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Abstract

Background—We recently reported that subcutaneous nerve activity (SCNA) can be used to 

estimate sympathetic tone.

Objectives—To test the hypothesis that left thoracic SCNA is more accurate than heart rate 

variability (HRV) in estimating cardiac sympathetic tone in ambulatory dogs with myocardial 

infarction (MI).

Methods—We used an implanted radiotransmitter to study left stellate ganglion nerve activity 

(SGNA), vagal nerve activity (VNA), and thoracic SCNA in 9 dogs at baseline and up to 8 weeks 

after MI. HRV was determined based by time-domain, frequency-domain and non-linear analyses.
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Results—The correlation coefficients between integrated SGNA and SCNA averaged 0.74 (95% 

confidence interval (CI), 0.41–1.06) at baseline and 0.82 (95% CI, 0.63–1.01) after MI (P<.05 for 

both). The absolute values of the correlation coefficients were significant larger than that between 

SGNA and HRV analysis based on time-domain, frequency-domain and non-linear analyses, 

respectively, at baseline (P<.05 for all) and after MI (P<.05 for all). There was a clear increment 

of SGNA and SCNA at 2, 4, 6 and 8 weeks after MI, while HRV parameters showed no 

significant changes. Significant circadian variations were noted in SCNA, SGNA and all HRV 

parameters at baseline and after MI, respectively. Atrial tachycardia (AT) episodes were invariably 

preceded by the SCNA and SGNA, which were progressively increased from 120th, 90th, 60th to 

30th s before the AT onset. No such changes of HRV parameters were observed before AT onset.

Conclusion—SCNA is more accurate than HRV in estimating cardiac sympathetic tone in 

ambulatory dogs with MI.
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Introduction

Heart rate variability (HRV) is a method frequently used to estimate autonomic tone.1 

Depressed HRV is a powerful predictor of sudden cardiac death and arrhythmic 

complications in patients following acute myocardial infarction (MI) independent of left 

ventricular ejection fraction. Its importance is also supported by the fact that 11,980 articles 

in the PubMed data base contain the exact phrase “heart rate variability” as of January, 

2014. The most commonly used HRV methods include either time-domain or frequency-

domain analyses.1 In addition, recent studies showed that non-linear analysis of HRV may 

detect abnormal patterns of RR fluctuations more efficiently than standard HRV 

measurements.2 Among these new methods is the phase-rectified signal averaging (PRSA),3 

which is used to quantify the quasi-periodic accelerations and decelerations in short-term 

heart rate. The latter is normally masked by nonstationarities (such as ectopic beats and 

changes in activity), noise, and artifacts. PRSA characterizes how the heart behaves around 

points of deceleration (deceleration capacity (DC)) and acceleration (acceleration capacity 

(AC)) under a given recording condition. Bauer et al. found that a low DC was a stronger 

predictor of mortality after MI than traditional HRV techniques.4, 5 Recently, we 

demonstrated that the left thoracic subcutaneous nerve activity (SCNA) could be used to 

accurately estimate left stellate ganglion nerve activity (SGNA) in normal ambulatory dogs 

and to predict susceptibility to ventricular tachycardia (VT) and ventricular fibrillation (VF) 

in a canine model of ventricular arrhythmia and sudden cardiac death.6, 7 However, whether 

the SCNA can be used as a marker of cardiac sympathetic tone in ambulatory dogs with MI 

remained unknown. In a previous study from our laboratory, Han et al simultaneously 

recorded left SGNA, left thoracic vagal nerve activity (VNA) and the subcutaneous 

electrocardiogram (ECG) in 9 ambulatory dogs at baseline and after MI.8 That data set gave 

us an excellent opportunity to study the relationship between HRV, SGNA and SCNA in 

dogs with MI without the need to use additional animals for experiments. The purpose of the 
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present study was to perform further analyses of that data set to test the hypothesis that 

SCNA is better than HRV in estimating cardiac sympathetic tone in ambulatory dogs with 

MI.

