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Abstract: Prevention of fracture through improved bone mechanical strength is of great importance given 
the large number of bone disease-related fractures each year, the decreased quality of life associated with 
fractures, and the large anticipated increase in fracture incidence over the upcoming years due to the aging 
population. Exercise and other forms of mechanical stimulation have been shown to increase bone mass, 
suggesting improved strength. However, while bone mass is a good indicator of strength, other components 
(such as bone quality) also contribute to bone mechanical integrity. While increased bone mass has been 
explored considerably using both exercise and targeted loading models, the role of mechanical stimulation 
in altering bone quality has been explored to a lesser degree. Understanding how to improve both the 
quantity and quality of bone is critical to increasing fracture resistance. Herein, we discuss quantity and 
quality-based improvements that have been observed using both exercise and targeted loading models of 
bone adaptation.  
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HISTORICAL PERSPECTIVE AND CLINICAL SIGNIFICANCE OF BONE RESPONSE TO 

MECHANICAL STIMULATION 

Throughout the course of a lifetime, a person’s bones are constantly loaded and unloaded, whether 

that be through walking, running, bending over, standing up, etc. As is true for any structure and material, 

constant loading of bone can lead to fatigue of the bone tissue and can cause accrual of damage, resulting 

in a weakened bone. In order for bone to maintain its mechanical integrity, it must be a dynamic structure, 

one that is able to repair itself and to adapt to the loads engendered on it. The goal of this review is to focus 

on this adaptability of bone, particularly from the perspective of the effects of mechanical loading on bone 

material properties.  

This concept that bone responds to mechanical stimulation is not new. Although Julius Wolff is 

often credited with the idea (commonly referred to as Wolff’s Law due to his 1870 publication [1]), the 

notion that mechanical loads influence the structure and organization of bone was observed well before, 

back to at least the 1830s when three doctors described their observations regarding trabecular organization 

[2]. Their observations were rather simplistic, and so perhaps, the true credit for the concept should be given 

to Georg Hermann von Meyer [3] who wrote a seminal work in 1867 on the idea that trabeculae are arranged 

in a specific manner which tended to align with the principal stress trajectories in bone. Hermann von Meyer 

was later followed by Karl Culmann, a mathematician who noted that the alignment of trabecular bone 

tended to follow a mathematical pattern seen in “graphic statics.” In the late 1800s, Wolff referenced von 

Meyer’s and Culmann’s works in the creation of his paper, where he discussed the adaptation of trabeculae 

to load, which eventually came to be known as Wolff’s law and is often used as the key reference for the 

mechanical adaptability of bone. 

Effectively, Wolff’s law states that bone will adapt to the loads engendered on it. In other words, 

the trabecular structure of bone is precisely arranged to place bone where it is needed and remove bone that 

is not needed in order to maintain structural integrity. Over a hundred years later, in 1987, Harold Frost [4] 
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published a conceptual model on bone adaptation, called “The Mechanostat,” in which bone itself was seen 

as a negative feedback system that would respond with either formation or resorption, depending on the 

local strain field. At almost the same time, Rubin and Lanyon began publishing on a similar idea whereby 

adaptive remodeling was sensitive to changes in both the magnitude and distribution of strain in bone [5].  

 

Fig. 1 As is the case for cancellous bone, cortical bone also adapts to its mechanical environment. 

Take the case of an elite tennis player. In the radiograph of the forearm, the dominant arm (right side in the 

figure) has a much larger cortex than the contralateral arm, presumably due to the increased forces acting 

on the dominant arm during tennis. Figure used with permission from SAGE Publications [6]. 

 

This response of bone to mechanical stimulation has been observed in many human exercise studies 

[7]. A common example is found in tennis players who, due to the forces of impact and muscle loading, 

often have increased bone mineral content in their dominant arm as compared to their non-dominant arm, 

as shown in Fig. 1 [8]. Similarly, the throwing arm of baseball players has been shown to have increased 

bone mass and improved structure as compared with the non-throwing arm [9]. Running [10-12], jumping 

[13], gymnastics [14, 15], weight lifting [16], and swimming [17, 18] have all been shown to increase bone 

mass as compared to sedentary controls. This bone mass response seems to be dependent on the degree to 

which the activity is weight bearing [19, 20], as well as the starting age, with pre-menarche girls having the 

greatest increase in bone mineral content [21].  
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Just as mechanical stimulation can increase bone mass, a decrease in mechanical stimulation 

