

2. Basic concepts

mainly on two parameters: camera’s field of vision and the altitude UAV flies at. With
the camera axis considered to be aligned vertically to the ground, the dimensions of the
projection area can be computed using trigonometry, as is shown in equations 1 and 2.

𝐿𝑥 = 2ℎ · tan(𝛼2), (1)

𝐿𝑦 = 𝐿𝑥 · 𝑟. (2)

In these equations, 𝐿𝑥 and 𝐿𝑦 denote the width and length of the projection area
(with length corresponding with the height of the photo). ℎ denotes the altitude and 𝛼
means the camera’s field of vision. 𝑟 is the camera’s aspect ratio, i.e. the ratio between
the camera’s width and its height.

The spatial resolution is the number of points in the photo corresponding to a
ground distance. This number describes the required quality of the resulting orthopho-
tomap and creates a constraint for the flight altitude according to formula 3.

ℎ ≤ 𝐼𝑥
2𝑅 · tan(𝛼2) (3)

Here 𝑅 denotes the required spatial resolution measured in pixels per meter and 𝐼𝑥
the width of a photo taken by the camera measured in pixels. The inequality reflects
the fact that the lower the altitude is, the better spatial resolution is obtained.

The image overlap, usually stated in percents, describes the required overlapping
of the adjacent photos. Because of varying dimensions of photos, the image overlap is
divided into forward and side overlap. These parameters (when converted from percent-
ages into numbers ranging from 0 to 1) combined with the projection area dimensions
give us the minimal distance between the photos taken:

𝑑𝑥 = 𝐿𝑥 · (1 − 𝑜𝑣𝑥), (4)
𝑑𝑦 = 𝐿𝑦 · (1 − 𝑜𝑣𝑦). (5)

where 𝑜𝑣𝑥 and 𝑜𝑣𝑦 in formulas 4 and 5 describe the side and forward overlap respec-
tively. The resulting distances 𝑑𝑥 and 𝑑𝑦 create a constraint for the waypoint generation
during the planning process.

6

3. Aerial coverage algorithms

3.1. Previous work

The problem of covering an area by a UAV is directly related to Coverage path planning
problem (as displayed in Section 2.1). Unlike the general CPP, the resulting trajectory
for UAV has to be subjected to additional constraints depending on the aircraft’s flight
capabilities, namely its maximal flight duration and maneuvering capabilities. The aim
to reduce the flight time duration requires us to perform as efficient sweep as possi-
ble, avoiding already visited areas if possible. The maneuvering capabilities constraint
expressed as aircraft’s turning radius affects the shape of the resulting trajectory. To
minimize this effect, it is desirable to reduce the number of turns within the trajectory,
and thus to prefer straight flight elements over curvatures. However, certain factors are
neglected for the sake of task simplicity, such as unfavorable weather conditions (e.g.
windy environment).

There are two main approaches towards the algorithm execution: online and of-
fline. Online algorithms are running on the aircraft’s onboard computer in real time,
adjusting the flight trajectory to static or even dynamic obstacles. This approach is
more robust since it can react even to unpredicted conditions, but the drawback here is
the increased onboard computational power required as well as the sensory apparatus
necessary to perform the task. Also, due to its reactive structure, the efficiency of the
resulting trajectory is limited. This approach was used by the authors of [9] or [10] for
frontier-based exploration; another approach, potential field navigation, is presented by
the authors of [11].

Offline algorithms, on the other hand, have increased trajectory efficiency, but they
require complete information about the area (e.g. obstacles) prior to the sweep and can
not react to a sudden change of conditions, such as the presence of another aircraft.
Typically, they subdivide the area into smaller, less complex subareas which are covered
using one of the simple sweep patterns. The entire area is then covered by visiting and
covering all the subareas. There are two main categories regarding the subdivision:
exact and approximate (see Figure 4).

7

3. Aerial coverage algorithms

a) b)

Figure 4. Exact decomposition (a) vs. approximate decomposition (b).

The approximate approach approximates the area by the grid of regular, usually
rectangular cells (hence the name). The size of each cell is usually chosen in such a
way that the UAV is able to cover it entirely from the position in its center. While this
approach clearly does not require any sweep pattern to be used for the cell sweeping and
is able to process even complexly-shaped areas, its drawback lies on the fact that the
resulting coverage is very likely to cover parts of the outside regions, reducing the over-
all effectiveness. Algorithms based on this approach focus mainly on the cell visiting
order. Numerous paths were taken to solve this problem; authors of [12] evaluate each
cell according to its distance to the goal cell. In [13], the authors propose the usage of
the wavefront planner while minimizing the number of steep turns by a cost function.
Similar cost function is used in [14], where also the UAV’s kinematics is considered by
adding Dubins curves. Another approaches such as ant pheromones in [15], evolution
algorithms in [16], or neural networks in [17], are also used.

The exact approach, on the other hand, decomposes the area into the set of subareas,
union of which gives us exactly the original area. These subareas are usually of convex
shape in order to sweep them with a simple pattern (e.g. back-and-forth motion known
as the Lawnmower pattern); as such, the main goal of this subdivision is to obtain
the smallest number of subareas possible to minimize the traveling salesman problem.
The authors of [18] suggest the simple Boustrophedon decomposition for the use. [19]
presents a cell decomposition based on the dynamic programming techniques. Another
approach is used in [8], where the subdivision based on the geometrical properties of
resulting subareas is proposed. The authors of [20] take into account the 3D properties
of the scanned area. An uncommon approach is used in [7], where the subdivision based
on the current flight trajectory is performed.

According to [21], the cell coverage for the exact approach can be done using several
sweep patterns. The paper mentions spiral, spiral-like, lawnmower and zamboni pat-
terns. With respect to the conditions stated in the beginning of this chapter, the most
preferred pattern is the Lawnmower pattern, which employs the back-and-forth motion
consisting of straight elements only.

8

3.2. Selected approaches

3.2. Selected approaches

3.2.1. Naive exact decomposition

The naive exact decomposition planner employs a simplistic approach of subdividing
the concave polygon area into a set of convex cells regardless of their other geometric
properties. Each of these cells is covered using the Lawnmower pattern with the lead-
ing direction (see below) perpendicular to its polygon width to minimize the number of
turns. The overall visiting order is determined by greedy search based on cell’s prox-
imity to UAV’s actual position.

The decomposition process is done as follows: the algorithm iterates through polygon
area vertices and from the location of its neighboring vertices the concavity is deter-
mined. If the vertex is found to be concave (its inner angle 𝛾 is greater than 𝜋 rad), one
of the connections with its neighbors is prolonged and performs a cut in the polygon.
This action divides the angle into a straight one (𝜋 rad) and 𝛾−𝜋 rad, which has to be
smaller than 𝜋 rad and thus is not concave anymore. After inspecting all the polygon
vertices, the area is successfully subdivided into a set of convex areas. An example
illustration of such decomposition can be found at Figure 4a.

The algorithm structure is as follows:

1. Iterate through the polygon’s vertices (𝑉). Take both its neighbors and determine
the concavity. If no concavity is detected, continue to the next vertex.

2. If concavity is detected, prolong the line connecting 𝑉 and one of its neighbors to
the inside of the polygon. Find the intersection (𝐼) of this line with the polygon
border closest to 𝑉 .

3. Add the new edge connecting 𝑉 and 𝐼 to the polygon. Continue to polygon’s next
vertex.

4. Repeat steps 1-3 until all the original vertices are processed.
5. Subdivide the polygon into a set of convex cells along newly formed edges.

When the subdivision task is completed, the visiting order needs to be established.
The Naive planner makes its decisions based on UAV’s current position and simply
selects the closest unsurveyed cell. The cell proximity to a location is resolved as the
distance between this location and closest vertex of the cell. The resulting greedy search
algorithm’s structure is as follows:

1. Initialize the starting position 𝑃 .
2. From a set of non-surveyed cells pick the one closest to 𝑃 (𝐶).
3. Sweep 𝐶 using the Lawnmower pattern. Update 𝑃 and remove 𝐶 from the cell

set. If the cell set is not empty, go to step 2.

Regarding the exact decomposition approaches in general, a sweep pattern needs to
be used to sweep respective cells. As already mentioned, the most commonly pattern
used is the back-and-forth motion, i.e. the Lawnmower pattern. As the name sug-
gests, this flight pattern employs visiting a sequence of straight lines placed in parallel;
when the endpoint of one line is reached, the aircraft flies to the beginning of another
and flies along it usually in the opposite direction than the previous one (see Figure 5).

9

3. Aerial coverage algorithms

This pattern is favored mostly because of its effectiveness, simplicity and large portion
of straight flight lines, which are generally more plausible for photogrammetric purposes.

Figure 5. The trapezoidal cell coverage by the Lawnmower pattern and its decomposition into
stripes. The area gets decomposed along the red lines. Each created stripe gets covered
by flying along its dominant direction. The actual coverage movement is illustrated by the
dashed line.

As displayed in this figure, there is one leading direction (i.e. the direction of stripe
division) that describes the pattern. Each flight line then defines the stripe getting
covered by following that line.

The illustration image also shows that in order to maintain the straight flight paths
inside of the area of interest, the aircraft is permitted to take the turns necessary to
reach the next stripe only after the current stripe is fully covered. Depending on the
area’s shape, it may also result in the aircraft reaching out of the area of interest.

The pattern’s leading direction for the Naive exact planner can be set in parallel with
the longest borderline (similarly to the approach displayed in Section 3.2.3) or further
computations may be used (e.g. the polygon width similarly to the approach displayed
in Section 3.2.2). To increase the algorithm effectiveness the latter approach was chosen.

3.2.2. Enhanced exact cellular decomposition

The Enhanced exact cellular decomposition approach (EECD), presented in [8], is
quite similar to the Naive one (see Section 3.2.1) in terms of structure. However, its
subtasks are treated differently.

Firstly, the polygon subdivision approach takes into account the geometrical proper-
ties of the resulting set of cells. To ensure that this set is more favorable for the sweep,
a new cutting technique that produces cells with dominant directions is presented. The
algorithm considers all the concave vertices present in the current part of the polygon
and tries cutting from all of them in the directions of all border lines. For each cut, the
sum of polygon widths (see below) of the resulting pair of cells is computed. After all
the possible cuts are computed, the subdividing algorithm performs the one with the
minimal sum. This process is repeated until all the concave vertices are resolved.

10

3.2. Selected approaches

Data: polygon P
Result: set of convex cells C
C = {};
C.add(P);
for cell C_i in C do

if C_i has concave vertices then
minimal_width = MAX_VALUE;
vertex_index = 0;
line_index = 0;
for concave vertices i do

for border lines j do
erupt a support line from i parallel to j;
connect i with the closest reachable intersection;
(SP1, SP2) = the new sub-polygons;
width(i,j) = width(SP1)+width(SP2);
if width(i,j) is smaller than minimal_width then

minimal_width = width(i,j);
vertex_index = i;
line_index = j;

end
end

end
cut the polygon in vertex_index with line parallel to line_index;
C.add(c1);
C.add(c2);
C.remove(C_i);

end
end

Algorithm 1: EECD subdivision method.

The function width(SP) in this algorithm computes the width of the SP polygon and
is further described below.

The resulting set of cells is still not necessarily optimal, but their attributes are
generally more favorable for our task. In order to further optimize this set, this decom-
position method reduces the number of sub-polygons by applying the recombination
process. As could be seen in Figure 6, when covering two adjacent sub-polygons by the
Lawnmower pattern (displayed in Section 3.2.1) it is possible that the resulting flight
trajectory is slightly longer than while covering one polygon of the same size. For this
reason, it is possible to merge the adjacent polygons to create a concave one, but only if
the leading flight direction (which is perpendicular to the polygon width – see below) in
these polygons is the same. Even if the resulting merged cell is concave again, similarly
to an example in Figure 6, the employed Lawnmower pattern is able to handle these
types of concavities.

11

3. Aerial coverage algorithms

Figure 6. Flight length difference for fewer sub-polygons (taken from [8]).

To determine the visiting order, the set of sub-polygons is converted into non-oriented
graph. Each node of this graph represents one sub-polygon while the edges are coin-
cident with adjacency of the respective sub-polygons. The task to find the visiting
order now transforms into traversing through the graph while visiting each node once.
Depending on the nodes configuration this may or may not be possible, in which case
we transform the task into visiting every node at least once.

Since the Lawnmower pattern is used for sweeping sub-polygons, the inner trajectory
inside every cell consists of a set of stripes. As such, the trajectory can be entered from
two peripheral stripes and exited in the opposite one (see Figure 7). The entering stripe
is accessible from two directions, which gives us for each sub-polygon four possible tra-
jectories in total. The graph edge weight is then computed as the minimal distance
between the adjacent cells 𝑑𝑖𝑗 . In case the pair of cells is not adjacent, the edge weight
is set to ∞.

Figure 7. Two possible paths for Lawnmower pattern (blue and green) consisting of the same
set of stripes. Each path is accessible via two entry points marked as dots.

The visiting order is determined by a recursive function employing dynamic program-
ming:

𝑓(𝑖, 𝑆) = min
𝑖∈𝑆

𝑓(𝑗, 𝑆∖{𝑗} + 𝑑𝑖𝑗). (6)

In this formula, 𝑓(𝑖, 𝑆) is the overall cost function of traversing a set of cells 𝑆 with
𝑖 elements inside. The terminal condition 𝑓(0, ∅) is set as the initial distance of the
UAV to the nearest cell. The visiting order is derived from the overall cost function

12

3.2. Selected approaches

minimalization.