Materials and methods

We re-analyzed data in nine ambulatory dogs with MI from a previous study.8 The study 

protocols were approved by the Institutional Animal Care and Use Committee of the Indiana 

University School of Medicine and the Methodist Research Institute, Indianapolis, Indiana, 

and conformed to the Guide for the Care and Use of Laboratory Animals. Data Sciences 

International (DSI, St Paul, MN) D70-EEE radio transmitters with 3 bipolar recording 

channels were implanted in 9 mongrel dogs. The first pair of bipolar electrodes was used to 

record from the left stellate ganglion and the second pair was used to record from the left 

vagal nerve at the level 4 to 5 cm above the aortic arch. A third pair of bipolar leads was 

placed in the subcutaneous space of left thorax and left abdomen for electrocardiogram 

(ECG) recording. Signals from the latter electrodes were high pass filtered at 150 Hz to 

reveal nerve signals.6 Subcutaneous inter-electrode distance was not measured at the time of 

the study, but in similar sized dogs it is estimated at around 28 cm.7 After baseline 

recording, acute MI was created and recording continued for an additional 8 weeks.

HRV analysis based on time-domain, frequency domain and PRSA methods

The R peak of QRS complex in the 5-min window of each ECG signal was automatically 

detected based on the Pan Tompkins algorithm9 and RR interval tachogram was then 

obtained beat-by-beat (Online supplement Figure 2). The time-domain, frequency domain, 

and PRSA analysis of the HRV were all performed using the Matlab 2013 software 

(@MATLAB). The standard deviation of NN intervals (SDNN), the square root of the mean 

of the squares of the successive differences between adjacent NNs (RMS) and the proportion 

of the number of pairs of successive NNs that differ by more than 50 ms (NN50) divided by 

total number of NNs (pNN50) calculated over 5 min were used to represent the HRV 

measures based on time domain method. For the frequency domain analysis, spectral power 

for HRV was analyzed on 5-min ECG recording segments and an autoregressive algorithm 

was used to analyze digitized signals from the ECG recordings (Online supplement Figure 

2). The total power (TP), very low frequency (VLF) (0.003 to 0.04 Hz), low frequency (LF) 

(from 0.04 to 0.15 Hz), high frequency (HF) (from 0.15 to 0.4 Hz) components, LF 

normalized unit (LFnu), HF normalized unit (HFnu) and LF-HF ratio were calculated based 

on the frequency domain analysis. LFnu was calculated as LF/(TP-VLF)*100. HFnu was 

calculated as HF/(TP-VLF)*100.1 The PRSA was calculated according to methods 

published elsewhere.4 Detailed methods are available in an Online Supplement.

Statistical analysis

Unless otherwise indicated, all data are expressed as mean and 95% CI. Data with skewed 

distribution are given as median and interquartile range (25th percentile – 75th percentile). 

For each dog, each HRV parameter was calculated from the total beats within each 5-minute 

window. The SGNA, VNA and SCNA were also obtained by integrating the nerve activities 

in the same 5-min window. Therefore, there were a total 288 recordings per day in each dog 
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at baseline or after MI, respectively. Shapiro-Wilk test was used to assess if the parameters 

in Table 1 and Table 2 were in normally distributed. Paired T test was used to compare for 

normally distributed variables. Wilcoxon test was used to compare non-normally distributed 

variables at baseline and after MI. Pearson correlation coefficient was used to measure the 

correlations among all HRV parameters or SCNA vs the SGNA or VNA in each dog. The 

significance of the consecutive values for SGNA, VNA, SCNA, SDNN, LFnu and DC in 

Figure 2 (baseline, 2, 4, 6, and 8 weeks after MI) and Figure 4 (−120, −90, −60, and −30 s 

prior onset of atrial tachycardia) were checked with repeated-measure one-way ANOVA. 

Cosinor tests were used to detect and quantify significant 24-hour circadian variations in the 

9 dogs. Statistical analysis was performed using IBM SPSS Statistics 19. A two-sided P < .

05 was considered significant.

Results

Presence and characteristics of subcutaneous nerve discharges

The morphology of SCNA resembles that of the SGNA in all dogs studied both at baseline 

and after MI. In addition, SCNA morphology was similar to filtered skin and muscle 

sympathetic nerve activity obtained in microneurography studies (Online supplement Figure 

1).10, 11 The SCNA signals are more likely to contain unfiltered ECG signals as compared 

with the SGNA channel.