(through disease or disuse) can cause a relatively rapid decrease in mass. This decrease can be seen as the 

bone trying to balance the need for strength with the metabolic costs associated with maintaining that 

strength. Bone is a dense structure in comparison to almost all other tissues in the body such as fat, muscle 

and skin (nearly double the mass per unit volume) and has large metabolic needs. In situations of disuse, 

bone loss will occur quickly because the body no longer needs to metabolically support such a large 

structure for load bearing ability [22]. A common example is astronauts, who often experience bone loss 

due to microgravity while in space [23-26]. In a study of long-duration flights (average duration 

approximately 6 months), almost all long-duration astronauts experienced at least a 3% bone loss in at least 

one skeletal site, while 43% showed at least a 10% bone loss in at least one skeletal site [27]. In fact, the 

decrease in bone in astronauts was found to be approximately 1-1.5% per month [28], and was shown to be 

up to 2.7% per month in the trabecular region of the femoral neck [29]. Astronauts are not the only ones 

affected. Bedrest is often used as a model of space flight [27], as it has been shown to decrease bone density 

by approximately 0.3-1% per month [30, 31]. In addition, diseases such as osteoporosis are thought to be 

caused, at least in part, by a failure of bone cells to respond to mechanical stimulation [32]. This bone loss 

(through space flight, bed rest, osteoporosis, or another mechanism) decreases the skeleton’s ability to bear 

load and can lead to fracture in instances of high impact loading (such as falling). 

Prevention of fracture through improved bone mechanical strength is of great importance given the 

large number of bone disease-related fractures each year, the decreased quality of life associated with 

fractures, and the large anticipated increase in fracture incidence over the upcoming years due to the aging 

population [33]. For this reason, much research has been dedicated to understanding how and why bone 

responds to mechanical load. In addition to clinical studies, the use of pre-clinical animal models has aided 

greatly in advancing our knowledge on the response of bone to mechanical stimulation.  

 

ANIMAL MODELS OF MECHANICAL STIMULATION 
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While clinical studies have provided clear indications that bone adapts to mechanical stimulation, 

most of our understanding of the specifics of how and why bone adaptation occurs have been derived from 

studies using pre-clinical animal models. In general, in vivo animal models of mechanical adaptation can 

be divided into exercise-based or targeted loading modalities.  

Exercise, as the name would suggest, refers to loading modalities such as treadmill running [34, 

35], jumping [36], swimming [37, 38], and climbing [39, 40]. Exercise models tend to be non-invasive, 

where loading of bone is delivered through muscle contraction and ground reaction forces. In exercise 

models, the entire animal is affected which makes these models physiologically relevant. The main 

limitation, however, is the incomplete control over the mechanical inputs to the bone, which can be 

dependent on each individual animal’s activity and activity level, body weight, etc. It is also difficult to 

isolate the influences of mechanical loading from those that result from the whole body response.  

In contrast, targeted loading provides an alternative means of assessment in that a known load or 

strain stimulus can be applied to all animals in a consistent manner. A variety of targeted loading models 

are shown in Fig. 2. In most cases, a single limb or single bone is mechanically stimulated. The earliest 

experiments were somewhat invasive, using implanted surgical pins [41], four-point bending of the tibia 

[42], or cantilever tibial loading [43]. While studies using these models were certainly important and 

informative, surgical implantation or the direct application of loading on the bone’s surface can lead to 

confounding effects including inflammation and woven bone formation. More recently, these models have 

mostly been abandoned in favor of ulnar loading [44, 45] and tibial loading [46] which are cheap and 

relatively simple to employ and do not suffer from the same limitations mentioned above. Most studies 

have shown that adaptation of both cortical and cancellous bone are confined to the loaded limb [47], thus 

enabling the animal’s contralateral limb to act as an internal, non-loaded control. However, caution should 

be exercised as there is some evidence that systemic effects of loading at remote skeletal sites do exist in 

these models [48, 49].  
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Fig. 2 Targeted loading models apply force to a single limb or bone, thus allowing greater control 

over the mechanical stimulus applied. A variety of targeted loading models have been employed, including 

a) osteotomy, b) use of surgical pins in the rabbit tibia, c) turkey ulna, and d) rat caudal spine. Non-invasive 

models have also been developed, including e) rat four-point tibial loading, f) rat ulnar loading, g) axial 

compressive tibial loading and h) cantilever bending of the tibia. Figure used with permission from Elsevier 

Publishing Company [50]. 