When the visiting order is determined and the sweep of respective cells is performed,
the UAV is supposed to fly even outside of the mapped area to ensure the full coverage
of each stripe. [8] comments only briefly on this topic though, as it focuses on other
planner performances.

Polygon width

The polygon width is its minimal span. There are numerous ways to compute it, e.g.
the Rotating calipers method. It should be pointed out that the width computation
for concave polygons can be done by computing over their convex hull (i.e. the small-
est convex polygon that contains the selected concave polygon), which is also the task
already solved (quick hull algorithm, Melkman’s algorithm, Lee’s hull algorithm etc.).
All these algorithms are explained for example in [22].

Authors of [8] suggest for this subproblem a method with lower computational com-
plexity. The main ideas are:

∙ To compute the span, it is necessary to measure the distance of every point from
a given border line. The span is the maximal distance of the resulting set.

∙ It is not necessary to measure all the distances; for convex polygon it is sufficient
while going along the border to measure the distance while it is increasing. When
the distance starts decreasing, we have passed by the antipodal vertex and no
other distance can be greater than the one already measured.

∙ To get the minimal span, all of the border lines have to be processed. To find the
antipodal vertex however, we only need to increment from the antipodal vertex
from the previous computation and not along the whole border.

∙ Polygon width is obtained as the minimal value of all the computed spans.

3.2.3. Energy-aware path planner

The algorithm presented in [7] employs the Lawnmower pattern to sweep the entire
area. The main difference from other algorithms discussed here is that it does not an-
alyze the area in advance in the depth others do.

In order to use the Lawnmower pattern, as discussed in Section 3.2.1, a leading direc-
tion has to be chosen. The presented approach chooses it simply by finding the area’s
longest borderline with the leading direction setting parallel to that. This longest bor-
derline also serves as the starting point for the pattern; in case it is not coincident
with the UAV’s real starting position, the UAV is supposed to travel to this location
along the area’s border first. The part of the polygon that gets surveyed this way is
subtracted from the main area that is being swept by the Lawnmower pattern.

While traversing along the border, the following approach to cover all the neighboring
area is used. The UAV travels not only the path determined by adjacent vertices
distance |𝑣𝑖−𝑣𝑗 |, but also the adjustment dependent on the slope of the next borderline,
as seen at Figure 8.

13

3. Aerial coverage algorithms

vi vj

|vi-vj|

Lx

cot(π-γj)Lx

γj

Figure 8. Adjusting the border traveling stripe according to the slope of the next borderline.

The flight stripe gets covered by photos taken from several specific locations. Since
the aim is to reduce unnecessary coverage of the outlying area, waypoints enclosing
the stripe on both sides are placed in the full distance from the area’s border, i.e. 𝐿𝑦

2 .
To fully cover the rest of the stripe with the desired forward overlap, the distance Δ𝑦
between 𝑚 inner waypoints is computed using formulas 7 and 8:

𝑚 = ⌈ 𝑑
𝑑𝑦

⌉, (7)

Δ𝑦 = (𝑑− 𝐿𝑦)(𝑚− 1) (8)

Here 𝑑 denotes the stripe length, 𝑑𝑦 is the minimal span between photos locations in
forward direction (from equation 5) and 𝐿𝑦 is one of the projection area’s dimensions
(computed using the equation 2). By using the ceiling function the satisfaction of the
required overlap is ensured, since the result may produce even greater one.

The main sweep is organized in a matter similar to a convex area discussed above.
The number of stripes is determined by formula 9, where 𝑑 marks instead of the poly-
gon width the polygon span measured from the longest borderline. Stripes neighboring
the starting borderline and the farthest vertex are placed in the full distance from the
area’s border, i.e. 𝐿𝑥

2 , while the rest of the stripes are placed equidistantly between
them. The inner distances Δ𝑥 are computed using formula 10. See Figure 9 for illus-
tration of stripes placement.

𝑛 = ⌈ 𝑑
𝑑𝑥

⌉, (9)

Δ𝑥 = (𝑑− 𝐿𝑥)(𝑛− 1) (10)

14

3.2. Selected approaches

Lx/2

Lx/2

d-Lx

Figure 9. Stripes placement illustration.

Similarly to stripes placing, the waypoint placing inside each stripe (marking the
locations the photos should be taken at) is performed. To ensure that all of the area is
covered within the stripe, the stripe length is adjusted similarly as in the case of border
traversing (see Figure 8). Once the stripe length is set, the waypoint generation process
is performed in the same manner as with the border flight stripe, i.e. using formulas 7
and 8.

When the UAV reaches the pattern’s end, it is supposed to return to its starting
position. In case its current position is not coincident with the position required, it flies
towards that position by following the borderlines, similarly to the beginning phase.
The part of the area that gets surveyed this way should also be subtracted from the
area reserved for the main sweep.

To handle possible concave areas during the sweep an uncommon approach is used
– for each stripe the pair of edges being crossed is stored and compared with the
previous one. If the edges from the actual pair do not match the previous one (or edges
adjacent to them), then a concave area stretched between the previous and actual edges
is detected. A new area covering the non-surveyed part of the polygon is formed and
the algorithm is run recursively there from the nearest point of the main trajectory. An
example of the procedure is displayed in Figure 10.

Figure 10. Handling concavities during on-flight decomposition (taken from [7]).

To sum it up, the algorithm structure is as follows:

1. Find the longest borderline of the area of interest. Travel there along the border
if necessary; in that case also subtract the visited area from the rest of the sweep.

15

3. Aerial coverage algorithms

2. Compute the endpoint of the Lawnmower pattern starting from the longest bor-
derline with the leading direction parallel to it. Connect it with the desired ending
location of the UAV. If the travel along the border is needed, subtract the area to
be visited from the rest of the sweep.

3. Start a Lawnmower pattern sweep across the area with the leading direction par-
allel to the longest borderline.

4. During each stripe compare its endpoints with the previous one. If there is a
difference, isolate a concave subarea and recursively run a sweep there from the
location closest to the subarea (𝐿). After the sub-sweep is completed, return to 𝐿
and continue the main sweep.

16

4. Algorithm implementation and
modifications

For this thesis, the following algorithms from those listed in Section 3 were implemented
for testing and comparison:

∙ Naive exact decomposition planner (from Section 3.2.1);
∙ Enhanced exact cellular decomposition planner (from Section 3.2.2);
∙ Energy-aware planner (from Section 3.2.3).
Due to theoretical structure of the listed algorithms several changes were made in

order to make them usable. Also, certain parts of these algorithms were not displayed
at all, since they are not directly related to the coverage problem, but are still critical
for the correct functionality of these algorithms (e.g. the polygon area storing).

4.1. Common parts of algorithms

Certain parts of the implementation are shared by multiple coverage algorithms, such
as the area storing. For this reason are these parts listed separately here.

4.1.1. Polygon area storing

In order to perform rather complex tasks over the area like its subdivision into several
subpolygons or merging them back we need adequately complex data structure. For
this reason, a structure similar to Doubly connected edge list (DCEL presented in [22])
was implemented.

Similarly to DCEL, the resulting structure (which we call the hybrid DCEL or
shortly HDCEL) consists of sets of vertices, edges and faces. Additionally, it also
contains a graph of its subpolygon structure as well as the border of the entire area.

The set of vertices is carried as a Hash map encoded by the vertex number (which
is determined by the number of vertices already processed). Each vertex carries the
information about its physical position as a Point.

The set of edges is also designed as a Hash map encoded by the pair of vertices it
belongs to. Each edge carries the information about the mentioned belonging pair of
vertices and about faces it is adjacent to. To distinguish which side of the edge belongs
to which face, the pairs of vertices and edges are ordered; if we go from the first vertex
to the second one, then the first face is on the left of this edge and the second one on
the right (see Figure 11). This approach marks the main distinction to the original
DCEL since there is no need for double edges anymore.

17

4. Algorithm implementation and modifications

Figure 11. Hybrid DCEL edge illustration. When inspecting the edge (𝑣𝑖, 𝑣𝑖+1), the returned
set of faces is (𝑓𝑗 , 𝑓𝑘). On the contrary, if inspecting the edge (𝑣𝑖+1, 𝑣𝑖), the returned set of
faces is (𝑓𝑘, 𝑓𝑗).

The set of faces is designed as a Hash map as well and it is encoded by the face
number, which is determined similarly to the vertex number by the number of faces
already processed. Each face carries the list of vertices that lie on its border in counter-
clockwise order (carried as a Linked list) and a number that determines its type –
common polygon, a hole inside another, processed etc.

There are two key operations that we require – subdividing polygons and their merg-
ing. The subdivision is performed from one already existing polygon vertex (V) into a
newly created one (N) laying on one of polygon’s edges (E). These vertices form a new
edge between newly created pair of faces and set a dividing line between vertices of the
original face (F). Both subsets of vertices are then formed into new faces along with
the new pair, and all the edges belonging to the original face are updated. The whole
process is displayed in algorithm 2.

Data: Face F, cutting Vertex V, cutted Edge E, new Vertex N
face F1, F2;
for Vertex ver in F do

Vertex next = ver.next;
Edge current_edge = (ver, next);
if ver is between V and E.first_vertex then

F1.add(ver);
current_edge.face1 = F1;

end
else

F2.add(ver);
current_edge.face1 = F2;

end
end
F1.add(N);
F2.add(N);
EDGES.add(new Edge(V,N,F1,F2));
FACES.add(F1);
FACES.add(F2);
FACES.delete(F);

Algorithm 2: Polygon cutting method.
Polygon merge is done inversely to the polygon subdivision. The edge (E) connecting

two adjacent faces (F1, F2) is deleted. Sets of vertices of both polygons to be merged
are combined. All the edges of the original pair are updated. The pseudo-code of the

18

4.1. Common parts of algorithms

operation can be found as algorithm 3.

Data: Face F1, Face F2, Edge E
if F1 and F2 do not share Edge E then

return;
end
int i = F1.vertex_position(E.first_vertex);
for Vertex v2 in F2 do

F1.add(i,v2);
Vertex next = v2.next;
Edge(v2,next).face1 = F1;

end
FACES.delete(F2);
EDGES.delete(E);

Algorithm 3: Polygon merging method.

4.1.2. Convex area coverage

The Naive and Enhanced exact cellular decomposition (EECD) planners are using the
same method to cover convex areas after their subdivision – the Lawnmower pattern.
As mentioned in Section 3.2.1, this pattern has one distinctive direction. This leading
direction is determined during the planning process (see below).

The general approach was taken from the Energy-aware planner, which describes
the stripes subdivision and waypoint placing in greater detail (see Section 3.2.3) and
efficiently increases the overlap of created photos.

To determine the number of stripes, we firstly generate a randomly placed line par-
allel to the leading direction. Then the distance of each area’s vertex from this line is
computed using formula 11:

𝑑𝑖 = 𝑎 · 𝑉𝑖𝑥 + 𝑏 · 𝑉𝑖𝑦 + 𝑐√
𝑎2 + 𝑏2

(11)

Here, 𝑉𝑖𝑥, 𝑉𝑖𝑦 are coordinates of i-th vertex and 𝑎, 𝑏, 𝑐 are parameters of the gener-
ated line in the standard form (i.e. the line is characterized by 𝑎𝑥+ 𝑏𝑦 + 𝑐 = 0). Then
we can compute span of the area in the direction perpendicular to the leading direction:

𝑑 = |𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛| (12)

This value of 𝑑 is used in the formula 9.

To compute each stripe more easily, the set of guiding points is generated. Each
guiding point marks the position of the respective stripe and helps generating lines
when finding intersections in further computations. The coordinates for i-th guiding
point are computed as follows:

19

4. Algorithm implementation and modifications

𝐺𝑖𝑥 = 𝑉𝑥 + (𝐿𝑥2 + 𝑖 · 𝑑− 𝑑𝑥
𝑛− 1) · cos𝛼, (13)

𝐺𝑖𝑦 = 𝑉𝑦 + (𝐿𝑥2 + 𝑖 · 𝑑− 𝑑𝑥
𝑛− 1) · sin𝛼, (14)

Here 𝑉𝑥, 𝑉𝑦 are the coordinates of one of the extreme points, 𝐿𝑥 is one of the projection
area?s dimensions (computed by formula 2), 𝑑𝑥 is the maximal distance between stripes
computed using the equation 4, 𝑛 marks the number of stripes and 𝛼 is the angle held
between the coordinate frame and line perpendicular to the leading direction. The
exception for this rule is the case of having only a single stripe, in which case the
guiding point can be found at (𝑉𝑥 + 𝑑

2 · cos𝛼, 𝑉𝑦 + 𝑑
2 · sin𝛼).

4.1.3. Stripe computation
When we have a guiding point for the stripe set, we can proceed to process the stripe
itself. This includes setting its endpoints as well as determining positions of where the
images should be taken at.

When setting endpoints, the intersections of the flight line with the area are com-
puted, but these are not the endpoints yet. On the contrary to adjustments mentioned
in Section 3.2.3, including only the segment intersected may not be sufficient since the
area may be of irregular shape and thus would not get covered entirely (see Figure 12).
What we need to do is to compute the farthest point belonging to the area that still
lays inside the stripe, and to project that point onto the flight line.

Figure 12. Stripe endpoint adjustment. The dotted area marks the inside of a polygon. The
originally found intersection 𝐼𝑝𝑢𝑟𝑒 needs to expand to 𝐼𝑚𝑜𝑑 for complete coverage of the stripe.
The adjustment is computed by adding the relevant parts of each segment (part of 4-5, 5-6
and part of 6-7). The other side of the borderline, i.e. 1-4 have to be considered as well, but
the last relevant point in this array is only 3 and thus does not decide the final adjustment.