SCNA and HRV analysis after MI

We manually screened all data and discarded data windows with recording artifacts or 

noises. Among the 288 5-min windows within a 24-hr period, 269 [223 to 314] and 267 [226 

to 311] windows at baseline and at 8 weeks after MI, respectively, were adequate for 

analyses. We calculated SGNA, VNA, SCNA and all HRV parameters for each 5-min 

window. Averaged SGNA, SGNA/VNA ratio and SCNA were all significantly increased 

after 8 weeks of MI as compared to baseline in the 9 dogs: the SGNA increased from 81 

[95% CI, 33 to 128] to 151 mV-sec [95% CI, 53 to 249] (P < .001), the SGNA/VNA ratio 

increased from 2.2 [95% CI, 0.9 to 3.4] to 3.4 [95% CI, 0.5 to 6.4] (P = .043), and the 

SCNA increased from 116 [95% CI, 41 to 190] to 165 mV-sec [95% CI, 107 to 223] (P < .

001). The VNA also showed significant change after MI (P = .021). In comparison, all HRV 

measures showed no obvious change at 8 weeks after MI in these 9 dogs (Table 1).

Pearson correlation between the analyzable 5-min segments of the SGNA or VNA and all 

HRV profiles or SCNA was calculated for each dog at baseline and at 8 weeks after MI. 

Table 2 summarizes the average correlation coefficient for all dogs. We used SDNN, low 

frequency normalized unit (LFnu), and deceleration capacity (DC) to represent the HRV 

measures based on time domain, frequency domain and non-linear methods in the following 

sections, respectively. At baseline, the average correlation coefficient of SCNA vs SGNA 

(0.74 [95% CI, 0.41 to 1.06]) is significantly higher than the absolute values of the 

correlation coefficient of SGNA vs SDNN (−0.59 [95% CI, −0.94 to −0.24]), LFnu (−0.07 

[95% CI, −0.58 to 0.44]), and DC (−0.63 [95% CI, −0.98 to −0.28]) for all dogs (P < .05 for 

all). At 8 weeks after MI, the average correlation coefficient of SCNA vs SGNA (0.82 [95% 

CI, 0.63 to 1.01]) is also significantly higher than the absolute value of correlation 
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coefficient of SGNA vs SDNN (−0.57 [95% CI, −0.88 to −0.25]), LFnu (0.17 [95% CI, 

−0.34 to 0.68]), or DC (−0.63 [95% CI, −0.95 to −0.32]) for all dogs (P < .05 for all). The 

correlation coefficient of DC vs SGNA is significantly higher than the correlation 

coefficient of SDNN or LFnu vs SGNA for all dogs at baseline and after MI (both P < .05). 

It is noted that the SCNA showed weak positive correlation with the VNA at baseline (0.27 

[95% CI, −0.12 to 0.65]) and 8 weeks after MI (0.29 [95% CI, 0.02 to 0.58]), respectively. 

In general, the absolute values of correlation coefficient between the VNA and all HRV 

parameters were low at either baseline or after 8 weeks of MI.

SCNA, SGNA and HRV analysis retained circadian variation

We plotted hourly SGNA, VNA, SCNA, SDNN, LFnu and DC over 24-hour period for all 

dogs at baseline and 8 weeks after MI. The 24-hour tracing was averaged from each dog’s 

24-hour tracing (Figure 1). The SGNA and SCNA after MI was higher than baseline 

throughout the 24-hr period, but the increased SGNA and SCNA were mainly observed 

during daytime. During the 2 days analyzed, SGNA was significantly higher in the nine 

different hours 8 weeks after MI than at baseline (1:00, 6:00, 7:00, 8:00, 11:00, 12:00, 

16:00, 17:00, 19:00, all P < .05). The SCNA reached similar higher significant values in 

nine hours as well as the SGNA (1:00, 5:00, 6:00, 7:00, 8:00, 10:00, 12:00, 17:00, 19:00, all 

P < .05). The VNA reached higher significant values in two hours after MI (7:00 and 18:00, 

both P < .05). For the HRV measures, the LFnu showed lower significant values in three 

hours as well as the SGNA (0:00, 1:00, 20:00, all P < .05). The SDNN and DC did not show 

any significant difference in all hours at 8 weeks after MI. The SGNA, SCNA, SDNN, LFnu 

and DC all showed circadian variation at either baseline or 8 weeks after MI (all P < .01). 

The VNA did not show any circadian variation at either baseline or 8 weeks after MI.