 

Extrinsic Factors Influencing Bone Formation Response 

Both exercise and targeted loading have significantly advanced our understanding of what triggers 

a bone formation response. For example, the strain stimulus during loading must be above a certain 

threshold [51] and the loading must be dynamic (not static) [52] in order for bone to respond. The threshold 

was later found to be location dependent, and it was demonstrated in the rat ulna that the threshold strain 

was higher in areas that were regularly subjected to larger in vivo mechanical strains [53]. Once above that 

strain, bone formation responds more or less linearly to the amount of strain engendered [51, 54, 55]. Strain 
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rate also has an impact, with high strain rates resulting in higher bone formation rates while static loads had 

no effect [52, 56, 57]. In most studies, inserting rest into the loading bouts can also increase the bone 

formation response [58-60]. The cellular mechanisms governing this observation are not altogether clear, 

but it is thought to involve the modulation of intracellular levels of calcium in osteoblasts [61], or 

potentially the movement of fluid through the canilicular network and around osteocytes with rest allowing 

for the relaxation of this fluid to its resting state [62].  

Most of the initial bone adaptation studies focused exclusively on cortical adaptation, since many 

of the early targeted loading models were unable to be used to assess cancellous bone. However, with the 

addition of the tibial loading models, the response of cancellous bone could also be probed [46]. Cancellous 

bone adaptation has been observed in both male and female mice [63], with a response even more robust 

than was observed in cortical bone [64]. This response in cancellous regions has implications for 

osteoporosis since cancellous regions are often at greatest risk for fracture [64]. 

In both cortical and cancellous regions, the strain engendered in the bone tissue due to applied 

loading plays an integral role in determining its adaptive response. For that reason, the addition of finite 

element analysis models has been crucial in enabling us to understand the strain field engendered on bone 

for the various animal loading modalities. Numerous studies have explored strain distributions under the 

loading regimes, each involving increasingly more sophisticated models [65-72]. Digital image correlation 

(DIC) has also been used to assess surface strains experimentally. For example, Sztefek et al. measured 

surface strain using DIC and reported that after tibial loading, the surface strains were reduced and more 

uniform than before loading [73], suggesting that bone responds to mechanical stimulation as a means of 

reducing strain. 

 

Intrinsic Factors Influencing Bone Formation Response 

As our understanding of bone adaptation has increased, research in this area has expanded to also 

include an assessment of various intrinsic factors with the aim of understanding what causes bone to respond 

as it does.  
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The use of genetic animal models has been beneficial, both as a way to understand why some 

humans might show a better response to loading than others, as well as a means of exploring cellular 

pathways related to the response. For example, bone adaptation occurs more readily in models of low 

density bone (C57BL/6J mice) as compared to models of high density bone (C3H/HeJ mice) using targeted 

tibial loading [74]. Similarly, a genetic study exploring three mouse strains (C3H/He, C57BL/6, and 

DBA/2) showed decreased responsiveness in the C3H/He mice [75]. Together, these studies suggest that 

genetics contribute to a person’s predisposition for high or low bone mass and may also impact their ability 

to adapt to mechanical stimulation. Genetic mouse models have also been used to tease out some of the 

underlying molecular pathways involved in the loading response. LRP5-deficient mice were used and 

showed that the LRP5 mutation was associated with increased response to loading [76], while sclerostin-

deficient mice demonstrated that long-term sclerostin deficiency can result in increased bone formation 

[77]. Many studies using germ-line and targeted protein knockouts for estrogen and androgen pathways 

have investigated the role these pathways play in governing the response to mechanical loading [78-81]. A 

detailed discussion of these studies is beyond the scope of this paper but the reader is directed to a recent 

review on the topic [82].   

Another major area of exploration has focused on the influence of age. At 26 weeks of age, 

skeletally mature mice showed reduced sensitivity to mechanical stimulation as compared to actively 

growing 10 week old mice, even though both young and old mice responded to load. It was suggested that 

this effect was driven by a decrease in bone tissue deformation [83]. Interestingly, in another study, the 

strains engendered on bone increased with age due to cortical thinning as assessed experimentally and with 

a finite element model [66]. This disparity might be driven by the fact that the second study used mice at 5, 

12 and 22 months of age, versus at ~2.5 and 6 months of age as was the case in the first study. Others have 

shown that pre- and peri-menarche mice have a greater response to loading that skeletally-mature animals 

[84]. In yet another study that explored the role of loading in young (10 week) and old (26 weeks) mice at 

either the same strain level or the same load level, it was found that the same load level (which was a higher 
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strain level) was required in the old mice to observe an adaptive effect [85]. Clearly, more work is needed 

to clarify the impacts that age has on bone’s adaptive response. 

 

Mechanical Stimulation in Pre-clinical Assessment 

The use of animal disease models has enabled pre-clinical assessment of the effect of loading in 

the context of disease. For example, tibial loading was able to prevent bone loss after orchidectomy [86]. 

