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Abstract. Boundary value problems are considered on a simplex F in the real Euclidean space R2.
The recent discovery of new families of special functions, orthogonal on F , makes it possible to consider
not only the Dirichlet or Neumann boundary value problems on F , but also the mixed boundary value
problem which is a mixture of Dirichlet and Neumann type, ie. on some parts of the boundary of F a
Dirichlet condition is fulfilled and on the other Neumann’s works.
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1. Introduction
The boundary value problems, considered in this pa-
per, occurring in a real Euclidean space R2 on finite
region F ⊂ R2 that is half of a square or half of an
equilateral triangle.

The main idea of this paper is to study the solutions
of Helmholtz equation with the mixed boundary value
problems. A surprising variety of recently emerged
suitable new families of special functions makes that
the realization of this idea is relatively simple and
straightforward in any dimension. In addition to the
classical boundary value problems of Dirichlet and
Neumann type, the new functions, called ‘hybrids’
[6, 10], display properties at the boundary of F , on
some parts of the boundary being Dirichlet’s, while
on the remaining ones Neumann’s.
The boundary value conditions play an important

role in describing the physical phenomena. They are
used, inter alia, in the theory of elasticity, electrostat-
ics and fluid mechanics [2, 4, 16].
In Section 2 we introduce some facts about Weyl

groups C2 and G2. In Section 3 we show the exact
formulas for four families of special functions for each
of the group C2 and G2. The branching rules used
to separate variables in Section 4 are described in
details for example in the following papers [9, 11, 14].
In Section 5 three types of boundary value problems
are considered for four families of special functions
described in Section 3. Although for the case A1×A1,
there is no hybrid functions, the mixed boundary value
problem occurs. We present this case in details in
Appendix.

2. Weyl group C2 and G2
In this section we recall certain facts about Weyl
groups C2 and G2 [1, 3, 5]. We use four bases in
R2, namely e-, α-, α̌- and ω- basis. The first one,
e-basis, is a natural basis for an Euclidean space. The
simple root basis, α-basis, exists for every finite group

Figure 1. Shaded triangles represent the fundamental
regions F for C2 and G2 group.

generated by reflections. The co-root basis α̌ is defined
by the formula:

α̌i = 2αi
〈αi|αi〉

.

The ω-basis is dual to simple root basis. The relation-
ship between considered bases is standard for group
theory and is expressed by:

〈α̌i|ωj〉 = δij .

Below we present the α-basis vectors in Cartesian
coordinates for each of considered groups:

C2 : α1 := 1√
2 (1,−1)e, α2 := 2√

2 (0, 1)e,

G2 : α1 := (
√

2, 0)e, α2 :=
(
− 1√

2 ,
1√
6

)
e
.

The following notation for coordinates is used:

R2 3 λ = (a, b)ω = aω1 + bω2.

R2 3 x = (x1, x2)α̌ = (y1, y2)e,

where indexes ω, e, and α̌ denote ω-, natural-, and
α̌-basis, respectively.
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The fundamental regions F for C2 and G2 group,
written in ω-basis, have the vertices

FC2 = {0, ω1, ω2},
FG2 = {0, ω1

2 , ω2}

and are shown in Figure 1.
The groups C2 and G2 can be reduced to a subgroup

A1 ×A1 using a branching rule method described in
[11, 14]. For C2 case it is done by the projection
matrix

PC2 =
(

1 1
0 1

)
(1)

acting on the whole orbit of a group. The branching
rule is the following:

O(a, b)
PC2−→ O(a+ b)O(b) ∪O(b)O(a+ b). (2)

The reduction from G2 to A1 × A1 is given by the
matrix

PG2 =
(

1 1
3 1

)
. (3)

The branching rule, in this case, has a form:

O(a, b)
PG2−−−→ O(a+ b)O(3a+ b)
∪O(2a+ b)O(b) ∪O(a)O(3a+ 2b). (4)

For group A1 ×A1 we use the following notation for
coordinates

R2 3 x = (x, y)e ∈ A1 ×A1.