SGNA, SCNA but not HRV parameters changed after MI

We calculated 24-h averaged SGNA, VNA, SCNA, SDNN, LFnu, and DC values for each 

dog at baseline, 2, 4, 6, and up to 8 weeks after MI. As shown in Figure 2, there was 

progressive increment of SGNA at 2, 4, 6 and 8 weeks after MI (P < .01). The SGNA 

reached maximal values at 6 to 8 weeks after MI. The SGNA was significantly increased at 

2, 4, 6 and 8 weeks after MI as compared to baseline, respectively (all P < .05 vs baseline). 

Similar to SGNA, SCNA was significantly higher at 2, 4, 6 and 8 weeks after MI, 

respectively, than baseline (all P < .05 vs baseline). VNA was significantly increased at 6 

and 8 weeks after MI (both P < .05 vs baseline). In contrast, none of the HRV parameters 

showed significant changes after MI except for LFnu and DC, which were significantly 

decreased at the 2 and 4 weeks after MI as compared with baseline, respectively.

SGNA, SCNA, and HRV analysis before atrial arrhythmia episodes at baseline and 8 weeks 
after MI

We did not find any sustained ventricular tachycardia (VT) episodes (VT lasting > 5 sec 

with a heart rate > 150 beats per min (BPM)) at baseline or 8 weeks after MI in any dog 

studied.8 Instead, we found frequent paroxysmal atrial tachycardia (AT) episodes (defined as 

an abrupt (>20 BPM) increase in the heart rate to >150 BPM that persisted for at least 5-s) in 

all 9 dogs (Figure 3). We documented a total of 48 AT episodes (5.3 episodes/dog [95% CI, 
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−5.3 to 15.9]) at baseline and 117 AT episodes (13.0 episodes/dog [95% CI, −2.6 to 28.6]) at 

8 weeks after MI (P = .03). Integrated SGNA, VNA, SCNA, and ultra-short term HRV 

measures with SDNN, LFnu, and DC were calculated in four 30-s intervals for 120 s prior to 

the onset of AT episodes. At baseline, there was progressive increase in integrated SGNA, 

VNA, and SCNA prior AT episodes (all P < .01). Of note, the incremental effect was further 

augmented for integrated SGNA and SCNA 8 weeks after MI (both P < .001). For the HRV 

measures, only the DC showed progressive decrement before AT episodes after MI (Figure 

4) (P < .01).

Discussion

We found that SCNA can be used to provide an estimate of sympathetic activity in 

ambulatory dogs before and after MI. The correlation coefficient of the SCNA and SGNA is 

significantly higher than the absolute values of correlation coefficients of any HRV 

parameters. Both SCNA and SGNA showed clear incremental changes at 2, 4, 6 and 8 

weeks after MI, but no changes were found in HRV parameters. There was progressive 

increment of SCNA and SGNA before the onset of AT episodes, but no such changes were 

found for HRV parameters except for the DC value. We conclude that the SCNA is more 

accurate than the HRV parameters in estimating cardiac sympathetic tone in ambulatory 

dogs with MI.

HRV and cardiac autonomic function after MI

Without direct cardiac sympathetic recording, evaluating the cardiac autonomic tone in 

clinical practice mainly relied on the noninvasive analysis of HRV.1, 12 Novel non-linear 

methods assessing HRV have shown new insights into abnormalities in heart rate behavior 

in various pathological conditions, providing additional prognostic information when 

compared with traditional HRV measures.2 However, the HRV analyses based on either 

traditional or non-linear method had several limitations. Because HRV measures RR interval 

variations, it is limited to patients in sinus rhythm with intact sinoatrial nodal response to 

autonomic outflow and to those with few ectopic beats. Approximately 20 to 30% of high 

risk post-MI patients are excluded from HRV analysis due to frequent ectopy or cardiac 

arrhythmias, including atrial fibrillation and frequent premature ventricular beats.13 In 

patients with advanced heart diseases or old age, heart rate may become invariate and 

refractory to analysis by conventional HRV techniques. Also, respiratory parameters like 

respiratory frequency, tidal volume or static lung volume can profoundly alter heart rate and 

RR interval variability independent of changes in cardiac autonomic regulation.12 The above 

limitations had resulted in skepticism when considering HRV changes as indicators of 

autonomic outflow to the heart in the patient groups, and raised the question of how HRV 

may be effectively employed in patients with advanced heart diseases.13, 14

By using the direct recording of SGNA as the “gold standard” measures in representing the 

cardiac sympathetic outflow, we found that the HRV measures based on time domain (i.e. 