As seen in Figure 12, we need to iterate through the adjacent edges until we either
reach out of the stripe or the direction changes too much (i.e. the vertex distance
starts decreasing). For each edge within the range, we prolong the flight line with the
following:

𝛿𝑑 = |𝑣𝑖 − 𝑣𝑖+1| · cos 𝛾𝑖 (15)

20

4.2. Naive exact decomposition planner

Here, 𝑣𝑖, resp. 𝑣𝑖+1 denote the beginning and the end of the segment to be counted
and 𝛾𝑖 is the angle between the mentioned segment and the flight line.

When the endpoints are found, the number of photos required is determined accord-
ing to formula 7. The exact positions of the respective shots are computed as follows:

𝑊𝑖𝑥 = 𝐸𝑥 + 𝐿𝑥 · (1
2 + 𝑖) · cos𝛼, (16)

𝑊𝑖𝑦 = 𝐸𝑦 + 𝐿𝑥 · (1
2 + 𝑖) · sin𝛼, (17)

where 𝑊𝑖𝑥, 𝑊𝑖𝑦 are the coordinates of 𝑖-th waypoint in the line (𝑖 ∈< 0,𝑚 >); 𝐸𝑥, 𝐸𝑦
are the coordinates of a line endpoint, 𝛼 denotes the angle held between the flight line
and the coordinate frame.

4.2. Naive exact decomposition planner
The Naive decomposition planner takes advantage of the common algorithm parts,
as the cutting techniques and the Lawnmower pattern implementation was already
discussed above. Since the cell visiting order is determined by the greedy search, there
weren’t any additional changes made and the algorithm was implemented according to
the original specifications.

4.3. Enhanced exact cellular decomposition planner
While there were only minor changes made in this planner, its certain aspects were not
explained in detail and as such they are listed here.

Similarly to the Naive decomposition planner, it heavily relies on the hybrid DCEL
structure, which allows performing cuts and merging according to original specifica-
tions. The Lawnmower pattern used to sweep individual cells is not different from
other planners listed here; the only unresolved tasks for this planner are the polygon
width computation and the visiting order determination.

4.3.1. Polygon width computation
As mentioned in Section 3.2.2, there are numerous ways to compute the polygon width.
If we are supposed to implement an approach with lesser computational complexity
presented in [8] however, it requires us to implement a convex hull algorithm, too.

To compute the convex hull, Lee’s algorithm presented in [22] was chosen due to its
simplicity. The algorithm structure is as follows:

1. Select a polygon vertex with extreme coordinate value and add it to the convex
hull.

2. Select the polygon’s following vertex (in counter-clockwise order) and add it to
the convex hull.

21

4. Algorithm implementation and modifications

3. Form a line connecting the last two vertices of the convex hull.
4. Determine whether the polygon’s next vertex in counter-clockwise order is on the

left or on the right side of the formed line:
∙ If the vertex is on the left, add it to the convex hull.
∙ If the vertex is on the right, remove the last vertex of the convex hull and

add this one instead.
5. Repeat from the second step until all the vertices are processed.

When the convex hull is obtained, further computations are processed according to
the original specifications.

4.3.2. Visiting order determination

There was one modification made to EECD regarding the cell visiting order determi-
nation. After careful consideration the dynamic programming formula 6 was found to
be effective only in scenarios when the visiting order is apriori known, acting otherwise
as the greedy search algorithm. As such, the visiting order in our implementation is
determined by the greedy search as well, taking all the possibilities created by the entry
point existence into account (see Figure 7). By implementing this simple procedure,
the existence of a non-oriented graph as suggested was deemed redundant, and as such
was removed entirely.

4.4. Energy-aware planner

This planner, being substantially different from the others listed here, had several
unique parts. Also, due to somewhat vague description of certain parts, some ma-
jor changes from the original concept had to be made.

One of the unique features of this planner is the fact that it is not reliant on our
hybrid DCEL structure, as the polygon area is not preprocessed in any way. As such,
the polygon area is stored simply as a list of polygon vertices ordered counter-clockwise.

The border following feature that originally allowed to reduce the area for sweep was
discarded. Not only it would be rather difficult to implement methods of area reduc-
tion by a single stripe, but considering more complex shapes, such an approach could
significantly increase the flight duration.

As the planner is clearly designed for sweeping mainly convex areas, it originally
determined the total number of stripes (as well as their equidistant placing) by com-
puting the distance from the longest line (which is set as a basis for the sweeping) to the
farthest vertex of the polygon. Unfortunately, this approach is applicable for convex
areas only. For concave areas we might have multiple ending locations for our sweep,
and thus the suggested approach cannot be used (see Figure 13). The possibility of
recalculating stripes after reaching one of the endpoints was dismissed due to the fact
that such recalculation could result in ending in a different endpoint, rendering such a
recalculation pointless.

22

4.4. Energy-aware planner

Figure 13. An example scenario that makes the original stripe calculations unusable.

Since we cannot compute the number of stripes in advance, we simply check after
completing each stripe whether there is any unsurveyed area remaining. If so, another
stripe is created in the distance equal to 𝑑𝑥 (see equation 4). By doing so we ensure
that the minimal overlap is satisfied. The process of stripe creating is repeated until
there is no unsurveyed area left.

4.4.1. Concave parts separation

This subproblem was in [7] addressed to only briefly. The main idea of comparing
the flight line intersections in subsequent stripes was used as suggested. This way we
obtain an array of vertices that belong to the newfound concave area. However, to
properly enclose it we need to determine the exact position of already surveyed area.
Unfortunately, there are multiple possibilities regarding this position, and the original
illustrating Figure 10 covered only one of the total of four possible scenarios. Addition-
ally, there are some edge cases that needed to be resolved as well.

a) b)

c) d)

Figure 14. Four possible concave types for the Energy-aware planner. Upper-left (a), upper-
right (b), bottom-left (c), bottom-right (d).

All the possible scenarios can be seen at Figure 14. Let us name the concave part

23

4. Algorithm implementation and modifications

that causes the area division as the corner. The corner vertex is the vertex which
creates this concave part. Two cases of concave areas separation can occur – either
we fly around the corner to discover a concave area adjacent to the one already swept
(under the current stripe and thus called bottom) or we hit a corner that prevents us
from reaching another part of the area adjacent with the one we are going to sweep
(above the previous stripe, thus called upper). While the bottom concave area is
accessible from the stripe it was detected at, the upper concave area was accessible
during the previous stripe. Both these cases can appear on the left or right side of
the stripe. While these situations appear to be quite similar in nature, their combina-
tions of the individual patterns (which, individually, can be and are shared by some
of them) make every one of them unique and thus have to be treated slightly differently.

Bottom-right Upper-right Upper-left Bottom-left
Array part be-
longing to the cor-
ner

beginning of
the array

end of the ar-
ray

beginning of
the array

end of the ar-
ray

Array part be-
longing to the far
side

end of the ar-
ray

beginning of
the array

end of the ar-
ray

beginning of
the array

Corner vertex on
the corner edge

first second first second

Stripe to access
the area from

current previous pevious current

Table 1. Four scenarios differences.

To identify each of these situations we need to determine whether the detected con-
cave area is upper or bottom as well as its position on left or right. Left/right positioning
is determined by comparing the current and previous pairs of flight line intersections.
Since these pairs are ordered, i.e. the first intersection in the pair lies on the left and
the second one on the right, determining the left/right position of the found concave
area is a straightforward task.

To determine the bottom/upper property, the left/right information is used along
with starting and ending points of the newest stripe. We take the first edge of the
newfound right-sided array (or the last one from left-sided) and determine whether the
starting and ending point of the stripe lie within the same halfplane (with the edge
acting as the dividing line). As displayed in Figure 15, if they lie in the same halfplane,
the detected concave area is of the upper type; if not, the area is of the bottom type.

24

4.4. Energy-aware planner

0 1

23

4

56

e1 e2

0 1

2

3 4

56

e1 e2

a) b)

Figure 15. Determining the bottom/upper property for right-sided concave area. In the upper
case (a), the first edge (1-2) of the concave area (1-2-3-4) leaves both endpoints 𝑒1 and 𝑒2 in
the same halfplane, whereas in the bottom case (b) the first edge (2-3) of the concave area
(2-3-4-5) leaves each endpoint in separate halfplanes.

When we have the left/right and bottom/upper properties set, we can safely deter-
mine the corner vertex to properly enclose the unsurveyed area (see algorithm pseu-
docode presented as Algorithm 4).

Data: Array concaveArray, previous stripe PS, current stripe CS
Result: Array concaveArray
if concaveArray is left-type then

Edge defEdge = concaveArray.lastEdge;
end
else

Edge defEdge = concaveArray.firstEdge;
end
if CS.leftIntersect and CS.rightIntersect lie on the same side of defEdge then

concaveArray.corner = concaveArray.firstPoint;
concaveArray.far = concaveArray.lastPoint;

end
else

concaveArray.corner = concaveArray.lastPoint;
concaveArray.far = concaveArray.firstPoint;

end
return concaveArray;

Algorithm 4: Corner determination method.

To fully enclose the area we have to find the intersections with the border of the
previous stripe on the far (non-corner) side of the array and on the corner side and to
trim the array accordingly (see Figure 16).

25

4. Algorithm implementation and modifications

0 1

2

3 4

56

78

0 1

2

3 4

56

7
8

a) b)

Figure 16. Two possible scenarios of concave area trimming depending on the position of the
corner vertex (2). Whereas the far-side intersection is always present (creating a new vertex
7), corner-side intersection is present only in case (a), creating vertex 8 and enclosing the
concave area (3-4-7-8). Corner-side intersection is nonexistent in (b), which leads to pro-
jecting the corner vertex onto the stripe boundary, creating vertex 8 and enclosing the area
(2-3-4-7-8).

When searching for the intersection on the far side, we iterate through the array from
its far side towards the corner side until the intersection is reached. All the vertices
we pass by during these iterations belong to already surveyed area and thus are not
taken as a part of the concave area. The edge case, when the intersection on the far
side meets the intersection on the corner side, means that no concave area is present
even while traversing multiple edges between stripes (see Figure 17).

0 1

2

3

4

56

Figure 17. Even though we detect possible concave area at (2-3-4-5), none is actually present.

When searching for the intersection on the corner side, we iterate in a similar manner
as in the previous case, only this time we have to keep in mind that no intersection
has to be present, as could be seen in Figure 16. If that is indeed the case, we perpen-
dicularly project the corner vertex onto the border of the surveyed area and use that
instead. A pseudocode explaining the whole process is presented as Algorithm 5.

26

4.4. Energy-aware planner

Data: Array concaveArray, previous stripe PS, current stripe CS
Result: Array concaveArray
for Edge e in concaveArray from far to corner do

Point far_intersection = e.intersection(line between PS and CS);
if far_intersection exists then

break;
end
concaveArray.remove(e);

end
if far_intersection == corner then

return null;
end
for Edge e in concaveArray from corner to far_intersection do

Point corner_intersection = e.intersection(line between PS and CS);
if corner_intersection exists then

concaveArray.remove(Edges from corner to e);
break;

end
end
if corner_intersection does not exist then

Point corner_intersection = corner.perpendicularProjection(line between PS
and CS);
concaveArray.add(corner_intersection);

end
return concaveArray;

Algorithm 5: Concave area enclosing method.

Another problem we may encounter during this phase is that this unsurveyed area
may have multiple intersections with the border of already surveyed area, effectively
creating not one, but several concave areas at once (see Figure 18). If we would enclose
such a concave area as in aforementioned cases, we would get a self-intersecting poly-
gon. To overcome this problem, we check for intersections within the new area, sort
them along one or both coordinates to pair them, and create the list of newly found
concave areas. See Algorithm 6 for detailed information.

0 1

2

3

4

5

6

7

8

9

10

11

12

13
14 15 16 17 18

Figure 18. The originally found concave area (2-3-4-5-6-7-8-9-14-13) needs further subdivision.
Intersections (15, 16, 17, 18) are found and paired along with the original intersections (14-15,
16-17, 18-13) to form concave areas (7-8-9-14-15), (5-16-17), (2-3-18-13).

27

4. Algorithm implementation and modifications

Data: Array concaveArray
Result: Array concaveArrays
if concaveArray is not self-intersecting then

return concaveArray;
end
Array intersections;
for Edge e in concaveArray do

Point intersection = e.intersection(concaveArray.lastEdge);
if intersection exists then

intersections.add(intersection);
end

end
intersections.sort;
Array concaveArrays;
for Point p1 in intersections do

Point p2 = intersections.next;
Array current_concave;
current_concave.add(p1);
current_concave.add(p2);
for Point p in concaveArray do

if p is between p1 and p2 then
current_concave.add(p);

end
end
concaveArrays.add(current_concave);

end
return concaveArrays;

Algorithm 6: Multiple concave areas separation method.

As the result of all the aforementioned steps, we now can determine the list of the
concave area vertices and use it as an input argument for the recursive sweep. To sum
it up, the whole process the of area subdivision can be described the following way:

Data: Area A, previous stripe PS, current stripe CS
for index i in between PS.leftIntersect and CS.leftIntersect do

leftConcaveArray.add(i);
end
for index i in between PS.rightIntersect and CS.rightIntersect do

rightConcaveArray.add(i);
end
if leftConcaveArray.length > 1 then

findCorner(leftConcaveArray, PS, CS);
enclose(leftConcaveArray, PS, CS);
subdivide(leftConcaveArray);

end
if rightConcaveArray.length > 1 then

findCorner(rightConcaveArray, PS, CS);
enclose(rightConcaveArray, PS, CS);
subdivide(rightConcaveArray);

end
Algorithm 7: Concave areas detection and identification method.