3. C-, S-, Ss-, and Sl-functions of
G = C2 or G2

The general formula for special functions correspond-
ing to the Weyl group [5] is given by∑

w∈G
σ(w)e2πi〈wλ|x〉,

where the coordinates x = (x1, x2)α̌ ∈ R2 and weight
λ = (a, b)ω are given in α̌- and ω-basis, respectively.
The homomorphism σ : G → {±1} (by G we de-
note the group C2 or G2) determine the four families
of special functions [9], that are of interest to us.
The map σ(w) is a product of σ(rl), σ(rs) ∈ {±1},
where rl, rs denote long and short reflections in w,
respectively. Consequently, there are four types of
homomorphisms σ:

C : σ(rl) = σ(rs) = 1,
S : σ(rl) = σ(rs) = −1,
Sl : σ(rl) = −1, σ(rs) = 1,
Ss : σ(rl) = 1, σ(rs) = −1.

3.1. Explicit forms of C- and
S-functions

In this subsection we provide an exact formulas for
the two types of special functions, namely, C- and
S-functions for C2 and G2 group. The upper signs
in the formulas correspond to C(a,b)(x) functions and
the lower ones match up to S(a,b)(x) functions [9, 13]:

C2 : ±2
[
cos(2π((a+ 2b)x1 + (−a− b)x2))
± cos(2π((a+ 2b)x1 − bx2))
+ cos(2π(−ax1 + (a+ b)x2))
+ cos(2π(ax1 + bx2)

]
,

G2 : 2
[
cos(2π((2a+ b)x1 − (3a+ 2b)x2)

+ cos(2π(ax1 + bx2)
± cos(2π(a+ b)x1 − bx2)
± cos(2π(ax1 − (3a+ b)x2)
± cos(2π((2a+ b)x1 − (3a+ b)x2)
+ cos(2π(a+ b)x1 − (3a+ 2b)x2)

]
.

3.2. Explicit form of Ss and Sl-functions
Similarly, as in the previous subsection, we present
exact formulas for Sl- and Ss- functions. Again, the
upper signs correspond to Ss(a,b)(x) function and the
lower ones belong to Sl(a,b)(x) function [9, 13]:

C2 : 2
[
∓ cos(2π((a+ 2b)x1 − (a+ b)x2))
± cos(2π((a+ 2b)x1 − bx2))
− cos(2π(−ax1 + (a+ b)x2))
+ cos(2π(ax1 + bx2)

]
,

G2 : 2i
[
sin(2π((a+ b)x1 − (3a+ 2b)x2))

+ sin(2π(ax1 + bx2))
± sin(2π((2a+ b)x1 − (3a+ 2b)x2))
∓ sin(2π(ax1 − (3a+ b)x2))
− sin(2π((2a+ b)x1 − (3a+ b)x2))
∓ sin(2π((a+ b)x1 − bx2))

]
.

Remark 1. The weight coordinates (a, b)ω for the four
families of special functions are different, namely

C(a,b)(x) : a, b ∈ Z≥0,

S(a,b)(x) : a, b ∈ Z>0,

Ss(a,b)(x) :
{
a ∈ Z>0, b ∈ Z≥0 for C2,

a ∈ Z≥0, b ∈ Z>0 for G2,

Sl(a,b)(x) :
{
a ∈ Z≥0, b ∈ Z>0 for C2,

a ∈ Z>0, b ∈ Z≥0 for G2,

The next remark is a consequence of explicit forms
of functions written in Subsections 3.1, 3.2.
Remark 2. Four families of special functions are real
in case of C2 group.