SDNN) and nonlinear methods (i.e. DC) had a significant correlation with the SGNA at 

baseline and 8 weeks after MI (Table 2). In the contrast, none of the frequency domain 

parameters showed good correlations with the SGNA at either baseline or after MI. 
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Traditionally, LF and HF components of HRV measures are often assumed to correspond to 

cardiac sympathetic and parasympathetic activity, respectively. However, accumulating 

evidence clearly demonstrates this assumption is not necessarily correct.15–17 Interventions 

that would be expected to increase cardiac sympathetic tone, such as acute exercise, 

myocardial infarction, or heart failure, actually provoked significant reduction of LF 

components.16 Accordingly, LF power should not be used as an index of cardiac 

sympathetic regulation. Specifically, the nonlinear HRV measures (DC) showed a higher 

correlation than the traditional HRV measures (SDNN or LFnu) with the SGNA (Table 2), 

supporting the rationale of using novel HRV measures as a more robust indicator to 

represent the cardiac sympathetic tone as compared to traditional HRV analysis.4, 5

A major problem of HRV is that it was not very sensitive to detect the chronic changes of 

cardiac autonomic tone as shown in our study (Figure 2). There are several possible 

mechanisms to explain the phenomenon: The daily HRV measures is influenced not only by 

the level of intrinsic autonomic activity but also by the daily physical activity, humoral 

response, respiratory changes, and even mental status as the dogs experienced from the 

baseline, acute to chronic phase of MI. All of those factors may affect the heart rate 

dynamics diversely. Therefore, the HRV measures based on heart rate dynamics lacked the 

specificity to identify the evolutional changes of cardiac autonomic activity after MI. 

Another issue is the change of sinoatrial nodal sensitivity after MI. All HRV measures 

showed 24-hour circadian variation that paralleled the 24-hour SGNA changes both at 

baseline and 8 weeks after MI. However, it was noted that the magnitude of day-night HRV 

changes are all similar between baseline and after MI, even though the magnitude of day-

night SGNA change was obviously augmented after MI (Figure 1). Previous studies 

demonstrated several pathophysiological processes, such as aging and congestive heart 

failure, render the sinoatrial node itself less efficient in responding to autonomic 

impulses.16, 18, 19 Our result also indicated that the heart rate response modulated by 

sympathetic outflow is blunted after MI. HRV changes therefore may not truly reflect 

cardiac autonomic tone after MI due to the dysfunction of the sinoatrial node.

SCNA and cardiac autonomic function after MI

Instead, we demonstrated that SCNA was more accurate than the HRV in estimating cardiac 

sympathetic activity in ambulatory canines with MI. The histological studies of human skin 

biopsy confirmed the presence of abundant sympathetic nerves in arteriovenous 

anastomoses, arrector pilorum muscles, and arterioles.20 Because of the direct and extensive 

connections among the cardiac and skin sympathetic innervation demonstrated in previous 

studies,21, 22 it is possible for the sympathetic nerves in the various structures to activate 

simultaneously. Using bipolar electrodes located in the chest wall, we aimed to obtain good 

ECG signal for heart rate analyses and, in the meantime, record nerve signals over a wide 

area in the left lateral thorax. Sources of recordings from the subcutaneous space of the 

thorax could include multiple signals, including autonomic nerve activities, motor and 

sensory nerves, respiratory muscle activities, cardiac electrocardiogram and low frequency 

movement artifacts. High pass (150 Hz) filtering eliminates a significant amount of low 

frequency electrical activities including muscle contractions, motion artifacts and residual 

ECG signals. When excluding frames with artifacts or noises, our collective findings suggest 

Chan et al. Page 7

Heart Rhythm. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the majority of signals recorded from the subcutaneous space after high pass signal 

filtering are sympathetic in origin.