28

4.4. Energy-aware planner

4.4.2. Multiple paths problem
In the case of concave areas emergence (regardless of their bottom/upper type), we now
have multiple possibilities to continue our sweep to. In the original paper an idea of
sweeping the concave area from the nearest point of the leading path is suggested; when
the concave area was swept, the UAV was supposed to return to the original path and to
continue on. This approach turned out to be impractical due to the fact that, because
of the possibility of creating multiple concave areas at the same side (left/right) the
meeting point does not necessarily have to be the endpoint of the current or previous
stripe. In that case, the meeting point would have to be somewhere in the middle of
the stripe. Since these stripes are expected to lead the plane in the straight lines for
reasons stated in Section 3.1, adding a turn inside them would defeat their purpose.

To overcome this problem it was decided to sort the concave areas from one side to
another, depending on the ending point of the previous stripe. If the previous endpoint
is on the left side, then the set of concave areas is to be visited from left to right,
and vice versa. If multiple upper concaves are present, then the most left (or right; it
again depends on the position of the previous stripe endpoint) area is chosen as the
continuation of the original path.

To illustrate this process, we take an example scenario presented in Figure 18. The
previous line endpoint is on the left, which means that after completing a stripe in
the main area (10-11-12-0) the set of concave areas is visited in left-to-right order, i.e.
(7-8-9-14-15), (5-16-17) and finally (2-3-18-13).

29

5. Algorithm enhancements

In addition to implementing the selected algorithms, there were also some enhancements
made in order to improve algorithm’s behavior for various situations. In this section,
these improvements descriptions are listed and their effect is discussed.

5.1. Kinematic constraints application

While applying a flight plan created by one of the aforementioned planners, we also
have to keep in mind the kinematic constraints of the aircraft used. While the maneu-
verability of a rotory wing UAV allows us to take even very steep turns because of its
ability to stop in midair, reducing the effect of such constraints, a fixed-wing aircraft
can do no such thing. The general kinematic model for the UAV can be according to
[23] described as follows:

⎡⎢⎣ 𝑥̇
𝑦̇
𝑧̇

⎤⎥⎦ =

⎡⎢⎣ 𝑐𝜃𝑐𝜓 𝑠𝜑𝑠𝜃𝑐𝜓 − 𝑐𝜑𝑠𝜓 𝑐𝜑𝑠𝜃𝑠𝜓 + 𝑠𝜑𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜑𝑠𝜃𝑠𝜓 + 𝑐𝜑𝑐𝜓 𝑐𝜑𝑠𝜃𝑠𝜓 − 𝑠𝜑𝑐𝜓
−𝑠𝜃 𝑠𝜑𝑐𝜃 𝑐𝜑𝑐𝜃

⎤⎥⎦
⎡⎢⎣ 𝑥𝑝
𝑦𝑝
𝑧𝑝

⎤⎥⎦ (18)

⎡⎢⎣ 𝜑̇

𝜃

𝜓̇

⎤⎥⎦ =

⎡⎢⎣ 1 sin𝜑 tan 𝜃 cos𝜑 tan 𝜃
0 cos𝜑 − sin𝜑
0 sin𝜑 sec 𝜃 cos𝜑 sec 𝜃

⎤⎥⎦
⎡⎢⎣ 𝑝
𝑞
𝑟

⎤⎥⎦ (19)

Here, 𝑥̇, 𝑦̇, 𝑧̇ are time derivations of UAV’s location in space measured in world’s
coordinate frame, whereas 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 are time derivations of UAV’s location measured
in its own coordinate system. 𝜑, 𝜃, 𝜓 are roll, pitch and yaw, respectively, determining
the UAV’s orientation in their respective coordinate frames, whereas 𝑝, 𝑞, 𝑟 are angular
velocities of UAV’s body. 𝑠, 𝑐 in equation 18 are shortcuts for sin, cos respectively. An
illustration of the situation can be seen in Figure 19.

30

5.1. Kinematic constraints application

xp

yp

zp

x

y

z

Figure 19. Coordinate frames and Euler angles illustration (image base taken from [24]).

It should be noted that this model takes into account UAV’s movement only and
omits any external effectors, such as weather conditions (namely wind effects).

Since we consider our problem to be planar only, we dismiss motion angles 𝜑 and 𝜃
as zero. We also assume the aircraft to be traveling in forward direction only (w.r.t.
UAV’s coordination frame) with a constant velocity 𝑣. These adjustments simplify our
series of equations substantially:

⎡⎢⎣ 𝑥̇
𝑦̇
𝑧̇

⎤⎥⎦ =

⎡⎢⎣ cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

⎤⎥⎦
⎡⎢⎣ 𝑣

0
0

⎤⎥⎦ (20)

⎡⎢⎣ 𝜑̇

𝜃

𝜓̇

⎤⎥⎦ =

⎡⎢⎣ 1 0 0
0 1 0
0 0 1

⎤⎥⎦
⎡⎢⎣ 𝑝
𝑞
𝑟

⎤⎥⎦ (21)

Now, 𝑝, 𝑞, 𝑟 become redundant. Also, since we do not need to compute 𝜑, 𝜃 (since they
are constant and do not interfere with the rest of the model), we omit the respective
equations along with 𝑧̇, which is also considered constant. As such, we can assume
that the UAV is controlled by setting its yaw angle as 𝜓𝑑 and the whole system would
collapse into these equations:

𝑥̇ = 𝑣 cos𝜓 (22)
𝑦̇ = 𝑣 sin𝜓 (23)

𝜓̇ = 𝑘(𝜓𝑑 − 𝜓) (24)

Here 𝑘 presents regulator gain.

This model in effect ensures that the UAV can be considered as Dubin’s vehicle. As
such, it is moving with a constant forward velocity, and its turning is defined by its

31

5. Algorithm enhancements

turning radius. Based on that, all the movement it is able to perform consists of curvy
parts (C) and straight elements (S) only.

The planners used in this thesis employ flight patterns consisting of mostly straight
segments that are to be visited in a specific order. Because of aforementioned kinetic
constraints, the flight connections between those segments have to be computed using
Dubins curves. Let us name the endpoint of the first segment 𝑃1 and the starting point
of the successive segment 𝑃2 with segment orientations given by one-unit vectors 𝑙1 and
𝑙2 respectively. Our task is to connect these points using Dubins curves.

As we will see later on, this approach produces multiple solutions for our problem.
Since the amount of solutions is within a reasonable range, the best possibility is to
determine the length of each of these trajectories and to choose the shortest of them.

According to Dubins, the shortest path connecting two general points in 2D space
with defined orientation in both can be of two types only: CSC and CCC. An illustra-
tion of these trajectories can be seen in Figure 20.

l1

l2

P1

P2

l1

l2

P1

P2

a) b)

Figure 20. Dubins curve CSC type (a) vs. CCC type (b).

Since the Dubins curve considers only full turn or straight flight, it can be described
via points in which the UAV changes its movement, i.e. tangent points in CSC path or
contact points in CCC path.

Since the movement along the Dubins curve always starts and ends with a turn (i.e.
C part), we firstly need to determine the movement circles at the beginning and the
end of each trajectory. These circles can easily be defined via their centers, which lie
on the line perpendicular to the required moving direction 𝑙𝑖 in entry (𝑃1) and leaving
(𝑃2) points, and in the distance of turning radius 𝑟𝑇 from each (see Figure 21).

32

5.1. Kinematic constraints application

L1

L2

l1l2

r

P

P2

Figure 21. Four possible CSC curves from one waypoint to another.

Assuming that 𝑙𝑖 vectors length is one unit, we can write the center’s positions more
specifically:

𝐿𝑖𝑥 = 𝑃𝑖𝑥 − 𝑙𝑖𝑦 · 𝑟𝑇 (25)
𝐿𝑖𝑦 = 𝑃𝑖𝑦 + 𝑙𝑖𝑥 · 𝑟𝑇 (26)
𝑅𝑖𝑥 = 𝑃𝑖𝑥 + 𝑙𝑖𝑦 · 𝑟𝑇 (27)
𝑅𝑖𝑦 = 𝑃𝑖𝑦 − 𝑙𝑖𝑥 · 𝑟𝑇 (28)

As we can see in Figure 21, there are two types of circle-circle tangent: external
(connecting the same-side circles) and internal (connecting the opposite-side circles).
Since all of these circles are based on UAV’s turning radius, they have the same radius
as well, and finding external tangent points in this case is a straightforward task. The
tangent has to be parallel to the line connecting the circle’s centers and the distance
between it and the connecting line has to be equal to the circle’s radius. In effect, tan-
gent points lie on the line laying on circle’s centers perpendicular to the line connecting
these centers (see Figure 22). Mathematically it is written as follows:

𝑇1 = 𝐶1 ± 𝑙⊤𝑐 · 𝑟𝑇 (29)
𝑇2 = 𝐶2 ± 𝑙⊤𝑐 · 𝑟𝑇 (30)

Here, 𝐶1, resp. 𝐶2 denote centers of selected movement circles, 𝑙𝑐 is a one-unit vector
parallel to line connecting these centers and ⊤ marks perpendicularity. The ± sign
means that there are two external tangents for each pair of circles, and the one suiting
our purposes is determined by the movement circle type (left or right).

C2

T1T2

Figure 22. External tangent construction.

33

5. Algorithm enhancements

As for internal tangents, we use a similar approach. Since both circles are of the
same radius, their tangent must cross the line connecting their centers in its middle.
Also, the distance of the tangent point from the center has to be equal to 𝑟𝑇 , and the
tangent is perpendicular to center-tangent point direction (see Figure 23).

cbC2

T1

T2

Figure 23. Internal tangent construction.

Seeing the right triangle, we can take an advantage of Euclides’s theorems and com-
pute 𝑐𝑎 and 𝑣𝑐, which will allow us to compute the desired tangent points:

𝑐𝑎 = 𝑎2

𝑐
= 𝑟2

𝑇
𝑑𝑐
2

(31)

𝑣𝑐 =
√
𝑐𝑎 · 𝑐𝑏 =

√︃
𝑐𝑎 · (𝑑𝑐2 − 𝑐𝑎) =

√︃
𝑟2
𝑡 − 4𝑟4

𝑇

𝑑2
𝑐

(32)

𝑇1 = 𝐶1 + 𝑙𝑐 · 𝑐𝑎 ± 𝑙⊤𝑐 𝑣𝑐 (33)
𝑇2 = 𝐶2 − 𝑙𝑐 · 𝑐𝑎 ∓ 𝑙⊤𝑐 𝑣𝑐 (34)

Here, 𝑑𝑐 denotes the distance between circle centers. Similarly to the previous case
of external tangent, there are two available tangents, from which we choose the correct
one by the movement circle type. It should be noted though that unlike the external
tangent, the internal tangent can be found only if 𝑑𝑐 ≥ 2𝑟𝑇 . If this criterion is not met,
then the formula 32 would produce complex numbers.

The CCC curves can be created on the same-side circles only, and only if their centers
distance 𝑑𝑐 is smaller than 4𝑟𝑇 . The situation is illustrated in Figure 24.

34

5.1. Kinematic constraints application

C1

dc

Figure 24. Finding the CCC curve contact points.

As we can see, there are two CCC curves for each pair of movement circles with
centers in 𝐶1, 𝐶2 characterized by contact points 𝑇11, 𝑇12 and 𝑇21, 𝑇22 respectively. We
can compute these contact points mathematically the following way:

𝑎 =
√︁

4𝑟2
𝑇 − 𝑑2

𝑐 (35)

𝑇11 = 𝐶1 + 𝑙𝑐 · 𝑑𝑐4 + 𝑙⊤𝑐 · 𝑎2 (36)

𝑇12 = 𝐶2 − 𝑙𝑐 · 𝑑𝑐4 + 𝑙⊤𝑐 · 𝑎2 (37)

𝑇21 = 𝐶1 + 𝑙𝑐 · 𝑑𝑐4 − 𝑙⊤𝑐 · 𝑎2 (38)

𝑇22 = 𝐶2 − 𝑙𝑐 · 𝑑𝑐4 − 𝑙⊤𝑐 · 𝑎2 (39)

Finally, we determine the best solution of all the above by computing the trajectory
length for each solution and choosing the shortest path. This can be done by measuring
each of three parts of the curve and summing them up. For the S parts of curves, the
length is computed trivially as

𝑑 =
√︁

(𝑇1𝑥 − 𝑇2𝑥)2 + (𝑇1𝑦 − 𝑇2𝑦)2 (40)

For the curvy parts C, we have to compute the angle 𝑇1𝐶𝑇2, resp. 𝑇2𝐶𝑇1 (that
depends on the movement circle direction). If this angle 𝛼 is computed in radians, then
the length of the curvy path is as follows

𝑑 = 𝑟𝑇 · 𝛼 (41)

Now that we have determined the best (shortest) path along all the found Dubins
curves, we insert it into already found plan as a subset of waypoints. These waypoints
will have the same coordinates as tangent/contact points of the Dubins curve and will
be inserted between trajectory segments the curve connects (i.e. between waypoints
with the same coordinates as 𝑃1 and 𝑃2).

35

5. Algorithm enhancements

5.2. No-flight zones implementation
Another problem that can be encountered in real-life situations is the existence of no-
flight zones. Simply put, a no-fly zone (NFZ) is an area forbidden for the UAV to enter.
In the real scenario it may represent e.g. a tall building or another obstacle which the
UAV should avoid getting near to.