The functions C-, S- are real, and Sl-, Ss- are pure
imaginary in case of G2 group.
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4. Helmholtz differential
equation

In this section we consider the well-known partial
differential equation

∆Ψ(x) = −w2Ψ(x), w − positive real constant

called homogeneous Helmholtz equation (see for ex-
ample [7, 8, 15] and references therein), where x =
(y1, y2)e and

∆ = ∂2

∂y2
1

+ ∂2

∂y2
2
.

Remark 3 [5]. The special functions described in the
previous section are eigenfunctions of the Laplace
operator.
The explicit form of the Laplace operator in co-

ordinates relative to the ω-basis and α̌-basis is the
following

C2 : ∆ω = 2∂2
1 − 2∂1∂2 + ∂2

2 ,

∆α̌ = 1
2∂

2
1 + ∂1∂2 + ∂2

2 ,

G2 : ∆ω = ∂2
1 − 3∂1∂2 + 3∂2

2 ,

∆α̌ = 2∂2
1 + 2∂1∂2 + 2

3∂
2
2 .

Since
∆e2πi〈λ|x〉 = −4π2〈λ|λ〉e2πi〈λ|x〉

then we have

∆Ψλ(x) = −4π2〈λ|λ〉Ψλ(x),

where Ψλ(x) is one of the functions C, S, Ss or Sl.
The inner product of λs is equal

C2 : 〈λ|λ〉 = 1
2a

2 + ab+ b2,

G2 : 〈λ|λ〉 = 2a2 + 2ab+ 2
3b

2.

4.1. Separation of variables for the
Helmholtz equation

Using a standard method of separation of variables
for the Helmholtz equation [7]

∆Ψ(x) = −w2Ψ(x), x = (y1, y2)e,

and searching for the solutions in the form Ψ(x) =
X(y1)Y (y2), we have the following differential equa-
tion

X ′′Y +XY ′′ + w2XY = 0.
Introducing −k2-separation constant, we get a pair of
the ordinary differential equations easy to solve:

X ′′ + k2X = 0, Y ′′ + (w2 − k2)Y = 0. (5)

A basic solution of (5) we can write in the form

X1(y1) = cos ky1, Y1(y2) = cos
√
w2 − k2y2,

X2(y1) = sin ky1, Y2(y2) = sin
√
w2 − k2y2,

where k 6= 0 and w2 − k2 6= 0.
According to the assumptions that k 6= 0 and w2 6=

k2 we consider C-, S-, Ss-, and Sl-functions only with
positive weights.

4.2. C2 case
From the projection matrix PC2 (1) and the branching
rule (2) we find two separation constants −k2

1 and −k2
2,

which have a form

−k2
1 = −2(a+ b)2π2, w2 − k2

1 = 2b2π2,

−k2
2 = −2b2π2, w2 − k2

2 = 2(a+ b)2π2.

Noting that k2
1 = w2 − k2

2, as a separation constant
we take

−k2 = −2(a+ b)2π2, w2 − k2 = 2b2π2.

Using the branching rule (2) from Section 2 for special
functions C, S, Ss, Sl we can rewrite those functions
in the form:

Ca,b(x) = 4
[
cos(ky1) cos(

√
w2 − k2y2)

+ cos(
√
w2 − k2y1) cos(ky2)

]
,

Sa,b(x) = 4
[
sin(
√
w2 − k2y1) sin(ky2)

− sin(ky1) sin(
√
w2 − k2y2)

]
,

Ssa,b(x) = 4
[
cos(ky1) cos(

√
w2 − k2y2)

− cos(
√
w2 − k2y1) cos(ky2)

]
,

Sla,b(x) = −4
[
sin(
√
w2 − k2y1) sin(ky2)

+ sin(ky1) sin(
√
w2 − k2y2)

]
.

By changing the variables by y1 =
√

2x, y2 =
√

2 we
get the reduction to A1 ×A1 subgroup

Ca,b(x) = Ca+b(x)Cb(y) + Cb(x)Ca+b(y),
Sa,b(x) = Sa+b(x)Sb(y)− Sb(x)Sa+b(y),
Ssa,b(x) = Sa+b(x)Sb(y) + Sb(x)Sa+b(y),
Sla,b(x) = Ca+b(x)Cb(y)− Cb(x)Ca+b(y), (6)

The functions Cµ(x), and Sµ(x), on the right side
of (6), are defined in Appendix. The coordinates
(x, y) ∈ A1 ×A1 are written in α-basis.