Study Limitations

The significant limitation of this study is that incomplete filtering of ECG signal was 

observed in the subcutaneous channel. The degree of signal contamination appeared to vary 

between dogs. Further studies should be aimed at improving signal processing, eliminating 

ECG artifacts from SCNA recordings, and determining the optimal recording electrode 

location and inter-electrode distance. Second, none of these dogs developed ventricular 

arrhythmias during the chronic phase of MI, making it difficult to assess the importance of 

SCNA and SGNA in ventricular arrhythmogenesis.8 However, Doytchinova et al. recently 

demonstrated that SCNA can be used as a surrogate for SGNA to predict susceptibility to 

ventricular tachyarrhythmias in a canine model with sudden cardiac death.7

Conclusions

We provided direct evidence that left thoracic SCNA was more accurate than the HRV 

parameters in estimating cardiac sympathetic activity in ambulatory dogs with MI. It is 

possible that SCNA may be used as a method to measure of sympathetic tone for risk 

stratification in patients with MI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations and Acronyms

AC acceleration capacity

AT atrial tachycardia

DC deceleration capacity

ECG electrocardiogram

HF high frequency

HFnu high frequency normalized unit

HRV heart rate variability

LF low frequency

LFnu low frequency normalized unit

MI myocardial infarction
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pNN50 the proportion of NN50 divided by total number of NNs

PRSA phase-rectified signal average

RMSSD root mean square of successive differences

RRI RR interval

SCNA subcutaneous nerve activity

SDNN the standard deviation of normal to normal beat intervals

SGNA stellate ganglion nerve activity

TP total power

VLF very low frequency

VNA vagal nerve activity

VT ventricular tachycardia
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Clinical Perspectives

Cardiac autonomic tone is important in cardiac arrhythmogenesis. HRV is a commonly 

used method to estimate autonomic nerve activity. However, it has significant limitations 

because HRV relies on the sinus node response to autonomic modulation. In patients with 

abnormal function of the sinus node (such as in patients with heart failure or AF), HRV 

may not adequately reflect sympathetic tone. In addition, HRV cannot be used in patients 

with AF or frequently ventricular arrhythmias. We showed that SCNA increased 

significantly in a canine model of MI while the HRV did not show consistent changes. 

These findings show that SCNA is more accurate than HRV in estimating cardiac 

sympathetic tone in ambulatory dogs with MI. Our findings indicate that SCNA may be 

more useful than HRV in risk stratification after MI. Implanted cardiac devices (such as 

pacemaker, implantable cardioverter-defibrillator, or loop recorder) are usually placed in 

the thoracic subcutaneous pocket which is richly innervated by sympathetic nerves 

originating from the stellate ganglion. Sympathetic nerve activity recorded directly by the 

implanted devices may be useful in estimating cardiac sympathetic tone in patients with 

MI. Prospective clinical studies are needed to determine if it is possible to record 

sympathetic nerve activities from the subcutaneous tissues in humans, and if the 

sympathetic nerve activities is more accurate than HRV in risk stratification in patients 

with MI or other organic heart diseases.
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Figure 1. Changes of SGNA, VNA, SCNA, and HRV measures after MI
Daytime change of SGNA, VNA, SCNA, SDNN, LFnu, and DC for the all dogs at baseline 

(A) and 8 weeks after MI (B). The SGNA, SCNA, SDNN, LFnu, and DC all showed 

significantly circadian variation at baseline and after MI. DC=deceleration capacity; 

HRV=heart rate variability; LFnu=low frequency normalized unit; MI=myocardial 

infarction; NA=integrated nerve activity; SCNA=subcutaneous nerve activity; SDNN=the 

standard deviation of normal to normal beat intervals; SGNA=stellate ganglion nerve 

activity; VNA=vagal nerve activity. * P < .05 vs baseline.
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Figure 2. Consequent changes of daily SGNA, VNA, SCNA, and HRV measures at baseline, 2, 4, 
6, and 8 weeks after MI
There is a progressive increment of SGNA and SCNA at baseline, 2, 4, 6, and 8 weeks after 

MI. The HRV measures failed to show progressive increment or decrement that parallel the 

SGNA changes at baseline, 2, 4, 6, and 8 weeks after MI. The abbreviations as in Figure 1. 