For our task, we consider NFZs to be areas of a polygonal shape, similarly to the
definition of an area to be swept. In case of circular or otherwise curvy NFZs, these
areas are approximated as polygonal ones.

Because sweep patterns as presented in Chapter 4 allow UAV to travel outside the
area’s boundaries (and applying kinematic constraints as presented in Section 5.1 am-
plify this even further), it might not be sufficient to consider the border of NFZ only
and a safety margin around the NFZ has to be created. With this safe zone created,
the UAV can travel outside the area’s borders without necessarily reaching NFZs; the
downside of this approach is a greater chance of leaving areas adjacent to NFZs un-
explored. With respect to kinematic properties of the UAV, this safety margin was
chosen to be 𝑟𝑇 , i.e. aircraft’s turning radius, which should allow the UAV to perform
necessary maneuvers in the NFZ’s proximity without reaching it.

With respect to the area of interest, there are three types of NFZs that may appear,
sorted by their relative location to the main area. These are:

∙ outlaying NFZs, which lay entirely outside the area of interest and does not
intersect with it in any way;

∙ bordering NFZs, which intersect with the area border;
∙ inlaying NFZs, which lay entirely inside the area of interest and does not inter-

sect with it in any way.

An illustration of the situation can be found in Figure 25.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

1617

Figure 25. Various types of NFZs (red polygons) with respect to the area of interest (black
polygon).

In addition, we allow NFZs to intersect each other, which brings another minor dif-
ficulties to our task.

36

5.2. No-flight zones implementation

To handle such a situation, we firstly need to merge NFZs to non-intersecting struc-
tures. To do that, the following approach was implemented:

1. Choose one unprocessed NFZ (𝑁𝐹𝑍1). Find one of its vertices that does not lay
inside any other NFZ. If none found, pick another NFZ.

2. Process its edges in counter-clockwise order starting from the outlaying vertex.
For each edge find all the intersections with other non-processed NFZs.

3. If no intersection is found, continue with the next edge.
4. If the intersection(s) is found, sort them along the distance from the starting vertex

of the current edge. Pick the intersection (with 𝑁𝐹𝑍2) with the shortest distance
from the starting vertex. Add the intersection into 𝑁𝐹𝑍1 and continue along the
border of 𝑁𝐹𝑍2.

5. Repeat steps 2-4 until the starting vertex is reached.
6. Add 𝑁𝐹𝑍1 into processed NFZs. Remove all NFZs that participated in its inter-

sections.
7. Repeat from step 1 until no unprocessed NFZ is left.

When the set of non-intersecting NFZs is created, we can straightforwardly sort them
into the three aforementioned categories using two criterions:

∙ if an intersection with the border exists;
∙ whether one of their vertices lies inside or outside of the area of interest.

The most complicated situation emerges when the first criterion is met and thus the
bordering NFZ is detected. To handle that, an approach similar to the NFZ merging
algorithm is used:

1. Find one of border vertices that does not lay inside any NFZ.
2. Process its edges in counter-clockwise order starting from the outlaying vertex.

For each edge find all the intersections with NFZs.
3. If no intersection is found, continue with the next edge.
4. If the intersection(s) is found, sort them along the distance from the starting vertex

of the current edge. Pick the intersection (with 𝑁𝐹𝑍) with the shortest distance
from the starting vertex. Add the intersection into the borderline and continue
along the border of 𝑁𝐹𝑍 in the clockwise order while searching for intersections
with border only.

5. If the intersection of 𝑁𝐹𝑍 and the border is found, continue along the border,
again in counter-clockwise order.

6. Repeat steps 2-5 until the starting vertex is reached.
7. Remove all bordering NFZs.

If the first criterion is not met, the second one determines the exact NFZ type. If
the outlaying NFZ is detected, it gets deleted, since it will not interfere with our task
in any way. If the inlaying NFZ is detected, it is added into the HDCEL structure as
a hole (see Section 4.1.1).

None of the planners presented is capable of dealing with a hole in the polygonal area
on its own. To overcome this problem, a ’puncture’ approach was implemented. This
approach basically cuts into the area and connects the hole with the border, effectively

37

5. Algorithm enhancements

making the hole the part of the border (see Figure 26).

The process of creating the puncture inside the HDCEL is the following:

1. Choose one unprocessed NFZ (𝑁𝐹𝑍1). From one of its vertices 𝑉 erupt a line.
2. Find the closest intersection 𝐼, either with the border or with another NFZ

(𝑁𝐹𝑍2).
3. If the intersection belongs to the border, insert onto its intersected edge 𝐼, 𝑉 ,
𝑁𝐹𝑍1 in clockwise order (starting from 𝑉), a duplicate of 𝑉 and a duplicate of 𝐼.

4. If the intersection belongs to 𝑁𝐹𝑍2, add into 𝑁𝐹𝑍1 (after 𝑉) 𝐼, 𝑁𝐹𝑍2 in counter-
clockwise order (starting from its intersected edge), a duplicate of 𝐼 and a duplicate
of 𝑉 . Remove 𝑁𝐹𝑍2.

5. Repeat from step 1 until no non-processed NFZ is left.

As a result, we obtain more complicated concave area, yet without holes. The sim-
plistic puncture approach does not grant optimality regarding the area’s shape, but
enables planning processes to be used.

0

1

2

3

4

5

6

7

8

9

10

11

18

19

20

Figure 26. The area of interest absorbs the set of NFZs. While the main part of the polygon
is preserved, the (19-11-10-20) segment is created by a bordering NFZ. A puncture of the
inlaying NFZ is created by prolonging the (6-7) segment, resulting in the following addition
into the polygon: (...-0-18-6-9-8-7-6-18-1-...).

Another problem that may appear during the planning process is accidental crossing
of NFZ while traveling from one stripe to another. This problem can be reduced for
parallel stripes by using the safe zones around NFZs, but when the UAV travels from
one polygon part to another, crossing becomes possible.

We assume that the crossing emerges during longer Dubins curves only, i.e. CSC
paths (as CCC curves usually connect neighboring stripes). For each CSC path the
straight element is taken and prcessed the following way:

1. Iterate through NFZs. For each NFZ find its distance (D) from the straight element
S connecting waypoints 𝑊𝑝𝑖 and 𝑊𝑝𝑖+1.

2. if D is smaller than NFZ’s radius R, create a line L perpendicular to S which goes
through the NFZ’s center. Determine whether S’s endpoints lay on both sides of
L.

3. If they both lay on the same side of L, skip this NFZ and go back to step 1.

38

5.3. Limited-range planner

4. If they lay on both sides of L, S crosses the NFZ. Create a point 𝑊𝑝𝑛 on L in the
distance of 3

2 R from NFZ’s center and insert it into S. Continue to step 1 with
another NFZ.

The process is illustrated in Figure 27.

L

S

D

R

Wpi Wpi+1

Wpn

Figure 27. NFZ avoidance when traveling along straight elements. The straight element S
connecting waypoints 𝑊𝑝𝑖 and 𝑊𝑝𝑖+1 crosses the NFZ, which is displayed as the red circle,
in the distance D from its center. A new waypoint 𝑊𝑝𝑛 laying on the line L in the distance
of 3

2 R is added.

5.3. Limited-range planner
While the majority of coverage planners aims to minimize the UAV’s energy consump-
tion, its strict energy limit is omitted. In other words, if there is an energy constraint
for UAV’s flight – usually in terms of limited flight time or flight range – and the plan-
ner is unable to minimize the energy consumption below this constraint, the produced
flight plan might not be applicable. For this reason, a new planner was developed for
this thesis to satisfy these conditions.

The value of the energy limit is dependent on multiple factors, mainly on power con-
sumption rate of motor(s) used for UAV’s propulsion and on the total power provided
by batteries. While the amount of battery power can be found among the battery
specifications, the power consumption rate is dependent on other factors, such as UAV
aerodynamics, motor type etc. and thus the consumption rate has to be computed
for each UAV individually. If professional UAVs are used, these informations can be
usually found among the aircraft’s specifications.

The general idea of this planner is following: at the beginning, an airport is set
up (in our terminology it marks a location where the UAV is able to regain additional
energy e.g. by manual battery change) and the UAV covers the area of interest from
here. It performs its sweeps and regularly returns for recharging, until the area as a
whole is surveyed.

The planning algorithm runs in iterations. In each iteration the UAV performs a
sweep from the airport and returns back. The goal is to minimize the number of itera-
tions and thus the energy consumption as a whole.

The key aspect of this planner is the existence of the airport. Its location is limited
by one factor only – all the parts of area of interest have to be accessible from here

39

5. Algorithm enhancements

(the term of accessibility is further discussed below). This restriction also limits the
size of the area of interest, as the bigger areas cannot be covered from one airport only.
If that was the case, an area subdivision would be required to assign smaller areas to
respective airports, but such a task is beyond the scope of this thesis. For our task we
assume that there is only one airport required, that is already chosen and that meets
the aforementioned conditions.

The accessibility of a location means, in this case, not only the possibility to travel
to this location, but also to return from it back to the airport (within some safety
margin). To properly evaluate this attribute, the whole trajectory length has to be
computed, including the connection made by Dubins curves. Mathematically, the loca-
tion is accessible if the following condition is met:

𝑑𝑚𝑎𝑟𝑔𝑖𝑛 < 𝑑𝑠𝑝𝑎𝑟𝑒 − (2 · 𝑙 + 𝑙𝑑𝑢𝑏𝑖𝑛𝑠) (42)

In this formula, 𝑑𝑠𝑝𝑎𝑟𝑒 is the actual distance UAV is capable of flying, 𝑙 marks the
distance between UAV’s current position and the inspected location, 𝑙𝑑𝑢𝑏𝑖𝑛𝑠 is the length
of a Dubins curve connecting in- and outgoing trajectories. Finally, 𝑑𝑚𝑎𝑟𝑔𝑖𝑛 is the safety
margin. This setting creates the base of a double stripe explained below.

As the general planner description suggests, an area decomposition has to be made.
When choosing from the decomposition possibilities (see Section 3.1), at the first look
the approximate decomposition seems to be more suitable for this task as it allows
irregular sweep patterns to be performed. However, even these patterns are affected
by the regular decomposition grid orientation, which in certain edge cases could cause
inaccessibility of some areas due to unnecessary path prolonging towards certain direc-
tions. As a result, an exact approach has to be used.

The exact approach has no advantage of automatically generated sweep patterns and
as such has to use its own. To ensure that the accessibility condition is always met, we
set a double stripe (d-stripe) as a basis for this pattern; this sub-pattern consists of
two parallel adjacent stripes, one for traveling to the desired location 𝑃𝑑 and one for
the return to starting position 𝑃𝑠. This covers the maximal area while maintaining the
straight direction (see Figure 28).

Ps
Pd

w1 w2

w3w4

d

Figure 28. D-stripe connecting starting point 𝑃𝑠 and desired point 𝑃𝑑 with a coverage displayed
by the dashed line. Its main parts are waypoints marking two adjacent stripes 𝑤1-𝑤2 and
𝑤3-𝑤4. The d-stripe width 𝑑 is based on requirements presented in Section 2.2. The displayed
Dubins curve connecting these stripes is only illustrative and is not part of a pattern.

In order to avoid sweeping already surveyed areas as much as possible, we restrain
from sweeping easily accessible parts at the beginning, since there is a chance we might

40

5.3. Limited-range planner

need to travel through these areas again to reach the farthest parts of the area. For
this reason the most difficult to reach areas are swept first, and the general sweep mo-
tion should be from the area’s border towards its center. The sweep pattern for each
iteration is assembled as follows:

1. Find the farthest vertex of the non-surveyed part of the area (𝐹).

2. Travel to 𝐹 via d-stripe and compute the current trajectory length. If there is a
spare distance left, continue; otherwise return to the airport and move to step 7.

3. Inspect the nearest two non-surveyed area vertices for their distance from the
airport. Pick the farther one (𝐹1).

4. Perform a d-stripe from 𝐹 to 𝐹1. If the spare distance is not sufficient to perform
the task, fly as far as possible and return in the midway.

5. Recalculate the overall trajectory length. If there is a spare distance left, continue;
otherwise return to the airport and move to step 7.

6. Move to step 3, but the consecutive d-stripe can be performed also from 𝐹1 now.
Repeat until there is no spare distance left.

7. Compose the area surveyed in this iteration by merging d-stripe areas.

8. Subtract the surveyed area from the area of interest.

A theoretical performance of this planner is displayed in Figure 29.

41

5. Algorithm enhancements

A

0
1

2

3
4

5

6

7

8

9

10

A

2

3
4

5

6

7

8

9

11 12

13

14

15
16

a) b)

2

3

6

7

8

9

11 12

13

15
16

A

17

18

19

20

21

22

13

2

3

6

7

8

15
16

A

17

18

20

21

22

23

24
25

26

27

28
29

30

c) d)

2

3

7

8

15
16

A

17

18
23

24
25

26

27

28
29

31

32

33

34

35

36

28

31

2

3
15

16

A

17

18
23

24
25

26

29 32

34

35

36
37

38 39

40

e) f)

A

23

24

25

26

29 32

34

35

36
37

38 39

40

g)

Figure 29. Theoretical performance of the Limited-range planner over the polygon circum-
scribed by the black line with the airport position in A. Each image shows the trajectory
generated during one iteration as a blue line, which reduces the polygon area for the following
iteration by the red line. Note the incomplete border following in images b) and c) due to
reaching the distance limit.