4.3. G2 case
From the projection matrix PG2 (3) and the branching
rule (4) we find three separation constants −k2

1, −k2
2,

and −k2
3, which have a form

− k2
1 = −2(2a+ b)2π2, w2 − k2

1 = 2
3b

2π2, (7)
− k2

2 = −2(a+ b)2π2, w2 − k2
2 = 2

3 (3a+ b)2π2,

− k2
3 = −2a2π2, w2 − k2

3 = 2
3 (3a+ 2b)2π2.

Using the branching rule (4) from Section 2 for special
functions C, S, Ss, Sl we can rewrite those functions
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Figure 2. Fundamental regions of C2 and G2 groups.
Sides are marked by s and l symbols which correspond
to the reflection orthogonal to the short and long root,
respectively.

Figure 3. The normal vectors and boundaries are
indicated for the Weyl group C2.

in the form:

Ca,b(x) = 4
[
cos(k1y1) cos(

√
w2 − k2

1y2)
+ cos(k2y1) cos(

√
w2 − k2

2y2)
+ cos(k3y1) cos(

√
w2 − k2

3y2)
]
,

Sa,b(x) = 4
[
− sin(k1y1) sin(

√
w2 − k2

1y2)
+ sin(k2y1) sin(

√
w2 − k2

2y2)
− sin(k3y2) sin(

√
w2 − k2

3y2)
]
,

Ssa,b(x) = 4i
[
− cos(k1y1) sin(

√
w2 − k2

1y2)

− cos(k2y1) sin(
√
w2 − k2

2y2)
+ cos(k3y1) sin(

√
w2 − k2

3y2)
]
,

Sla,b(x) = 4i
[
− sin(k1y1) cos(

√
w2 − k2

1y2)

+ sin(k2y1) cos(
√
w2 − k2

2y2)
+ sin(k3y1) cos(

√
w2 − k2

3y2)
]
.

By changing the variables by y1 =
√

2x, y2 =
√

6 we
get the reduction to A1 ×A1 subgroup

Ca,b(x) = Ca(x)C3a+2b(y)
+ Ca+b(x)C3a+b(y) + C2a+b(x)Cb(y),

Sa,b(x) = Sa(x)S3a+2b(y)
− Sa+b(x)S3a+b(y) + S2a+b(x)Sb(y),

Ssa,b(x) = Ca(x)S3a+2b(y)
− Ca+b(x)S3a+b(y)− C2a+b(x)Sb(y),

Sla,b(x) = Sa(x)C3a+2b(y)
− Sa+b(x)C3a+b(y) + S2a+b(x)Cb(y). (8)

(D) (N)
C2, G2 s l s l

Ca,b(x) ∗ ∗ 0 0
Sa,b(x) 0 0 ∗ ∗

(M)
(D) (N)

C2, G2 s l s l
Ssa,b(x) 0 ∗ ∗ 0

Sla,b(x) ∗ 0 0 ∗

Table 1. Behaviour of the functions C, S, Ss and Sl

on the boundary ∂F for C2 and G2 group where ∗
denotes any function non-equivalent to 0.

The functions Cµ(x), and Sµ(x), on the right side
of (8), are defined in Appendix. The coordinates
(x, y) ∈ A1 ×A1 are written in α-basis.