In addition, there has been an increase in the exploration of combination treatments, through which is has 

been observed that loading can synergistically improve the effect of drug treatments such as parathyroid 

hormone [87] and tamoxifen [88], but not fulvestrant [88]. These studies, and more, have profoundly 

impacted our understanding of mechanical stimulation. However, as will be discussed in the next section, 

we must be careful to not confuse improved bone mass with decreased fracture risk. 

 

BONE QUALITY VERSUS BONE QUANTITY 

Much of the focus of the above studies has been in understanding what triggers a bone formation 

response, with outcomes typically restricted to bone formation rate, bone mass, and bone mineral density. 

While these studies have been beneficial in increasing our understanding of what drives bone formation, 

they beg the question as to the importance of increased bone mass in relation to decreased fracture risk. For 

example, while BMD is a good predictor of fracture risk, other components of bone strength make it 

difficult for BMD alone to assess fracture [89, 90]. Thus, if the ultimate goal is to decrease fracture risk in 

patients with compromised bone structure, we must be sure that the treatments (exercise, targeted loading, 

etc.) not only positively impact bone mass, but also bone mechanical integrity. If we are merely increasing 

bone mass without improving mechanical integrity, we are not achieving our end goal. This idea was 

demonstrated in a recent study by Main et al. which showed that load-induced changes in bone stiffness did 

not reflect changes in cross-sectional geometry after 2 weeks of loading in mice [84]. 
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While bone mass alone should not be the end all assessment to reduce fracture, increased bone 

mass is still a good outcome. This makes intuitive sense since something that is larger usually requires a 

greater force to break. Take, for example, a pencil and a tree branch. Both may be made from the same 

wood, but experience informs us that the pencil will be easier to break (i.e. breaking it will require less 

force). For bone, similar principles apply. In terms of mechanics, a greater cross-sectional area will decrease 

tissue-level stress (the force experienced by the tissue itself) by distributing a given force over more material 

and thus, decrease the risk of fracture. A redistribution of the tissue can also decrease stresses with no 

change in tissue mass required. However, as mentioned above, bone mineral density and bone mass 

incompletely predict fracture risk, suggesting that there is more to the story (i.e. the ill-defined term bone 

quality). 

Bone quality, in essence, is the ability of the bone tissue itself to resist load, without regard for its 

mass and structural morphology. It can be related to the inherent states of the two primary components of 

the bone matrix: hydroxyapatite and Type I collagen. Some measurable contributors to bone quality include 

chemical composition, mineral crystal size and crystallinity, mineral-matrix interactions, bone tissue 

density, degree of collagen cross-linking, accumulation of advanced glycation end-products (AGEs), 

microdamage, and collagen fiber orientation [91-94]. All of these factors can influence toughening 

mechanisms in bone [95], thus altering its ability to bear load and absorb energy. Some bone diseases result 

in increased fracture risk due to decreased bone quality. Take, for example, diabetes. Although diabetic 

patients often have average or increased BMD, they are also considered to be at higher risk of fracture due 

to the decreased quality of their tissue, generally attributed to an accumulation of AGEs [96]. 

Thus, an important question to ask regarding bone adaptation to mechanical load is, how are bone 

quality and tissue-level properties affected?  

 

MECHANICAL STIMULATION AND BONE QUALITY 
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In answer to this, recent research has begun to focus on understanding the contributors of bone 

tissue quality and how they are affected by mechanical loading.  Many of the studies show promising effects 

with respect to the ability of mechanical stimulation to improve bone quality. An interesting example of the 

quality/quantity conundrum has been shown in swimming rats. Although clinical and pre-clinical studies 

have suggested that non-load bearing activities such as swimming only result in mild increases (and 

sometimes even decreases) in bone mineral content and bone mass [97-99], the post-yield mechanical 

properties of bones from swimming rats were significantly increased as compared to their sedentary 

controls [100]. Improved post-yield parameters are important in that they can be related to a bone’s ability 

to resist catastrophic failure by dissipating energy through damage accrual. This damage can later be 

repaired through targeted remodeling. Given the effect on post-yield mechanical properties, the results were 

attributed to modifications in collagen since post-yield behavior is most often associated with the state of 

collagen in bone. In support of the ability of exercise to alter collagen, Isaksson et al. demonstrated that 

following voluntary running in mice, mechanical properties of the bone collagen network were significantly 

increased [101]. These benefits came without any changes in collagen content, indicating loading-induced 

improvements to the collagen network itself.  