42

5.3. Limited-range planner

While the algorithm does not employ any process unknown to previous planners, there
are two cases of increased complexity in comparison to the other planners, presented
in steps 7 and 8. Polygon merge and subtraction was already presented in Section 5.2,
but the rudimentary methods displayed there cannot be applied. The main difference is
that the polygon merge can produce the area with holes. Because of this, the polygon
subtraction is also able to produce multiple polygons instead of a coherent one. These
differences bring severe complications as these possibilities cannot be omitted similarly
to the previous cases and the resulting product can now be a multi-parted mesh.

The algorithm was not implemented due to the insufficient time to focus on this
task, since its completion was not part of this thesis assignment. The crucial part of
the implementation is the development of improved merging and subtracting methods
for aforementioned reasons as the versions developed earlier are not sufficient to per-
form this task.

43

6. Algorithm analysis and results

In this chapter the algorithm implementations are tested and compared for various
scenarios using the Tactical AGENTFLY framework (TAF3), which was briefly intro-
duced in Section 1.3. While the majority of these tests was software-based (see Section
6.2), we were also able to generate waypoints using TAF3 that were used for field ex-
periments (see Section 6.3) to verify these simulations in real-life conditions.

6.1. Tactical AGENTFLY interface overview

Before we start with tests themselves, let us introduce the TAF3 interface first.

Figure 30. Complete interface as displayed when starting the TAF3 framework.

As can be seen in Figure 30, the TAF3 interface consists of several windows. There is
Operator mission control, which allows the user to set overall simulation properties
– simulation speed, adjust altitudes for various objects (UAVs, waypoints etc.) and to
send commands to respective UAVs.

The status of the respective UAVs can be observed on their own windows, in this case
titled as Heli1 for virtual helicopter and Plane2 with Plane3 as virtual fixed-wing
aircrafts.

The most important part of the interface for our task is labeled TAF3 Mission
Control, which provides us with grafical user interface. We can see the actual posi-
tions of UAVs in the local coordinate frame and we can set missions here manually. It
should be noted though that while the (horizontal) X-axis values increase from left to
right, the vertical Y-axis values increase from up to bottom. The scale of the grid is
100 meters per side of bigger square (enclosed by thicker lines) and 10 meters per side
of each of its sub-squares.

44

6.1. Tactical AGENTFLY interface overview

The control mechanism can be viewed by pressing the F1 button, but we will use
only a few functionalities of this interface:

∙ Left mouse button selects objects on the screen.
∙ Right mouse button shows a list of pre-set actions and scenarios, that can be

selected by clicking left mouse button.
∙ While holding the right mouse button, we can drag the area within the window.
∙ Mouse scrolling wheel is used for zooming.
∙ Left mouse click while holding the Left Alt button sets a vertex for the area to be

covered. The input ends when releasing Alt.
∙ By dragging mouse while holding Left Shift and Left Ctrl a no-fly zone is created.
∙ Enter starts the planning process over the area that has been set.

For reproduction purposes of this thesis, all the testing scenarios were added among
the pre-set missions.

6.1.1. UAV properties

As one of this thesis guidelines suggests, a fixed-wing UAV was chosen for performance
in the following tests. During the testing it was assumed that the UAV carries a camera
modelled by the GoPro Hero4 camera model with the following parameters:

∙ Field of vision: 94,4 degrees.
∙ Resolution: 3000x2250 pixels.

The flight altitude was chosen to be 50 meters (with mentioned exceptions), which
gives us according to formula 3 spatial resolution of 28 pixels per meter, meaning one
pixel covers a square area with 3,6 cm long side. Forward and side image overlaps were
picked up as 60 and 20 percent respectively.

According to simulations, the UAV’s turning radius 𝑟𝑇 is approximately 30 m. The
same simulations also revealed that the in order for a waypoint to be marked as
’reached’, a UAV has to reach the distance of 30 m and closer. This setting leads
to imprecise trajectory following and waypoints marking Dubins curves are often insuf-
ficient to maintain the correct course. For this reason the turning radius for the use of
the planner was set to 60 m.

6.1.2. Measurement tools

To evaluate planner’s performance, two criterions are used – the total flight distance
and the coverage ratio. The flight distance is computed three times; two times offline
and once during the plan’s execution.

The first offline approach sums up distances between the consecutive waypoints – this
estimate is over-optimistic, since it does not take into account the existence of curvy
elements. Let us name it as 𝑑1.

The second offline approach computes the distances between waypoints in straight
elements only. This distance is incremented by the length of Dubins curves used. This

45

6. Algorithm analysis and results

estimate is over-pessimistic, though, as we use greater turning radius instead of the real
one for the reason already mentioned. Let us name it 𝑑2.

The online approach begins its measurement during the planner’s execution. It runs
as an instance of PolygonCoverageStatisticsThread, which takes in every step UAV’s
previous position and computes distance to the current one. This value is added to al-
ready computed distance, the current position rewrites the previous one and the thread
stops for 10 miliseconds. After that the process is repeated until the planner completes
its task. Let us name the resulting distance 𝑑3.

The same thread also maintains the area coverage ratio. In the beginning of the plan-
ner’s execution, the area of interest gets approximated by a grid consisting of square
cells one by one meter wide (cells inside NFZs are excluded). During each step of the
thread the camera projection area is evaluated based on the UAV’s position and orien-
tation, and if it encounters any non-visited cell, this cell is marked as visited. When the
planner finishes, the coverage ratio (number of visited cells divided by the total number
of cells) is returned. Let us name the ratio 𝑟𝐶 .

Again, due to the fact that the ending waypoint is marked as reached before it is
actually reached, this ratio rarely shows 1,0 value even when the whole area is swept.

For visualization purposes all the non-visited cells are displayed on screen as yellow
dots.

The illustrating trajectory visualizations were made using MATLAB.

6.2. Software tests

6.2.1. Convex polygon coverage test

The scenario can be loaded by selecting Convex_polygon_coverage from pre-set mis-
sions.

This scenario contains a simple pentagon shape only (see Figure 31). Four standard
tests were made for this area – sweeps by the Energy-aware planner and the Naive
planner, both with kinematic constraints turned on and off. The EECD planner was
not part of this test due to the fact that without polygon decomposition (which does
not take place in this scenario) it behaves exactly like the Naive planner.

46

6.2. Software tests

Figure 31. Starting position for the planner. Thick black line marks the area border, blue dots
represent waypoints created by the planner. The yellow line marks the planned trajectory,
while the red dashed line highlights its actual part. The green rectangle on the left represents
UAV’s projection area (w.r.t. its actual heading and position). Displayed trajectory belongs
to the Naive planner.

Trajectories generated for each possibility listed can be found in Figure 32.

47

6. Algorithm analysis and results

400 500 600 700 800 900 1000 1100
−400

−300

−200

−100

0

100

200

X

Y

300 400 500 600 700 800 900 1000 1100
−400

−300

−200

−100

0

100

200

X

Y

a) b)

400 500 600 700 800 900 1000 1100
−400

−300

−200

−100

0

100

200

X

Y

400 500 600 700 800 900 1000 1100
−400

−300

−200

−100

0

100

200

X

Y

c) d)

Figure 32. Trajectories generated for the Naive planner (a and b) and for the Energy-aware
planner. Kinematic constraints are applied in scenarios b) and d).

The statistics measured for each scenario are the following:

𝑑1 [m] 𝑑2 [m] 𝑑3 [m] 𝑟𝐶 [-]
Naive, non-kinematic 3701,859 3701,859 3833,083 0,999
Naive, kinematic 3544,362 5183,341 4469,186 1,0
Energy-aware, non-kinematic 3643,208 3643,208 3763,245 1,0
Energy-aware, kinematic 3487,130 5124,792 4206,922 1,0

Table 2. Convex polygon coverage test results.

As we can see, the value of 𝑟𝐶 is not in all cases equal to 1. As was mentioned,
the reason for this is the planner stopping before it reaches the last waypoint precisely,
seemingly leaving the last portion of the area unsurveyed.

When comparing planner’s performance, we are unable to find any significant differ-
ence. Both planners generate very similar trajectory for convex areas.

48

6.2. Software tests

Interestingly, allowing and disallowing kinematic constraints did not affect any plan-
ner’s performance regarding the coverage ratio. Transitions between sweep stripes were
not smooth, as can be seen in Figure 32, but this problem’s effect was diminished by
proportions of the camera projection area. Even though the effect on the trajectory is
recognizable, another scenario was set up to further highlight the difference.

The planning area remained the same, but the aircraft’s altitude was lowered to 25
meters to make transitions even more difficult to follow while also reducing size of the
projection area. The Naive planner was chosen for this task since it sweeps the area
from less favorable direction, making the trajectory deviations more apparent.

300 400 500 600 700 800 900 1000 1100 1200
−400

−300

−200

−100

0

100

200

X

Y

Figure 33. Trajectories comparison for the Naive planner with allowed and disallowed kine-
matic constraints. The area is marked by a thick black line, the desired sweeping trajectory
is marked by light gray line. The red line represents the flight trajectory when the kinematic
constraints are applied, the blue line shows the trajectory when no constraints are in effect.

Results of such a test can be seen in Figure 33. As we can see, neither trajectory fol-
lows the planner path precisely. In case of the red line (with the kinematic constraints
applied), this is caused by the waypoint reaching distance, which becomes apparent
at the end of the trajectory (upper left corner), when the planner does not reach its
end. We can still observe that the red trajectory deviation from the planned course is
not big, especially compared to the deviation of the blue trajectory (without kinematic
constraints applied). During steep turns on the bottom of the area a significant over-
shoot is reached and the UAV even oscillates along the proposed stripe approximately
during the first 200 meters. The imperfection of this approach is further exploited in
middle part of the area, where the non-constrained UAV enters a stripe using such a
bad angle that it is unable to reach the following waypoint, as it lies in the center of its
turn. This effectively stops the planner from working, as it is unable to continue with
its task further.

49

6. Algorithm analysis and results

6.2.2. Simple concave polygon coverage test

The scenario can be loaded by selecting Simple_concave_polygon_coverage from pre-
set missions.

This scenario contains a simple pentagon shape only (see Figure 34). Three tests
were made for this area, one for each planner type. After the validation of kinematic
constraints usefulness all planners are working with constraints allowed.

Figure 34. Starting position for the planner. Thick black line marks the area border, blue dots
represent waypoints created by the planner. The yellow line marks the planned trajectory,
while the red dashed line highlights its actual part. The green rectangle on the left represents
UAV’s projection area (w.r.t. its actual heading and position). Displayed trajectory belongs
to the Naive planner.

Since trajectories for each planner were different this time, each result will be dis-
cussed separately.

50

6.2. Software tests

300 400 500 600 700 800 900 1000
−400

−300

−200

−100

0

100

200

X

Y

Figure 35. The Naive planner sweep trajectory generated for a concave polygon. The area
is marked by a thick black line, as well as the subdivision performed by the planner. The
desired sweeping trajectory is marked by light gray line. Blue line represents the actual flight
trajectory.

300 400 500 600 700 800 900 1000
−400

−300

−200

−100

0

100

200

X

Y

Figure 36. The EECD planner sweep trajectory generated for a concave polygon. The area
is marked by a thick black line, as well as the subdivision performed by the planner. The
desired sweeping trajectory is marked by light gray line. Blue line represents the actual flight
trajectory.

51

6. Algorithm analysis and results

300 400 500 600 700 800 900 1000
−400

−300

−200

−100

0

100

200

X

Y

Figure 37. The Energy-aware planner sweep trajectory generated for a concave polygon. The
area is marked by a thick black line, as well as concave parts separated by the planner. The
desired sweeping trajectory is marked by light gray line. Blue line represents the actual flight
trajectory.

The Naive planner separates given polygon into three parts, as can be seen in Figure
35. This low number of polygons is swept effortlessly.

Similarly to the Naive planner, the EECD planner also swept all the parts of the
given area. Its subdivision method was slightly more efficient though and results in
shorter trajectory.

The Energy-aware planner also swept the entire area using its Lawnmower pattern.
Only one part on the bottom left side was considered out of reach for the traditional
pattern and was swept recursively after the main part.

The statistics measured for each scenario are the following:

𝑑1 [m] 𝑑2 [m] 𝑑3 [m] 𝑟𝐶 [-]
Naive, kinematic 4171,225 6682,902 5146,208 1,0
EECD, kinematic 3469,546 5297,487 4266,827 1,0
Energy-aware, kinematic 3074,977 5014,466 3893,623 1,0

Table 3. Simple concave polygon coverage test results.

The best results were given by the Energy-aware planner with the shortest trajectory.
Arguably, it is caused by the shape od the polygon that allows it to be swept almost
completely using a single pattern.

52

6.2. Software tests

6.2.3. Complex concave polygon coverage test

The scenario can be loaded by selecting Complex_concave_polygon_coverage from
pre-set missions.

This scenario contains a complex polygon with many concave vertices (see Figure
38). Three tests were made for this area, one for each planner type. Again, all planners
are working with constraints allowed.

Figure 38. Starting position for the planner. Thick black line marks the area border, blue dots
represent waypoints created by the planner. The yellow line marks the planned trajectory,
while the red dashed line highlights its actual part. The green rectangle on the left represents
UAV’s projection area (w.r.t. its actual heading and position). Displayed trajectory belongs
to the Naive planner.

Since trajectories for each planner were different, each result will be discussed sepa-
rately.