Proposition 1. Cµ(x), and Sµ(x) functions pre-
sented in (8) fulfill the following relationships

− k3S3a+2b(x)Ca(x)
+ k2S3a+b(x)Ca+b(x)− k1Sb(x)C2a+b(x)

=
√

3
(√

w2 − k2
3C3a+2b(x)Sa(x)

−
√
w2 − k2

2C3a+b(x)Sa+b(x)
−
√
w2 − k2

1Cb(x)S2a+b(x)
)
,

− k3S3a+2b(x)Sa(x)
+ k2S3a+b(x)Sa+b(x) + k1Sb(x)S2a+b(x)

=
√

3
(√

w2 − k2
3C3a+2b(x)Ca(x)

−
√
w2 − k2

2C3a+b(x)Ca+b(x)
−
√
w2 − k2

1Cb(x)C2a+b(x)
)
,

where ki,
√
w2 − ki, i = 1, 2, 3 are defined by (7).

5. Types of boundary conditions
In this paper we consider three types of boundary
conditions.

(1.) The first type, called a Dirichlet boundary condi-
tion, defines the value of the function itself:

Ψ(x) = f(x), for x ∈ ∂F, (D)

where f(x) is a given function defined on the bound-
ary.

(2.) The second type, called a Neumann boundary
condition, defines the value of the normal derivative
of the function:

∂Ψ
∂n (x) = f(x), for x ∈ ∂F, (N)

where n denotes normal to the boundary ∂F .
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C1,3(x) S1,3(x)

Figure 4. The contour plot of C1,3(x), S1,3(x). The
triangle denotes the fundamental domain F of the
affine Weyl group C2.

Sl1,3(x) Ss1,3(x)

Figure 5. The contour plot of Sl
1,3(x), Ss

1,3(x). The
triangle denotes the fundamental domain F of the
affine Weyl group C2.

Figure 6. The normal vectors and boundaries are
indicated for the Weyl group G2

(3.) The third type, called a mixed boundary condi-
tion, defines the value of the function itself on one
part of the boundary and the value of the normal
derivative of the function on the other part of the
boundary:{

Ψ(x) = f0(x) for x ∈ ∂F0,
∂Ψ
∂n (x) = f1(x) for x ∈ ∂F1,

(M)

where ∂F = ∂F0 ∪ ∂F1 and f0(x), f1(x) are given
functions, defined on the appropriate boundary.

Remark 4 [12]. For the Dirichlet boundary conditions
all eigenvalues are positive.
For the Neumann boundary condition all eigenval-

ues are non-negative.
In Table 1 we present how the four types of func-

tions, defined in Section 3, behave on the boundary
∂F of the fundamental region F . The fundamental re-
gion F for C2 and G2 groups is presented in Figure 2.
Symbol s corresponds to the reflection orthogonal
to the short root and l corresponds to the reflection
orthogonal to the long root.

5.1. C2 case
The normal vectors to the fundamental region F of
the Weyl group C2 are the following:

n1 = (0,−1)e, n2 =
(
− 1√

2 ,
1√
2

)
e
, n3 = (1, 0)e.

In Figure 3 we present the fundamental region F
with indicated boundaries and corresponding normal
vectors.

The values of the four families of special functions
C, S, Ss and Sl satisfying the Dirichlet boundary con-
dition (D) on the boundary ∂F of the fundamental

Figure 7. A shaded square represents the fundamen-
tal region F of A1 × A1.

Figure 8. The Boundaries of the fundamental region
F of A1 × A1 are indicated.

region F are presented in Tables 2, 4, and 5. Tables 3–
5 present the values of the functions satisfying the
Neumann boundary condition (N). The examples of
functions and their behaviours on the boundary ∂F
is presented in Figures 4 and 5.

5.2. G2 case
The normal vectors to the fundamental region F of
the Weyl group G2 are the following:

n1 = (−1, 0)e, n2 =
(√3

2 ,−
1
2
)
e
, n3 =

( 1
2 ,
√

3
2
)
e

In Figure 6 we present the fundamental region F
with indicated boundaries and corresponding normal
vectors.