An increase in post-yield parameters has also been observed in treadmill exercised mice in which, 

after three weeks of running, mice exhibited increased post-yield mechanical behavior as compared to 

sedentary controls even though there was no change in bone size or shape [34]. These findings suggested 

that changes in bone quality, and specifically in collagen, were responsible.  Interestingly, when mice were 

subjected to this running protocol for 3 weeks and then allowed 2 additional weeks of latency, the post-

yield benefits of exercise were maintained while tissue stiffness and strength increased [102]. These 

changes, which continued after the termination of loading, suggested that the modifications to collagen may 

require time to mature; hence, the increased strength with the latency period. 

Beyond the effects on monotonic mechanical properties, exercise and loading have other effects 

which can also be related to changes in bone quality. These include effects on fatigue life or the ability of 

bone to accrue and tolerate damage due to repeated loading in the absence of a repair mechanism (ex vivo). 
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One such study of modified fatigue life involved the rat ulnar loading model [103]. Warden, et al. loaded 

the ulna of rats daily for 7 weeks followed by 92 weeks of detraining to assess changes in bone quality 

induced by loading as well as the ability to maintain those changes over time. Although BMC values 

measured using DXA were the same in the loaded and non-loaded limbs after detraining, the structure 

(minimum moment of inertia) was larger in the loaded group and the fatigue life was significantly increased 

compared with controls. There were also increases in whole bone (ash content) and localized (phosphate-

to-protein) mineralization, as well as in the carbonate to protein ratio in the loaded ulnas. Consistent with 

the increase in mineralization, the exercised ulnas had increased stiffness and strength, but decreased post-

yield behavior, suggesting a more brittle bone. However, despite the increase in brittleness, the increase in 

fatigue life suggests that the bone was still better able to resist fatigue loading-induced failure, likely 

through modification in the bone’s organic phase (i.e. collagen). 

A loading-induced improvement in fatigue life was also observed in a study by Kohn, et al. [104]. 

Using 16-week old male mice, 3 weeks of treadmill running significantly improved tissue strength and 

fatigue resistance without changes in bone size. Specifically, tibiae from control and exercised mice had 

similar levels of microcracks and diffuse damage. However, the number of new cracks formed during ex 

vivo fatigue loading was lessened in exercised bones, suggesting that exercise made the bones more 

resistant to damage accrual during fatigue. In sedentary mice, fatigue loading altered the mineral-matrix 

ratio and increased the disorder of the secondary structure of collagen in bone. These results were not 

observed in exercised mice, indicating that the exercised bones were better able to resist damage to the 

collagen matrix. Given the lack of changes in bone size (similar to what was seen in the ulnar loading study 

above, [103]), these results all suggest a direct effect of loading on bone tissue quality, potentially due to 

changes in collagen specifically. 

Although studies of mechanical stimulation on bone quality have shown promising results, not all 

effects have been positive.  Mosekilde, et al. [105] showed that 6 months of treadmill running in rats resulted 

in increased BV/TV and increased cross-sectional area, but no mechanical improvements in the vertebrae. 

In addition, the femoral midshaft had increased cortical thickness, but no change in ash content, collagen 
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content, apparent density, or mechanical properties. Some of this seeming disparity in results might be 

driven by the difference in pre-yield and post-yield parameters. Namely, many of the positive effects of 

loading noted in the above paragraphs have been in either post-yield properties or fatigue parameters, 

neither of which were addressed in this study. The discussion of pre- and post-yield properties raises another 

concern. Although many have demonstrated increases in post-yield parameters, those increases are often 

accompanied by decreases in pre-yield mechanical properties [100, 34]. The decrease in pre-yield 

mechanical properties could be ameliorated by an additional period of latency [102]. However, the reason 

for this alteration and the role that pre-yield and post-yield parameters play in ultimately determining 

fracture resistance remains to be elucidated. Altogether, although many of the studies show positive quality-

based effects of mechanical stimulation, not all studies do, and due to the paucity of information on this 

topic, the reasons for these discrepancies are not clear. 

 

CONCLUSION 

Mechanical stimulation (whether through exercise or targeted loading modalities) has been shown 

to beneficially affect bone mass. However, we must be certain that these effects also contribute to improved 

bone quality and ultimately, to decreased fracture risk. Recent studies have shown mostly positive results, 

suggesting that loading may cause quality-based changes in bone. However, there have also been several 

studies that show opposite trends. For that reason, future research is needed to assess specific components 

of loading that may either contribute to or prevent quality-based improvements to bone so that ultimately, 

an understanding of how to improve both quantity and quality can be achieved. 
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