53

6. Algorithm analysis and results

100 200 300 400 500 600 700 800 900 1000 1100
−500

−400

−300

−200

−100

0

100

200

300

400

X

Y

Figure 39. The Naive planner sweep trajectory generated for a concave polygon. The area
is marked by a thick black line, as well as the subdivision performed by the planner. The
desired sweeping trajectory is marked by light gray line. Blue line represents the actual flight
trajectory.

0 200 400 600 800 1000 1200
−600

−500

−400

−300

−200

−100

0

100

200

300

400

X

Y

Figure 40. The EECD planner sweep trajectory generated for a concave polygon. The area
is marked by a thick black line, as well as the subdivision performed by the planner. The
desired sweeping trajectory is marked by light gray line. Blue line represents the actual flight
trajectory.

54

6.2. Software tests

100 200 300 400 500 600 700 800 900 1000 1100
−500

−400

−300

−200

−100

0

100

200

300

400

X

Y

Figure 41. The Energy-aware planner sweep trajectory generated for a concave polygon. The
area is marked by a thick black line, as well as concave parts separated by the planner. The
desired sweeping trajectory is marked by light gray line. Blue line represents the actual flight
trajectory.

The Naive planner separates given polygon into 10 parts, as can be seen in Figure
39. This amount of cells is greater than in the previous scenario, but still manageable,
as the planner sweeps the entire area.

While the EECD planner also swept all parts of the given area, its biggest drawback
becomes apparent in this scenario (see Figure 40). As it aims for creation of thin cells
(i.e. with the least polygon width), it ends up inefficiently cutting many thin cells
without actually solving the problem with concavity. Given the fact that its cutting
directions are parallel to other polygon lines, increased complexity of the polygon al-
lows performing multiple almost parallel cuts, as the probability of existence of almost
parallel lines in the polygon is increased. This is clearly demonstrated in left parts of
the area, where multiple almost parallel cells exist. These areas could have been swept
in a single stripe, but the planned trajectory requires the UAV to sweep it several times
instead. Nevertheless, the area gets swept completely.

The Energy-aware planner was not able to sweep the area with a single pattern this
time, as can be seen in Figure 41. A subdivision had to be made dividing the area
into three parts, one with completely different sweeping direction. Note the circular
trajectory in the middle of the polygon, where two parallel sweep lines were too close
to each other for smooth transition, which made UAV to make an extra loop.

However, this planner did not sweep the area entirely. The little concave area in the
upper left part of the polygon got missed, apparently due to proximity to already swept
area.

The statistics measured for each scenario are following:

55

6. Algorithm analysis and results

𝑑1 [m] 𝑑2 [m] 𝑑3 [m] 𝑟𝐶 [-]
Naive, kinematic 8467,553 16900,459 11854,008 0,999
EECD, kinematic 11880,357 27644,961 18975,799 1,0
Energy-aware, kinematic 6889,067 12026,980 8878,306 0,994

Table 4. Complex concave polygon coverage test results.

The best results regarding the trajectory length were again given by the Energy-
aware planner with the trajectory more than two times shorter than the one given by
the EECD planner. As was already mentioned however, the coverage ratio 𝑟𝐶 was the
lowest so far, unlike the rest of planners used. The best result regarding the coverage
ratio belongs to the EECD planner, which had slightly greater coverage than the Naive
planner, apparently due to its sweep redundancy.

6.2.4. Polygon with no-flight zones coverage test
The scenario can be loaded by selecting Convex_polygon_with_NFZs_coverage from
pre-set missions.

This scenario contains a convex polygon with three no-flight zones present – inlaying,
bordering and outlaying (see Figure 42). Three tests were made for this area, one for
each planner type. Again, all planners are working with constraints enabled.

Figure 42. Starting position for the planner. Thick black line marks the area border, red circles
represent no-flight zones. Blue dots represent waypoints created by the planner. The yellow
line marks the planned trajectory, while the red dashed line highlights its actual part. The
green rectangle on the left represents UAV’s projection area (w.r.t. its actual heading and
position). Displayed trajectory belongs to the Naive planner.

Each NFZ is replaced by a hexagon with the outer radius equal to the radius of the

56

6.2. Software tests

original NFZ enlarged by the UAV’s turning radius. This creates a zone where the UAV
should be able to turn safely. The effectiveness of this approach will be further discussed.

Since trajectories for each planner were different, each result will be discussed sepa-
rately.

300 400 500 600 700 800 900 1000 1100 1200 1300
−300

−200

−100

0

100

200

300

400

Figure 43. The Naive planner sweep trajectory generated for a convex polygon with no-flight
zones. The area is marked by a thick black line, as well as the subdivision performed by the
planner. No-flight zones are represented by red circles. The desired sweeping trajectory is
marked by light gray line. Blue line represents the actual flight trajectory.

57

6. Algorithm analysis and results

300 400 500 600 700 800 900 1000 1100 1200 1300
−300

−200

−100

0

100

200

300

400

X

Y

Figure 44. The EECD planner sweep trajectory generated for a convex polygon with no-flight
zones. The area is marked by a thick black line, as well as the subdivision performed by the
planner. No-flight zones are represented by red circles. The desired sweeping trajectory is
marked by light gray line. Blue line represents the actual flight trajectory.

300 400 500 600 700 800 900 1000 1100 1200 1300
−400

−300

−200

−100

0

100

200

300

400

X

Y

Figure 45. The Energy-aware planner sweep trajectory generated for a convex polygon with
no-flight zones. The area is marked by a thick black line, as well as concave parts separated by
the planner. No-flight zones are represented by red circles. The desired sweeping trajectory
is marked by light gray line. Blue line represents the actual flight trajectory.

58

6.3. Field experiments

Due to the NFZs approximation, there are parts of the polygon that are excluded
from the sweep, because they lay too close to NFZ, as can be seen in Figure 43 displaying
the sweep pattern generated by the Naive planner. Also, the hexagonal approximation
generates relatively big amount of cells for individual sweep. As seen in the picture, the
sheer number of cells was not decisive for the planner’s performance, but unfortunately
the UAV reached no-flight zones during its maneuvering.

Apart from that, certain parts of the area were missed due to their exclusion from the
polygon for safety reasons, namely the upper part of the area surrounding the central
NFZ.

Similarly to the previous scenario, the EECD planner managed to subdivide the area
into greater number of cells than necessary, which needlessly prolongs the overall tra-
jectory (see Figure 44). Its coverage ratio was sufficient partially due to its coverage
redundancy. Regarding the NFZ avoidance, the UAV’s trajectory was successfully al-
tered to avoid a NFZ on multiple occasions (see the bordering NFZ in the upper right
part of the area), but similarly to the previous planner, it could not handle the avoid-
ance while maneuvering near the central NFZ.

As seen in Figure 45, the Energy-aware planner creates its typically efficient sweep
pattern and also manages to avoid the central NFZ while traveling from one cell to
another, but similarly to its predecessors, it fails to avoid the NFZ while maneuvering.

The statistics measured for each scenario are the following:

𝑑1 [m] 𝑑2 [m] 𝑑3 [m] 𝑟𝐶 [-]
Naive, kinematic 4568,063 11261,163 6845,101 0,970
EECD, kinematic 5329,757 13681,814 8777,589 0,999
Energy-aware, kinematic 4221,486 8005,343 5593,776 1,0

Table 5. Polygon with no-flight zones coverage test results.

Unfortunately none of the presented planners fully fulfilled our expectations regarding
the NFZs handling. The approach we used was sufficient to avoid NFZs while travel-
ing from one part of the area to another, but the maneuvers along CCC curves were
able to reach the NFZ even inside its safe zone. It becomes apparent that either more
sophisticated approach has to be developed to avoid reaching NFZs entirely, or greater
safe zones have to be set – with the risk of leaving too much of an area unsurveyed.

6.3. Field experiments
In addition to planned software tests, three real experiments were also conducted to
verify the performance of implemented planners in real-world conditions.

Simple flight scenarios were prepared using TAF3 framework. The set of waypoints
produced by the respective planner was extracted using the GeographyUtils module
from local cartesian coordination frame into GPS coordinates, which were used to nav-
igate the UAV. Tests were conducted on a field near Unhošť in the county of Kladno,

59

6. Algorithm analysis and results

Czech republic. The used aircraft was TELINK GRID 720 (see Figure 46), which, in
order to simulate a fixed-wing aircraft, was set with a constant forward velocity. This
adjustment prevented the UAV from making turns on-spot which the usual rotory air-
craft can do.

Figure 46. The TELINK GRID 720 UAV used for field experiments.

Tests were aiming for the usefulness of the flight pattern verification rather than
for creating an actual orthophotmap. To evaluate the trajectory, the UAV flight log
recorded at 25 Hz was retrieved. The log contains for each time stamp the information
about UAV’s GPS position and orientation of its body expressed in the Yaw, pitch, roll
notation.

Since the UAV was not equipped with any camera type, the usage of the same camera
model which was used during software tests was assumed. Two options were considered
while evaluating the coverage made by this virtual camera: either its axis was fixed
vertically to the ground (which in reality can roughly be achieved using gimbals) or its
axis was fixed vertically to UAV’s body, always heading in its Z-axis.

The GPS coordinates for each time stamp were transformed back to the local carte-
sian coordinate frame (with the log’s initial position serving as its origin point). Given
the UAV’s position and orientation the projection area for the virtual camera was cre-
ated and displayed along with the aircraft’s location.

6.3.1. Convex polygon coverage

This test was designed for verification of basic planner’s functions. A simple rectangular
area was covered by the Naive planner using single Lawnmower sweep pattern.

60

6.3. Field experiments

−250

−200

−150

−100

−50

0

50

−700−600−500−400−300−200−1000100

Y

X

Figure 47. The Naive planner sweep trajectory generated for a convex polygon. The area is
marked by a thick black line. The flight trajectory is represented by the red line. The area
covered by the sweep is in blue. Camera axis is considered vertical to the ground and neglects
the influence of UAV’s body orientation.

−250

−200

−150

−100

−50

0

50

−700−600−500−400−300−200−1000100

Y

X

Figure 48. The Naive planner sweep trajectory generated for a convex polygon. The area is
marked by a thick black line. The flight trajectory is represented by the red line. The area
covered by the sweep is in blue. Camera axis is considered vertical to UAV’s body orientation.

As can be seen in Figures 47 and 48, basic functions were verified as the planner had
no difficulties sweeping the area. The orientation of the camera axis makes no visible
difference in this scenario, as in both cases the area (marked by a thick black line) is
swept completely.

61

6. Algorithm analysis and results

6.3.2. Concave polygon coverage
The area containing two concave vertices was prepared for the EECD and Energy-aware
planner to sweep. The aim of this test was to verify planner’s performance even over
more complex areas.

Firstly, the EECD planner was processed:

−350

−300

−250

−200

−150

−100

−50

0

50

100

150

−800−700−600−500−400−300−200−1000100

Y

X

Figure 49. The EECD planner sweep trajectory generated for a concave polygon. The area
is marked by a thick black line. The flight trajectory is represented by the red line. The
area covered by the sweep is in blue. Camera axis is considered vertical to the ground and
neglects the influence of UAV’s body orientation.

−350

−300

−250

−200

−150

−100

−50

0

50

100

150

−800−700−600−500−400−300−200−1000100

Y

X

Figure 50. The EECD planner sweep trajectory generated for a concave polygon. The area is
marked by a thick black line. The flight trajectory is represented by the red line. The area
covered by the sweep is in blue. Camera axis is considered vertical to UAV’s body orientation.

62

6.3. Field experiments

As can be seen in Figures 49 and 50, the planner had no difficulties sweeping the area.
The orientation of the camera axis affects the shape of covered area more significantly,
especially during steep turns, but does not affect the overall coverage ratio.

−300

−250

−200

−150

−100

−50

0

50

100

150

−800−700−600−500−400−300−200−1000100

Y

X

Figure 51. The Energy-aware planner sweep trajectory generated for a concave polygon. The
area is marked by a thick black line. The flight trajectory is represented by the red line. The
area covered by the sweep is in blue. Camera axis is considered vertical to the ground and
neglects the influence of UAV’s body orientation.

−300

−250

−200

−150

−100

−50

0

50

100

150

−900−800−700−600−500−400−300−200−1000100

Y

X

Figure 52. The Energy-aware planner sweep trajectory generated for a concave polygon. The
area is marked by a thick black line. The flight trajectory is represented by the red line.
The area covered by the sweep is in blue. Camera axis is considered vertical to UAV’s body
orientation.

63

6. Algorithm analysis and results

As can be seen in Figures 51 and 52, the Energy-aware planner created a longer sweep
trajectory than the EECD planner, which is due to unfavorable shape of the area. An-
other observed difference is that if the camera was fixed vertically to the UAV’s body,
the sweep would have not covered the entire area. There could be two reasons for that:

∙ Windy conditions. There might have been a wind breeze from one side, tilting the
UAV away from the desired area.

∙ Flight altitude effect. The displayed plan was designed for the altitude of 25 me-
ters, while the mean value of altitude along the trajectory ranges between 22 and
23 meters, which lowers the projection’s area dimensions by 3-5 meters.

6.4. Test conclusions
We have verified that all the submitted planners are capable of successfully covering
various areas. While software test results suggested the increased efficiency of Energy-
aware planner in comparison with others, the field experiment revealed that its perfor-
mance is highly dependent on the area’s shape. The same can be applied to the EECD
planner, which can provide us with very efficient plan during certain scenarios, while
giving needlessly complex ones during others. The Naive planner, on the other hand,
does not aim for efficiency, and as such provides us with not optimal, but generally
usable solutions.