The values of the functions for group G2 fulfilling
the Dirichlet boundary condition (D) on the bound-
ary of the fundamental region F are presented in
Tables 6, 8, and 9. The values of the functions satisfy-
ing the Neumann boundary condition (N) are given
in Tables 7–9. The examples of functions and their be-
haviours on the boundary ∂F is presented in Figures 9
and 10.
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Ca,b(x) Dirichlet condition
F1 2Ca+b(x) + 2Cb(x)
F2 2Ca+b(x)Cb(x)
F3 Ca+b(1)Cb(y) + Cb(1)Ca+b(y)

Table 2. Values of Ca,b(x) function at the boundary of the fundamental region F in C2 case.

Sa,b(x) Neumann condition

F1 2i
(
kSb(x)−

√
w2 − k2Sa+b(x)

)
F2 2i

(√
w2 − k2Sa+b(x)Cb(x)− kSb(x)Ca+b(x)

)
F3 i

(√
w2 − k2Ca+b(1)Sb(y)− kCb(1)Sa+b(y)

)
Table 3. Values of Sa,b(x) function at the boundary of the fundamental region F in C2 case.

Mixed condition
Ssa,b(x) Dirichlet condition Neumann condition

F1 2(Ca+b(x)− Cb(x)) 0

F2 0 2i
(
−
√
w2 − k2Sa+b(x)Cb(x) + kSb(x)Ca+b(x)

)
F3 C(a+b)(1)Cb(y)− Cb(1)Ca+b(y) 0

Table 4. Values of Ss
a,b(x) function at the boundary of the fundamental region F in C2 case.

Mixed condition
Sla,b(x) Dirichlet condition Neumann condition

F1 0 2i
(
−
√
w2 − k2Sb(x)− kSa+b(x)

)
F2 2Sa+b(x)Sb(x) 0

F3 0 i
(√
w2 − k2Ca+b(1)Sb(y) + kCb(1)Sa+b(y)

)
Table 5. Values of Sl

a,b(x) function at the boundary of the fundamental region F in C2 case.

Ca,b(x) Dirichlet condition
F1 2(Cb(y) + C3a+b(y) + C3a+2b(y))
F2 C2a+b(x)Cb(x) + Ca+b(x)C3a+b(x) + Ca(x)C3a+2b(x)
F3 C2a+b(x)Cb(x− 1) + Ca+b(x)C3a+b(x− 1) + Ca(x)C3a+2b(x− 1)

Table 6. Values of Ca,b(x) function at the boundary of the fundamental region F in G2 case.

Sa,b(x) Neumann condition
F1 2i(−k3S3a+2b(y) + k2S3a+b(y)− k1Sb(y))

F2 −2i
(√

w2 − k2
3 C3a+2b(x)Sa(x)−

√
w2 − k2

2 C3a+b(x)Sa+b(x) +
√
w2 − k2

1 Cb(x)S2a+b(x)
)

F3 2i(k3S3a+2b(x− 1)Ca(x)− k2S3a+b(x− 1)Ca+b(x) + k1Sb(x− 1)C2a+b(x))

Table 7. Values of Sa,b(x) function at the boundary of the fundamental region F in G2 case.
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Mixed condition
Ssa,b(x) Dirichlet condition Neumann condition

F1 2(−Sb(x)− S3a+b(x) + S3a+2b(x)) 0

F2 0
2i
(√

w2 − k2
3C3a+2b(x)Ca(x)

+
√
w2 − k2

2C3a+b(x)Ca+b(x)
+
√
w2 − k2

1Cb(x)C2a+b(x)
)

F3
−C2a+b(x)Sb(x− 1)− Ca+b(x)S3a+b(x− 1)

+ Ca(x)S3a+2b(x− 1)

Table 8. Values of Ss
a,b(x) function at the boundary of the fundamental region F in G2 case.