*P < .05 vs baseline; †P < .05 vs 2 weeks; ‡P < .05 vs 4 weeks.
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Figure 3. SGNA, VNA, and SCNA prior to the onset of AT
Prolonged low amplitude burst discharge activity (LABDA) recorded from the stellate 

ganglion and the subcutaneous tissues were present prior to the onset of AT in one 

representative dog after MI (as arrow heads). AT=atrial tachycardia; 

ECG=electrocardiogram; HR=heart rate; Other abbreviations as in Figure 1.
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Figure 4. Integrated SGNA, VNA, SCNA, and HRV measures prior to the onset of AT
Progressive increase in both integrated SGNA and integrated SCNA is noted from 30 s 

intervals measured 120, 90, 60 and 30 s before initiation of AT in 9 dogs at baseline (A) and 

the incremental effects were more obvious at 8 weeks after MI (B). The DC value also 

showed progressive decrement from 30 s intervals measured 120, 90, 60 and 30 s before 

initiation of AT in 9 dogs after MI. The abbreviations as in Figure 1 and Figure 3. *P < .05 

vs − 120 s; †P < .05 vs − 90 s; ‡P < .05 vs − 60 s;.
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Table 1

Nerve activity and HRV at baseline and after MI

Variables Baseline (N=9) 8 week after MI (N=9) P value

SGNA (mv-s) 81±24 151±50 <0.001

VNA (mv-s) 39±11 48±10 0.021

SGNA/VNA ratio 2.2±0.7 3.4±1.5 0.043

SCNA (mv-s) 116±38 165±29 <0.001

RRI (ms) 764±97 781±96 .459

Time domain

SDNN (ms) 333±79 309±62 .442

RMSSD (ms) 369±87 336±85 .458

pNN50 0.65±0.08 0.63±0.08 .647

Frequency domain

TP (ln ms2) 12.2±0.8 11.8±0.7 .324

VLF (ln ms2) 10.1±0.8 9.8±0.5 .279

LF (ln ms2) 11.2±0.9 10.6±0.9 .219

HF (ln ms2) 11.4±0.7 11.2±0.7 .455

LFnu 35.8±7.5 31.7±10.6 .092

HFnu 64.2±7.5 68.3±10.6 .092

LF/HF 0.76±0.26 0.66±0.31 .141

PRSA

DC (ms) 165±66 160±47 .786

AC (ms) 96±32 93±26 .701

AC=acceleration capacity; DC=deceleration capacity; HF=high frequency; HFnu=high frequency normalized unit; HRV=heart rate variability; 

LF=low frequency; LFnu=low frequency normalized unit; MI=myocardial infarction; pNN50=the proportion of NN50 divided by total number of 

NNs; PRSA=phase-rectified signal average; RMSSD=root mean square of successive differences; RRI=RR interval; SCNA=subcutaneous nerve 
activity; SDNN=the standard deviation of normal to normal beat intervals; SGNA=stellate ganglion nerve activity; TP=total power; VLF=very low 
frequency; VNA=vagal nerve activity.

*
P < .05 vs baseline.
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Table 2

Correlation coefficients among different parameters at baseline and after MI

Baseline (N=9) 8 week after MI (N=9)

vs SGNA vs VNA vs SGNA vs VNA

SCNA 0.73±0.17 0.27±0.19 0.82±0.09 0.29±0.14

Time domain

SDNN −0.59±0.18 0.02±0.25 −0.56±0.15 0.11±0.22

RMS −0.58±0.21 0.02±0.25 −0.59±0.14 0.06±0.21

pNN50 −0.56±0.25 0.08±0.28 −0.59±0.13 0.01±0.21

Frequency domain

TP −0.39±0.19 0.03±0.18 −0.36±0.12 0.13±0.22

VLF −0.12±0.14 0.02±0.12 −0.09±0.15 0.11±0.16

LF −0.33±0.17 0.01±0.13 −0.26±0.12 0.13±0.22

HF −0.43±0.19 0.04±0.21 −0.37±0.17 0.08±0.21

LFnu 0.07±0.26 0.04±0.17 0.17±0.26 0.11±0.11

HFnu −0.07±0.26 0.04±0.17 −0.17±0.26 −0.11±0.11

LF/HF 0.12±0.20 −0.05±0.14 0.09±0.25 0.08±0.11

PRSA

DC −0.63±0.18 0.02±0.25 −0.63±0.15 0.15±0.23

AC 0.61±0.18 −0.03±0.25 0.61±0.13 −0.09±0.24

The abbreviations are the same as in Table 1.
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