The NFZ avoidance addon was only partially successful as planners are able to create
sweep trajectories that do not visit these zones. It is unable however to prevent the
UAV from reaching the NFZ while making turns from one stripe to another.

64

7. Conclusion

7.1. Thesis summary
The main objective of this thesis was to implement coverage path planning methods and
modify them for the deployment on fixed-wing UAVs, integrate them into a framework
for UAV control and compare their performance during simulations. This objective was
successfully completed. Two algorithms presented in [7] and [8] were implemented into
the Tactical AGENTFLY framework along with intuitively formed naive approach. All
three algorithms, differing in their structure, were thoroughly tested in various simu-
lated scenarios and their performance was compared.

In addition, a method for including no-flight zones into the selected algorithms was
implemented and tested and another planning algorithm was developed. The testing
was performed not only in simulator, but also with a real aircraft.

The results of experiments displayed in Tables 2, 3, 4 and 5 showed that all the se-
lected planners are able to fully cover the area of interest, even when complexly shaped.
While specialized approaches towards polygon decomposition often yield more efficient
results regarding the trajectory length, there are also cases when their performance
becomes needlessly complex and redundant. The EECD planner based on the design
presented in [8] proved to be efficient on polygonal shapes with relatively small amount
of edges. The Energy-aware planner based on the approach presented in [7] is efficient
in scenarios where the longest polygon edge defines its dominant dimension. The effi-
ciency of the Naive planner is greater when used on simpler polygons and is reduced by
growing complexity of presented scenarios. The no-flight zones implementation proved
to be partially successful as the planner is able to create a sweep pattern without visiting
these zones, but was unable to avoid them completely during the aircraft’s maneuvering.

According to the data gathered, the difference in trajectory length can in some cases
be even greater than 100 %, which makes the correct planner selection a crucial task.
Choosing the optimal planner for the actual area can in effect greatly improve the task
duration and thereby energy consumption, significantly reducing the overall cost of the
mapping process.

All the thesis objectives were successfully completed:

∙ The theory of remote sensing was explained in Chapter 2.
∙ The overview of existing coverage path planning algorithms was presented in Sec-

tion 3.1.
∙ The display of selected algorithms was presented in Section 3.2.
∙ The algorithm modifications are listed in Chapter 4.
∙ The functionality of selected approaches was verified in simulations presented in

Chapter 6.

65

7. Conclusion

In addition, the following work not enlisted in the thesis assignment was included:

∙ The algorithm improvements are listed in Chapter 5.
∙ A new planning algorithm called the Limited-range planner was designed in Sec-

tion 5.3.
∙ Field experiments were conducted and analyzed in Section 6.3.

All the simulation data and source codes are provided on the enclosed CD.

7.2. Future work
The work presented in this thesis can be improved and extended in multiple ways. One
of the improvements could be trajectory alteration to avoid no-flight zones completely,
even during UAV’s maneuvers between its neighboring stripes. Another improvement
could be implementing more complex polygon subdivision and merging methods, which
would allow the Limited-range planner to be implemented, tested and evaluated.

The possible extensions for this work could contain adding another planning algo-
rithms into the Tactical AGENTFLY framework. Another possibility could be convert-
ing the problem into 3D, which would on the one hand increase its difficulty, but which
would on the other hand increase the realism during testing scenarios.

66

Appendix A.

Contents of the enclosed CD

/
diploma_thesis.pdfthis Thesis in PDF format
field_tests

areas
concave.txtvertices defining the concave testing area.
convex.txtvertices defining the convex testing area.

logs
2016_12_21_13_24_29_4.csv .. flight log of the sweep generated by the
EECD planner for the concave area
2016_12_21_13_38_14_5.csv .. flight log of the sweep generated by the
Naive planner for the convex area
2016_12_21_14_18_18_1.csv .. flight log of the sweep generated by the
Energy-aware planner for the concave area

plans
concave1.txt .list of waypoints generated by the EECD planner for the
concave area
concave2.txt .list of waypoints generated by the Energy-aware planner
for the concave area
convex.txtlist of waypoints generated by the Naive planner for the
convex area

simulations
areas

brd1.txtvertices defining the area from the first test
brd2.txtvertices defining the area from the second test
brd3.txtvertices defining the area from the third test
brd4.txtvertices defining the area from the fourth test
nfz.txtno-flight zones present in the fourth test

logs
t1-ea-k.txtflight log of the sweep generated by the Energy-aware
planner with kinematic constraints for the first test
t1-ea-n.txtflight log of the sweep generated by the Energy-aware
planner without kinematic constraints for the first test
t1-n-k.txt .flight log of the sweep generated by the Naive planner with
kinematic constraints for the first test
t1-n-n.txt flight log of the sweep generated by the Naive planner
without kinematic constraints for the first test
t2-ea.txtflight log of the sweep generated by the Energy-aware
planner for the second test

67

Appendix A. Contents of the enclosed CD

t2-eecd.txt flight log of the sweep generated by the EECD planner for
the second test
t2-n.txt .flight log of the sweep generated by the Naive planner for the
second test
t3-ea.txtflight log of the sweep generated by the Energy-aware
planner for the third test
t3-eecd.txt flight log of the sweep generated by the EECD planner for
the third test
t3-n.txt .flight log of the sweep generated by the Naive planner for the
third test
t4-ea.txtflight log of the sweep generated by the Energy-aware
planner for the fourth test
t4-eecd.txt flight log of the sweep generated by the EECD planner for
the fourth test
t4-n.txt .flight log of the sweep generated by the Naive planner for the
fourth test

plans
t1-ea-k.txt .. list of waypoints generated by the Energy-aware planner
with kinematic constraints for the first test
t1-ea-n.txt .. list of waypoints generated by the Energy-aware planner
without kinematic constraints for the first test
t1-n-k.txtlist of waypoints generated by the Naive planner with
kinematic constraints for the first test
t1-n-n.txt ...list of waypoints generated by the Naive planner without
kinematic constraints for the first test
t2-ea.txt .list of waypoints generated by the Energy-aware planner for
the second test
t2-eecd.txt ..list of waypoints generated by the EECD planner for the
second test
t2-n.txtlist of waypoints generated by the Naive planner for the
second test
t3-ea.txt .list of waypoints generated by the Energy-aware planner for
the third test
t3-eecd.txt ..list of waypoints generated by the EECD planner for the
third test
t3-n.txt list of waypoints generated by the Naive planner for the third
test
t4-ea.txt .list of waypoints generated by the Energy-aware planner for
the fourth test
t4-eecd.txt ..list of waypoints generated by the EECD planner for the
fourth test
t4-n.txt list of waypoints generated by the Naive planner for the fourth
test

source
PolygonPlanner.java main java class for coverage planners
Mesh.javajava class containing HDCEL structure
EECDPlanner.java java class containing the EECD planner

68

EnergyAwareCoveragePlanner.javajava class containing the
Energy-aware planner
PolygonCoverageStatisticsThread.java java class containing the
measurement thread
demo.groovygroovy configuration script containing pre-defined flight
scenarios
mapping.groovy .groovy configuration script containing UAV’s parameters

69

Bibliography

[1] Orthophotography (2016). url: http://www.aerialmapping.net/Orthophotography.
html.

[2] Fixed Wing Versus Rotary Wing For UAV Mapping Applications (2016). url:
http://www.questuav.com/news/fixed-wing-versus-rotary-wing-for-
uav-mapping-applications.

[3] AgentFly | Agent Technology Center (2016). url: http://agents.felk.cvut.
cz/projects/agentfly.

[4] MM Flood. The Traveling-salesman problem (1955).
[5] Introduction To UAV Photogrammetry And Lidar Mapping Basics | DroneZon

(2016). url: https://www.dronezon.com/learn-about-drones-quadcopters/
introduction-to-uav-photogrammetry-and-lidar-mapping-basics/.

[6] Toni Schenk. “Introduction to photogrammetry”. In: The Ohio State University,
Columbus (2005) ().

[7] Carmelo Di Franco and Giorgio Buttazzo. “Energy-aware coverage path planning
of UAVs”. In: Autonomous Robot Systems and Competitions (ICARSC), 2015
IEEE International Conference on. IEEE, pp. 111–117.

[8] Yan Li et al. “Coverage path planning for UAVs based on enhanced exact cellular
decomposition method”. In: Mechatronics (2011) 21.5 (), pp. 876–885.

[9] PB Sujit and Randy Beard. “Multiple UAV exploration of an unknown region”.
In: Annals of Mathematics and Artificial Intelligence (2008) 52.2-4 (), pp. 335–
366.

[10] Liam Paull et al. “Sensor-driven area coverage for an autonomous fixed-wing
unmanned aerial vehicle”. In: IEEE transactions on cybernetics (2014) 44.9 (),
pp. 1605–1618.

[11] Hosein Khandani, Hadi Moradi, and Javad Yazdan Panah. “A real-time cov-
erage and tracking algorithm for UAVs based on potential field”. In: Robotics
and Mechatronics (ICRoM), 2014 Second RSI/ISM International Conference on.
IEEE, pp. 700–705.

[12] Joon Seop Oh et al. “Complete coverage navigation of cleaning robots using
triangular-cell-based map”. In: IEEE Transactions on Industrial Electronics (2004)
51.3 (), pp. 718–726.

[13] LH Nam et al. “An approach for coverage path planning for UAVs”. In: Ad-
vanced Motion Control (AMC), 2016 IEEE 14th International Workshop on.
IEEE, pp. 411–416.

[14] PB Sujit, BP Hudzietz, and Srikanth Saripalli. “Route planning for angle con-
strained terrain mapping using an unmanned aerial vehicle”. In: Journal of Intel-
ligent & Robotic Systems (2013) 69.1-4 (), pp. 273–283.

70

http://www.aerialmapping.net/Orthophotography.html
http://www.aerialmapping.net/Orthophotography.html
http://www.questuav.com/news/fixed-wing-versus-rotary-wing-for-uav-mapping-applications
http://www.questuav.com/news/fixed-wing-versus-rotary-wing-for-uav-mapping-applications
http://agents.felk.cvut.cz/projects/agentfly
http://agents.felk.cvut.cz/projects/agentfly
https://www.dronezon.com/learn-about-drones-quadcopters/introduction-to-uav-photogrammetry-and-lidar-mapping-basics/
https://www.dronezon.com/learn-about-drones-quadcopters/introduction-to-uav-photogrammetry-and-lidar-mapping-basics/

Bibliography

[15] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein. “Distributed
covering by ant-robots using evaporating traces”. In: IEEE Transactions on Robotics
and Automation (1999) 15.5 (), pp. 918–933.

[16] João Valente et al. “Aerial coverage optimization in precision agriculture man-
agement: A musical harmony inspired approach”. In: Computers and electronics
in agriculture (2013) 99 (), pp. 153–159.

[17] Chaomin Luo et al. “Safety aware robot coverage motion planning with virtual-
obstacle-based navigation”. In: Information and Automation, 2015 IEEE Inter-
national Conference on. IEEE, pp. 2110–2115.

[18] Anqi Xu, Chatavut Viriyasuthee, and Ioannis Rekleitis. “Efficient complete cov-
erage of a known arbitrary environment with applications to aerial operations”.
In: Autonomous Robots (2014) 36.4 (), pp. 365–381.

[19] Wesley H Huang. “The minimal sum of altitudes decomposition for coverage algo-
rithms”. In: Rensselaer Polytechnic Institute Computer Science Technical Report
00-3 (2000) ().

[20] Andreas Bircher et al. “Three-dimensional coverage path planning via viewpoint
resampling and tour optimization for aerial robots”. In: Autonomous Robots (2015)
(), pp. 1–20.

[21] JF Araujo, PB Sujit, and João B Sousa. “Multiple UAV area decomposition and
coverage”. In: 2013 IEEE Symposium on Computational Intelligence for Security
and Defense Applications (CISDA). IEEE, pp. 30–37.

[22] Franco P Preparata and Michael Shamos. Computational geometry: an introduc-
tion. Springer Science & Business Media (2012).

[23] lecture | Small Unmanned Aircraft: Theory and Practice (2016). url: http://
uavbook.byu.edu/doku.php?id=lecture.

[24] Understanding Euler Angles | CH Robotics (2017). url: http://www.chrobotics.
com/library/understanding-euler-angles.

71

http://uavbook.byu.edu/doku.php?id=lecture
http://uavbook.byu.edu/doku.php?id=lecture
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles

	Introduction
	Orthophotomaps
	UAV
	Tactical AGENTFLY framework

	Basic concepts
	Coverage path planning
	Aerial remote sensing

	Aerial coverage algorithms
	Previous work
	Selected approaches
	Naive exact decomposition
	Enhanced exact cellular decomposition
	Energy-aware path planner

	Algorithm implementation and modifications
	Common parts of algorithms
	Polygon area storing
	Convex area coverage
	Stripe computation

	Naive exact decomposition planner
	Enhanced exact cellular decomposition planner
	Polygon width computation
	Visiting order determination

	Energy-aware planner
	Concave parts separation
	Multiple paths problem

	Algorithm enhancements
	Kinematic constraints application
	No-flight zones implementation
	Limited-range planner

	Algorithm analysis and results
	Tactical AGENTFLY interface overview
	UAV properties
	Measurement tools

	Software tests
	Convex polygon coverage test
	Simple concave polygon coverage test
	Complex concave polygon coverage test
	Polygon with no-flight zones coverage test

	Field experiments
	Convex polygon coverage
	Concave polygon coverage

	Test conclusions

	Conclusion
	Thesis summary
	Future work

	Contents of the enclosed CD
	Bibliography