Mixed condition
Sla,b(x) Dirichlet condition Neumann condition

F1 0 2i(−k3C3a+2b(y)− k2C3a+b(y) + k1Cb(y))

F2
−S2a+b(x)Cb(x) + Sa+b(x)C3a+b(x)

+ Sa(x)C3a+2b(x)
0

F3 0
2i(k3C3a+2b(x− 1)Ca(x) + k2C3a+b(x− 1)Ca+b(x)

− k1Cb(x− 1)C2a+b(x))

Table 9. Values of Sl
a,b(x) function at the boundary of the fundamental region F in G2 case.

<C1,3(x) <S1,3(x)

Figure 9. The contour plot of real part of C1,3(x),
S1,3(x) functions. The triangle denotes the fundamen-
tal domain F of the affine Weyl group G2.

=Sl1,3(x) =Ss1,3(x)

Figure 10. The contour plot of imaginary part of
Sl

1,3(x), Ss
1,3(x) functions. The triangle denotes the

fundamental domain F of the affine Weyl group G2.

<C1,3(x) <S1,3(x)

Figure 11. The contour plot of real part of C1,3(x),
and S1,3(x) functions. The square denotes the funda-
mental domain F of A1 × A1.

=CS1,3(x) =SC1,3(x)

Figure 12. The contour plot of imaginary part of
CS1,3(x), and SC1,3(x) functions. The square denotes
the fundamental domain F of A1 × A1.
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Ca,b(x) Dirichlet condition
F1 2Cb(y)
F2 2Ca(x)
F3 Ca(1)Cb(y)
F4 Ca(x)Cb(1)

Table 10. Values of Ca,b(x) function at the boundary
∂F of the fundamental region F .

Sa,b(x) Neumann condition
F1 −2i kSb(y)

F2 −2i
√
w2 − k2Sa(x)

F3 i kCa(1)Sb(y)

F4 i
√
w2 − k2Sa(x)Cb(1)

Table 11. Values of Sa,b(x) function at the boundary
∂F of the fundamental region F .

Mixed condition
CSa,b(x) Dirichlet Neumann

F1 2Sb(y) 0

F2 0 −2i
√
w2 − k2Ca(x)

F3 Ca(1)Sb(y) 0

F4 0 i
√
w2 − k2Ca(x)Cb(1)

Table 12. Values of CSa,b(x) function at the bound-
ary ∂F of the fundamental region F .

Mixed condition
SCa,b(x) Dirichlet Neumann

F1 0 −2i kCb(y)
F2 2Sa(x) 0
F3 0 i kCa(1)Cb(y)
F4 Sa(x)Cb(1) 0

Table 13. Values of SCa,b(x) function at the bound-
ary ∂F of the fundamental region F .

6. Appendix
In this section we present the simplest case, namely
A1 × A1. The fundamental region F (shown in Fig-
ure 7) is a square with vertices {0, ω1, ω2, ω1 + ω2} in
the ω-basis.

The bases written in the orthonormal basis {e1, e2}
have the form

αi =
√

2ei, ωi = 1√
2ei i = 1, 2.

There are four families of special functions, namely
C-, S-, CS- and SC-functions. Their forms are the
following:

Ca,b(x) = Ca(x)Cb(y) = 4 cos(2πax) cos(2πby),
Sa,b(x) = Sa(x)Sb(y) = −4 sin(2πax) sin(2πby),
CSa,b(x) = Ca(x)Sb(y) = 4i cos(2πax) sin(2πby),
SCa,b(x) = Sa(x)Cb(y) = 4i sin(2πax) cos(2πby),

where

Cµ(x) = e2πiµx + e−2πiµx,

Sµ(x) = e2πiµx − e−2πiµx.

The behaviour of C-, S-, CS-, and SC-functions
on the boundary ∂F of the fundamental region F
described in Figure 8 is gathered in Tables 10-13. The
values if the functions we write using a separation
constant −k2:

−k2 = −2a2π2, w2 − k2 = 2b2π2.

In Figures 11 and 12 plots of real and imaginary part
of functions with weight λ = (1, 3) are shown.
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